JP2004311577A - Thermally conductive composite sheet and method of manufacturing the same - Google Patents

Thermally conductive composite sheet and method of manufacturing the same Download PDF

Info

Publication number
JP2004311577A
JP2004311577A JP2003100416A JP2003100416A JP2004311577A JP 2004311577 A JP2004311577 A JP 2004311577A JP 2003100416 A JP2003100416 A JP 2003100416A JP 2003100416 A JP2003100416 A JP 2003100416A JP 2004311577 A JP2004311577 A JP 2004311577A
Authority
JP
Japan
Prior art keywords
heat
layer
conductive
silicone rubber
softening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003100416A
Other languages
Japanese (ja)
Inventor
Yoshitaka Aoki
良隆 青木
Takahiro Maruyama
貴宏 丸山
Tsutomu Yoneyama
勉 米山
Hiroaki Tezuka
裕昭 手塚
Kunihiko Yoshida
邦彦 美田
Kenichi Isobe
憲一 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2003100416A priority Critical patent/JP2004311577A/en
Priority to CN2004100300290A priority patent/CN100407415C/en
Priority to TW093109250A priority patent/TW200502288A/en
Priority to KR1020040022783A priority patent/KR20040086802A/en
Publication of JP2004311577A publication Critical patent/JP2004311577A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C9/00Stools for specified purposes
    • A47C9/02Office stools not provided for in main groups A47C1/00, A47C3/00 or A47C7/00; Workshop stools
    • A47C9/027Stools for work at ground level
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C3/00Chairs characterised by structural features; Chairs or stools with rotatable or vertically-adjustable seats
    • A47C3/20Chairs or stools with vertically-adjustable seats
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C7/00Parts, details, or accessories of chairs or stools
    • A47C7/62Accessories for chairs

Landscapes

  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermally conductive composite sheet in which both thermal conductivity and reworkability can be improved, and to provide a method of manufacturing the same. <P>SOLUTION: The thermally conductive composite sheet has a structure in which (a) a thermal conductive silicone rubber layer consisting of a silicone rubber containing a thermal conductive filler, (b) a thermal softening thermal conductive layer containing a silicone resin and a thermal conductive filler and having adhesion, and (c) a thermal conductive layer having a thermal conductivity of 20-500 W/(mK) in a surface direction, are laminated in this order. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、発熱性電子部品等の放熱シートとして用いられる熱伝導性複合シートおよびその製造方法に関する。
【0002】
【従来技術】
テレビ、コンピュータ、通信装置等の電子機器の小型化により、これらに搭載される回路の集積度が増大している。そして、この集積回路に実装される電子部品、特にCPU等のICパッケージは発熱によって性能が低下するため、放熱対策として、金属板等からなりICパッケージ等の熱を伝導して外部に放出するヒートシンクが用いられている。
【0003】
さらに、ICパッケージとヒートシンクの間の熱伝導効率を高めるべく、両者の間に熱伝導性の良いグリース、シリコーンゴムシート等を介装することが従来から行われている。ところが、熱伝導性グリースは部品の汚染やオイルのブリード(分離)の他、粘度が上昇して被着面と強固に密着し、リワーク(電子部品の修理、交換等のためヒートシンク等の熱伝導性部材を取り外すこと)時に電子部品がヒートシンクと一緒に外れる等の欠点があった。また、熱伝導性シリコーンゴムシートの場合、硬度を高くするとリワーク性は向上するが、電子部品との追随性が低下して界面熱抵抗が大となり放熱性能が劣化し、一方で硬度が低いと電子機器へのマウントが難しくなる欠点があった。
【0004】
このようなことから、熱軟化性の樹脂シートにより、電子部品との追随性を向上させて放熱性能を高める技術が報告されている(例えば、特許文献1参照)。又、シートの厚み方向だけでなく、面方向への熱伝導性を向上させて放熱性能をさらに高める方策として、面方向への熱伝導性が良いグラファイトシートを用いた技術が報告されている(例えば、特許文献2参照)。
【0005】
【特許文献1】
特開2002−329989号公報
【特許文献2】
特公平3−51302号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記特許文献1記載の技術の場合、樹脂シート表面が熱軟化性のため、リワーク性が不充分である。又、特許文献2記載の技術の場合、面方向の熱伝導性は改善されるものの、グラファイト層にゴム成分を塗工し、このゴム層によって電子部品への密着を付与しているため、塗工工程に非常に手間がかかり、さらにリワーク性も充分とはいえない。
【0007】
一方、上記した各種の問題、つまり、シートの面方向の熱伝導性や電子部品とのリワーク性を同時に改善しようとして複数のシートを徒に積層すると、シートの厚み方向の熱伝導性が大幅に低下して放熱性能も劣化する。従って、単純に従来の放熱シートを組み合わせただけでは、放熱性能とリワーク性をともに満足するものは得られない。
【0008】
本発明者らは、上記課題を解決するために種々検討した結果、リワーク性を確保するため外層の少なくとも一方にシリコーンゴム層を設け、内層には対象物との追随性を向上させる熱軟化性の中間層を設ける3層構造により、熱伝導性とリワーク性をともに向上させることに成功した。又、本発明者らは、この中間層として熱伝導性充填剤を含有しない材料を用いると放熱性能が極端に低下することも見出した。従って、本発明は上記の課題を解決するためになされたものであり、熱伝導性とリワーク性をともに向上させることができる熱伝導性複合シートおよびその製造方法の提供を目的とする。
【0009】
【課題を解決するための手段】
上記した目的を達成するために、本発明によれば、(a)熱伝導性充填剤を含有するシリコーンゴムからなる熱伝導性シリコーンゴム層と、(b)シリコーン樹脂及び熱伝導性充填剤を含有し、粘着性を有する熱軟化性熱伝導層と、(c)面方向への熱伝導率が20〜500W/(m・K)の熱伝導層とをこの順で積層した構造を有することを特徴とする熱伝導性複合シートが提供される。
このようにすると、外層側にリワーク性の優れた熱伝導性シリコーンゴム層が存在し、その熱は熱軟化性熱伝導層を介して反対側の熱伝導層から効率よく放熱されるので、熱伝導性、放熱性、及びリワーク性をともに満足できる。
【0010】
前記熱伝導層の表面に、さらに(d)シリコーン樹脂および熱伝導性充填剤を含有し、粘着性を有する第2の熱軟化性熱伝導層を設けてもよい。
このようにすると、熱軟化により第2の熱軟化性熱伝導層がヒートシンク等と密着するので、熱伝導層からヒートシンク等へ効率よく熱伝導し、放熱性がさらに向上する。
【0011】
又、本発明によれば、(a)熱伝導性充填剤を含有するシリコーンゴムからなる熱伝導性シリコーンゴム層と、(b)シリコーン樹脂及び熱伝導性充填剤を含有し、粘着性を有する熱軟化性熱伝導層と、(e) 熱伝導性充填剤を含有するシリコーンゴムからなり前記熱伝導性シリコーンゴム層より硬度が低い第2の熱伝導性シリコーンゴム層とをこの順で積層した構造を有することを特徴とする熱伝導性複合シートが提供される。
このようにすると、表裏の外層側にいずれもリワーク性の優れた熱伝導性シリコーンゴム層が存在するので、リワーク性が大幅に向上する。又、一方の外層側の熱は熱軟化性熱伝導層を介して反対側の外層から放熱されるので、熱伝導性にも優れる。
【0012】
さらに、本発明によれば、前記熱伝導性シリコーンゴム層、前記熱軟化性熱伝導層、及び前記熱伝導層又は前記第2の熱伝導性シリコーンゴム層をこの順に積層した状態で、室温圧着又は熱圧着することを特徴とする熱伝導性複合シートの製造方法が提供される。
【0013】
【発明の実施の形態】
以下、本発明に係る熱伝導性複合シートおよびその製造方法の実施の形態について説明する。
【0014】
1.第1の実施形態
[熱伝導性シリコーンゴム層]
この層は、本発明に係る熱伝導性複合シートの外層側にあって放熱対象物(電子部品等)に接触し、その熱を伝導するものであり、リワーク性を付与するとともに、形状安定性を高めてシート製造時の生産性を確保するべく、所定硬度を有する。又、熱伝導性を付与すべく、熱伝導性シリコーンゴム層には、熱伝導性充填剤が含有されている。シリコーンゴムとしては特にその種類は制限されないが、例えば、(A)1分子中に2個以上のアルケニル基を有するオルガノポリシロキサン、(B)1分子中に、珪素原子に結合した水素原子を2個以上有するポリオルガノハイドロジェンシロキサン、(C)白金系触媒を含むシリコーンゴム、を使用することができる。又、熱伝導性充填剤としては、銅、銀、アルミニウム等の金属の粉末、アルミナ、シリカ、酸化マグネシウム、酸化亜鉛等の金属酸化物の粉末、窒化アルミニウム、窒化ケイ素、窒化ホウ素等の金属窒化物の粉末、人工ダイヤモンド粉末、を使用することができる。熱伝導性充填剤の含有割合は、例えば、熱伝導性シリコーンゴム層全体に対し、70〜97重量%とすることができ、好ましくは85〜95重量%とすることができる。熱伝導性充填剤の含有量が少ないと、熱伝導性シリコーンゴム層の熱伝導性が低下し、含有量が多いと、均一な熱伝導性シリコーンゴムが得られないからである。
【0015】
熱伝導性シリコーンゴム層の硬度は、シート生産時の取り扱い性、形状保持性を確保すべく、好ましくはアスカーC硬度で10〜60、より好ましくはアスカーC硬度で20〜50とする。ここでアスカーC硬度とは、SRIS 0101(日本ゴム協会規格)及びJIS−S 6050に基づき、スプリング式硬さ試験機アスカーC型を使用して測定した硬さである。熱伝導性シリコーンゴム層のアスカーC硬度が10未満であると、シートが軟らかくなり過ぎて形状保持が困難となり、補強性が不十分となって生産性が低下する。逆に大きすぎると、電子部品等との密着性が低下し、追随性が悪くなって放熱性能の低下を招く。又、JIS−K6253に規定されるデュロメータタイプA硬度を指標とした場合、好ましくは30〜100、より好ましくは40〜90とする。なお、一般に、アスカーC硬度は、デュロメータタイプA硬度では測定が困難な柔らかい材料の硬度を測定する指標である。
【0016】
熱伝導性シリコーンゴム層に用いることができる、市販されている熱伝導性シリコーンゴムシートとしては、TC−50THS(アスカーC硬度20、信越化学工業株式会社製;商品名)、TC−50TXS(アスカーC硬度40、信越化学工業株式会社製;商品名)、TC−20BG(デュロメータタイプA硬度85、信越化学工業株式会社製;商品名)、TC−45BG(デュロメータタイプA硬度85、信越化学工業株式会社製;商品名)、TC−30EG(デュロメータタイプA硬度90、信越化学工業株式会社製;商品名)、TC−45EG(デュロメータタイプA硬度90、信越化学工業株式会社製;商品名)が挙げられる。
【0017】
[熱軟化性熱伝導層]
この層は、シリコーン樹脂マトリックス中に熱伝導性充填剤が分散されて構成されるものである。また、この層は、本発明に係る熱伝導性複合シートの中間層をなし、その粘着性により外層同士をつなぎ合わせる機能を有するとともに、熱伝導性充填剤により良好な熱伝導性を確保してシート全体の熱伝導性も向上させるものである。シリコーン樹脂は、粘着性を有し熱軟化性のものであれば特にその種類は制限されないが、例えば以下の式で表される、D体(2官能性構造単位)及びT体(3官能性構造単位)を所定組成で含むものを挙げることができる。

