JP2004158740A - Drilling method using carbon dioxide gas laser having superior accuracy of drilling into additive substrate - Google Patents

Drilling method using carbon dioxide gas laser having superior accuracy of drilling into additive substrate Download PDF

Info

Publication number
JP2004158740A
JP2004158740A JP2002324727A JP2002324727A JP2004158740A JP 2004158740 A JP2004158740 A JP 2004158740A JP 2002324727 A JP2002324727 A JP 2002324727A JP 2002324727 A JP2002324727 A JP 2002324727A JP 2004158740 A JP2004158740 A JP 2004158740A
Authority
JP
Japan
Prior art keywords
drilling
resin
copper
hole
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002324727A
Other languages
Japanese (ja)
Inventor
Kenji Yamamoto
憲二 山本
Nobuyuki Ikeguchi
信之 池口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002324727A priority Critical patent/JP2004158740A/en
Publication of JP2004158740A publication Critical patent/JP2004158740A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a laser drilling method, wherein drilled size accuracy into an (semi)additive substrate is satisfactory, and drilling efficiency is superior. <P>SOLUTION: In the method for forming a hole in the (semi) additive substrate, after the surface is roughened, plating with thickness of from 0.1 to 5 μm is applied on the substrate, and then the surface is directly irradiated with laser light with sufficient energy to process a copper foil for forming a blind via hole and/or a through-hole. As a result of the process, by the drilling processing the shapes of the holes located on the inlet side and at the bottom or on the outlet side are made substantially the same, so that a printed wiring board with superior reliability is ensured. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、小径のブラインドビア孔及び/又は貫通孔を形成する方法に関するものであり、得られた両面プリント配線板、多層プリント配線板は、小径の孔を有する、高密度の小型プリント配線板として、新規な半導体プラスチックパッケージ、マザーボード用等に使用される。
【0002】
【従来の技術】
従来、半導体プラスチックパッケージ等に用いられるアディティブ法高密度プリント配線板において、ブラインドビア孔を形成する場合、金属層が表層に無い樹脂基板の上からレーザーを直接照射して孔を形成後にプリント配線板としていた(例えば、特許文献1及び2参照。)。この工程だと、ブラインドビア孔の場合は孔の上側と底部の径が一定にできなかった。又貫通孔をあけた例は見られなかった。
【0003】
【特許文献1】特公平7−34505号公報
【特許文献2】特許第3219395号公報
【0004】
【発明が解決しようとする課題】
本発明は、以上の問題点を解決したレーザー、炭酸ガスレーザーによるアディティブ用基板への孔形成方法を提供する。
【0005】
【発明が解決するための手段】
アディティブ用基板に孔を形成する方法において、樹脂表面を粗化後に金属メッキを厚さ0.1〜5μm付着させてから、この表面から、銅箔を加工するに十分なエネルギーの炭酸ガスレ−ザーを直接照射し、ブラインドビア孔及び/又は貫通孔を形成する。この工程で孔加工することにより、入側と底部又は出側の孔の形状がほぼ同一とでき、孔信頼性等に優れたものが得られる。得られた銅張板はその後に一般のプリント配線板製造工程を通して加工し、高密度プリント配線板とする。
【0006】
【発明の実施の形態】
本発明は、炭酸ガスレーザーを用いて、アディティブ用基板に小径の孔径精度に優れたブラインドビア孔及び/又は貫通孔を形成する方法である。アディティブ用基板に孔を形成する方法として、樹脂基板の表面を粗化後にメッキを厚さ0.1〜5μm付着させてから、この表面から、銅箔を加工するに十分なエネルギーの炭酸ガスレ−ザーを直接照射し、ブラインドビア孔及び/又は貫通孔を形成する。
【0007】
本発明のアディティブ用樹脂組成物は、一般に公知のものが使用できる。この樹脂層を回路板の上に順次ビルドアップ積層して、(セミ)アディティブ法によって多層プリント配線板を製造する。
【0008】
本発明で使用する上記の基材入り銅張板は、2層以上の銅の層を有する銅張板であり、熱硬化性樹脂銅張積層板としては、無機、有機基材の公知の熱硬化性銅張積層板、その多層銅張板、表層に樹脂付き銅箔シートを使用した多層銅張板等、一般に公知の構成の多層銅張板、またポリイミドフィルム、ポレエステルフィルム、ポリパラバン酸フィルム、全芳香族ポリアミドフィルム、液晶ポリエステルフィルム等の基材の銅張板が挙げられる。
【0009】
基材補強銅張積層板は、まず補強基材に熱硬化性樹脂組成物を含浸、乾燥させてBステージとし、プリプレグを作成する。次に、このプリプレグを所定枚数重ね、その外側に銅箔を配置して、加熱、加圧下に積層成形し、銅張積層板とする。多層銅張板は、この両面銅張積層板の銅箔を加工して回路を形成し、銅箔表面を処理して内層板を作製し、この外側にプリプレグ、またはBステージ樹脂シートをおいて、銅箔をその外側に配置し、積層成形するか、或いは銅箔付きBステージ樹脂シートを内層板の外側に配置し、積層成形して多層銅張板とする。
