JP2014003141A - Thermally conductive sheet, and electronic apparatus - Google Patents

Thermally conductive sheet, and electronic apparatus Download PDF

Info

Publication number
JP2014003141A
JP2014003141A JP2012137133A JP2012137133A JP2014003141A JP 2014003141 A JP2014003141 A JP 2014003141A JP 2012137133 A JP2012137133 A JP 2012137133A JP 2012137133 A JP2012137133 A JP 2012137133A JP 2014003141 A JP2014003141 A JP 2014003141A
Authority
JP
Japan
Prior art keywords
heat
thermally conductive
heat conductive
resin layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012137133A
Other languages
Japanese (ja)
Inventor
Yasuhisa Ishihara
靖久 石原
Akihiro Endo
晃洋 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2012137133A priority Critical patent/JP2014003141A/en
Priority to TW102118795A priority patent/TW201412967A/en
Priority to CN201310237627.4A priority patent/CN103507353A/en
Publication of JP2014003141A publication Critical patent/JP2014003141A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermally conductive sheet for uniformly conducting heat from a heat-generating component with no heat spot generated, and an electronic apparatus mounted with the thermally conductive sheet.SOLUTION: This thermally conductive sheet is formed by laminating thermally conductive resin layers to reduce contact thermal resistance on one or both sides of the thermally conductive layer, and the thermally conductive resin layer improves adhesion to a heating element, reduces contact thermal resistance, and can quickly transmit heat to the thermally conductive layer. The thermal conductivity of the thermally conductive sheet is 1.5 W/mK or higher in the thickness direction thereof, and a value obtained by dividing thermal conductivity in the in-plane direction by the thermal conductivity in the thickness direction is 2 or more

Description

本発明は、発熱性電子部品からの熱を均一にヒートスポットのない状態で伝導することができる熱伝導性シート及び電子機器に関する。   The present invention relates to a heat conductive sheet and an electronic device that can conduct heat from an exothermic electronic component uniformly without a heat spot.

パーソナルコンピューター、デジタルビデオディスク、携帯電話等の電子機器に使用されるCPU、ドライバICやメモリー等のLSIチップは、高性能化・高速化・小型化・高集積化に伴い、それ自身が大量の熱を発生するようになり、その熱によるチップの温度上昇はチップの動作不良、破壊を引き起こす。そのため、動作中のチップの温度上昇を抑制するための多くの熱放散方法及びそれに使用する熱放散部材が提案されている。   LSI chips such as CPUs, driver ICs, and memories used in electronic devices such as personal computers, digital video disks, and mobile phones are becoming more and more themselves as performance, speed, size, and integration increase. Heat is generated, and the temperature rise of the chip due to the heat causes malfunction and destruction of the chip. Therefore, many heat dissipating methods for suppressing the temperature rise of the chip during operation and heat dissipating members used therefor have been proposed.

また、近年スマートフォンやタブレットPCに代表されるような携帯可能な電子端末が急速に発展、普及している。例えば、スマートフォンは手の平の上で操作し、更に通話のときには端末本体が頬及び耳に直接触れることになる。タブレットPCにおいても、腕や膝の上に乗せて操作する場面がある。端末背面へメモリーやチップから発生した熱が効率よく伝わると、端末背面の温度分布に偏りが生まれ、その部分だけ熱く感じてしまう。所謂ヒートスポットと呼ばれるもので、直接肌に触れる機会の多い、スマートフォンやタブレットPCにおいてはできるだけヒートスポットを無くして、温度分布を均一化したい。このような場合に、メモリーやチップ等の発熱体と筐体の間にグラファイトシートに代表されるような、面内方向の熱伝導に優れたシートを介在させることで、発熱体から発生した熱を素早く拡散し、ヒートスポットを無くす手法が取られている。ただ、グラファイトシートは非常に高価であること、また非常に脆いため、擦るとグラファイト成分が剥がれ落ちたり、グラファイト粉が飛沫したりする。また、厚みが薄くなると強度が落ち、取り扱い性が難しい。   In recent years, portable electronic terminals represented by smartphones and tablet PCs have been rapidly developed and spread. For example, the smartphone is operated on the palm of the hand, and the terminal body directly touches the cheeks and ears during a call. Even in tablet PCs, there are scenes in which the tablet PC is operated on an arm or knee. If the heat generated from the memory or chip is efficiently transferred to the back of the terminal, the temperature distribution on the back of the terminal will be biased and only that part will feel hot. In so-called heat spots, smartphones and tablet PCs, which have many opportunities to directly touch the skin, want to eliminate heat spots as much as possible to make the temperature distribution uniform. In such a case, heat generated from the heating element can be obtained by interposing a sheet excellent in in-plane heat conduction, such as a graphite sheet, between the heating element such as a memory or a chip and the housing. A method of quickly diffusing and eliminating heat spots is used. However, since the graphite sheet is very expensive and very brittle, the graphite component peels off or the graphite powder splashes when rubbed. Further, when the thickness is reduced, the strength is lowered, and handling is difficult.

また、グラファイトに代わる熱伝導層として銅箔が挙げられるが、銅は比重が8.9と非常に重い。携帯できる電子端末であるスマートフォンやタブレットPC用途では端末の軽量化という観点から非常に不利である。しかも、銅は錆びやすく管理が難しい。   Moreover, although copper foil is mentioned as a heat conductive layer replacing graphite, copper has a very heavy specific gravity of 8.9. For smartphones and tablet PCs, which are portable electronic terminals, it is very disadvantageous from the viewpoint of reducing the weight of the terminal. Moreover, copper is rusty and difficult to manage.