ここで、Dはジメチルシロキサン単位(すなわち、(CHSiO)を、Tはフェニルシロキサン単位(すなわち、(CSiO3/2)を、Dはメチルビニルシロキサン単位(すなわち、(CH)(CH=CH)SiO)を示す。又、(m+n)/p=0.25〜4.0(モル比)、(m+n)/m=1.0〜4.0の関係にある。上記式で表される組成物であれば粘着性が発現される。
【0018】
ここで、熱軟化性とは、熱により低粘度化、熱軟化または融解することをいい、熱軟化性熱伝導層が流動化して被着面に追随・密着することにより、界面熱抵抗を低減する。そして、通常40〜100℃、特に40〜90℃の温度範囲において、低粘度化、熱軟化、又は融解して表面が流動化するものを「熱軟化性」を有するものとすることができる。
【0019】
シリコーン樹脂に分散させる熱伝導性充填剤としては、上記した熱伝導性シリコーンゴム層に用いたものと同様のものを用いることができる。又、熱伝導性充填剤の含有割合は例えば、熱軟化性熱伝導性層全体に対し、70〜97重量%とすることができ、好ましくは85〜95重量%とすることができる。熱伝導性充填剤の含有量を規定した理由は、上記熱伝導性シリコーンゴム層の場合と同様である。
【0020】
熱軟化性熱伝導層に用いることができる、市販されている熱軟化性熱伝導性シートとしては、PCS−TC−10、PCS−TC−11、PCS−TC−20(いずれも信越化学工業株式会社製;商品名)が挙げられる。
【0021】
[熱伝導層]
この層は、シートの反対側の外層にあってヒートシンク等の放熱部材等に接触し、中間層を介して伝導された熱を放熱する機能を有するとともに、面方向の熱伝導性が高いために放熱性能が高くなっている。そして、熱伝導層の面方向の熱伝導性率を20〜500W/(m・K)とすることで、面方向へ熱が伝導され易くなる。熱伝導性が20W/(m・K)未満であると、面方向の熱伝導性が充分でなく、500W/(m・K)を超えても熱伝導性の効果が飽和する。熱伝導層としては、グラファイトシート、アルミホイル等が使用できる。
【0022】
熱伝導層に用いることができる、市販されているグラファイトシートとしては、MACFOIL(ジャパンマテックス株式会社製;商品名)、PGSグラファイトシート(松下電器産業株式会社製;商品名)が挙げられ、アルミホイルとしては例えば日本軽金属株式会社製のものが挙げられる。
【0023】
そして、上記熱伝導性シリコーンゴム層と、熱軟化性熱伝導層と、熱伝導層とをこの順で積層することにより、第1の実施形態に係る熱伝導性複合シートが構成される。このような構成により、離型性の良好な熱伝導性シリコーンゴム層が最外層として電子部品等の放熱対象物と接触するので、いわゆるリワーク性を向上させることができる。そして、面方向の熱伝導性に優れた熱伝導層が反対側の外層に位置するので、熱伝導層から外部への放熱が促進される。さらに、中間層となる熱軟化性熱伝導層により、熱伝導性シリコーンゴム層からの熱を熱伝導層へ効率よく伝導させることができるので、放熱特性が大幅に向上する。又、熱軟化性熱伝導層が熱軟化することによって、外層の熱伝導性シリコーンゴム層も放熱対象物と密着し、放熱対象物の熱を伝導しやすくなる。
【0024】
2.第2の実施形態
この熱伝導性複合シートは、上記熱伝導層の表面に、さらに第2の熱軟化性熱伝導層を設けたものである。第2の熱軟化性熱伝導層は、上記熱軟化性熱伝導層と同様、シリコーン樹脂マトリックス中に熱伝導性充填剤が分散されて構成されるものである。第2の熱軟化性熱伝導層に用いるシリコーン樹脂、熱伝導性充填剤、及びその含有割合は、上記熱軟化性熱伝導層について説明した中から選択することができ、又、上記熱軟化性熱伝導層と同一の樹脂や熱伝導性充填剤を用いてもよく、他の種類の樹脂等を用いてもよい。
【0025】
第2の熱軟化性熱伝導層が外層に位置することにより、この層の表面が流動化し被着面(ヒートシンク等)に追随、密着するので、被着面との間に空隙が生じず界面熱抵抗が低減し、熱伝導層の熱をヒートシンク等に効率良く伝導させることができ、放熱特性が大幅に向上する。
【0026】
3.第3の実施形態
この熱伝導性複合シートは、上記第1の実施形態に係る熱伝導性複合シートの熱伝導層に代えて、第2の熱伝導性シリコーンゴム層を設けたものである。第2の熱伝導性シリコーンゴム層に用いるシリコーンゴム、熱伝導性充填剤、及びその含有割合は、上記熱伝導性シリコーンゴム層について説明した中から選択することができ、又、上記熱伝導性シリコーンゴム層と同一のシリコーンゴムや熱伝導性充填剤を用いてもよく、他の種類の樹脂等を用いてもよい。
【0027】
第2の熱伝導性シリコーンゴム層は、上記熱伝導性シリコーンゴム層より硬度を低くする。この理由は、上記熱伝導性シリコーンゴム層が形状安定性を高めるべく比較的高い硬度を有するので、第2の熱伝導性シリコーンゴム層の硬度を高くする必要がなく、その分被着面(電子部品又はヒートシンク等)との密着性、追随性を向上させて放熱特性を改善させるためである。
【0028】
なお、第3の実施形態に係る熱伝導性複合シートの場合、対象との追随性の良好な第2の熱伝導性シリコーンゴム層側を放熱対象物(電子部品等)に接触させ、やや硬質な熱伝導性シリコーンゴム層側を外部(ヒートシンク等)に接触させるのが好ましい。
【0029】
第2の熱伝導性シリコーンゴム層が外層に位置することにより、この層の表面が被着面(電子部品又はヒートシンク等)に追随、密着し易くなるので、被着面との間に空隙が生じず界面熱抵抗が低減し、その結果として放熱特性が向上する。又、粘着性の熱軟化性の樹脂である中間層が外層に表出しないので、シートの取り扱い性、リワーク性も良好となる。
【0030】
次に、本発明に係る熱伝導性複合シートの製造方法について説明する。本発明の製造方法は、熱伝導性シリコーンゴム層、熱軟化性熱伝導層、及び熱伝導層又は第2の熱伝導性シリコーンゴム層を、室温圧着又は熱圧着することにより熱伝導性複合シートを製造するものである。
【0031】
室温圧着の場合は、例えばテープ状の熱伝導性シリコーンゴムシートとグラファイトシートの間に、離型処理したポリマーフィルムが表面に貼着されたテープ状の熱軟化性熱伝導性シートを供給し、ポリマーフィルムを剥がした後、熱伝導性シリコーンゴムシート、グラファイトシート、及び熱軟化性熱伝導性シートがこの順で積層されたものを室温の双ロール間に通して圧着する。熱圧着の場合は、上記双ロールを熱軟化性熱伝導性シートの熱軟化温度以上(例えば80〜120℃)に加熱して同様に圧着する。なお、圧着はロール法の他、ヒートプレス等を用いてもよい。又、上記第2の実施形態に係る熱伝導性複合シートを製造する場合は、グラファイトシートの外側に上記と同様のテープ状の熱軟化性熱伝導性シートを供給し、全体を圧着すればよい。
【0032】
次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
【0033】
【実施例】
1.各材料の準備
以下のシート及び粘着剤を準備した。
[熱伝導性シリコーンゴムシート]
a−1;TC−50TXS(商品名;信越化学工業株式会社製、厚さ500μm、アスカーC硬度40)
a−2;TC−50THS(商品名;信越化学工業株式会社製、厚さ500μm、アスカーC硬度20)
a−3;TC−45BG(商品名;信越化学工業株式会社製、厚さ450μm、デュロメータA硬度85)
a−4;TC−45EG(商品名;信越化学工業株式会社製、厚さ450μm、デュロメータA硬度90)
[熱軟化性熱伝導性シート]
b−1;PCS−TC−20−G−10(商品名;信越化学工業株式会社製、厚さ100μm)
b−2;PCS−TC−11−G−13(商品名;信越化学工業株式会社製、厚さ130μm)
[熱伝導性シート]
c−1;MACFOIL(商品名;ジャパンマテックス株式会社製、厚さ130μm、面方向の熱伝導率150W/(m・K))
c−2;アルミホイル(日本軽金属株式会社製、厚さ50μm、面方向の熱伝導率237W/(m・K))
[熱軟化性熱伝導性シート]
d−1;PCS−TC−20−G−20(商品名;信越化学工業株式会社製、厚さ200μm)
[熱伝導性シリコーンゴムシート]
e−1;TC−20BG(商品名;信越化学工業株式会社製、厚さ200μm、デュロメータA硬度85)
[シリコーン粘着剤]
b−3;KR−101−10(商品名;信越化学工業株式会社製)
【0034】
2.熱伝導性複合シートの製造
上記熱伝導性シリコーンゴムシート、熱軟化性熱伝導性シート、熱伝導性シートを適宜組合せ、室温の双ロール間に通して圧着して熱伝導性複合シートを製造した。熱圧着の場合は、上記双ロールを100℃に加熱して同様に圧着した。なお、一部の試料については、熱軟化性熱伝導性シートを用いる代わりにシリコーン粘着剤を用い、このシリコーン粘着剤を上記熱伝導性シリコーンゴムシート又は熱伝導性シートに塗布した後、上記双ロールを用いて同様に圧着した。
【0035】
3.評価
得られた各熱伝導性複合シートを5×5cmに切り出し、この試験片について下記特性を評価した。
シート厚み
マイクロメーター(株式会社ミツトヨ製、型式;M820−25VA)を用いて測定した。
熱抵抗
トランジスタ(富士電機株式会社製;商品名2SD923)とヒートシンク(株式会社オーエス製;商品名FBA−150−PS)の間に各試験片を介装し、圧縮加重345kPaで荷重した。ヒートシンクは予め恒温水槽の中に入れ65℃に保温しておき、実験開始とともに恒温槽から取出して試験片を取り付けた。次に、トランジスタに10V、3Aの電力を供給し、5分経過後のトランジスタの温度Tと、ヒートシンクに埋め込んだ熱電対の温度Tを測定し、次式からサンプルの熱抵抗R(℃/W)を算出した。
=(T−T)/30
(3)リワーク性
二枚の標準アルミニウムプレートの間に各試験片を挟み、圧縮加重490kPaで荷重した後、150℃のオーブン中に96時間放置した。放置後、アルミニウムプレートを引き離す方向へ手で力を加え、アルミニウムプレートと試験片との間の剥がれやすさを判定した。
評価A:容易に剥がれる
評価B:若干の力を加えると剥がれる
評価C:剥がれにくい
評価D:非常に剥がれにくく、層間剥離を起こしやすい
【0036】
得られた熱伝導性複合シートの構成、及び評価結果を表1に示す。なお、表1において、第1層、第2層の順に各シート(又は粘着剤)が積層され、又、第1層側をトランジスタに接触させ、反対側の外層をヒートシンク側に接触させた。
【0037】
【表1】