【0010】
基材としては、一般に公知の、有機、無機の織布、不織布が使用できる。無機の繊維としては、具体的にはE、S、D、M、NEガラス等の繊維等が挙げられる。又、有機繊維としては、全芳香族ポリアミド、液晶ポリエステル等一般に公知の繊維等が挙げられる。これらは、混抄でも良い。また、フィルム基材も挙げられる。
【0011】
本発明使用される熱硬化性樹脂組成物の樹脂としては、一般に公知の熱硬化性樹脂が使用される。具体的には、エポキシ樹脂、多官能性シアン酸エステル樹脂、 多官能性マレイミドーシアン酸エステル樹脂、多官能性マレイミド樹脂、不飽和基含有ポリフェニレンエーテル樹脂等が挙げられ、1種或いは2種類以上が組み合わせて使用される。出力の高い炭酸ガスレーザー照射による加工での貫通孔の形状の点からは、ガラス転移温度が150℃以上の熱硬化性樹脂組成物が好ましく、耐湿性、耐マイグレーション性、吸湿後の電気的特性等の点から多官能性シアン酸エステル樹脂組成物が好適である。
【0012】
本発明の好適な熱硬化性樹脂分である多官能性シアン酸エステル化合物とは、分子内に2個以上のシアナト基を有する化合物である。具体的に例示すると、1,3−又は1,4−ジシアナトベンゼン、1,3,5−トリシアナトベンゼン、1,3−、1,4−、1,6−、1,8−、2,6−又は2,7−ジシアナトナフタレン、1,3,6−トリシアナトナフタレン、4,4−ジシアナトビフェニル、ビス(4−ジシアナトフェニル)メタン、2,2−ビス(4−シアナトフェニル)プロパン、2,2−ビス(3,5−ジブロモー4−シアナトフェニル)プロパン、ビス(4−シアナトフェニル)エーテル、ビス(4−シアナトフェニル)チオエーテル、ビス(4−シアナトフェニル)スルホン、トリス(4−シアナトフェニル)ホスファイト、トリス(4−シアナトフェニル)ホスフェート、およびノボラックとハロゲン化シアンとの反応により得られるシアネート類、シアナト化ポリフェニレンエーテル樹脂等である。これらの公知のBr付加化合物も挙げられる。
【0013】
これらのほかに特公昭41−1928、同43−18468、同44−4791、同45−11712、同46−41112、同47−26853及び特開昭51−63149等に記載の多官能性シアン酸エステル化合物類も用いられ得る。また、これら多官能性シアン酸エステル化合物のシアナト基の三量化によって形成されるトリアジン環を有する分子量400〜6,000 のプレポリマーが使用される。このプレポリマーは、上記の多官能性シアン酸エステルモノマーを、例えば鉱酸、ルイス酸等の酸類;ナトリウムアルコラート等、第三級アミン類等の塩基;炭酸ナトリウム等の塩類等を触媒として重合させることにより得られる。このプレポリマー中には一部未反応のモノマーも含まれており、モノマーとプレポリマーとの混合物の形態をしており、このような原料は本発明の用途に好適に使用される。一般には可溶な有機溶剤に溶解させて使用する。
【0014】
エポキシ樹脂としては、一般に公知のものが使用できる。具体的には、液状或いは固形のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂;ブタジエン、ペンタジエン、ビニルシクロヘキセン、ジシクロペンチルエーテル等の二重結合をエポキシ化したポリエポキシ化合物類;ポリオール、エポキシ化ポリフェニレンエーテル樹脂、水酸基含有シリコン樹脂類とエポハロヒドリンとの反応によって得られるポリグリシジル化合物類等が挙げられる。また、これらの公知のBr付加樹脂、リン含有エポキシ樹脂等が挙げられる。これらは1種或いは2種類以上が組み合わせて使用され得る。
【0015】
ポリイミド樹脂としては、一般に公知のものが使用され得る。具体的には、多官能性マレイミド類とポリアミン類との反応物、特公昭57−005406 に記載の末端三重結合のポリイミド類が挙げられる。
【0016】
これらの熱硬化性樹脂は、単独でも使用されるが、特性のバランスを考え、適宜組み合わせて使用するのが良い。
【0017】
本発明の熱硬化性樹脂組成物には、組成物本来の特性が損なわれない範囲で、所望に応じて種々の添加物を配合することができる。これらの添加物としては、不飽和ポリエステル等の重合性二重結合含有モノマー類及びそのプレポリマー類;ポリブタジエン、エポキシ化ブタジエン、マレイン化ブタジエン、ブタジエン−アクリロニトリル共重合体、ポリクロロプレン、ブタジエン−スチレン共重合体、ポリイソプレン、ブチルゴム、フッ素ゴム、天然ゴム等の低分子量液状〜高分子量のelasticなゴム類;ポリエチレン、ポリプロピレン、ポリブテン、ポリ−4−メチルペンテン、ポリスチレン、AS樹脂、ABS樹脂、MBS樹脂、スチレン−イソプレンゴム、アクリルゴム、これらのコアシェルゴム、ポリエチレン−プロピレン共重合体、4−フッ化エチレン−6−フッ化エチレン共重合体類;ポリカーボネート、ポリフェニレンエーテル、ポリスルホン、ポリエステル、ポリフェニレンサルファイド等の高分子量プレポリマー若しくはオリゴマー;ポリウレタン等が例示され、適宜使用される。また、その他、公知の有機、無機の充填剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光増感剤、難燃剤、光沢剤、重合禁止剤、チキソ性付与剤等の各種添加剤が、所望に応じて適宜組み合わせて用いられる。必要により、反応基を有する化合物は硬化剤、触媒が適宜配合される。
【0018】
本発明の熱硬化性樹脂組成物は、それ自体は加熱により硬化するが硬化速度が遅く、作業性、経済性等に劣るため使用した熱硬化性樹脂に対して公知の熱硬化触媒を用い得る。使用量は、熱硬化性樹脂100重量部に対して0.005〜10重量部、好ましくは0.01〜5重量部である。
【0019】
本発明のアディティブ用樹脂層は、内層回路板の上に塗布或いはフィルム状とした樹脂層で配置され、フィルム或いは金属箔付きBステージ樹脂シートは加熱、加圧下に付着され、硬化処理される。本発明の積層する際の硬化処理積層成形条件は、特に限定はないが、酸或いは酸化剤での粗化が適正にできる条件を、使用した樹脂組成によって適宜選択する。一般には温度60〜250℃、圧力2〜50kgf/cm 、時間は0.5〜3時間である。又、真空下に積層成形するのが好ましい。装置は真空ラミネータプレス、一般の多段真空プレス等、公知のものが使用できる。真空ラミネータプレスの場合は、硬化が不足する場合には、オーブン等で後硬化し、粗化溶液で粗化できる硬化度とする。
【0020】
本発明で得られたアディティブ用樹脂付き離型フィルム張板或いは金属箔張板の表層の離型フィルム或いは金属箔を除去後、公知の方法にて樹脂の粗化を酸或いは酸化剤等で行う。使用する酸としては硫酸、塩酸、硝酸、燐酸、蟻酸等が挙げられ、酸化剤としては過マンガン酸ナトリウム、過マンガン酸カリウム、クロム酸、クロム硫酸等が挙げられるが、これに限定されるものではない。この処理前は必要により公知の膨潤液を使用し、処理後は中和液で中和する。この粗化処理で形成する粗化面の平均粗度は、表面凹凸を付けた離型フィルム或いは金属箔の凹凸とは別に平均粗度Rz 0.1〜10μm、好適には0.2〜5μmとする。金属箔の凹凸と粗化による凹凸を合わせた粗度は、一般には平均粗度Rzが3〜15 μm、好適にはRz 5〜12 μmとする。
