JP2004316824A - Hst hydraulic control mechanism - Google Patents

Hst hydraulic control mechanism Download PDF

Info

Publication number
JP2004316824A
JP2004316824A JP2003113342A JP2003113342A JP2004316824A JP 2004316824 A JP2004316824 A JP 2004316824A JP 2003113342 A JP2003113342 A JP 2003113342A JP 2003113342 A JP2003113342 A JP 2003113342A JP 2004316824 A JP2004316824 A JP 2004316824A
Authority
JP
Japan
Prior art keywords
oil
oil chamber
valve
urging
hst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003113342A
Other languages
Japanese (ja)
Inventor
Akifumi Yasuda
紀史 安田
Shingo Araki
進吾 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanzaki Kokyukoki Manufacturing Co Ltd
Original Assignee
Kanzaki Kokyukoki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanzaki Kokyukoki Manufacturing Co Ltd filed Critical Kanzaki Kokyukoki Manufacturing Co Ltd
Priority to JP2003113342A priority Critical patent/JP2004316824A/en
Publication of JP2004316824A publication Critical patent/JP2004316824A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Fluid Gearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydraulic control mechanism of simple structure capable of preventing unintentional HST output when a drive source is re-started after being stopped temporarily. <P>SOLUTION: This HST hydraulic control mechanism comprises a double-acting servo piston rollingly tilting an HST output control member in first and second directions by pressure oil supplied into first and second oil chambers, a return spring energizing the servo piston to a neutral position, a servo valve capable of taking a first position for fluid-coupling the first oil chamber to a pressure oil supply source and draining oil in the second oil chamber, a second position for draining oil in the first oil chamber and fluid-coupling the second oil chamber to the pressure oil supply source, and the neutral position for closing the first and second oil chambers, a bypass oil passage bypassing the first and second oil chambers, and an open/close valve inserted in the bypass oil passage so as to take a drain position for draining oil in the first and second oil chambers and a cutout position for closing the first and second oil chambers by cutting out the bypass oil passage. The open/close valve is so formed that, when the HST drive source is stopped, it can be automatically positioned at the drain position. Since the HST output control member can be automatically returned to the neutral position when the drive source is stopped, the occurrence of an unintentional HST output such as the abrupt start of a vehicle can be effectively prevented in re-starting the drive source. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、出力調整部材の操作によって可変出力を得るHSTの前記出力調整部材用油圧制御機構に関する。
【0002】
【従来の技術】
斜板等の出力調整部材の傾転方向及び傾転量を制御することによって双方向の可変出力が得られるHSTは、従来から車輌の走行系伝動機構等の種々の伝動機構に広く利用されている。
前記HSTの出力調整部材は、機械式リンク機構や油圧制御機構等の種々の操作機構を介して連動連係される操作部材(例えば、レバーやフットペダル等)によってコントロールされる。
【0003】
図3に、油圧制御機構を介して出力調整部材をコントロールするタイプの従来のHST600の油圧回路図を示す(特許文献1参照)。
図3に示すように、出力調整部材油圧制御機構500は、出力調整部材510に連動連係された復動式ピストン520に圧油を作用させる第1油室520a及び第2油室520bと、該第1油室520a及び第2油室520bへの圧油給排を制御するサーボ弁530とを備えている。
斯かる油圧制御機構500は、機械式リンク機構に比して、省スペース化や外部との抵触防止化等の種々の利点があるが、その一方で、下記不都合を有している。
【0004】
即ち、前記油圧制御機構500は、前記操作部材の操作方向及び操作量に基づいて、前記サーボ弁530を制御するように構成されている。
詳しくは、前記サーボ弁530は、第1油室520aに圧油を供給し且つ第2油室520bをドレインさせる第1位置530(I)と、第1油室520aをドレインさせ且つ第2油室520bに圧油を供給する第2位置530(II)と、第1油室520a及び第2油室520bを閉塞させる中立位置530(N)とをとり得るようになっている。
そして、斯かるサーボ弁530は、前記操作部材の操作方向に応じた第1位置530(I)又は第2位置530(II)に該操作部材の操作量に応じた時間だけ位置し、その後、中立位置へ戻るようになっている。
【0005】
斯かる構成の油圧制御機構500においては、前記操作部材を何れかの方向へ操作した状態で、駆動源540を停止させると、該操作部材の操作方向に応じた第1油室520a又は第2油室520bに圧油が閉塞されたままの状態となる。従って、駆動源540の停止後に、該駆動源540を再起動させる場合に、操作部材の操作位置と、出力調整部材の傾転位置との整合性がとれず、意に反した車輌の急発進等を招く恐れがある。
【0006】
【特許文献1】
特開2001−193830号公報
【0007】
【発明が解決しようとする課題】
本発明は、前記従来技術に鑑みなされたものであり、HSTの出力調整部材を操作する為の油圧制御機構であって、駆動源を一旦停止させてから再起動させる際に、意に反したHST出力を防止し得る構造簡単な油圧制御機構の提供を、一の目的とする。
【0008】
【課題を解決するための手段】
本発明は、前記目的を達成する為に、出力調整部材の傾転方向及び傾転量を制御することによって双方向の可変出力が得られるHSTに適用される油圧制御機構であって、前記出力調整部材に連動連係された復動式サーボピストンであって、第1油室及び第2油室へ供給される圧油によって前記出力調整部材をそれぞれ第1方向及び第2方向へ傾転させる復動式サーボピストンと、前記復動式サーボピストンを中立位置へ向けて付勢する戻しバネと、前記第1油室を圧油供給源に流体接続させ且つ前記第2油室をドレインさせる第1位置と、前記第1油室をドレインさせ且つ前記第2油室を圧油供給源に流体接続させる第2位置と、前記第1油室及び第2油室をそれぞれ閉塞させる中立位置とをとり得るサーボ弁と、前記第1油室及び第2油室をバイパスさせるバイパス油路と、前記バイパス油路に介挿された開閉弁であって、前記第1油室及び第2油室をドレインさせるドレイン位置と、該バイパス油路を遮断して前記第1油室及び第2油室をそれぞれ閉塞させる遮断位置とをとり得る開閉弁とを備え、前記開閉弁は、前記HSTの駆動源が停止されると自動的に前記ドレイン位置に位置するように構成されているHST油圧制御機構を提供する。
【0009】