Figure 2004311577
【0038】
表1から明らかなように、各実施例はいずれも、熱抵抗が低くて(0.5℃/W以下)放熱性能に優れるとともに、リワーク性にも優れたものとなっている。なお、実施例3、4は、高硬度のシリコーンゴムを熱伝導性シリコーンゴムシートとして外層側に設けたため、若干熱抵抗が高くなったが実用上は問題がなく、さらにリワーク性が大幅に向上した。又、面方向の熱伝導性に優れた熱伝導層を外層側に設けた実施例1、2、5〜7、9の場合、熱抵抗が約0.3℃/W以下と極めて低いものとなった。
【0039】
一方、中間層としてシリコーン粘着剤を用いた比較例1〜3の場合、この中間層の熱伝導性が低下したため、いずれも熱抵抗が0.5℃/Wを超えた。又、2層構造とした比較例4、5の場合、外層が外部と密着して層間剥離を起こした。外層側に粘着性の熱軟化性熱伝導層を設けた比較例6の場合、シート表面の粘着性が高くなったためにリワーク性が悪化した。
【0040】
【発明の効果】
以上の説明で明らかなように、本発明の熱伝導性複合シートは、熱伝導性とリワーク性に共に優れており、発熱性電子部品等の放熱、冷却のために用いられる放熱構造体用として好適なものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat conductive composite sheet used as a heat dissipation sheet for heat-generating electronic components and the like, and a method for producing the same.
[0002]
[Prior art]
2. Description of the Related Art As electronic devices such as televisions, computers, and communication devices have become smaller, the degree of integration of circuits mounted thereon has increased. Since the performance of electronic components mounted on this integrated circuit, especially IC packages such as CPUs, deteriorates due to heat generation, a heat sink made of a metal plate or the like, which conducts heat of the IC package or the like and discharges the heat to the outside, is used as a heat dissipation measure. Is used.
[0003]
Further, in order to increase the heat conduction efficiency between the IC package and the heat sink, it has been conventionally performed to interpose grease, a silicone rubber sheet, or the like having good heat conductivity between the two. However, thermal conductive grease, in addition to contamination of parts and bleeding (separation) of oil, increases in viscosity and firmly adheres to the surface to be adhered, and rework (heat conduction for heat sink etc. for repair or replacement of electronic parts etc.) However, there is a drawback that the electronic component comes off together with the heat sink when the conductive member is removed. In the case of a heat-conductive silicone rubber sheet, increasing the hardness improves reworkability, but reduces the ability to follow electronic components, increases interfacial thermal resistance, and degrades heat dissipation performance. There is a drawback that mounting on electronic devices becomes difficult.
[0004]
For this reason, a technique has been reported in which a heat-softening resin sheet is used to improve the ability to follow electronic components to enhance heat dissipation performance (for example, see Patent Document 1). In addition, as a measure for improving the thermal conductivity not only in the thickness direction of the sheet but also in the plane direction to further enhance the heat radiation performance, a technique using a graphite sheet having good thermal conductivity in the plane direction has been reported ( For example, see Patent Document 2).
[0005]
[Patent Document 1]
JP 2002-329989 A [Patent Document 2]
Japanese Patent Publication No. 3-51302
[Problems to be solved by the invention]
However, in the case of the technique described in Patent Document 1, reworkability is insufficient because the surface of the resin sheet is thermally softened. Further, in the case of the technology described in Patent Document 2, although the thermal conductivity in the surface direction is improved, a rubber component is applied to the graphite layer, and the rubber layer provides adhesion to electronic components. The construction process is very time-consuming and reworkability is not sufficient.
[0007]
On the other hand, when the above-mentioned various problems, that is, the thermal conductivity in the surface direction of the sheet and the reworkability with the electronic component are simultaneously laminated to improve the thermal conductivity in the thickness direction of the sheet, the thermal conductivity in the thickness direction of the sheet greatly increases. As a result, the heat radiation performance deteriorates. Therefore, simply combining conventional heat radiation sheets does not provide a material that satisfies both heat radiation performance and reworkability.
[0008]
The present inventors have conducted various studies in order to solve the above-mentioned problems, and as a result, provided a silicone rubber layer on at least one of the outer layers to ensure reworkability, and a heat-softening property for improving the followability with the object in the inner layer. With the three-layer structure in which the intermediate layer is provided, both the thermal conductivity and the reworkability were successfully improved. The present inventors have also found that when a material that does not contain a thermally conductive filler is used as the intermediate layer, the heat radiation performance is extremely reduced. Accordingly, the present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide a thermally conductive composite sheet capable of improving both thermal conductivity and reworkability, and a method for producing the same.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, (a) a heat conductive silicone rubber layer comprising a silicone rubber containing a heat conductive filler, and (b) a silicone resin and a heat conductive filler are provided. A heat-softening heat conductive layer containing and having adhesiveness, and a heat conductive layer having a heat conductivity in the direction of the plane of (c) of 20 to 500 W / (m · K) are laminated in this order. A heat conductive composite sheet is provided.
In this case, the heat conductive silicone rubber layer having excellent reworkability exists on the outer layer side, and the heat is efficiently radiated from the heat conductive layer on the opposite side via the heat softening heat conductive layer. Both conductivity, heat dissipation, and reworkability can be satisfied.
[0010]
On the surface of the heat conductive layer, a second heat softening heat conductive layer containing (d) a silicone resin and a heat conductive filler and having tackiness may be provided.
With this configuration, the second heat-softening heat conductive layer is in close contact with the heat sink or the like due to the heat softening, so that the heat is efficiently conducted from the heat conductive layer to the heat sink or the like, and the heat dissipation is further improved.
[0011]
Further, according to the present invention, (a) a thermally conductive silicone rubber layer made of a silicone rubber containing a thermally conductive filler, and (b) a silicone resin and a thermally conductive filler are contained, and the composition has an adhesive property. A heat-softening heat-conductive layer and (e) a second heat-conductive silicone rubber layer made of a silicone rubber containing a heat-conductive filler and having a lower hardness than the heat-conductive silicone rubber layer were laminated in this order. A heat conductive composite sheet having a structure is provided.
In this case, since the thermally conductive silicone rubber layer having excellent reworkability is present on both the front and back outer layers, the reworkability is greatly improved. In addition, heat on one outer layer side is radiated from the outer layer on the other side via the heat-softening heat conductive layer, so that heat conductivity is also excellent.
[0012]
Further, according to the present invention, the heat conductive silicone rubber layer, the heat softening heat conductive layer, and the heat conductive layer or the second heat conductive silicone rubber layer are laminated in this order, and are pressed at room temperature. Alternatively, a method for producing a thermally conductive composite sheet, which is characterized by performing thermocompression bonding, is provided.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a heat conductive composite sheet and a method for manufacturing the same according to the present invention will be described.
[0014]
1. First Embodiment [Thermal Conductive Silicone Rubber Layer]
This layer is located on the outer layer side of the heat conductive composite sheet according to the present invention, and is in contact with a heat-dissipating object (such as an electronic component) and conducts its heat. And has a predetermined hardness in order to increase productivity and secure productivity during sheet production. Further, in order to impart thermal conductivity, the thermally conductive silicone rubber layer contains a thermally conductive filler. The type of the silicone rubber is not particularly limited, and examples thereof include (A) an organopolysiloxane having two or more alkenyl groups in one molecule, and (B) two hydrogen atoms bonded to a silicon atom in one molecule. Or more polyorganohydrogensiloxanes, and (C) a silicone rubber containing a platinum-based catalyst. Examples of the thermally conductive filler include powders of metals such as copper, silver, and aluminum; powders of metal oxides such as alumina, silica, magnesium oxide, and zinc oxide; and metal nitrides such as aluminum nitride, silicon nitride, and boron nitride. Product powder and artificial diamond powder. The content ratio of the thermally conductive filler can be, for example, 70 to 97% by weight, and preferably 85 to 95% by weight, based on the entire thermally conductive silicone rubber layer. When the content of the heat conductive filler is small, the heat conductivity of the heat conductive silicone rubber layer is reduced, and when the content is large, a uniform heat conductive silicone rubber cannot be obtained.