【0021】
その後は、公知のセミアディティブ法、フルアディティブ法等にて無電解メッキを施すか、無電解メッキと電解メッキ等を行い、メッキ厚さを0.1〜5μm、好適には1〜3μmとする。金属メッキは特に限定はしないが、銅、ニッケル、これらの合金が好ましい。もちろんメッキはスパッタリング等、公知の方法も使用できる。
【0022】
このセミアディティブ法で付着された金属層の上から、レーザーを照射してブラインドビア孔及び/又は貫通孔をあける。炭酸ガスレーザーは、赤外線波長域にある9.3〜10.6μmの波長が一般に使用される。エネルギーは1〜30mJ、好適には3〜19mJ にてパルス発振で銅を加工し、孔をあける。エネルギーは表層の銅の厚さによって適宜選択する。又、一般に公知のエキシマレーザー、Nd−YAGレーザー等のUVレーザーでの孔形成も使用できる。UVレーザーは、UV波長のレーザー光を照射して孔あけするものであり、波長は特に限定はないが、一般に200〜400nmの波長が使用される。特にソリッドステートUVレーザーが使用される。これは、有機物に極力熱の影響を与えないで、有機物を構成している分子結合を断ち切るメカニズムで加工するものである。孔の中は炭酸ガスレーザーに比べて炭素が発生せず、クリーンなために、その後の銅メッキも特に前処理がなくても信頼性良く付着させることができる。
【0023】
この金属層がない基板に直接レーザーを照射して孔あけを行なった場合には、ブラインドビア孔では表層の孔径と底部の孔径がかなり違い、孔設計が困難であり、又、貫通孔の場合には孔上層部に金属層がないために、レーザーを照射した表層の孔径が大きくなり、裏面の孔径との差が大きく、孔径公差が非常に悪いものができる。本発明の方法では、いずれも上下の孔径が大きく異ならず、安定した公差の孔径のものが得られ、その後にプリント配線板とした場合の孔信頼性に優れたものが得られる。
【0024】
このアディティブ用樹脂層は硬化処理しているが、完全硬化していないために、金属メッキ付着後に後硬化する。樹脂組成によって異なるが、一般には温度100〜250℃で30分〜5時間後硬化する。セミアディティブ法では次に公知の方法で回路を形成し、プリント配線板とする。この同一工程を順次繰り返してビルドアップにて多層化する。
【0025】
回路を形成する方法は、一般に公知のアディティブ法の方法が使用される。最終的にフラッシュエッチングで細密回路を形成する場合、表面の銅箔をエッチングする溶液は特に限定はないが、例えば、特開平02−22887、同02−22896、同02−25089、同02−25090、同02−59337、同02−60189、同02−166789、同03−25995、同03−60183、同03−94491、同04−199592、同04−263488で開示された、薬品で金属表面を溶解除去する方法(SUEP法と呼ぶ)が好適に使用される。エッチング速度は、一般には0.02〜1.0μm/秒 で行う。
【0026】
【実施例】
以下に実施例、比較例で本発明を具体的に説明する。尚、特に断らない限り、『部』は重量部を表す。
(実施例1)
2,2−ビス(4−シアナトフェニル)プロパンモノマーを400部150℃に溶融させ、撹拌しながら4時間反応させ、平均分子量1,900のプレポリマーを得た。これをメチルエチルケトンに溶解し、ワニスAとした。これに室温で液状のエポキシ樹脂として、ビスフェノールA型エポキシ樹脂(商品名:エピコート828、ジャパンエポキシレジン<株>製)150部、ビスフェノールF型エポキシ樹脂(商品名:EXA830LVP、大日本インキ化学工業<株>製)100部、ノボラック型エポキシ樹脂(商品名:DEN438、ダウケミカル<株>製)100部、クレゾールノボラック型エポキシ樹脂(商品名:ESCN220F、住友化学工業<株>製)100部を配合し、熱硬化触媒としてアセチルアセトン鉄0.3部をメチルエチルケトンに溶解して加えた。これに液状のエポキシ化ポリブタジエン樹脂(商品名:E−1000−8.0、日本石油化学<株>製)100部、エポキシ基変性アクリル多層構造粉体(商品名:スタフィロイドIM−203、平均粒子径0.3μm)50部、球状シリカ(平均粒径:0.8μm)200部を加え、良く攪拌混合して均一なワニスBにした。
【0027】
このワニスBを連続して厚さ25μmの凹凸が付いたPETフィルムCの凹凸面(凹凸1.0〜4.3μm、平均粗度Rz:3.5μm)に塗布、乾燥して離型フィルムのMax.凸部の先端から30μmの高さのBステージ樹脂組成物層(170℃でのゲル化時間46秒)を形成し、乾燥ゾーンから出てきた時点で樹脂側に厚さ20μmの保護ポリロピレンフィルムを配置し、100℃、4kgf/cmの線圧でラミネートして離型フィルム付きBステージ樹脂組成物シートDを作製した。
【0028】
一方、内層板として絶縁層厚さ0.2mm、12μm両面銅箔のBTレジン銅張積層板(商品名:CCL−HL830、三菱ガス化学<株>製 )に回路を形成し、黒色酸化銅処理を銅箔に施した板の両面に、上記離型フィルム付きBステージ樹脂組成物シートGを、保護フィルムを剥離しながら樹脂層が内層板側を向くように両面に配置し、プレス装置に仕込んだ後、室温から170℃まで25分で温度を上げ、圧力は最初から15kgf/cmとし、真空度は0.5Torrで170℃にて30分保持した後、冷却して取り出し、4層の多層板 H を得た。この表面の離型PETフィルムを除去後、過マンガン酸カリウム系デスミア溶液(日本マクダーミッド<株>)で膨潤、デスミア(溶解)、中和して、表層からの凹凸合計で2.0〜5.3μm(平均粗度Rz:3.7μm)、とした。次に、この粗化表面に無電解銅メッキ層を1.0μm付着させ、この上から炭酸ガスレーザー出力6mJで1ショット照射して孔径100μmのブラインドビア孔をあけた。これを再度デスミア処理を行い、ブラインドビア孔底部に残存している樹脂層を溶解除去した後、無電解銅メッキを0.4μm、更には電解銅メッキを20μm付着させ、加熱炉に入れて100℃から徐々に温度を30分で150℃まで上げ、更に徐々に温度を上げて190℃で60分加熱硬化した。これを用いて定法にて銅導体回路を形成し、更に導体回路表面黒色酸化銅処理して同一工程を繰り返し、6層の多層プリント配線板を作製した。この特性を測定した結果を表1に示す。
【0029】
(実施例2)