そこで、銅よりも安定でコストも安く、比重も軽い熱伝導層としてアルミニウム箔が挙げられる。更にアルミニウム箔は5μm程度の薄さまで成形可能で、今後携帯できる電子端末が更に小型化、薄型化していくことを考えると、最も有望な熱伝導層であるといえる。   Therefore, an aluminum foil is an example of a heat conductive layer that is more stable and cheaper than copper and light in specific gravity. Furthermore, the aluminum foil can be formed to a thickness of about 5 μm, and it can be said that it is the most promising heat conduction layer in view of the further miniaturization and thinning of portable electronic terminals.

ただ、グラファイトシート、銅箔、アルミニウム箔といった、熱伝導層単体では、表面が非常に硬く、発熱体と筐体の間に介在させた時に発熱体との密着性が悪く、接触熱抵抗が大きく、発熱体から発生した熱が効率良く熱伝導層に伝わらず、例えばグラファイトは面内方向の熱伝導率としては1,000W/mKを超えるものがあるが、期待しているほどの熱拡散効果が得られていない。   However, the heat conduction layer alone such as graphite sheet, copper foil, aluminum foil has a very hard surface, poor adhesion to the heating element when interposed between the heating element and the housing, and high contact thermal resistance. The heat generated from the heating element is not efficiently transferred to the heat conduction layer. For example, graphite has a thermal conductivity in the in-plane direction exceeding 1,000 W / mK, but the heat diffusion effect as expected. Is not obtained.

スマートフォンやタブレットPCに代表されるような電子端末の背面の温度分布均一化のために、いかに発熱体から発生した熱を効率的に熱伝導層に伝え、素早く面内に拡散させるかが課題である。ヒートスポットが存在すると使用者が熱いと感じてしまうということと、発熱体に熱ストレスが掛かり、誤作動や短寿命化の原因となってしまう。
なお、本発明に関連する従来技術として、下記文献が挙げられる。
The challenge is how to efficiently transfer the heat generated from the heating element to the heat conduction layer and quickly diffuse it into the surface in order to make the temperature distribution on the back of electronic terminals, such as smartphones and tablet PCs, uniform. is there. If the heat spot is present, the user feels hot, and the heating element is subjected to thermal stress, causing malfunction and shortening of the service life.
In addition, the following literature is mentioned as a prior art relevant to this invention.

特開平6−291226号公報JP-A-6-291226 特開2010−219290号公報JP 2010-219290 A 特開2007−12913号公報JP 2007-12913 A

本発明は、上記事情に鑑みなされたもので、発熱性電子部品からの熱を均一にヒートスポットがない状態を伝導する熱伝導性シート及びこの熱伝導性シートが実装された電子機器を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a thermally conductive sheet that conducts heat from an exothermic electronic component uniformly without a heat spot, and an electronic device on which the thermally conductive sheet is mounted. For the purpose.

本発明者らは、上記目的を達成するため鋭意検討を行った結果、熱伝導層を片側若しくは両側に熱伝導性樹脂を積層させた熱伝導性シートを用いることで、発熱体との密着性が向上し、熱伝導性シートとの接触熱抵抗が低下し、発生した熱を素早く熱伝導層に伝えることができること、熱伝導層に伝わった熱は素早く面内に拡散するために、ヒートスポットを作らなくて済むこと、また、面内への熱拡散に着目し、面内方向の熱伝導率を厚み方向の熱伝導率で割った値が2以上であることが必要であること、ただ、厚み方向の熱伝導率が低すぎると、発熱体から発生した熱が熱伝導性中間層に効率よく伝わらないため、厚み方向の熱伝導率は1.0W/mK以上有している必要があることを知見し、本発明をなすに至ったものである。   As a result of intensive investigations to achieve the above object, the present inventors have used a heat conductive sheet in which a heat conductive resin is laminated on one side or both sides, thereby allowing adhesion to a heating element. Heat resistance, contact thermal resistance with the heat conductive sheet is reduced, and the generated heat can be quickly transferred to the heat conductive layer, and the heat transferred to the heat conductive layer is quickly diffused in the plane. In addition, focusing on thermal diffusion in the plane, the value obtained by dividing the thermal conductivity in the in-plane direction by the thermal conductivity in the thickness direction must be 2 or more. If the heat conductivity in the thickness direction is too low, the heat generated from the heating element is not efficiently transmitted to the heat conductive intermediate layer, so the heat conductivity in the thickness direction must be 1.0 W / mK or more. It has been found that there is, and has led to the present invention.