一形態においては、前記開閉弁を前記ドレイン位置へ向けて付勢する付勢部材をさらに備え、前記開閉弁は、前記駆動源の作動時においては、該駆動源からの動力を利用して前記付勢部材の付勢力に抗して前記遮断位置に位置されるように構成される。
【0010】
他態様においては、前記開閉弁を前記ドレイン位置へ向けて付勢する付勢部材と、前記開閉弁を前記付勢部材の付勢力に抗して前記遮断位置に位置させる電磁力発生部材とを、さらに備え、前記駆動源の駆動停止を検出するセンサからの信号に基づき前記電磁力発生部材をOFFさせるように構成される。
【0011】
さらに他態様においては、前記開閉弁を前記ドレイン位置へ向けて付勢する付勢部材をさらに備え、前記圧油供給源は前記駆動源によって駆動されており、前記開閉弁は、前記駆動源の作動時においては、前記圧油供給源からの圧油によって前記付勢部材の付勢力に抗して前記遮断位置に位置されるように構成される。
【0012】
【発明の実施の形態】
実施の形態1.
以下、本発明に係る油圧制御機構の好ましい実施の形態につき、添付図面を参照しつつ説明する。図1は本実施の形態に係る油圧制御機構1Aが適用されたHST100Aの油圧回路図である。
【0013】
図1に示すように、前記HST100Aは、駆動源200に作動的に連結された入力軸(図示せず)を有する油圧ポンプ110と、出力軸(図示せず)を有する油圧モータ120と、前記油圧ポンプ110及び油圧モータ120間を流体接続する第1油路130a及び第2油路130bと、該第1油路130a及び第2油路130bをバイパスするバイパス油路140と、基端部が圧油供給源(本実施の形態においては、駆動源に作動連結されたチャージポンプ210)に接続され且つ先端部が前記バイパス油路140に接続されたチャージ油路150と、前記チャージ油路150及び前記第1油路130aの間に位置するように前記バイパス油路140に介挿された第1チェックリリーフ弁160aと、前記チャージ油路150及び前記第2油路130bの間に位置するように前記パイパス油路140に介挿された第2チェックリリーフ弁160bとを備えている。
【0014】
前記油圧ポンプ110及び油圧モータ120の少なくとも一方(本実施の形態においては油圧ポンプ110)は、斜板等の出力調整部材111の操作により吸引/吐出量が変化する可変容積型とされている。
【0015】
前記HST100Aは、さらに、前記出力調整部材111を操作する油圧制御機構1Aを備えている。
該油圧制御機構1Aは、運転席の近傍等に配設された操作部材(例えば、レバーやフットペダル)の操作方向及び操作量に応じて、前記出力調整部材111を傾転させるように構成されている。
【0016】
詳しくは、該油圧制御機構1Aは、前記出力調整部材111に連動連係された復動式サーボピストン10と、前記復動式サーボピストン10を中立位置へ向けて付勢する戻しバネ20と、前記復動式サーボピストン10と圧油供給源210及びドレイン回路220との間に介挿されたサーボ弁30とを備えている。
【0017】
前記復動式サーボピストン10は、第1油室10a及び第2油室10bへ供給される圧油によって前記出力調整部材111をそれぞれ第1方向及び第2方向へ傾転させ得るように構成されている。
詳しくは、該サーボピストン10は、前記第1油室10a及び第2油室10bを液密に画するようにシリンダ11内に摺動自在に収容されている。
即ち、該サーボピストン10は、前記第1油室10a及び第2油室10bの一方に供給される圧油の油圧に応じた量だけ対応する方向へ移動し、これにより、前記出力調整部材111を対応する方向へ且つ対応する量だけ傾転させるようになっている。
【0018】
前記戻しバネ20は、前記第1油室10a及び第2油室10b間に実質的な圧力差がない場合には、前記サーボピストン10を中立位置に位置させるようになっている。
本実施の形態においては、前記戻しバネ20は、前記第1油室10a内に配設された第1戻しバネ20aと、前記第2油室10b内に配設された第2戻しバネ20bとを備えている。
【0019】
前記サーボ弁30は、前記第1油室10aを圧油供給源210に流体接続させ且つ前記第2油室10bをドレインさせる第1位置30(I)と、前記第1油室10aをドレインさせ且つ前記第2油室10bを圧油供給源210に流体接続させる第2位置30(II)と、前記第1油室10a及び第2油室10bをそれぞれ閉塞させる中立位置30(N)とをとり得るように構成されている。
【0020】
該サーボ弁30は、前記操作部材の操作方向に応じた第1位置又30(I)は第2位置30(II)に、該操作部材の操作量に応じた時間だけ位置し、その後、中立位置に戻るようになっている。
即ち、前記操作部材を車輌前進方向最大位置まで操作する場合を想定すると、前記サーボ弁30は第1位置30(I)又は第2位置30(II)のうち車輌前進方向に対応した位置へ移動する。そして、該サーボ弁30は、前記復動式ピストン10が車輌前進方向に対応した方向へ最大量移動するまで、前記車輌前進方向に対応した位置に保持され(若しくは、前記車輌前進方向に対応した位置と中立位置とを交互にとり)、その後、中立位置30(N)に戻される。
【0021】
さらに、前記油圧制御機構1Aは、前記第1油室10a及び第2油室10bをバイパスさせるバイパス油路40と、前記バイパス油路40に介挿された開閉弁50とを備えている。
【0022】
本実施の形態においては、図1に示すように、前記第1油室10a及び第2油室10bは、それぞれ、第1給排油路15a及び第2給排油路15bを介して、前記サーボ弁30の二次側ポートに接続されている。
そして、前記バイパス油路40は、前記第1給排油路15a及び第2給排油路15bを連通するように構成されている。
【0023】
前記開閉弁50は、前記第1油室10a及び第2油室10bをドレインさせるドレイン位置50(D)と、前記バイパス油路40を遮断して前記第1油室10a及び第2油室10bをそれぞれ閉塞させる遮断位置50(S)とをとり得るようになっている。
該開閉弁50は、さらに、前記HST100Aの駆動源200が停止されると自動的に前記ドレイン位置50(D)に位置するように構成されている。
【0024】
本実施の形態においては、前記開閉弁50は、付勢部材60によって、常時、前記ドレイン位置50(D)へ向けて付勢されており、前記駆動源200の駆動中においては該付勢部材60の付勢力に抗して前記遮断位置50(S)に保持されるようになっている。
【0025】
具体的には、前記油圧制御機構1Aは、前記開閉弁50をドレイン位置50(D)へ向けて常時付勢する前記付勢部材60と、該付勢部材60の付勢力に抗して前記開閉弁50を遮断位置50(S)に位置させる電磁力発生部材70とを備えている。
【0026】
本実施の形態においては、該油圧制御機構1Aは、さらに、前記駆動源200の作動/停止を検出するセンサ80と、該センサ80からの駆動源停止信号に基づき前記電磁力発生部材70をOFFさせるコントローラ85とを備えている。
【0027】
斯かる構成の油圧制御機構1Aにおいては、以下の効果を得ることができる。即ち、前記操作部材を車輌前進方向又は車輌後進方向の何れかの方向へ操作したままの状態で駆動源200を停止したとしても、該駆動源200の停止に応じて前記開閉弁50が自動的にドレイン位置50(D)に位置する。
言い換えると、駆動源200を停止させる際の前記操作部材の操作位置に拘わらず、駆動源200が停止されると、前記第1油室10a及び第2油室10bは共にドレインされ、これにより、前記復動式ピストン10は前記戻しバネ20の作用によって中立位置に戻される。そして、前記復動式ピストン10の斯かる動作によって前記出力調整部材111は中立位置に復帰する。
【0028】
このように、前記油圧制御機構1Aを備えたHST100Aにおいては、駆動源200の停止によって自動的に前記出力調整部材111が中立位置に戻される。
従って、駆動源200の再起動時に、HST1が操作部材に対応しない回転駆動力を出力することがなく、意に反した車輌の急発進等を有効に防ぐことができる。
【0029】
なお、本実施の形態においては、前記センサ80からの信号によって前記電磁力発生部材70を停止させるように構成したが、これに代えて、該電磁力発生部材70の起動力を前記駆動源200から得るように構成することも可能である。即ち、前記電磁力発生部材70を前記駆動源200からの動力によって作動させるように構成することにより、該駆動源200の停止時には前記電磁力発生部材70は自動的にOFFとなる。
従って、前記開閉弁50は前記付勢部材60の付勢力によってドレイン位置50(D)に位置する。
【0030】
実施の形態2.
以下、本発明に係る油圧制御機構の好ましい他の実施の形態について、添付図面を参照しつつ説明する。
図2は、本実施の形態に係る油圧制御機構1Bが適用されたHST100Bの油圧回路図である。
なお、図中、前記実施の形態1におけると同一又は相当部材は同一符号を付して、その説明を省略する。
【0031】
図2に示すように、本実施の形態に係る油圧制御機構1Bは、駆動源200の作動中において前記開閉部材50を前記付勢部材60に抗して遮断位置50(S)に位置させる為の手段が変更されている点を除き、前記実施の形態1と実質的に同一である。
【0032】
即ち、該油圧制御機構1Bは、前記駆動源200によって駆動される圧油供給源210からの圧油を利用して、前記開閉弁50を前記付勢部材60に抗して遮断位置50(S)に位置させるように構成されている。
斯かる構成においては、前記駆動源200が停止されると、前記圧油供給源210からの圧油供給も停止される。従って、前記開閉弁50は前記付勢部材60の付勢力によってドレイン位置50(D)に移動される。
【0033】
斯かる構成の油圧制御機構1Bにおいても、前記実施の形態1におけると同様の効果を得ることができる。
【0034】
【発明の効果】
本発明に係る油圧制御機構によれば、駆動源を停止させた際に、HSTの出力調整部材を自動的に中立位置へ復帰させることができる。従って、駆動源再起動時において、車輌の急発進等の意に反したHST出力の発生を有効に防止できる。
【図面の簡単な説明】
【図1】図1は、本発明の一実施の形態に係る油圧制御機構が適用されたHSTの油圧回路図である。