ビスフェノールA型エポキシ樹脂(商品名:エピコ−ト1001、ジャパンエポキシレジン<株>製)500部、フェノールノボラック型エポキシ樹脂(商品名:DEN438、ダウケミカル<株>製)500部、イミダゾール系硬化剤(商品名:2E4MZ、四国化成<株>製)30部、カルボキシル基変性アクリル多層構造粉体(商品名:スタフィロイドIM−301、平均粒子径0.2μm)50部、微粉砕シリカ(平均粒子径2.4μm)40部、タルク(平均粒子径1.8μm)100部、及びアクリロニトリルーブタジエンゴム(商品名:ニポール1031、日本ゼオン<株>製)30部をメチルエチルケトンに溶解した溶液を加え、3本ロールにて良く分散し、ワニス I とした。このワニス I を表面平滑で厚さ25μmの離型PETフィルムKの片面に連続的に塗布、乾燥して樹脂層の厚み20μmの離型フィルム付きBステージ樹脂組成物シート(170℃でのゲル化時間67秒)を作製し、乾燥ゾーンから出てきた時点で樹脂面に厚さ20μmの保護ポリプロピレンフィルムを配置し、温度100℃、線圧5kgf/cmのロールにて連続的にラミネートして離型フィルム付きBステージ樹脂組成物シートJとし、巻き取った。
【0030】
一方、厚さ0.4mm、12μm両面銅箔のエポキシ系銅張積層板(商品名:CCL−EL150、三菱ガス化学<株>製)回路を形成し、導体に黒色酸化銅処理後に、この両面に上記離型フィルム付きBステージ樹脂組成物シート J の片面の保護フィルムを剥離して配置し、プレス装置に仕込んで、170℃まで25分で温度を上げ、圧力は最初から15kgf/cmとし、真空度0.5Torrにて温度170℃にて30分保持して硬化処理をした後、冷却して取り出し、基板Kを得た。
【0031】
この表面の離型フィルムを除去後、クロム酸水溶液で粗化処理をして、樹脂表層からの凹凸合計で3.0〜5.5μm(平均粗度Rz4.0μm)とした。この表層に無電解銅メッキ2.8μm付着させた。この上から炭酸ガスレーザー出力10mJで6ショット照射して孔径100μmの貫通孔をあけた。
【0032】
デスミア処理してからに、常法にてこの表面に無電解銅メッキを0.5μm、更に電解銅メッキを2.1μm付着させ、加熱炉に入れて100℃から徐々に温度を150℃まで30分で上げ、更に徐々に温度を上げて170℃で60分加熱硬化した。これを用いて、この上にパターンメッキ用レジストを厚さ20μm付着させ、ネガフィルムを上に配置後にUV照射、現像して幅40μm、スペース20μmとし、これに電解銅メッキを厚さ17μm付着させ、メッキレジストを除去後にフラッシュエッチングにてエッチングして、ライン/スペース=30/30μmの回路を作製し、更に導体回路を黒色酸化銅処理を行い、同様に加工して6層の多層プリント配線板を作製した。評価結果を表1に示す。
【0033】
(比較例1、2)
実施例1、2で金属メッキを施さないで炭酸ガスレーザーで孔あけ、デスミア処理、無電解銅メッキ、電解銅メッキをしてプリント配線板を作製した。評価結果を表に示す。
【0034】

Figure 2004158740
【0035】
<測定方法>
1)銅接着力 :JIS C6481に準じて測定した。
2)ブラインドビア孔径 :断面を観察し、表層の孔径及び底部の孔径を各100個測定し、平均値を示した。
3)ブラインドビア孔ヒ−トサイクル試験 :ランド150μmを形成したものと底部の銅部を表裏交互に100孔接続して、−65℃/30min.←→+150℃/30min. 気相雰囲気下で所定回数サイクル試験を行い、その時の抵抗値の変化率を示した。
4)貫通孔径 :表面の孔径、及び裏面の孔径を100個測定し、平均値を示した。
5)貫通孔ヒ−トサイクル試験 :ランド150μmを表裏に形成したものを表裏交互に100孔接続して、−65℃/30min.←→+150℃/30min. 気相雰囲気下で所定回数サイクル試験を行い、その時の抵抗値の変化率を示した。
6)ガラス転移温度 :各ワニスを銅箔上に塗布、乾燥を重ねて厚さ0.8mmとし、その後、この樹脂組成物面に銅箔を置いて各積層硬化条件で硬化させてから、表層の銅箔をエッチングし、JIS C6481のDMA法に準じて測定した。
7)貫通孔耐マイグレーション性 :実施例2、比較例2の6層板に炭酸ガスレーザーで孔径100μmの貫通孔を孔壁間距離400μmで並列に各50孔つなぎ、これを85℃・85%RHにて50VDC印加して絶縁抵抗値の劣化を測定した。
【0036】
【発明の効果】
(セミ)アディティブ用基板に孔を形成する方法において、表面を粗化後にメッキを厚さ0.1〜5μm付着させてから、この表面から、銅箔を加工するに十分なエネルギーのレ−ザーを直接照射し、ブラインドビア孔及び/又は貫通孔を形成する。この工程で孔加工することにより、入側と底部又は出側の孔の形状がほぼ同一とでき、信頼性等に優れたプリント配線板が得られた。[0001]
[Industrial application fields]
The present invention relates to a method for forming a small-diameter blind via hole and / or a through-hole, and the obtained double-sided printed wiring board and multilayer printed wiring board have small-diameter holes and are high-density small-sized printed wiring boards. As a new semiconductor plastic package, used for motherboards, etc.
[0002]
[Prior art]
Conventionally, when forming blind via holes in additive high-density printed wiring boards used for semiconductor plastic packages, etc., the printed wiring board is formed after the holes are formed by directly irradiating a laser from a resin substrate with no metal layer on the surface layer. (For example, see Patent Documents 1 and 2). In this process, in the case of a blind via hole, the upper and bottom diameters of the hole could not be made constant. In addition, there were no examples of through holes.
[0003]
[Patent Document 1] Japanese Patent Publication No. 7-34505 [Patent Document 2] Japanese Patent No. 3219395 [0004]
[Problems to be solved by the invention]
The present invention provides a method for forming holes in an additive substrate using a laser or carbon dioxide gas laser that solves the above problems.