従って、本発明は下記熱伝導性シート及び電子機器を提供する。
〔1〕
熱伝導層の片面又は両面に熱伝導性樹脂層を積層させてなり、厚み方向の熱伝導率が1.5W/mK以上で、面内方向の熱伝導率を厚み方向の熱伝導率で割った値が2以上であることを特徴とする熱伝導性シート。
〔2〕
熱伝導性樹脂層が、ポリマーマトリックスと熱伝導性充填剤とを含む樹脂層から形成されることを特徴とする〔1〕記載の熱伝導性シート。
〔3〕
熱伝導性樹脂層の厚みが400μm以下であることを特徴とする〔1〕又は〔2〕記載の熱伝導性シート。
〔4〕
熱伝導性樹脂層の熱伝導率が1.0W/mK以上であることを特徴とする〔1〕〜〔3〕のいずれかに記載の熱伝導性シート。
〔5〕
熱伝導性樹脂層の硬さがAsker Cで60以下であることを特徴とする〔1〕〜〔4〕のいずれかに記載の熱伝導性シート。
〔6〕
熱伝導性樹脂層が、
(A)分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン:100質量部、
(B)ケイ素原子に直接結合した水素原子が少なくとも2個以上有するオルガノハイドロジェンポリシロキサン:ケイ素原子に直接結合した水素原子のモル数が(A)成分由来のアルケニル基のモル数の0.1〜5.0倍量となる量、
(C)熱伝導性充填剤:200〜2,500質量部、
(D)白金系硬化触媒:(A)成分に対して白金族元素質量換算で0.1〜1,000ppm
を含むシリコーン組成物の硬化物からなることを特徴とする〔1〕〜〔5〕のいずれかに記載の熱伝導性シート。
〔7〕
熱伝導層が、厚み方向の熱伝導率が30W/mK以上で、面内方向の熱伝導率が200W/mK以上であることを特徴とする〔1〕〜〔6〕のいずれかに記載の熱伝導性シート。
〔8〕
熱伝導層の比重が6以下であることを特徴とする〔1〕〜〔7〕のいずれかに記載の熱伝導性シート。
〔9〕
熱伝導層の厚みが100μm以下であることを特徴とする〔1〕〜〔8〕のいずれかに記載の熱伝導性シート。
〔10〕
熱伝導層の材質がアルミニウムであることを特徴とする〔1〕〜〔9〕のいずれかに記載の熱伝導性シート。
〔11〕
熱伝導層の片側に熱伝導性樹脂層を積層させた〔1〕〜〔10〕のいずれかに記載の熱伝導性シートを熱伝導性樹脂層が発熱体側に、熱伝導層が放熱体側になるように実装された電子機器。
〔12〕
熱伝導層の片側に熱伝導性樹脂層を積層させた〔1〕〜〔10〕のいずれかに記載の熱伝導性シートを、携帯端末本体の背面に、熱伝導性樹脂層が発熱体側に、熱伝導層が背面ケース側になるように実装された携帯端末。
Accordingly, the present invention provides the following heat conductive sheet and electronic device.
[1]
A thermal conductive resin layer is laminated on one side or both sides of the thermal conductive layer, the thermal conductivity in the thickness direction is 1.5 W / mK or more, and the thermal conductivity in the in-plane direction is divided by the thermal conductivity in the thickness direction. The heat conductive sheet characterized by having a value of 2 or more.
[2]
The heat conductive sheet according to [1], wherein the heat conductive resin layer is formed from a resin layer containing a polymer matrix and a heat conductive filler.
[3]
The thickness of a heat conductive resin layer is 400 micrometers or less, The heat conductive sheet of [1] or [2] characterized by the above-mentioned.
[4]
The heat conductive sheet according to any one of [1] to [3], wherein the heat conductivity of the heat conductive resin layer is 1.0 W / mK or more.
[5]
The heat conductive sheet according to any one of [1] to [4], wherein the hardness of the heat conductive resin layer is Asker C of 60 or less.
[6]
Thermally conductive resin layer
(A) Organopolysiloxane having at least two alkenyl groups in the molecule: 100 parts by mass
(B) Organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to silicon atoms: The number of moles of hydrogen atoms directly bonded to silicon atoms is 0.1 of the number of moles of alkenyl groups derived from component (A). An amount that is -5.0 times the amount,
(C) Thermally conductive filler: 200 to 2,500 parts by mass,
(D) Platinum-based curing catalyst: 0.1 to 1,000 ppm in terms of platinum group element mass relative to component (A)
The heat conductive sheet according to any one of [1] to [5], which is made of a cured product of a silicone composition containing
[7]
The heat conductive layer has a thickness direction heat conductivity of 30 W / mK or more and an in-plane direction heat conductivity of 200 W / mK or more, according to any one of [1] to [6] Thermally conductive sheet.
[8]
The specific gravity of a heat conductive layer is 6 or less, The heat conductive sheet in any one of [1]-[7] characterized by the above-mentioned.
[9]
The thickness of a heat conductive layer is 100 micrometers or less, The heat conductive sheet in any one of [1]-[8] characterized by the above-mentioned.
[10]
The heat conductive sheet according to any one of [1] to [9], wherein the material of the heat conductive layer is aluminum.
[11]
The thermally conductive sheet according to any one of [1] to [10], in which a thermally conductive resin layer is laminated on one side of the thermally conductive layer, the thermally conductive resin layer is on the heating element side, and the thermally conductive layer is on the radiator side. An electronic device implemented to be.
[12]
The heat conductive sheet according to any one of [1] to [10], in which a heat conductive resin layer is laminated on one side of the heat conductive layer, the heat conductive resin layer on the heating element side on the back surface of the mobile terminal body. A portable terminal mounted so that the heat conductive layer is on the back case side.

本発明の熱伝導性シートは、熱伝導層の片側又は両側に接触熱抵抗を低減のための熱伝導性樹脂層を積層させてなり、熱伝導性樹脂層が発熱体との密着性を向上させ、接触熱抵抗を低減し、素早く熱伝導層に熱を伝えることができる。熱伝導層に伝わった熱は直ちに面内に拡散される。スマートフォン、タブレットPC、ウルトラブック(商標登録)に代表される携帯できる電子端末の背面に本熱伝導性シートを実装することで、背面の温度分布を均一化し、ヒートスポットを無くすことができるため、使用者の使用感を向上させ、更に発熱体内の温度上昇を抑えることができる。   The heat conductive sheet of the present invention is formed by laminating a heat conductive resin layer for reducing contact thermal resistance on one side or both sides of the heat conductive layer, and the heat conductive resin layer improves adhesion to the heating element. The contact thermal resistance can be reduced, and heat can be quickly transferred to the heat conductive layer. The heat transferred to the heat conducting layer is immediately diffused in the plane. By mounting this thermal conductive sheet on the back of portable electronic terminals represented by smartphones, tablet PCs, and ultrabooks (trademark registration), the temperature distribution on the back can be made uniform and heat spots can be eliminated. A user's feeling of use can be improved and the temperature rise in the heat generating body can be suppressed.

携帯端末に本発明の熱伝導性シートを実装した状態の断面図である。It is sectional drawing of the state which mounted the heat conductive sheet of this invention in the portable terminal. 熱拡散性をシュミレーションするための装置の概略断面図である。It is a schematic sectional drawing of the apparatus for simulating thermal diffusivity.