[0015]
The hardness of the thermally conductive silicone rubber layer is preferably 10 to 60 as Asker C hardness, more preferably 20 to 50 as Asker C hardness, in order to ensure handleability and shape retention during sheet production. Here, the Asker C hardness is a hardness measured by using a spring type hardness tester Asker C type based on SRIS 0101 (Standard of the Japan Rubber Association) and JIS-S6050. If the Asker C hardness of the thermally conductive silicone rubber layer is less than 10, the sheet becomes too soft to hold the shape, and the reinforcing property becomes insufficient, and the productivity decreases. On the other hand, if it is too large, the adhesion to electronic components and the like will be reduced, and the followability will be reduced, leading to a reduction in heat radiation performance. When the durometer type A hardness specified in JIS-K6253 is used as an index, it is preferably 30 to 100, more preferably 40 to 90. In general, Asker C hardness is an index for measuring the hardness of a soft material that is difficult to measure with a durometer type A hardness.
[0016]
Commercially available thermally conductive silicone rubber sheets that can be used for the thermally conductive silicone rubber layer include TC-50THS (Asker C hardness 20, manufactured by Shin-Etsu Chemical Co., Ltd .; trade name) and TC-50TXS (Asker C hardness 40, manufactured by Shin-Etsu Chemical Co., Ltd .; trade name; TC-20BG (durometer type A hardness 85, manufactured by Shin-Etsu Chemical Co., Ltd .; trade name); TC-45BG (durometer type A hardness 85, Shin-Etsu Chemical Co., Ltd.) TC-30EG (durometer type A hardness 90, manufactured by Shin-Etsu Chemical Co., Ltd .; trade name), and TC-45EG (durometer type A hardness 90, manufactured by Shin-Etsu Chemical Co., Ltd .; trade name). Can be
[0017]
[Thermal softening heat conductive layer]
This layer is formed by dispersing a thermally conductive filler in a silicone resin matrix. In addition, this layer constitutes an intermediate layer of the heat conductive composite sheet according to the present invention, and has a function of joining outer layers by its adhesiveness, and secures good heat conductivity by the heat conductive filler. It also improves the thermal conductivity of the entire sheet. The type of the silicone resin is not particularly limited as long as it is tacky and heat-softening. For example, D-form (bifunctional structural unit) and T-form (trifunctional Structural unit) having a predetermined composition.
D 1 m T p D 2 m
Here, D 1 is a dimethylsiloxane unit (ie, (CH 3 ) 2 SiO), T is a phenylsiloxane unit (ie, (C 6 H 5 ) 2 SiO 3/2 ), and D 2 is a methylvinylsiloxane unit. (That is, (CH 3 ) (CH 2 CHCH) SiO). In addition, (m + n) /p=0.25 to 4.0 (molar ratio) and (m + n) /m=1.0 to 4.0. The composition represented by the above formula exhibits tackiness.
[0018]
Here, the term “thermal softening” means that the viscosity is reduced, thermally softened or melted by heat, and the thermal softening heat conductive layer is fluidized and follows and adheres to the adherend surface, thereby reducing interfacial thermal resistance. I do. In a temperature range of usually 40 to 100 ° C., particularly 40 to 90 ° C., a material whose surface is fluidized by low viscosity, heat softening, or melting can have “heat softening property”.
[0019]
As the thermally conductive filler to be dispersed in the silicone resin, the same materials as those used in the above thermally conductive silicone rubber layer can be used. Further, the content ratio of the heat conductive filler can be, for example, 70 to 97% by weight, and preferably 85 to 95% by weight, based on the entire heat softening heat conductive layer. The reason for defining the content of the heat conductive filler is the same as in the case of the heat conductive silicone rubber layer.
[0020]
Examples of commercially available heat-softening heat conductive sheets that can be used for the heat-softening heat conductive layer include PCS-TC-10, PCS-TC-11, and PCS-TC-20 (all of which are Shin-Etsu Chemical Co., Ltd.). Made by company; trade name).
[0021]
[Heat conduction layer]
This layer, which is located on the outer layer on the opposite side of the sheet and has a function of contacting a heat radiating member such as a heat sink and radiating heat conducted through the intermediate layer, and has a high thermal conductivity in a plane direction. Heat dissipation performance is high. By setting the thermal conductivity in the plane direction of the heat conductive layer to 20 to 500 W / (m · K), heat is easily conducted in the plane direction. If the thermal conductivity is less than 20 W / (m · K), the thermal conductivity in the plane direction is not sufficient, and even if it exceeds 500 W / (m · K), the effect of the thermal conductivity is saturated. As the heat conductive layer, a graphite sheet, aluminum foil, or the like can be used.
[0022]
Examples of commercially available graphite sheets that can be used for the heat conductive layer include MACFOIL (manufactured by Japan Matex Co., Ltd .; trade name) and PGS graphite sheet (manufactured by Matsushita Electric Industrial Co., Ltd .; trade name). Examples thereof include those manufactured by Nippon Light Metal Co., Ltd.
[0023]
Then, the heat conductive silicone rubber layer, the heat softening heat conductive layer, and the heat conductive layer are laminated in this order to form the heat conductive composite sheet according to the first embodiment. With such a configuration, the so-called reworking property can be improved because the thermally conductive silicone rubber layer having good releasability comes into contact with an object to be radiated such as an electronic component as the outermost layer. Since the heat conductive layer having excellent heat conductivity in the plane direction is located on the outer layer on the opposite side, heat radiation from the heat conductive layer to the outside is promoted. Furthermore, the heat from the heat-conductive silicone rubber layer can be efficiently transmitted to the heat-conductive layer by the heat-softening heat-conductive layer serving as the intermediate layer, so that the heat radiation characteristics are greatly improved. In addition, when the heat-softening heat conductive layer thermally softens, the heat conductive silicone rubber layer of the outer layer also comes into close contact with the heat radiating object and easily conducts the heat of the heat radiating object.
[0024]
2. Second Embodiment This heat conductive composite sheet is obtained by further providing a second heat softening heat conductive layer on the surface of the heat conductive layer. The second heat-softening heat-conductive layer is formed by dispersing a heat-conductive filler in a silicone resin matrix, similarly to the heat-softening heat-conductive layer. The silicone resin used for the second heat-softening heat conductive layer, the heat conductive filler, and the content thereof can be selected from those described for the heat softening heat conductive layer. The same resin or heat conductive filler as the heat conductive layer may be used, or another type of resin or the like may be used.
[0025]
When the second heat-softening heat conductive layer is located on the outer layer, the surface of this layer is fluidized and follows the adhered surface (such as a heat sink) and adheres closely. The thermal resistance is reduced, the heat of the heat conductive layer can be efficiently conducted to a heat sink or the like, and the heat radiation characteristics are greatly improved.
[0026]
3. Third Embodiment This heat conductive composite sheet is provided with a second heat conductive silicone rubber layer instead of the heat conductive layer of the heat conductive composite sheet according to the first embodiment. The silicone rubber, the thermally conductive filler, and the content thereof used in the second thermally conductive silicone rubber layer can be selected from those described for the thermally conductive silicone rubber layer. The same silicone rubber or heat conductive filler as the silicone rubber layer may be used, or another type of resin or the like may be used.
[0027]