[0005]
[Means for Solving the Invention]
In the method of forming holes in the additive substrate, after the surface of the resin is roughened, the metal plating is deposited to a thickness of 0.1 to 5 μm, and from this surface, carbon dioxide laser with sufficient energy to process the copper foil. Are directly irradiated to form blind via holes and / or through holes. By drilling in this step, the shape of the holes on the entry side and the bottom or exit side can be made substantially the same, and an excellent hole reliability can be obtained. The obtained copper-clad board is then processed through a general printed wiring board manufacturing process to obtain a high-density printed wiring board.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is a method for forming a blind via hole and / or a through-hole having excellent small hole diameter accuracy in an additive substrate using a carbon dioxide gas laser. As a method for forming holes in the additive substrate, the surface of the resin substrate is roughened, and after plating is deposited to a thickness of 0.1 to 5 μm, carbon dioxide gas with sufficient energy to process the copper foil is formed from this surface. The laser is directly irradiated to form blind via holes and / or through holes.
[0007]
As the additive resin composition of the present invention, generally known resin compositions can be used. This resin layer is sequentially built up and laminated on the circuit board, and a multilayer printed wiring board is manufactured by a (semi) additive method.
[0008]
The above-mentioned copper-clad board with a base material used in the present invention is a copper-clad board having two or more copper layers, and as a thermosetting resin copper-clad laminate, a known heat of an inorganic or organic base material is used. A curable copper-clad laminate, its multilayer copper-clad plate, a multilayer copper-clad plate using a resin-coated copper foil sheet as the surface layer, etc., and generally known multilayer copper-clad plates, polyimide films, polyester films, polyparabanic acid films And copper-clad plates of base materials such as wholly aromatic polyamide films and liquid crystal polyester films.
[0009]
In the base material reinforced copper clad laminate, first, a reinforced base material is impregnated with a thermosetting resin composition and dried to form a B stage to prepare a prepreg. Next, a predetermined number of the prepregs are stacked, a copper foil is disposed on the outside thereof, and laminated and formed under heating and pressure to obtain a copper-clad laminate. The multilayer copper-clad plate is a circuit formed by processing the copper foil of this double-sided copper-clad laminate, the copper foil surface is processed to produce an inner layer plate, and a prepreg or B-stage resin sheet is placed outside this The copper foil is placed outside and laminated, or the B-stage resin sheet with copper foil is placed outside the inner layer plate and laminated to form a multilayer copper-clad plate.
[0010]
As the substrate, generally known organic and inorganic woven fabrics and nonwoven fabrics can be used. Specific examples of inorganic fibers include fibers such as E, S, D, M, and NE glass. Examples of organic fibers include generally known fibers such as wholly aromatic polyamides and liquid crystal polyesters. These may be mixed papers. Moreover, a film base material is also mentioned.
[0011]
As the resin of the thermosetting resin composition used in the present invention, generally known thermosetting resins are used. Specific examples include epoxy resins, polyfunctional cyanate resins, polyfunctional maleimide-cyanate resins, polyfunctional maleimide resins, unsaturated group-containing polyphenylene ether resins, and the like. Are used in combination. A thermosetting resin composition having a glass transition temperature of 150 ° C. or higher is preferable from the viewpoint of the shape of the through-hole in processing by high-power carbon dioxide laser irradiation, and has moisture resistance, migration resistance, and electrical characteristics after moisture absorption. In view of the above, a polyfunctional cyanate ester resin composition is preferred.
[0012]
The polyfunctional cyanate ester compound which is a preferred thermosetting resin component of the present invention is a compound having two or more cyanato groups in the molecule. Specifically, 1,3- or 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-, 1,4-, 1,6-, 1,8-2, , 6- or 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4-dicyanatobiphenyl, bis (4-dicyanatophenyl) methane, 2,2-bis (4-cyanato) Phenyl) propane, 2,2-bis (3,5-dibromo-4-cyanatophenyl) propane, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) ) Sulfone, tris (4-cyanatophenyl) phosphite, tris (4-cyanatophenyl) phosphate, and cyanates obtained by reaction of novolaks with cyanogen halides, It is Anat polyphenylene ether resin. These known Br addition compounds are also mentioned.
[0013]
In addition to these, polyfunctional cyanic acids described in JP-B-41-1928, JP-A-43-18468, JP-A-44-4791, JP-A-45-11712, JP-A-46-41112, JP-A-47-26853, and JP-A-51-63149 Ester compounds can also be used. Further, a prepolymer having a molecular weight of 400 to 6,000 having a triazine ring formed by trimerization of cyanate groups of these polyfunctional cyanate compounds is used. This prepolymer polymerizes the above-mentioned polyfunctional cyanate ester monomers using, for example, acids such as mineral acids and Lewis acids; bases such as sodium alcoholates and tertiary amines; salts such as sodium carbonate and the like as catalysts. Can be obtained. This prepolymer also includes a partially unreacted monomer, which is in the form of a mixture of the monomer and the prepolymer, and such a raw material is suitably used for the application of the present invention. Generally, it is used after being dissolved in a soluble organic solvent.
[0014]
As the epoxy resin, generally known epoxy resins can be used. Specifically, liquid or solid bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, alicyclic epoxy resin; butadiene, pentadiene, vinylcyclohexene, dicyclopentyl ether, etc. And polyglycidyl compounds obtained by the reaction of a hydroxyl group-containing silicon resin with an epohalohydrin, and the like. Moreover, these well-known Br addition resin, phosphorus containing epoxy resin, etc. are mentioned. These may be used alone or in combination of two or more.
[0015]
As the polyimide resin, generally known resins can be used. Specific examples include a reaction product of a polyfunctional maleimide and a polyamine, and a terminal triple bond polyimide described in JP-B-57-005406.
[0016]
These thermosetting resins may be used alone, but may be used in appropriate combination in consideration of balance of characteristics.
[0017]
In the thermosetting resin composition of the present invention, various additives can be blended as desired within a range where the original properties of the composition are not impaired. These additives include polymerizable double bond-containing monomers such as unsaturated polyesters and prepolymers thereof; polybutadiene, epoxidized butadiene, maleated butadiene, butadiene-acrylonitrile copolymer, polychloroprene, butadiene-styrene copolymer. Low molecular weight liquid to high molecular weight elastic rubber such as polymer, polyisoprene, butyl rubber, fluoro rubber, natural rubber; polyethylene, polypropylene, polybutene, poly-4-methylpentene, polystyrene, AS resin, ABS resin, MBS resin Styrene-isoprene rubber, acrylic rubber, core-shell rubber, polyethylene-propylene copolymer, 4-fluoroethylene-6-fluoroethylene copolymer; polycarbonate, polyphenylene ether, polysulfone, Esters, high molecular weight prepolymers or oligomers such as polyphenylene sulfide; polyurethane and the like are exemplified, are appropriately used. In addition, other known organic and inorganic fillers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, leveling agents, photosensitizers, flame retardants, brighteners, polymerization inhibitors, thixotropic properties Various additives such as an imparting agent are used in appropriate combination as desired. If necessary, the compound having a reactive group is appropriately mixed with a curing agent and a catalyst.