【図2】図2は、本発明の他の実施の形態に係る油圧制御機構が適用されたHSTの油圧回路図である。
【図3】図3は、従来のHSTの油圧回路図である。
【符号の説明】
1A,1B 油圧制御機構
10 復動式ピストン
10a 第1油室
10b 第2油室
20a,20b 戻しバネ
30 サーボ弁
40 バイパス油路
50 開閉弁
60 付勢部材
100A,100B HST
111 出力調整部材
160,180 チェックリリーフ弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydraulic control mechanism for the output adjustment member of the HST that obtains a variable output by operating an output adjustment member.
[0002]
[Prior art]
The HST, in which a bidirectional variable output can be obtained by controlling the tilt direction and tilt amount of an output adjusting member such as a swash plate, has been widely used in various transmission mechanisms such as a vehicle transmission system transmission mechanism. I have.
The output adjustment member of the HST is controlled by an operation member (for example, a lever, a foot pedal, or the like) that is linked and linked through various operation mechanisms such as a mechanical link mechanism and a hydraulic control mechanism.
[0003]
FIG. 3 shows a hydraulic circuit diagram of a conventional HST 600 of a type that controls an output adjustment member via a hydraulic control mechanism (see Patent Document 1).
As shown in FIG. 3, the output adjustment member hydraulic control mechanism 500 includes a first oil chamber 520a and a second oil chamber 520b for applying pressure oil to a reciprocating piston 520 interlocked with the output adjustment member 510. A servo valve 530 for controlling the supply and discharge of pressurized oil to and from the first oil chamber 520a and the second oil chamber 520b.
Such a hydraulic control mechanism 500 has various advantages, such as space saving and prevention of collision with the outside, as compared with a mechanical link mechanism, but has the following disadvantages.
[0004]
That is, the hydraulic control mechanism 500 is configured to control the servo valve 530 based on the operation direction and the operation amount of the operation member.
More specifically, the servo valve 530 supplies a pressure oil to the first oil chamber 520a and drains the second oil chamber 520b, and a first position 530 (I) for draining the first oil chamber 520a and discharging the second oil chamber 520a. A second position 530 (II) for supplying pressure oil to the chamber 520 b and a neutral position 530 (N) for closing the first oil chamber 520 a and the second oil chamber 520 b can be provided.
The servo valve 530 is located at the first position 530 (I) or the second position 530 (II) according to the operation direction of the operation member for a time corresponding to the operation amount of the operation member, and thereafter, It returns to the neutral position.
[0005]
In the hydraulic control mechanism 500 having such a configuration, when the drive source 540 is stopped in a state where the operation member is operated in any direction, the first oil chamber 520a or the second oil chamber 520a corresponding to the operation direction of the operation member is stopped. The state in which the pressure oil is closed in the oil chamber 520b is maintained. Therefore, when the drive source 540 is restarted after the drive source 540 is stopped, consistency between the operation position of the operation member and the tilting position of the output adjustment member cannot be obtained, and the unexpected sudden start of the vehicle starts. And so on.
[0006]
[Patent Document 1]
JP 2001-193830 A
[Problems to be solved by the invention]
The present invention has been made in view of the above-described conventional technology, and is a hydraulic control mechanism for operating an output adjustment member of an HST. When the drive source is temporarily stopped and then restarted, it is contrary to intention. An object is to provide a hydraulic control mechanism having a simple structure capable of preventing HST output.