本発明の熱伝導性シートは、熱伝導層の片面又は両面に熱伝導性樹脂層を積層したものである。
ここで、熱伝導性樹脂層は、ポリマーマトリックスと熱伝導性充填剤とを含む樹脂層から形成される。
この場合、熱伝導性樹脂層の熱伝導性樹脂のポリマーマトリックスとしては、有機ゴム、シリコーンゴム、ポリウレタンゲル、合成ゴム、天然ゴム等のゴムや、エポキシ樹脂、ウレタン樹脂等の熱硬化性樹脂、熱可塑性エラストマーから選ばれる。マトリックスは1種とは限らず2種以上を組み合わせてもよい。
なかでもシリコーンゴムは耐熱性、耐寒性、耐候性、電気特性等の観点から、他のマトリックスよりも優れている。熱伝導性シートが電子部品の寿命や正確な作動を司る重要な部材であることを考えれば、シリコーンゴムを用いることが好ましい。
The heat conductive sheet of the present invention is obtained by laminating a heat conductive resin layer on one side or both sides of a heat conductive layer.
Here, the heat conductive resin layer is formed from a resin layer including a polymer matrix and a heat conductive filler.
In this case, as the polymer matrix of the heat conductive resin of the heat conductive resin layer, rubber such as organic rubber, silicone rubber, polyurethane gel, synthetic rubber, natural rubber, thermosetting resin such as epoxy resin, urethane resin, Selected from thermoplastic elastomers. The matrix is not limited to one type, and two or more types may be combined.
Among these, silicone rubber is superior to other matrices from the viewpoints of heat resistance, cold resistance, weather resistance, electrical properties, and the like. In view of the fact that the heat conductive sheet is an important member for controlling the life and accurate operation of the electronic component, it is preferable to use silicone rubber.

一方、熱伝導性充填剤としては、非磁性の銅やアルミニウム等の金属、アルミナ、シリカ、マグネシア、ベンガラ、ベリリア、チタニア、ジルコニア等の金属酸化物、窒化アルミニウム、窒化ケイ素、窒化硼素等の金属窒化物、水酸化マグネシウム等の金属水酸化物、人工ダイヤモンドあるいは炭化珪素等一般に熱伝導充填剤とされる物質を用いることができる。また平均粒径は0.1〜200μm、より好ましくは0.1〜100μm、更に好ましくは0.5〜50μmのものを用いることができ、1種又は2種以上複合して用いてもよい。
なお、この平均粒径は、レーザー光回折法による粒度分布測定装置によって求めることができ、平均粒径は、レーザー光回折法による粒度分布測定における質量平均値D50(即ち、累積質量が50%となるときの粒子径又はメジアン径)として測定した値である。
On the other hand, the thermally conductive filler includes non-magnetic metals such as copper and aluminum, metal oxides such as alumina, silica, magnesia, bengara, beryllia, titania and zirconia, metals such as aluminum nitride, silicon nitride and boron nitride. A material generally used as a heat conductive filler, such as a metal hydroxide such as nitride or magnesium hydroxide, artificial diamond or silicon carbide, can be used. Moreover, an average particle diameter can be 0.1-200 micrometers, More preferably, it is 0.1-100 micrometers, More preferably, a 0.5-50 micrometers thing can be used, and 1 type or 2 types or more may be used in combination.
The average particle diameter can be determined by a particle size distribution measuring apparatus using a laser beam diffraction method, and the average particle diameter is a mass average value D50 (that is, a cumulative mass of 50% in a particle size distribution measurement using a laser beam diffraction method). The particle diameter or the median diameter when measured).

熱伝導性充填剤の充填量としては、ポリマーマトリックス100質量部に対して、200〜2,500質量部含まれていることが好ましい。より好ましくは200〜1,500質量部である。200質量部未満だと、熱伝導性樹脂層の熱伝導率が十分得られず発熱量の大きい発熱部材に適応できない場合がある。一方、熱伝導性充填剤の充填量が2,500質量部を超えるとシートの成形性が悪くなり、成形したシートの柔軟性も乏しくなるためである。
熱伝導性樹脂層のポリマーマトリックスとしては、上述したように、シリコーンゴムが好ましいが、特に熱伝導性樹脂層としては、
(A)分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン:100質量部、
(B)ケイ素原子に直接結合した水素原子が少なくとも2個以上有するオルガノハイドロジェンポリシロキサン:ケイ素原子に直接結合した水素原子のモル数が(A)成分由来のアルケニル基のモル数の0.1〜5.0倍量となる量、
(C)熱伝導性充填剤:200〜2,500質量部、
(D)白金系硬化触媒:(A)成分に対して白金族元素質量換算で0.1〜1,000ppm
を含むシリコーン組成物の硬化物から形成されたものが好ましい。
The filling amount of the heat conductive filler is preferably 200 to 2,500 parts by mass with respect to 100 parts by mass of the polymer matrix. More preferably, it is 200-1500 mass parts. If the amount is less than 200 parts by mass, the thermal conductivity of the thermally conductive resin layer may not be sufficiently obtained and may not be applicable to a heat generating member having a large calorific value. On the other hand, when the filling amount of the heat conductive filler exceeds 2,500 parts by mass, the formability of the sheet is deteriorated and the flexibility of the formed sheet is also poor.
As the polymer matrix of the thermally conductive resin layer, as described above, silicone rubber is preferable, but as the thermally conductive resin layer, in particular,
(A) Organopolysiloxane having at least two alkenyl groups in the molecule: 100 parts by mass
(B) Organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to silicon atoms: The number of moles of hydrogen atoms directly bonded to silicon atoms is 0.1 of the number of moles of alkenyl groups derived from component (A). An amount that is -5.0 times the amount,
(C) Thermally conductive filler: 200 to 2,500 parts by mass,
(D) Platinum-based curing catalyst: 0.1 to 1,000 ppm in terms of platinum group element mass relative to component (A)
What was formed from the hardened | cured material of the silicone composition containing this is preferable.