[0018]
Although the thermosetting resin composition of the present invention itself is cured by heating, the curing rate is slow and the workability, economy, etc. are inferior, so that a known thermosetting catalyst can be used for the thermosetting resin used. . The amount used is 0.005 to 10 parts by weight, preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the thermosetting resin.
[0019]
The additive resin layer of the present invention is disposed as a resin layer applied or filmed on the inner layer circuit board, and the film or the B-stage resin sheet with metal foil is attached under heating and pressure and cured. There are no particular limitations on the curing treatment lamination molding conditions for laminating according to the present invention, but the conditions under which roughening with an acid or an oxidizing agent can be appropriately performed are appropriately selected depending on the resin composition used. Generally, the temperature is 60 to 250 ° C., the pressure is 2 to 50 kgf / cm 2 , and the time is 0.5 to 3 hours. Moreover, it is preferable to laminate and form under vacuum. A known apparatus such as a vacuum laminator press or a general multistage vacuum press can be used. In the case of a vacuum laminator press, when curing is insufficient, the degree of curing is such that it can be post-cured in an oven or the like and roughened with a roughening solution.
[0020]
After removing the release film or metal foil on the surface layer of the additive-added resin-attached release film or metal foil tension plate obtained in the present invention, the resin is roughened with an acid or an oxidizing agent by a known method. . Examples of the acid used include sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, formic acid, and examples of the oxidizing agent include sodium permanganate, potassium permanganate, chromic acid, and chromic sulfuric acid. is not. Prior to this treatment, a known swelling solution is used if necessary, and after the treatment, the solution is neutralized with a neutralizing solution. The average roughness of the roughened surface formed by this roughening treatment is an average roughness Rz of 0.1 to 10 [mu] m, preferably 0.2 to 5 [mu] m, apart from the unevenness of the release film or metal foil with surface unevenness. And The roughness of the metal foil combined with the roughness due to roughening is generally set to an average roughness Rz of 3 to 15 μm, preferably Rz of 5 to 12 μm.
[0021]
Thereafter, electroless plating is performed by a known semi-additive method, full additive method, or the like, or electroless plating and electrolytic plating are performed, so that the plating thickness is 0.1 to 5 μm, preferably 1 to 3 μm. . The metal plating is not particularly limited, but copper, nickel, and alloys thereof are preferable. Of course, a known method such as sputtering can be used for plating.
[0022]
Blind via holes and / or through-holes are formed by irradiating a laser from above the metal layer deposited by the semi-additive method. The carbon dioxide laser generally has a wavelength of 9.3 to 10.6 μm in the infrared wavelength region. The copper is processed by pulse oscillation at an energy of 1 to 30 mJ, preferably 3 to 19 mJ, and a hole is made. The energy is appropriately selected depending on the thickness of the surface copper. Further, it is also possible to use hole formation with a UV laser such as a generally known excimer laser or Nd-YAG laser. The UV laser is used to make holes by irradiating with laser light having a UV wavelength, and the wavelength is not particularly limited, but a wavelength of 200 to 400 nm is generally used. In particular, a solid state UV laser is used. In this method, the organic material is processed by a mechanism that breaks the molecular bond constituting the organic material without causing the heat of the organic material as much as possible. Since carbon is not generated in the hole and is clean as compared with the carbon dioxide laser, the subsequent copper plating can be attached with high reliability even without any pretreatment.
[0023]
When drilling by directly irradiating a laser to a substrate without this metal layer, the hole diameter of the surface layer and the hole diameter of the bottom are quite different in the blind via hole, and the hole design is difficult. Since there is no metal layer in the upper layer portion of the hole, the hole diameter of the surface layer irradiated with laser becomes large, the difference from the hole diameter on the back surface is large, and the hole diameter tolerance is very bad. In any of the methods of the present invention, the upper and lower hole diameters are not significantly different, and a stable tolerance hole diameter can be obtained, and thereafter, excellent hole reliability when a printed wiring board is obtained can be obtained.
[0024]
Although this additive resin layer is cured, it is not completely cured, and hence is post-cured after adhesion of metal plating. Although it varies depending on the resin composition, it is generally post-cured at a temperature of 100 to 250 ° C. for 30 minutes to 5 hours. In the semi-additive method, a circuit is then formed by a known method to obtain a printed wiring board. This same process is repeated sequentially to build up multiple layers.
[0025]
As a method of forming a circuit, a generally known additive method is used. When a fine circuit is finally formed by flash etching, the solution for etching the copper foil on the surface is not particularly limited. For example, JP-A Nos. 02-2287, 02-22896, 02-25089, 02-25090 No. 02-59337, No. 02-60189, No. 02-166789, No. 03-259595, No. 03-60183, No. 03-94491, No. 04-199592, and No. 04-263488. A method of dissolving and removing (referred to as SUEP method) is preferably used. The etching rate is generally 0.02 to 1.0 μm / second.
[0026]
【Example】
The present invention will be specifically described below with reference to examples and comparative examples. Unless otherwise specified, “parts” represents parts by weight.
(Example 1)
2,2-bis (4-cyanatophenyl) propane monomer was melted at 400 parts at 150 ° C. and reacted for 4 hours with stirring to obtain a prepolymer having an average molecular weight of 1,900. This was dissolved in methyl ethyl ketone to obtain varnish A. As a liquid epoxy resin at room temperature, 150 parts of bisphenol A type epoxy resin (trade name: Epicoat 828, manufactured by Japan Epoxy Resins Co., Ltd.), bisphenol F type epoxy resin (trade name: EXA830LVP, Dainippon Ink Chemical Co., Ltd.) 100 parts novolak type epoxy resin (trade name: DEN438, manufactured by Dow Chemical Co., Ltd.), 100 parts cresol novolac type epoxy resin (trade name: ESCN220F, manufactured by Sumitomo Chemical Co., Ltd.) Then, 0.3 parts of iron acetylacetone was dissolved in methyl ethyl ketone as a thermosetting catalyst and added. Liquid epoxidized polybutadiene resin (trade name: E-1000-8.0, manufactured by Nippon Petrochemical Co., Ltd.), epoxy group-modified acrylic multilayer structure powder (trade name: Staphyloid IM-203, average) 50 parts of a particle size of 0.3 μm) and 200 parts of spherical silica (average particle size: 0.8 μm) were added, and the mixture was well stirred and mixed to make a uniform varnish B.