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a hydraulic control mechanism applied to an HST in which a bidirectional variable output is obtained by controlling a tilt direction and a tilt amount of an output adjusting member. A return-type servo piston operatively linked to an adjustment member, wherein the output adjustment member is tilted in a first direction and a second direction by pressure oil supplied to a first oil chamber and a second oil chamber, respectively. A movable servo piston, a return spring for biasing the return servo piston toward a neutral position, and a first spring for fluidly connecting the first oil chamber to a pressure oil supply source and draining the second oil chamber. Position, a second position where the first oil chamber is drained and the second oil chamber is fluidly connected to a pressure oil supply, and a neutral position where the first oil chamber and the second oil chamber are closed. A servo valve for obtaining the first oil chamber and the second oil A bypass oil passage that bypasses the first oil chamber and a drain position that drains the first oil chamber and the second oil chamber; An on-off valve that can take a shut-off position for closing each of the first oil chamber and the second oil chamber, wherein the on-off valve is automatically located at the drain position when the drive source of the HST is stopped. A configured HST hydraulic control mechanism is provided.
[0009]
In one embodiment, the apparatus further comprises an urging member that urges the on-off valve toward the drain position, and the on-off valve uses power from the drive source when the drive source is operating. It is configured to be located at the blocking position against the urging force of the urging member.
[0010]
In another aspect, an urging member that urges the on-off valve toward the drain position and an electromagnetic force generating member that positions the on-off valve at the shutoff position against the urging force of the urging member are provided. The electromagnetic force generating member is configured to be turned off based on a signal from a sensor that detects the stop of driving of the driving source.
[0011]
In still another aspect, the apparatus further comprises an urging member for urging the on-off valve toward the drain position, wherein the pressure oil supply source is driven by the drive source, and the on-off valve is provided by the drive source. In operation, the pressure oil from the pressure oil supply source is configured to be positioned at the blocking position against the urging force of the urging member.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Hereinafter, preferred embodiments of a hydraulic control mechanism according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a hydraulic circuit diagram of an HST 100A to which a hydraulic control mechanism 1A according to the present embodiment is applied.
[0013]
As shown in FIG. 1, the HST 100A includes a hydraulic pump 110 having an input shaft (not shown) operatively connected to a driving source 200, a hydraulic motor 120 having an output shaft (not shown), A first oil passage 130a and a second oil passage 130b that fluidly connect between the hydraulic pump 110 and the hydraulic motor 120, a bypass oil passage 140 that bypasses the first oil passage 130a and the second oil passage 130b, and a base end portion. A charge oil passage 150 connected to a pressurized oil supply source (in this embodiment, a charge pump 210 operatively connected to a drive source) and having a tip connected to the bypass oil passage 140; A first check relief valve 160a inserted in the bypass oil passage 140 so as to be located between the first oil passage 130a and the first oil passage 130a; And a second check relief valve 160b that is interposed in the bypass fluid passage 140 so as to be located between the oil passage 130b.
[0014]
At least one of the hydraulic pump 110 and the hydraulic motor 120 (the hydraulic pump 110 in the present embodiment) is of a variable displacement type in which the suction / discharge amount changes by operating an output adjustment member 111 such as a swash plate.
[0015]
The HST 100A further includes a hydraulic control mechanism 1A that operates the output adjustment member 111.
The hydraulic control mechanism 1A is configured to tilt the output adjustment member 111 in accordance with an operation direction and an operation amount of an operation member (for example, a lever or a foot pedal) disposed near a driver's seat or the like. ing.
[0016]
More specifically, the hydraulic control mechanism 1A includes a return-type servo piston 10 interlocked with the output adjustment member 111, a return spring 20 for urging the return-type servo piston 10 toward a neutral position, The servo valve 30 is interposed between the backward-acting servo piston 10 and the pressure oil supply source 210 and the drain circuit 220.
[0017]
The return-type servo piston 10 is configured to be able to tilt the output adjustment member 111 in the first direction and the second direction, respectively, by the pressure oil supplied to the first oil chamber 10a and the second oil chamber 10b. ing.