ここで、(A)成分であるアルケニル基含有オルガノポリシロキサンは、ケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサンである。通常は主鎖部分が基本的にジオルガノシロキサン単位の繰り返しからなるのが一般的であるが、これは分子構造の一部に分枝状の構造を含んだものであってもよく、また環状体であってもよいが、硬化物の機械的強度等、物性の点から直鎖状のジオルガノポリシロキサンが好ましく、下記平均組成式で示されるものを用いることができる。
1 aSiO(4-a)/2
(式中、R1は炭素原子数1〜12、好ましくは1〜10の1価炭化水素基で、下記のアルケニル基及びアルケニル基以外の1価炭化水素基である。aは1〜4、好ましくは1〜3、より好ましくは1〜2の正数である。)
Here, the alkenyl group-containing organopolysiloxane as the component (A) is an organopolysiloxane having two or more alkenyl groups bonded to silicon atoms in one molecule. Usually, the main chain part is generally composed of repeating diorganosiloxane units, but this may be a part of the molecular structure containing a branched structure or cyclic. However, linear diorganopolysiloxane is preferable from the viewpoint of physical properties such as mechanical strength of the cured product, and those represented by the following average composition formula can be used.
R 1 a SiO (4-a) / 2
(In the formula, R 1 is a monovalent hydrocarbon group having 1 to 12 carbon atoms, preferably 1 to 10 carbon atoms, and is a monovalent hydrocarbon group other than the following alkenyl groups and alkenyl groups. A is 1 to 4, (It is preferably a positive number of 1 to 3, more preferably 1 or 2.)

詳しくは、ケイ素原子に結合するアルケニル基以外の官能基としては、非置換又は置換の1価炭化水素基であり、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基に炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換された基、例えば、クロロメチル基、2−ブロモエチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1〜10、特に代表的なものは炭素原子数が1〜6のものであり、好ましくは、メチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3−トリフルオロプロピル基、シアノエチル基等の炭素原子数1〜3の非置換又は置換のアルキル基及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基である。また、ケイ素原子に結合したアルケニル基以外の官能基は全てが同一であることを限定するものではない。   Specifically, the functional group other than the alkenyl group bonded to the silicon atom is an unsubstituted or substituted monovalent hydrocarbon group, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert group -Butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group and other alkyl groups, cyclopentyl group, cyclohexyl group, cycloheptyl group and other cycloalkyl groups, phenyl group, Aryl groups such as tolyl group, xylyl group, naphthyl group, biphenyl group, aralkyl groups such as benzyl group, phenylethyl group, phenylpropyl group, methylbenzyl group, and hydrogen atoms having carbon atoms bonded to these groups. Part or all of them are substituted with halogen atoms such as fluorine, chlorine and bromine, cyano groups, etc. For example, chloromethyl group, 2-bromoethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,4,5,5 , 6,6,6-nonafluorohexyl group and the like, typical ones having 1 to 10 carbon atoms, particularly typical ones having 1 to 6 carbon atoms, C1-C3 unsubstituted or substituted alkyl and phenyl groups such as methyl, ethyl, propyl, chloromethyl, bromoethyl, 3,3,3-trifluoropropyl, cyanoethyl, and phenyl, chlorophenyl Group, an unsubstituted or substituted phenyl group such as a fluorophenyl group. Moreover, it is not limited that all functional groups other than the alkenyl group bonded to the silicon atom are the same.

また、アルケニル基としては、例えばビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等の通常炭素原子数2〜8程度のものが挙げられ、中でもビニル基、アリル基等の低級アルケニル基が、特に好ましくはビニル基が好ましい。
なお、アルケニル基の含有量は、0.001〜0.1mol/100gであることが好ましい。
Examples of the alkenyl group include those having usually 2 to 8 carbon atoms such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group, and cyclohexenyl group. A lower alkenyl group such as an allyl group is particularly preferably a vinyl group.
In addition, it is preferable that content of an alkenyl group is 0.001-0.1 mol / 100g.

このオルガノポリシロキサンのオストワルド計により測定した25℃における動粘度は、通常、10〜100,000mm2/s、特に好ましくは500〜50,000mm2/sの範囲である。前記粘度が低すぎると、得られる組成物の保存安定性が悪くなり、また高すぎると得られる組成物の伸展性が悪くなる場合がある。 Kinematic viscosity at 25 ° C. as measured by an Ostwald meter of this organopolysiloxane, usually, 10~100,000mm 2 / s, particularly preferably from 500~50,000mm 2 / s. If the viscosity is too low, the storage stability of the resulting composition will be poor, and if it is too high, the extensibility of the resulting composition may be poor.

この(A)成分のオルガノポリシロキサンは1種単独でも、粘度が異なる2種以上を組み合わせて用いてもよい。   The organopolysiloxane of component (A) may be used alone or in combination of two or more having different viscosities.

(B)成分のオルガノハイドロジェンポリシロキサンは、1分子中に平均で2個以上、好ましくは3〜100個のケイ素原子に直接結合する水素原子(Si−H基)有するオルガノハイドロジェンポリシロキサンであり、(A)成分の架橋剤として作用する成分である。即ち、(B)成分中のSi−H基と(A)成分中のアルケニル基との後述の(D)成分の白金族系触媒により促進されるヒドロシリル化反応により付加して、架橋構造を有する3次元網目構造を与える。またSi−H基の数が1個未満の場合、硬化しないおそれがある。   The (B) component organohydrogenpolysiloxane is an organohydrogenpolysiloxane having an average of 2 or more, preferably 3 to 100, hydrogen atoms (Si-H groups) directly bonded to silicon atoms in one molecule. Yes, it is a component that acts as a crosslinking agent for component (A). That is, it has a crosslinked structure by addition of a Si-H group in component (B) and an alkenyl group in component (A) by a hydrosilylation reaction promoted by a platinum group catalyst of component (D) described later. A three-dimensional network structure is given. Moreover, when the number of Si-H groups is less than one, there is a possibility that it will not harden.