[0027]
This varnish B was continuously applied to the uneven surface (unevenness 1.0 to 4.3 μm, average roughness Rz: 3.5 μm) of the PET film C with unevenness having a thickness of 25 μm, and dried to form a release film. Max. A B-stage resin composition layer (gelation time 46 seconds at 170 ° C.) having a height of 30 μm is formed from the tip of the convex portion, and when it comes out from the drying zone, a protective polypropylene film having a thickness of 20 μm is formed on the resin side. And laminated at 100 ° C. and a linear pressure of 4 kgf / cm to prepare a B-stage resin composition sheet D with a release film.
[0028]
On the other hand, an insulating layer thickness of 0.2 mm, 12 μm double-sided copper foil BT resin copper clad laminate (trade name: CCL-HL830, manufactured by Mitsubishi Gas Chemical Co., Ltd.) is formed as an inner layer board, and black copper oxide treatment The B-stage resin composition sheet G with a release film is placed on both sides of the plate coated with copper foil so that the resin layer faces the inner layer plate side while peeling off the protective film, and charged into a press machine. After that, the temperature was raised from room temperature to 170 ° C. in 25 minutes, the pressure was initially 15 kgf / cm 2 , the vacuum was maintained at 170 ° C. for 30 minutes at 0.5 Torr, and then cooled and taken out. A multilayer board H was obtained. After removing the release PET film on the surface, the surface is swollen, desmeared (dissolved) and neutralized with a potassium permanganate-based desmear solution (Nippon McDermid Co., Ltd.), and the total unevenness from the surface layer is 2.0-5. 3 μm (average roughness Rz: 3.7 μm). Next, an electroless copper plating layer was adhered to the roughened surface by 1.0 μm, and a blind via hole having a hole diameter of 100 μm was formed by irradiating one shot with a carbon dioxide laser output of 6 mJ. This is subjected to desmear treatment again, and the resin layer remaining at the bottom of the blind via hole is dissolved and removed, and then electroless copper plating is deposited to 0.4 μm, and further electrolytic copper plating is deposited to 20 μm, and placed in a heating furnace. The temperature was gradually raised from 150 ° C. to 150 ° C. in 30 minutes, and the temperature was gradually raised, followed by heat curing at 190 ° C. for 60 minutes. Using this, a copper conductor circuit was formed by a conventional method, and the surface of the conductor circuit was treated with black copper oxide, and the same process was repeated to produce a six-layer multilayer printed wiring board. The results of measuring this characteristic are shown in Table 1.
[0029]
(Example 2)
500 parts of bisphenol A type epoxy resin (trade name: Epicote 1001, manufactured by Japan Epoxy Resin Co., Ltd.), 500 parts of phenol novolac type epoxy resin (trade name: DEN438, manufactured by Dow Chemical Co., Ltd.), imidazole curing agent (Product name: 2E4MZ, manufactured by Shikoku Kasei Co., Ltd.) 30 parts, carboxyl group-modified acrylic multilayer structure powder (Product name: Staphyloid IM-301, average particle size 0.2 μm), finely pulverized silica (average particle) 40 parts of diameter 2.4 μm), 100 parts of talc (average particle diameter 1.8 μm), and 30 parts of acrylonitrile-butadiene rubber (trade name: Nipol 1031, manufactured by Nippon Zeon Co., Ltd.) were added in methyl ethyl ketone, It was well dispersed with three rolls to make varnish I. This varnish I is applied to one side of a release PET film K having a smooth surface and a thickness of 25 μm, and dried to form a B-stage resin composition sheet with a release film having a resin layer thickness of 20 μm (gelation at 170 ° C. Time 67 seconds), a protective polypropylene film having a thickness of 20 μm is placed on the resin surface when it comes out of the drying zone, and is continuously laminated with a roll having a temperature of 100 ° C. and a linear pressure of 5 kgf / cm. A B-stage resin composition sheet J with a mold film was taken up and wound up.
[0030]
On the other hand, an epoxy-based copper-clad laminate (trade name: CCL-EL150, manufactured by Mitsubishi Gas Chemical Co., Ltd.) having a thickness of 0.4 mm and 12 μm double-sided copper foil is formed, and this conductor is treated with black copper oxide after the treatment. The protective film on one side of the B-stage resin composition sheet J with a release film is peeled off and placed in a press machine, and the temperature is raised to 170 ° C. in 25 minutes. The pressure is 15 kgf / cm 2 from the beginning. The substrate was cured by holding it at a temperature of 170 ° C. for 30 minutes at a degree of vacuum of 0.5 Torr, and then cooled and taken out.
[0031]
After removing the release film on the surface, the surface was roughened with a chromic acid aqueous solution, and the total unevenness from the resin surface layer was 3.0 to 5.5 μm (average roughness Rz 4.0 μm). An electroless copper plating of 2.8 μm was adhered to this surface layer. From this, six shots were irradiated with a carbon dioxide laser output of 10 mJ to form a through hole having a hole diameter of 100 μm.
[0032]
After the desmear treatment, 0.5 μm of electroless copper plating and 2.1 μm of electrolytic copper plating are adhered to this surface by a conventional method, and the temperature is gradually increased from 100 ° C. to 150 ° C. in a heating furnace. The temperature was gradually raised and the temperature was gradually raised, followed by heat curing at 170 ° C. for 60 minutes. Using this, a resist for pattern plating is deposited thereon with a thickness of 20 μm, and after placing a negative film thereon, UV irradiation and development are performed to obtain a width of 40 μm and a space of 20 μm, and an electrolytic copper plating is deposited on the thickness of 17 μm. After removing the plating resist, it is etched by flash etching to produce a circuit of line / space = 30/30 μm. Further, the conductor circuit is treated with black copper oxide and processed in the same manner to produce a multilayer printed wiring board of 6 layers. Was made. The evaluation results are shown in Table 1.
[0033]
(Comparative Examples 1 and 2)
In Examples 1 and 2, printed wiring boards were prepared by drilling with a carbon dioxide laser without applying metal plating, desmearing, electroless copper plating, and electrolytic copper plating. The evaluation results are shown in the table.