The second thermally conductive silicone rubber layer has a lower hardness than the above thermally conductive silicone rubber layer. The reason is that the heat conductive silicone rubber layer has a relatively high hardness in order to enhance the shape stability, so that it is not necessary to increase the hardness of the second heat conductive silicone rubber layer. This is for improving the adhesiveness and followability with an electronic component or a heat sink to improve the heat radiation characteristics.
[0028]
In the case of the heat conductive composite sheet according to the third embodiment, the side of the second heat conductive silicone rubber layer having good followability with the object is brought into contact with the heat radiating object (such as an electronic component), and is slightly hard. It is preferable to bring the heat-conductive silicone rubber layer side into contact with the outside (such as a heat sink).
[0029]
When the second thermally conductive silicone rubber layer is located on the outer layer, the surface of this layer follows the adhered surface (such as an electronic component or a heat sink) and easily adheres to the outer surface. This does not occur, and the interface thermal resistance is reduced, resulting in improved heat dissipation characteristics. In addition, since the intermediate layer, which is an adhesive heat-softening resin, does not appear in the outer layer, the sheet can be easily handled and reworked.
[0030]
Next, a method for producing the heat conductive composite sheet according to the present invention will be described. The production method of the present invention includes a heat conductive composite sheet formed by pressing a heat conductive silicone rubber layer, a heat softening heat conductive layer, and a heat conductive layer or a second heat conductive silicone rubber layer at room temperature or thermocompression. Is to manufacture.
[0031]
In the case of room temperature pressure bonding, for example, between a tape-like heat-conductive silicone rubber sheet and a graphite sheet, a tape-like heat-softening heat-conductive sheet having a release-treated polymer film adhered to the surface is supplied, After peeling off the polymer film, a laminate of a thermally conductive silicone rubber sheet, a graphite sheet, and a thermally softened thermally conductive sheet in this order is passed between twin rolls at room temperature and pressed. In the case of thermocompression bonding, the twin rolls are heated to a temperature equal to or higher than the heat softening temperature of the thermosoftening heat conductive sheet (for example, 80 to 120 ° C.) and similarly press bonded. The press bonding may be performed by a heat press or the like in addition to the roll method. When manufacturing the heat conductive composite sheet according to the second embodiment, a tape-like heat softening heat conductive sheet similar to the above may be supplied to the outside of the graphite sheet, and the whole may be pressed. .
[0032]
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
[0033]
【Example】
1. Preparation of Each Material The following sheet and adhesive were prepared.
[Thermal conductive silicone rubber sheet]
a-1; TC-50TXS (trade name; manufactured by Shin-Etsu Chemical Co., Ltd., thickness 500 μm, Asker C hardness 40)
a-2; TC-50THS (trade name; manufactured by Shin-Etsu Chemical Co., Ltd., thickness 500 μm, Asker C hardness 20)
a-3; TC-45BG (trade name; manufactured by Shin-Etsu Chemical Co., Ltd., thickness 450 μm, durometer A hardness 85)
a-4; TC-45EG (trade name; manufactured by Shin-Etsu Chemical Co., Ltd., thickness 450 μm, durometer A hardness 90)
[Thermo-softening heat conductive sheet]
b-1; PCS-TC-20-G-10 (trade name; manufactured by Shin-Etsu Chemical Co., Ltd., thickness 100 μm)
b-2; PCS-TC-11-G-13 (trade name; manufactured by Shin-Etsu Chemical Co., Ltd., thickness 130 μm)
[Thermal conductive sheet]
c-1; MACFOIL (trade name; manufactured by Japan Matex Co., Ltd., thickness: 130 μm, thermal conductivity in the plane direction: 150 W / (m · K))
c-2; aluminum foil (manufactured by Nippon Light Metal Co., Ltd., thickness 50 μm, thermal conductivity in plane direction 237 W / (m · K))
[Thermo-softening heat conductive sheet]
d-1; PCS-TC-20-G-20 (trade name; manufactured by Shin-Etsu Chemical Co., Ltd., thickness 200 μm)
[Thermal conductive silicone rubber sheet]
e-1; TC-20BG (trade name; manufactured by Shin-Etsu Chemical Co., Ltd., thickness 200 μm, durometer A hardness 85)
[Silicone adhesive]
b-3; KR-101-10 (trade name; manufactured by Shin-Etsu Chemical Co., Ltd.)
[0034]
2. Manufacture of heat conductive composite sheet The above heat conductive silicone rubber sheet, heat softening heat conductive sheet, and heat conductive sheet were appropriately combined, passed between twin rolls at room temperature, and pressed to produce a heat conductive composite sheet. . In the case of thermocompression bonding, the twin rolls were heated to 100 ° C. and pressed similarly. For some of the samples, a silicone pressure-sensitive adhesive was used instead of the heat-softening heat-conductive sheet, and after applying the silicone pressure-sensitive adhesive to the heat-conductive silicone rubber sheet or the heat-conductive sheet, Bonding was similarly performed using a roll.
[0035]
3. Evaluation Each of the obtained heat conductive composite sheets was cut into a size of 5 × 5 cm, and the test pieces were evaluated for the following characteristics.
It was measured using a sheet thickness micrometer (manufactured by Mitutoyo Corporation, model number: M820-25VA).
Each test piece was interposed between a heat resistance transistor (manufactured by Fuji Electric Co., Ltd .; product name 2SD923) and a heat sink (manufactured by OS Co., Ltd .; product name: FBA-150-PS), and a load was applied with a compression load of 345 kPa. The heat sink was placed in a constant temperature water bath in advance and kept at 65 ° C., and was taken out of the constant temperature bath and a test piece was attached when the experiment was started. Next, power of 10 V and 3 A is supplied to the transistor, the temperature T 1 of the transistor after 5 minutes and the temperature T 2 of the thermocouple embedded in the heat sink are measured, and the thermal resistance R S ( ° C / W) was calculated.
R S = (T 1 −T 2 ) / 30
(3) Reworkability Each test piece was sandwiched between two standard aluminum plates, loaded with a compression load of 490 kPa, and then left in an oven at 150 ° C. for 96 hours. After the standing, a force was manually applied in a direction in which the aluminum plate was pulled apart, and the ease of peeling between the aluminum plate and the test piece was determined.
Evaluation A: Easily peeled off Evaluation B: Peeling off when a slight force is applied C: Hardly peeled off Evaluation D: Very hard to peel off and easily cause delamination
Table 1 shows the structure of the obtained heat conductive composite sheet and the evaluation results. In Table 1, each sheet (or adhesive) was laminated in the order of the first layer and the second layer, and the first layer was brought into contact with the transistor, and the outer layer on the opposite side was brought into contact with the heat sink.
[0037]
[Table 1]
Figure 2004311577
[0038]
As is clear from Table 1, each of the examples has a low thermal resistance (0.5 ° C./W or less), excellent heat dissipation performance, and excellent reworkability. In Examples 3 and 4, since a high-hardness silicone rubber was provided on the outer layer side as a heat-conductive silicone rubber sheet, the heat resistance was slightly increased, but there was no problem in practical use, and the reworkability was greatly improved. did. Further, in the case of Examples 1, 2, 5 to 7, and 9 in which a heat conductive layer having excellent heat conductivity in the plane direction was provided on the outer layer side, the heat resistance was extremely low, about 0.3 ° C./W or less. became.
[0039]
On the other hand, in the case of Comparative Examples 1 to 3 in which a silicone pressure-sensitive adhesive was used as the intermediate layer, the thermal resistance of the intermediate layer was lowered, and the thermal resistance exceeded 0.5 ° C./W in all cases. In the case of Comparative Examples 4 and 5 having a two-layer structure, the outer layer came into close contact with the outside and delamination occurred. In the case of Comparative Example 6 in which an adhesive thermosoftening heat conductive layer was provided on the outer layer side, the reworkability was deteriorated due to the increased adhesiveness of the sheet surface.
[0040]
【The invention's effect】
As is clear from the above description, the heat conductive composite sheet of the present invention is excellent in both heat conductivity and reworkability, and is used for heat dissipation structures used for heat dissipation and cooling of heat-generating electronic components and the like. It is suitable.