オルガノハイドロジェンポリシロキサンは、下記平均構造式(B)で表されるものが好ましい。

Figure 2014003141
(式中、R2は独立に脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基あるいは水素原子であり、但し、少なくとも2個、好ましくは2〜10、より好ましくは2〜5は水素原子であり、nは1以上、好ましくは10〜100、より好ましくは10〜50の整数である。) The organohydrogenpolysiloxane is preferably represented by the following average structural formula (B).
Figure 2014003141
(In the formula, R 2 independently represents an unsubstituted or substituted monovalent hydrocarbon group or hydrogen atom that does not contain an aliphatic unsaturated bond, provided that at least 2, preferably 2 to 10, more preferably 2 to 2. 5 is a hydrogen atom, and n is 1 or more, preferably 10 to 100, more preferably an integer of 10 to 50.)

式(B)中、R2の水素原子以外の脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基に炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換された基、例えば、クロロメチル基、2−ブロモエチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1〜10、特に代表的なものは炭素原子数が1〜6のものであり、好ましくは、メチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3−トリフルオロプロピル基、シアノエチル基等の炭素原子数1〜3の非置換又は置換のアルキル基及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基である。また、R2は全てが同一であることを限定するものではない。 In the formula (B), as an unsubstituted or substituted monovalent hydrocarbon group not containing an aliphatic unsaturated bond other than the hydrogen atom of R 2 , for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, Cycloalkyl groups such as isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, etc., cyclopentyl group, cyclohexyl group, cycloheptyl group, etc. An aryl group such as a phenyl group, a tolyl group, a xylyl group, a naphthyl group and a biphenylyl group, an aralkyl group such as a benzyl group, a phenylethyl group, a phenylpropyl group and a methylbenzyl group, and a carbon atom bonded to these groups. Some or all of the hydrogen atoms are substituted with halogen atoms such as fluorine, chlorine and bromine, cyano groups, etc. For example, chloromethyl group, 2-bromoethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,4,5,5 , 6,6,6-nonafluorohexyl group and the like, typical ones having 1 to 10 carbon atoms, particularly typical ones having 1 to 6 carbon atoms, C1-C3 unsubstituted or substituted alkyl and phenyl groups such as methyl, ethyl, propyl, chloromethyl, bromoethyl, 3,3,3-trifluoropropyl, cyanoethyl, and phenyl, chlorophenyl Group, an unsubstituted or substituted phenyl group such as a fluorophenyl group. Also, R 2 is not limited to being all the same.

これら(B)成分の添加量は、(B)成分由来のSi−H基が(A)成分由来のアルケニル基1モルに対して0.1〜5.0モルとなる量、好ましくは0.3〜2.0モル、更に好ましくは0.5〜1.0となる量である。(B)成分由来のSi−H基の量が(A)成分由来のアルケニル基1モルに対して0.1モル未満であると硬化しない又は硬化物の強度が不十分で成形体としての形状を保持できず取り扱えない場合がある。また5モルを超えると硬化物の柔軟性がなくなり、硬化物が脆くなるおそれがある。   The amount of these (B) components added is such that the Si-H group derived from the (B) component is 0.1 to 5.0 mol, preferably 0. 1 mol relative to 1 mol of the alkenyl group derived from the (A) component. The amount is 3 to 2.0 mol, more preferably 0.5 to 1.0. When the amount of the Si-H group derived from the component (B) is less than 0.1 mol with respect to 1 mol of the alkenyl group derived from the component (A), the cured product does not cure or the shape of the molded product is insufficient. May not be able to be handled. Moreover, when it exceeds 5 mol, the flexibility of the cured product is lost, and the cured product may become brittle.

(C)成分の熱伝導性充填剤としては上述した通りであり、この場合の配合量は、(A)成分100質量部に対して200〜2,500質量部、特に200〜1,500質量部である。   The heat conductive filler of component (C) is as described above, and the blending amount in this case is 200 to 2,500 parts by mass, particularly 200 to 1,500 parts by mass with respect to 100 parts by mass of component (A). Part.

(D)成分の白金系硬化触媒は、(A)成分由来のアルケニル基と、(B)成分由来のSi−H基の付加反応を促進するための触媒であり、ヒドロシリル化反応に用いられる触媒として周知の触媒が挙げられる。その具体例としては、例えば、白金(白金黒を含む)、ロジウム、パラジウム等の白金族金属単体、H2PtCl4・nH2O、H2PtCl6・nH2O、NaHPtCl6・nH2O、KaHPtCl6・nH2O、Na2PtCl6・nH2O、K2PtCl4・nH2O、PtCl4・nH2O、PtCl2、Na2HPtCl4・nH2O(但し、式中、nは0〜6の整数であり、好ましくは0又は6である)等の塩化白金、塩化白金酸及び塩化白金酸塩、アルコール変性塩化白金酸(米国特許第3,220,972号明細書参照)、塩化白金酸とオレフィンとのコンプレックス(米国特許第3,159,601号明細書、同第3,159,662号明細書、同第3,775,452号明細書参照)、白金黒、パラジウム等の白金族金属をアルミナ、シリカ、カーボン等の担体に担持させたもの、ロジウム−オレフィンコンプレックス、クロロトリス(トリフェニルフォスフィン)ロジウム(ウィルキンソン触媒)、塩化白金、塩化白金酸又は塩化白金酸塩とビニル基含有シロキサン、特にビニル基含有環状シロキサンとのコンプレックス等が挙げられる。(D)成分の使用量は、所謂触媒量でよく、通常、(A)成分に対する白金族金属元素の質量換算で、0.1〜1,000ppm程度がよい。 The platinum-based curing catalyst of component (D) is a catalyst for promoting the addition reaction of the alkenyl group derived from component (A) and the Si—H group derived from component (B), and is a catalyst used for the hydrosilylation reaction. Well-known catalysts. Specific examples thereof include platinum group metals such as platinum (including platinum black), rhodium and palladium, H 2 PtCl 4 · nH 2 O, H 2 PtCl 6 · nH 2 O, NaHPtCl 6 · nH 2 O. , KaHPtCl 6 · nH 2 O, Na 2 PtCl 6 · nH 2 O, K 2 PtCl 4 · nH 2 O, PtCl 4 · nH 2 O, PtCl 2 , Na 2 HPtCl 4 · nH 2 O (where, n is an integer of 0-6, preferably 0 or 6), such as platinum chloride, chloroplatinic acid and chloroplatinate, alcohol-modified chloroplatinic acid (see US Pat. No. 3,220,972) ), A complex of chloroplatinic acid and olefin (see US Pat. Nos. 3,159,601, 3,159,662, and 3,775,452), platinum black, Platinum group metals such as palladium On a carrier such as alumina, silica, carbon, rhodium-olefin complex, chlorotris (triphenylphosphine) rhodium (Wilkinson catalyst), platinum chloride, chloroplatinic acid or chloroplatinate and vinyl group-containing siloxane, In particular, a complex with a vinyl group-containing cyclic siloxane may be mentioned. The amount of component (D) used may be a so-called catalytic amount, and is usually about 0.1 to 1,000 ppm in terms of the mass of the platinum group metal element relative to component (A).