[0034]
Figure 2004158740
[0035]
<Measurement method>
1) Copper adhesive force: Measured according to JIS C6481.
2) Blind via hole diameter: The cross section was observed, and the surface layer hole diameter and the bottom hole diameter were measured 100 times, and the average value was shown.
3) Blind via hole heat cycle test: 100 holes were alternately connected to the bottom and the copper part of the bottom part, and the bottom part was formed at -65 ° C./30 min. ← → + 150 ° C./30 min. A cycle test was performed a predetermined number of times in a gas phase atmosphere, and the change rate of the resistance value at that time was shown.
4) Through hole diameter: 100 hole diameters on the front surface and 100 holes on the back surface were measured, and the average values were shown.
5) Through-hole heat cycle test: Lands of 150 μm formed on the front and back were connected to 100 holes alternately on the front and back, and −65 ° C./30 min. ← → + 150 ° C./30 min. A cycle test was performed a predetermined number of times in a gas phase atmosphere, and the change rate of the resistance value at that time was shown.
6) Glass transition temperature: Each varnish was coated on a copper foil and dried to obtain a thickness of 0.8 mm. Thereafter, the copper foil was placed on the surface of the resin composition and cured under each lamination curing condition. The copper foil was etched and measured according to the DMA method of JIS C6481.
7) Through hole migration resistance: 50 holes each having a hole diameter of 100 μm were connected in parallel with a carbon dioxide laser to the 6-layer plate of Example 2 and Comparative Example 2 at a distance of 400 μm between the hole walls. The degradation of the insulation resistance value was measured by applying 50 VDC at RH.
[0036]
【The invention's effect】
In a method of forming a hole in a (semi) additive substrate, after the surface is roughened, the plating is deposited to a thickness of 0.1 to 5 μm, and from this surface, a laser with sufficient energy to process the copper foil Are directly irradiated to form blind via holes and / or through holes. By drilling holes in this step, the shape of the holes on the entry side and bottom or exit side can be made substantially the same, and a printed wiring board excellent in reliability and the like was obtained.

Claims (1)

アディティブ用基板に孔を形成する方法において、樹脂表面を粗化後に金属メッキを厚さ0.1〜5μm付着させ、この表面から、銅箔を加工するに十分なエネルギーの炭酸ガスレ−ザーを直接照射し、孔を形成することを特徴とする炭酸ガスレーザーによるアディティブ用基板への孔の形成方法。In the method of forming holes in the additive substrate, after the resin surface is roughened, a metal plating is deposited to a thickness of 0.1 to 5 μm, and a carbon dioxide laser with sufficient energy to process the copper foil is directly applied from this surface. Irradiating to form holes, a method for forming holes in an additive substrate by a carbon dioxide laser.
JP2002324727A 2002-11-08 2002-11-08 Drilling method using carbon dioxide gas laser having superior accuracy of drilling into additive substrate Pending JP2004158740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002324727A JP2004158740A (en) 2002-11-08 2002-11-08 Drilling method using carbon dioxide gas laser having superior accuracy of drilling into additive substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002324727A JP2004158740A (en) 2002-11-08 2002-11-08 Drilling method using carbon dioxide gas laser having superior accuracy of drilling into additive substrate

Publications (1)

Publication Number Publication Date
JP2004158740A true JP2004158740A (en) 2004-06-03

Family

ID=32804182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002324727A Pending JP2004158740A (en) 2002-11-08 2002-11-08 Drilling method using carbon dioxide gas laser having superior accuracy of drilling into additive substrate

Country Status (1)

Country Link
JP (1) JP2004158740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131072A (en) * 2010-03-08 2014-07-10 Ajinomoto Co Inc Formation method of micro wiring trench and manufacturing method for trench-type circuit board using this formation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131072A (en) * 2010-03-08 2014-07-10 Ajinomoto Co Inc Formation method of micro wiring trench and manufacturing method for trench-type circuit board using this formation method
KR101906687B1 (en) * 2010-03-08 2018-12-05 아지노모토 가부시키가이샤 Manufacturing method for trench-type circuit board
TWI643895B (en) * 2010-03-08 2018-12-11 味之素股份有限公司 Method for manufacturing trench type circuit substrate

Similar Documents

Publication Publication Date Title
US6736988B1 (en) Copper-clad board suitable for making hole with carbon dioxide laser, method of making hole in said copper-clad board and printed wiring board comprising said copper-clad board
US6866919B2 (en) Heat-resistant film base-material-inserted B-stage resin composition sheet for lamination and use thereof
JP2003340952A (en) Method for manufacturing b-stage resin composition sheet containing fibrous cloth base material for additive
JP2003313324A (en) Method for manufacturing base material-filled b-staged resin composition sheet
JP2003249751A (en) Method for producing multilayer printed wiring board using additive method
JP4888517B2 (en) Method for manufacturing printed circuit board for extra fine wire circuit
JP2003238772A (en) Curable resin composition and sheet of b-stage resin composition
JP2003283141A (en) B-stage resin composition sheet with metal foil for additive
JP2004158740A (en) Drilling method using carbon dioxide gas laser having superior accuracy of drilling into additive substrate
JP2003249764A (en) Manufacturing method for b-stage resin composition sheet containing base for additive
JP2004319887A (en) Method for boring additive resin composition substrate by means of laser and process for producing printed wiring board
JP2003258434A (en) B-stage resin composition sheet containing heat-resistant film substrate for additive
JP2004165411A (en) Method of manufacturing extremely thin copper foil-plated board excellent in thickness uniformity of copper foil
JP2003246843A (en) Curable resin composition
JP2003298243A (en) Multilayer printed-wiring board
JP2003332734A (en) Method of manufacturing printed wiring board using additive method
JP2004319888A (en) Multilayer printed circuit board
JP2001262372A (en) Double-face treated copper foil suitable for carbon- dioxide laser perforating
JP2004273911A (en) Method for manufacturing superthin-wire circuit printed wiring board
JP2004165255A (en) B stage resin composition sheet filled with heat-resistant film base superior in adhesion to resin
JP2005041148A (en) Stage b resin composition sheet having film substrate in it
JP2005045046A (en) Process for producing multilayer printed wiring board
JP2003251739A (en) Sheet of b-stage resin composition with metal leaf containing base material for additive
JP2003283143A (en) B-stage resin composition sheet with release film for additive
JP2005045047A (en) Process for producing multilayer printed wiring board