Claims (4)

(a)熱伝導性充填剤を含有するシリコーンゴムからなる熱伝導性シリコーンゴム層と、
(b)シリコーン樹脂及び熱伝導性充填剤を含有し、粘着性を有する熱軟化性熱伝導層と、
(c)面方向への熱伝導率が20〜500W/(m・K)の熱伝導層と
をこの順で積層した構造を有することを特徴とする熱伝導性複合シート。
(A) a thermally conductive silicone rubber layer comprising a silicone rubber containing a thermally conductive filler;
(B) a heat-softening heat-conductive layer containing a silicone resin and a heat-conductive filler and having tackiness;
(C) A heat conductive composite sheet having a structure in which a heat conductivity layer having a heat conductivity in the plane direction of 20 to 500 W / (m · K) is laminated in this order.
前記熱伝導層の表面に、さらに
(d)シリコーン樹脂および熱伝導性充填剤を含有し、粘着性を有する第2の熱軟化性熱伝導層
が設けられたことを特徴とする請求項1記載の熱伝導性複合シート。
The heat conductive layer further comprises (d) a second heat softening heat conductive layer containing a silicone resin and a heat conductive filler and having an adhesive property, on a surface of the heat conductive layer. Heat conductive composite sheet.
(a)熱伝導性充填剤を含有するシリコーンゴムからなる熱伝導性シリコーンゴム層と、
(b)シリコーン樹脂及び熱伝導性充填剤を含有し、粘着性を有する熱軟化性熱伝導層と、
(e) 熱伝導性充填剤を含有するシリコーンゴムからなり前記熱伝導性シリコーンゴム層より硬度が低い第2の熱伝導性シリコーンゴム層と
をこの順で積層した構造を有することを特徴とする熱伝導性複合シート。
(A) a thermally conductive silicone rubber layer comprising a silicone rubber containing a thermally conductive filler;
(B) a heat-softening heat-conductive layer containing a silicone resin and a heat-conductive filler and having tackiness;
(E) having a structure in which a second thermally conductive silicone rubber layer made of silicone rubber containing a thermally conductive filler and having a lower hardness than the thermally conductive silicone rubber layer is laminated in this order. Thermal conductive composite sheet.
前記熱伝導性シリコーンゴム層、前記熱軟化性熱伝導層、及び前記熱伝導層又は前記第2の熱伝導性シリコーンゴム層をこの順に積層した状態で、室温圧着又は熱圧着することを特徴とする請求項1ないし3のいずれかに記載の熱伝導性複合シートの製造方法。The heat-conductive silicone rubber layer, the heat-softening heat-conductive layer, and the heat-conductive layer or the second heat-conductive silicone rubber layer are stacked in this order, and are pressure-bonded or thermo-pressed at room temperature. The method for producing a thermally conductive composite sheet according to claim 1.
JP2003100416A 2003-04-03 2003-04-03 Thermally conductive composite sheet and method of manufacturing the same Pending JP2004311577A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003100416A JP2004311577A (en) 2003-04-03 2003-04-03 Thermally conductive composite sheet and method of manufacturing the same
CN2004100300290A CN100407415C (en) 2003-04-03 2004-03-17 Heat conduction composite chip and its mfg. method
TW093109250A TW200502288A (en) 2003-04-03 2004-04-02 Thermal conductive multilayer and method for preparing the same
KR1020040022783A KR20040086802A (en) 2003-04-03 2004-04-02 Thermal-Conductive Composite Sheets and Process for Preparing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003100416A JP2004311577A (en) 2003-04-03 2003-04-03 Thermally conductive composite sheet and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2004311577A true JP2004311577A (en) 2004-11-04