More specifically, the servo piston 10 is slidably accommodated in the cylinder 11 so as to define the first oil chamber 10a and the second oil chamber 10b in a liquid-tight manner.
That is, the servo piston 10 moves in a corresponding direction by an amount corresponding to the oil pressure of the pressure oil supplied to one of the first oil chamber 10a and the second oil chamber 10b. Are tilted in a corresponding direction and by a corresponding amount.
[0018]
The return spring 20 is configured to position the servo piston 10 at a neutral position when there is no substantial pressure difference between the first oil chamber 10a and the second oil chamber 10b.
In the present embodiment, the return spring 20 includes a first return spring 20a disposed in the first oil chamber 10a, and a second return spring 20b disposed in the second oil chamber 10b. It has.
[0019]
The servo valve 30 fluidly connects the first oil chamber 10a to a pressure oil supply source 210 and drains the second oil chamber 10b, and drains the first oil chamber 10a. In addition, a second position 30 (II) where the second oil chamber 10 b is fluidly connected to the pressure oil supply source 210 and a neutral position 30 (N) where the first oil chamber 10 a and the second oil chamber 10 b are closed, respectively. It is configured so that it can be taken.
[0020]
The servo valve 30 is located at the first position 30 (I) corresponding to the operation direction of the operation member at the second position 30 (II) for a time corresponding to the operation amount of the operation member. It returns to the position.
That is, assuming that the operating member is operated to the maximum position in the vehicle forward direction, the servo valve 30 moves to a position corresponding to the vehicle forward direction among the first position 30 (I) or the second position 30 (II). I do. The servo valve 30 is held at a position corresponding to the vehicle forward direction until the backward-moving piston 10 moves a maximum amount in the direction corresponding to the vehicle forward direction (or the servo valve 30 corresponds to the vehicle forward direction). The position and the neutral position are alternately taken), and thereafter, it is returned to the neutral position 30 (N).
[0021]
Further, the hydraulic control mechanism 1A includes a bypass oil passage 40 for bypassing the first oil chamber 10a and the second oil chamber 10b, and an on-off valve 50 inserted in the bypass oil passage 40.
[0022]
In the present embodiment, as shown in FIG. 1, the first oil chamber 10a and the second oil chamber 10b are respectively connected to a first oil supply / discharge passage 15a and a second oil supply / discharge passage 15b. It is connected to the secondary port of the servo valve 30.
The bypass oil passage 40 is configured to communicate with the first oil supply / discharge oil passage 15a and the second oil supply / discharge oil passage 15b.
[0023]
The on-off valve 50 has a drain position 50 (D) for draining the first oil chamber 10a and the second oil chamber 10b, and the first oil chamber 10a and the second oil chamber 10b by shutting off the bypass oil passage 40. And a cutoff position 50 (S) for closing each of them.
The on-off valve 50 is further configured to be automatically positioned at the drain position 50 (D) when the drive source 200 of the HST 100A is stopped.
[0024]
In the present embodiment, the on-off valve 50 is constantly urged toward the drain position 50 (D) by the urging member 60, and the urging member 50 is being driven while the driving source 200 is being driven. 60 is held at the blocking position 50 (S) against the urging force of 60.
[0025]
Specifically, the hydraulic control mechanism 1A includes the urging member 60 that constantly urges the on-off valve 50 toward the drain position 50 (D), and the urging member 60 that opposes the urging force of the urging member 60. An electromagnetic force generating member 70 for positioning the on-off valve 50 at the shut-off position 50 (S).
[0026]
In the present embodiment, the hydraulic control mechanism 1A further turns off the electromagnetic force generation member 70 based on a drive source stop signal from the sensor 80 for detecting operation / stop of the drive source 200. And a controller 85 for performing the operation.
[0027]