(E)成分として、付加反応制御剤を配合してもよく、付加反応制御剤は、通常の付加反応硬化型シリコーン組成物に用いられる公知の付加反応制御剤を全て用いることができる。例えば、1−エチニル−1−ヘキサノール、3−ブチン−1−オール等のアセチレン化合物や各種窒素化合物、有機リン化合物、オキシム化合物、有機クロロ化合物等が挙げられる。使用量としては、(A)成分100質量部に対して0.01〜1質量部程度が望ましい。   As the component (E), an addition reaction control agent may be blended. As the addition reaction control agent, all known addition reaction control agents used in ordinary addition reaction curable silicone compositions can be used. Examples thereof include acetylene compounds such as 1-ethynyl-1-hexanol and 3-butyn-1-ol, various nitrogen compounds, organic phosphorus compounds, oxime compounds, and organic chloro compounds. As a usage-amount, about 0.01-1 mass part is desirable with respect to 100 mass parts of (A) component.

なお、上記シリコーンゴムとしては、上述した付加反応硬化型のシリコーン組成物を硬化したものに限られず、有機過酸化物硬化型、紫外線硬化型、電子線硬化型、縮合反応硬化型の公知のシリコーン組成物を硬化することによって得られたものを用いることができる。   The silicone rubber is not limited to those obtained by curing the above-described addition reaction curable silicone composition, and is a known silicone of an organic peroxide curable type, an ultraviolet curable type, an electron beam curable type, or a condensation reaction curable type. What was obtained by hardening | curing a composition can be used.

[熱伝導性樹脂層の厚み]
熱伝導性樹脂層の厚みは400μm以下が好ましく、より好ましくは200μm以下、更に好ましくは150μm以下である。熱伝導性樹脂層の役割としては、発熱体から発生した熱を効率的に熱伝導層に伝えることであるので、熱伝導性樹脂層が厚いと不利になってしまう。その下限は、10μm以上、特に50μm以上であることが本発明の効果を発揮させる点から好ましい。
[Thickness of thermal conductive resin layer]
The thickness of the heat conductive resin layer is preferably 400 μm or less, more preferably 200 μm or less, and still more preferably 150 μm or less. Since the role of the heat conductive resin layer is to efficiently transmit the heat generated from the heating element to the heat conductive layer, it is disadvantageous if the heat conductive resin layer is thick. The lower limit is preferably 10 μm or more, more preferably 50 μm or more from the viewpoint of exerting the effects of the present invention.

[熱伝導性樹脂層の熱伝導率]
熱伝導性樹脂層の熱伝導率は1.0W/mK以上が好ましい。より好ましくは2.0W/mK以上で、更に好ましくは3.0W/mK以上である。熱伝導性樹脂層の役割は発熱体から発生した熱を効率的に熱伝導層に伝えることであるので、熱伝導性樹脂層の熱伝導率が1.0W/mKを切ると発熱体から発生した熱を熱伝導層に伝える際に非常に不利である。なお、その上限は特に制限はないが、通常15W/mK以下である。
[Thermal conductivity of the thermally conductive resin layer]
The thermal conductivity of the thermally conductive resin layer is preferably 1.0 W / mK or more. More preferably, it is 2.0 W / mK or more, More preferably, it is 3.0 W / mK or more. Since the role of the heat conductive resin layer is to efficiently transmit the heat generated from the heating element to the heat conduction layer, it is generated from the heating element when the thermal conductivity of the heat conductive resin layer falls below 1.0 W / mK. It is very disadvantageous when transferring the heat to the heat conduction layer. The upper limit is not particularly limited, but is usually 15 W / mK or less.

測定方法としては、測定用サンプルとして熱伝導性樹脂硬化物を60mm×60mm×6mmのサイズに成形したものを2つ準備し、成形体でプローブを挟み、ホットディスク法を用いて測定した。   As a measurement method, two samples of a thermally conductive resin cured product molded into a size of 60 mm × 60 mm × 6 mm were prepared as measurement samples, a probe was sandwiched between the molded products, and measurement was performed using a hot disk method.