Family

ID=33464559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003100416A Pending JP2004311577A (en) 2003-04-03 2003-04-03 Thermally conductive composite sheet and method of manufacturing the same

Country Status (4)

Country Link
JP (1) JP2004311577A (en)
KR (1) KR20040086802A (en)
CN (1) CN100407415C (en)
TW (1) TW200502288A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126582A1 (en) * 2005-05-24 2006-11-30 Nitto Denko Corporation Thermally conductive composite sheet and method for manufacturing electronic component assembly using same
JP2009269337A (en) * 2008-05-09 2009-11-19 Taika:Kk Thermally-conductive sheet, thermally-conductive sheet laminated body, and its manufacturing process
JP2010100692A (en) * 2008-10-22 2010-05-06 Shin-Etsu Chemical Co Ltd Silicone rubber sheet for thermal pressure bonding
JP2010219290A (en) * 2009-03-17 2010-09-30 Shin-Etsu Chemical Co Ltd Thermally conductive composite sheet and method of manufacturing the same
JP2010239038A (en) * 2009-03-31 2010-10-21 Furukawa Electric Co Ltd:The Holding structure of optical fiber
JP2011138857A (en) * 2009-12-28 2011-07-14 Shin-Etsu Chemical Co Ltd Method of manufacturing electronic device with excellent heat dissipation and rework properties, and electronic device
JP2012109312A (en) * 2010-11-15 2012-06-07 Hitachi Chem Co Ltd Heat conducting sheet, method for producing heat conducting sheet, and heat radiator
CN102555341A (en) * 2011-02-25 2012-07-11 北京国科世纪激光技术有限公司 Thermal conductive interface device
JP2013086433A (en) * 2011-10-20 2013-05-13 Shin-Etsu Chemical Co Ltd Thermally conductive silicone composite sheet
JP2014003141A (en) * 2012-06-18 2014-01-09 Shin Etsu Chem Co Ltd Thermally conductive sheet, and electronic apparatus
EP2251943A3 (en) * 2009-03-31 2014-08-06 Furukawa Electric Co., Ltd. Optical fiber holding apparatus
WO2014196347A1 (en) * 2013-06-07 2014-12-11 信越化学工業株式会社 Thermally conductive composite sheet and heat dissipation structure
CN104875467A (en) * 2014-02-28 2015-09-02 湖北航天化学技术研究所 Resin-based premix and rocket engine housing synchronous thermal-curing and adhesion method
JP2017059801A (en) * 2015-09-17 2017-03-23 東洋インキScホールディングス株式会社 Laminate for shielding electromagnetic waves, electromagnetic wave shield laminate, electronic device and method for manufacturing the same
JP2017059802A (en) * 2015-09-17 2017-03-23 東洋インキScホールディングス株式会社 Laminate for shielding electromagnetic waves, electromagnetic wave shield laminate, electronic device and method for manufacturing the same
JP2019171578A (en) * 2018-03-27 2019-10-10 三菱ケミカル株式会社 Silicone rubber composite body and method for producing molded body using the same
WO2020255549A1 (en) * 2019-06-19 2020-12-24 信越化学工業株式会社 Thermally conductive composite silicone rubber sheet