In the hydraulic control mechanism 1A having such a configuration, the following effects can be obtained. That is, even if the drive source 200 is stopped while the operation member is being operated in either the forward direction or the reverse direction of the vehicle, the on-off valve 50 is automatically turned on in response to the stop of the drive source 200. At the drain position 50 (D).
In other words, regardless of the operating position of the operating member when stopping the drive source 200, when the drive source 200 is stopped, the first oil chamber 10a and the second oil chamber 10b are both drained, whereby The return piston 10 is returned to the neutral position by the action of the return spring 20. Then, the output adjustment member 111 returns to the neutral position by such an operation of the return piston 10.
[0028]
As described above, in the HST 100A including the hydraulic control mechanism 1A, the stop of the drive source 200 automatically returns the output adjustment member 111 to the neutral position.
Therefore, when the driving source 200 is restarted, the HST 1 does not output a rotational driving force that does not correspond to the operation member, and it is possible to effectively prevent an unexpected sudden start of the vehicle.
[0029]
In the present embodiment, the electromagnetic force generating member 70 is configured to be stopped by a signal from the sensor 80. However, instead of this, the starting force of the electromagnetic force generating member 70 is It is also possible to configure to obtain from. That is, by configuring the electromagnetic force generating member 70 to be operated by the power from the driving source 200, the electromagnetic force generating member 70 is automatically turned off when the driving source 200 stops.
Therefore, the on-off valve 50 is located at the drain position 50 (D) by the urging force of the urging member 60.
[0030]
Embodiment 2 FIG.
Hereinafter, another preferred embodiment of the hydraulic control mechanism according to the present invention will be described with reference to the accompanying drawings.
FIG. 2 is a hydraulic circuit diagram of HST 100B to which hydraulic control mechanism 1B according to the present embodiment is applied.
In the drawings, the same or corresponding members as in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0031]
As shown in FIG. 2, the hydraulic control mechanism 1B according to the present embodiment positions the opening / closing member 50 at the blocking position 50 (S) against the urging member 60 during the operation of the driving source 200. This embodiment is substantially the same as the first embodiment except that the means is changed.
[0032]
That is, the hydraulic control mechanism 1B uses the pressure oil from the pressure oil supply source 210 driven by the drive source 200 to close the on-off valve 50 against the urging member 60 and close the shutoff position 50 (S ).
In such a configuration, when the drive source 200 is stopped, the supply of pressure oil from the pressure oil supply source 210 is also stopped. Therefore, the on-off valve 50 is moved to the drain position 50 (D) by the urging force of the urging member 60.
[0033]
With the hydraulic control mechanism 1B having such a configuration, the same effect as in the first embodiment can be obtained.
[0034]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the hydraulic control mechanism which concerns on this invention, when a drive source is stopped, the output adjustment member of HST can be automatically returned to a neutral position. Therefore, when the drive source is restarted, it is possible to effectively prevent the generation of the HST output contrary to the intention such as sudden start of the vehicle.
[Brief description of the drawings]
FIG. 1 is a hydraulic circuit diagram of an HST to which a hydraulic control mechanism according to an embodiment of the present invention is applied.
FIG. 2 is a hydraulic circuit diagram of an HST to which a hydraulic control mechanism according to another embodiment of the present invention is applied.
FIG. 3 is a hydraulic circuit diagram of a conventional HST.
[Explanation of symbols]
1A, 1B Hydraulic control mechanism 10 Return-type piston 10a First oil chamber 10b Second oil chamber 20a, 20b Return spring 30 Servo valve 40 Bypass oil passage 50 Opening / closing valve 60 Biasing members 100A, 100B HST
111 Output adjustment member 160, 180 Check relief valve

Claims (4)

出力調整部材の傾転方向及び傾転量を制御することによって双方向の可変出力が得られるHSTに適用される油圧制御機構であって、
前記出力調整部材に連動連係された復動式サーボピストンであって、第1油室及び第2油室へ供給される圧油によって前記出力調整部材をそれぞれ第1方向及び第2方向へ傾転させる復動式サーボピストンと、
前記復動式サーボピストンを中立位置へ向けて付勢する戻しバネと、
前記第1油室を圧油供給源に流体接続させ且つ前記第2油室をドレインさせる第1位置と、前記第1油室をドレインさせ且つ前記第2油室を圧油供給源に流体接続させる第2位置と、前記第1油室及び第2油室をそれぞれ閉塞させる中立位置とをとり得るサーボ弁と、
前記第1油室及び第2油室をバイパスさせるバイパス油路と、
前記バイパス油路に介挿された開閉弁であって、前記第1油室及び第2油室をドレインさせるドレイン位置と、該バイパス油路を遮断して前記第1油室及び第2油室をそれぞれ閉塞させる遮断位置とをとり得る開閉弁とを備え、
前記開閉弁は、前記HSTの駆動源が停止されると自動的に前記ドレイン位置に位置するように構成されていることを特徴とするHST油圧制御機構。
A hydraulic control mechanism applied to an HST in which a bidirectional variable output is obtained by controlling a tilt direction and a tilt amount of an output adjusting member,
A backward-acting servo piston operatively linked to the output adjustment member, wherein the output adjustment member is tilted in a first direction and a second direction by pressure oil supplied to a first oil chamber and a second oil chamber, respectively. A reversing servo piston
A return spring that biases the return-type servo piston toward a neutral position;
A first position for fluidly connecting the first oil chamber to a pressure oil supply and draining the second oil chamber; and a fluid connection for draining the first oil chamber and the second oil chamber to a pressure oil supply. A servo valve that can take a second position to be closed, and a neutral position to close the first oil chamber and the second oil chamber, respectively.
A bypass oil passage for bypassing the first oil chamber and the second oil chamber;
An on-off valve interposed in the bypass oil passage, wherein a drain position for draining the first oil chamber and the second oil chamber, and the first oil chamber and the second oil chamber are cut off the bypass oil passage. An open / close valve that can take a shut-off position to close each.
The HST hydraulic control mechanism, wherein the on-off valve is configured to be automatically positioned at the drain position when the drive source of the HST is stopped.
前記開閉弁を前記ドレイン位置へ向けて付勢する付勢部材をさらに備え、
前記開閉弁は、前記駆動源の作動時においては、該駆動源からの動力を利用して前記付勢部材の付勢力に抗して前記遮断位置に位置されていることを特徴とする請求項1に記載のHST油圧制御機構。
Further comprising an urging member for urging the on-off valve toward the drain position,
The said opening / closing valve is located at the said shut-off position against the urging | biasing force of the said urging | biasing member using the motive power from this driving source at the time of the operation of the said drive source. 2. The HST hydraulic control mechanism according to 1.
前記開閉弁を前記ドレイン位置へ向けて付勢する付勢部材と、
前記開閉弁を前記付勢部材の付勢力に抗して前記遮断位置に位置させる電磁力発生部材とを、さらに備え、
前記駆動源の駆動停止を検出するセンサからの信号に基づき前記電磁力発生部材をOFFさせることを特徴とする請求項1に記載のHST油圧制御機構。
An urging member for urging the on-off valve toward the drain position;
An electromagnetic force generating member that positions the on-off valve at the shutoff position against the urging force of the urging member, further comprising:
The HST hydraulic pressure control mechanism according to claim 1, wherein the electromagnetic force generating member is turned off based on a signal from a sensor that detects the stop of driving of the drive source.
前記開閉弁を前記ドレイン位置へ向けて付勢する付勢部材をさらに備え、
前記圧油供給源は前記駆動源によって駆動されており、
前記開閉弁は、前記駆動源の作動時においては、前記圧油供給源からの圧油によって前記付勢部材の付勢力に抗して前記遮断位置に位置されていることを特徴とする請求項1に記載のHST油圧制御機構。
Further comprising an urging member for urging the on-off valve toward the drain position,
The pressure oil supply source is driven by the drive source,
The on-off valve is located at the shut-off position when the drive source is activated, against the urging force of the urging member by pressure oil from the pressure oil supply source. 2. The HST hydraulic control mechanism according to 1.
JP2003113342A 2003-04-17 2003-04-17 Hst hydraulic control mechanism Pending JP2004316824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003113342A JP2004316824A (en) 2003-04-17 2003-04-17 Hst hydraulic control mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003113342A JP2004316824A (en) 2003-04-17 2003-04-17 Hst hydraulic control mechanism