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4843419B2 (en) * 2005-10-13 2011-12-21 ポリマテック株式会社 Key sheet
JP5386200B2 (en) * 2008-04-30 2014-01-15 中興化成工業株式会社 Composite sheet
KR101151599B1 (en) * 2010-03-26 2012-05-31 율촌화학 주식회사 Heat radiation tape and manufacturing method thereof
KR20110132210A (en) * 2010-05-31 2011-12-07 스미토모 게이 긴조쿠 고교 가부시키가이샤 Led bulb member and method for manufacturing the same
KR101189990B1 (en) * 2010-07-05 2012-10-12 율촌화학 주식회사 Heat radiation tape and manufacturing method thereof
CN102529230B (en) * 2010-10-19 2015-04-22 信越化学工业株式会社 Silicon rubber sheet for thermal compression and method for joining electrical and/or electronic device members
KR101335528B1 (en) * 2012-05-02 2013-12-03 김선기 Thermal Conductive sheet having self adhesive force
JP6136952B2 (en) * 2013-02-28 2017-05-31 信越化学工業株式会社 Thermally conductive composite silicone rubber sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB817074A (en) * 1957-03-22 1959-07-22 John Cockbain Briggs Insulating material
JPS5588357A (en) * 1978-12-27 1980-07-04 Hitachi Ltd Resin mold semiconductor device
JP2001212909A (en) * 2000-02-01 2001-08-07 Tokai Rubber Ind Ltd Heat conductive rubber member, mounting pressure bonding sheet using the same and method for attaching film carrier
JP2002329989A (en) * 2001-05-02 2002-11-15 Shin Etsu Chem Co Ltd Thermosoftening radiation sheet

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126582A1 (en) * 2005-05-24 2006-11-30 Nitto Denko Corporation Thermally conductive composite sheet and method for manufacturing electronic component assembly using same
JP2009269337A (en) * 2008-05-09 2009-11-19 Taika:Kk Thermally-conductive sheet, thermally-conductive sheet laminated body, and its manufacturing process
JP2010100692A (en) * 2008-10-22 2010-05-06 Shin-Etsu Chemical Co Ltd Silicone rubber sheet for thermal pressure bonding
JP2010219290A (en) * 2009-03-17 2010-09-30 Shin-Etsu Chemical Co Ltd Thermally conductive composite sheet and method of manufacturing the same
EP2251943A3 (en) * 2009-03-31 2014-08-06 Furukawa Electric Co., Ltd. Optical fiber holding apparatus
JP2010239038A (en) * 2009-03-31 2010-10-21 Furukawa Electric Co Ltd:The Holding structure of optical fiber
JP2011138857A (en) * 2009-12-28 2011-07-14 Shin-Etsu Chemical Co Ltd Method of manufacturing electronic device with excellent heat dissipation and rework properties, and electronic device
JP2012109312A (en) * 2010-11-15 2012-06-07 Hitachi Chem Co Ltd Heat conducting sheet, method for producing heat conducting sheet, and heat radiator
CN102555341A (en) * 2011-02-25 2012-07-11 北京国科世纪激光技术有限公司 Thermal conductive interface device
JP2013086433A (en) * 2011-10-20 2013-05-13 Shin-Etsu Chemical Co Ltd Thermally conductive silicone composite sheet
JP2014003141A (en) * 2012-06-18 2014-01-09 Shin Etsu Chem Co Ltd Thermally conductive sheet, and electronic apparatus
WO2014196347A1 (en) * 2013-06-07 2014-12-11 信越化学工業株式会社 Thermally conductive composite sheet and heat dissipation structure
JP6032359B2 (en) * 2013-06-07 2016-11-24 信越化学工業株式会社 Thermally conductive composite sheet and heat dissipation structure
JPWO2014196347A1 (en) * 2013-06-07 2017-02-23 信越化学工業株式会社 Thermally conductive composite sheet and heat dissipation structure
CN104875467A (en) * 2014-02-28 2015-09-02 湖北航天化学技术研究所 Resin-based premix and rocket engine housing synchronous thermal-curing and adhesion method
JP2017059801A (en) * 2015-09-17 2017-03-23 東洋インキScホールディングス株式会社 Laminate for shielding electromagnetic waves, electromagnetic wave shield laminate, electronic device and method for manufacturing the same
JP2017059802A (en) * 2015-09-17 2017-03-23 東洋インキScホールディングス株式会社 Laminate for shielding electromagnetic waves, electromagnetic wave shield laminate, electronic device and method for manufacturing the same
JP2019171578A (en) * 2018-03-27 2019-10-10 三菱ケミカル株式会社 Silicone rubber composite body and method for producing molded body using the same
JP7131016B2 (en) 2018-03-27 2022-09-06 三菱ケミカル株式会社 SILICONE RUBBER COMPOSITE AND METHOD FOR MANUFACTURING MOLDED PRODUCT USING IT
WO2020255549A1 (en) * 2019-06-19 2020-12-24 信越化学工業株式会社 Thermally conductive composite silicone rubber sheet
JP2020203457A (en) * 2019-06-19 2020-12-24 信越化学工業株式会社 Heat-conductive composite silicone rubber sheet
JP7149229B2 (en) 2019-06-19 2022-10-06 信越化学工業株式会社 Thermal conductive composite silicone rubber sheet
EP3988298A4 (en) * 2019-06-19 2023-11-29 Shin-Etsu Chemical Co., Ltd. Thermally conductive composite silicone rubber sheet

Also Published As

Publication number Publication date
TW200502288A (en) 2005-01-16
CN1536653A (en) 2004-10-13
KR20040086802A (en) 2004-10-12
CN100407415C (en) 2008-07-30

Similar Documents

Publication Publication Date Title
JP2004311577A (en) Thermally conductive composite sheet and method of manufacturing the same
JP6402763B2 (en) Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for producing the same, multilayer resin sheet with metal foil, and semiconductor device
JP5271879B2 (en) Thermal diffusion sheet and mounting method thereof
JP5538739B2 (en) Thermally conductive composite sheet and method for producing the same
EP1376689B1 (en) Radiating structural body of electronic part and radiating sheet used for the radiating structural body
TW549011B (en) Dissipation of heat from a circuit board having bare silicon chips mounted thereon
JP2001168246A (en) Heat conductive sheet and manufacturing method thereof
JP2006303240A (en) Heat dissipating sheet, heat dissipating body, manufacturing method for the sheet, and heat transfer method
JP5421451B2 (en) Thermal diffusion sheet
WO2005112533A2 (en) Lightweight heat sink
WO2018139364A1 (en) Heat dissipation sheet
JP2020116873A (en) Manufacturing method of heat-conductive sheet
US6794030B1 (en) Heat conductive sheet and method of producing the sheet
JP5114112B2 (en) Resin composition, heat conductive sheet, high heat conductive adhesive sheet with metal foil, and high heat conductive adhesive sheet with metal plate
KR20070057356A (en) Heat dissipation pad for electronic part with improved thermoconductive and electric insulating properties
JP2005203735A (en) Thermally conductive composite sheet
JPH10237228A (en) Heat dissipating sheet and heat dissipating plate
JP7031203B2 (en) Adhesive sheet for heat dissipation, laminate for heat dissipation adhesive member, and composite member
JP2005228955A (en) Heat dissipation member, its manufacturing method and application
JP2001232712A (en) Heat conductive member
JP3739335B2 (en) Heat dissipation member and power module
JP5495429B2 (en) Heat dissipation composite sheet
JP6399176B1 (en) Thermally conductive insulating sheet and composite member
JP2021160237A (en) Method for manufacturing heat-conductive sheet
JP2003236988A (en) Thermally conductive rubber member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070821