Publications (1)

Publication Number Publication Date
JP2004316824A true JP2004316824A (en) 2004-11-11

Family

ID=33473313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003113342A Pending JP2004316824A (en) 2003-04-17 2003-04-17 Hst hydraulic control mechanism

Country Status (1)

Country Link
JP (1) JP2004316824A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101091486B1 (en) 2008-04-04 2011-12-07 현대자동차주식회사 Hydraulic control system for automatic transmission
CN109807929A (en) * 2017-11-21 2019-05-28 沈阳新松机器人自动化股份有限公司 A kind of actuating cam formula lubrication self-cleaning mechanism

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101091486B1 (en) 2008-04-04 2011-12-07 현대자동차주식회사 Hydraulic control system for automatic transmission
CN109807929A (en) * 2017-11-21 2019-05-28 沈阳新松机器人自动化股份有限公司 A kind of actuating cam formula lubrication self-cleaning mechanism
CN109807929B (en) * 2017-11-21 2021-09-17 沈阳新松机器人自动化股份有限公司 Active cam type lubricating self-cleaning mechanism

Similar Documents

Publication Publication Date Title
US8122714B2 (en) Variable hydraulic motor driving device
JPWO2002057662A1 (en) Hydraulic motor failure detection device and hydraulically driven vehicle
JP2008514473A (en) Steering assist system
JP4255072B2 (en) Power steering device
JP3650100B2 (en) Fault detection device for hydraulic motor
JP2004316824A (en) Hst hydraulic control mechanism
JPH04284180A (en) Variable capacity type piston pump and vehicle with special kind of equipment
JP4344712B2 (en) Hydraulic drive
JP5581479B2 (en) Hydraulic four-wheel drive work vehicle
JP2001263467A (en) Automatic transmission
JP3872910B2 (en) Hydrostatic transmission device
JPH0455890B2 (en)
JP2008002344A (en) Vehicle with engine starting system
JP2006194321A (en) Hydraulic drive mechanism
JP3121581B2 (en) Steering gear
JP2006258237A (en) Hydraulic motor unit
JP2009127858A (en) Hydraulic response control device in starting automatic transmission
JP2003239832A (en) Hydraulic supply device
JP2003161305A (en) Hydraulic retarder device of power transmission equipment
JP2006064137A (en) Brake device for motor
JP2004060717A (en) Toroidal stepless change gear
JPH04321803A (en) Hydraulic device
JP3005864B2 (en) Mechanical hydraulic transmission
JP2929451B2 (en) Hydraulic drive
JPH0523389Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080905

A02 Decision of refusal

Effective date: 20090105

Free format text: JAPANESE INTERMEDIATE CODE: A02