[熱伝導性樹脂層の硬さ]
熱伝導性樹脂層の硬さはAsker Cで60以下が好ましい。より好ましくは30以下、更に好ましくは10以下である。熱伝導性樹脂層の役割は効率的に発熱体から発生した熱を熱伝導層に伝えることであり、Asker Cで60より硬いと、発熱体との密着性が悪くなり、効率的に熱を伝えることができない。なお、その下限は通常1以上である。
測定方法はアスカーC硬度計を用い、JIS規格に準拠して行なった。
[Hardness of heat conductive resin layer]
The hardness of the heat conductive resin layer is preferably 60 or less in Asker C. More preferably, it is 30 or less, More preferably, it is 10 or less. The role of the heat conductive resin layer is to efficiently transmit the heat generated from the heating element to the heat conduction layer. If it is harder than 60 by Asker C, the adhesion with the heating element is deteriorated, and the heat is efficiently transferred. I can't tell you. The lower limit is usually 1 or more.
The measuring method was performed using an Asker C hardness meter according to JIS standards.

上記熱伝導性樹脂層が積層される熱伝導層としては、面内方向の熱伝導に優れた熱伝導層としてグラファイトシートが挙げられる。しかし、グラファイトシートは非常に高価であること、また非常に脆いため、擦るとグラファイト成分が剥がれ落ちたり、グラファイト粉が飛沫したりする。厚みが薄くなると、強度が下がり、取り扱いが非常に悪くなる。   Examples of the heat conductive layer on which the heat conductive resin layer is laminated include a graphite sheet as a heat conductive layer excellent in heat conduction in the in-plane direction. However, since the graphite sheet is very expensive and very brittle, the graphite component peels off or graphite powder splashes when rubbed. As the thickness decreases, the strength decreases and handling becomes very poor.

また、グラファイトに代わる熱伝導層として銅箔が挙げられるが、銅は比重が8.9と非常に重い。携帯できる電子端末であるスマートフォンやタブレットPC用途では端末の軽量化という観点から非常に不利である。また銅は錆びやすく管理が難しい。   Moreover, although copper foil is mentioned as a heat conductive layer replacing graphite, copper has a very heavy specific gravity of 8.9. For smartphones and tablet PCs, which are portable electronic terminals, it is very disadvantageous from the viewpoint of reducing the weight of the terminal. Copper is rusted and difficult to manage.

そこで、比重が6以下のものが好ましく、特に銅よりも安定でコストも安く、比重も軽い熱伝導層としてアルミニウム箔が好適に用いられる。更にアルミニウム箔は5μm程度の薄さまで成形可能で、今後携帯端末が更に小型化、薄型化していくことを考えると最も有望な熱伝導層であるといえる。   Therefore, those having a specific gravity of 6 or less are preferable, and aluminum foil is suitably used as a heat conductive layer that is particularly stable and cheaper than copper and light in specific gravity. Furthermore, the aluminum foil can be formed to a thickness of about 5 μm, and it can be said that it is the most promising heat conduction layer in consideration of further downsizing and thinning of portable terminals.

[熱伝導層の熱伝導率]
熱伝導層の厚み方向の熱伝導率は30W/mK以上、好ましくは60W/mK以上で、面内方向への熱伝導率は200W/mK以上、特に250W/mK以上が好ましい。厚み方向にもある程度の熱伝導率を有していなければ、厚み方向の熱伝達が著しく悪くなってしまうためである。また、面内方向の熱伝導率が小さいと、効率的に熱拡散させることができない。なお、熱伝導層の厚み方向の熱伝導率、面内方向への熱伝導率は特に制限されないが、厚み方向の熱伝導率は700W/mK以下、特に500W/mK以下、面内方向への熱伝導率は1,500W/mK以下、特に700W/mK以下が好ましい。
[Thermal conductivity of thermal conductive layer]
The heat conductivity in the thickness direction of the heat conductive layer is 30 W / mK or more, preferably 60 W / mK or more, and the heat conductivity in the in-plane direction is 200 W / mK or more, particularly 250 W / mK or more. This is because heat transfer in the thickness direction is significantly deteriorated unless a certain degree of thermal conductivity is provided in the thickness direction. Moreover, if the thermal conductivity in the in-plane direction is small, it cannot be efficiently diffused. The thermal conductivity in the thickness direction of the thermal conductive layer and the thermal conductivity in the in-plane direction are not particularly limited, but the thermal conductivity in the thickness direction is 700 W / mK or less, particularly 500 W / mK or less, in the in-plane direction. The thermal conductivity is preferably 1,500 W / mK or less, particularly preferably 700 W / mK or less.

[熱伝導層の厚み]
熱伝導層の厚みが100μm以下であることが好ましい。更に好ましくは70μm以下である。スマートフォンやタブレットPCに用いられる部材として、薄くて軽いことが求められるためである。100μmを超えるような熱伝導層だと、熱伝導性シート全体の厚みが厚くなるし、熱伝導性樹脂層を積層する際の加工性も難しくなる。
なお、熱伝導層の厚さの下限は、通常2μm以上、特に10μm以上とすることが好ましい。
[The thickness of the heat conduction layer]
The thickness of the heat conductive layer is preferably 100 μm or less. More preferably, it is 70 micrometers or less. This is because it is required to be thin and light as a member used for a smartphone or a tablet PC. If the heat conductive layer exceeds 100 μm, the thickness of the entire heat conductive sheet becomes thick, and the workability when laminating the heat conductive resin layer becomes difficult.
In addition, it is preferable that the minimum of the thickness of a heat conductive layer is normally 2 micrometers or more, especially 10 micrometers or more.

熱伝導層に熱伝導性樹脂層を積層させる際に、片面のみに積層させるか、両面に積層させるかで、熱伝導性シートとして果たす役割が異なる。   When the heat conductive resin layer is laminated on the heat conductive layer, the role played as a heat conductive sheet differs depending on whether the heat conductive resin layer is laminated only on one side or on both sides.

片面に積層させる場合、発熱体側に樹脂層が当たるように実装し、放熱体側には熱伝導層が接することになる。この場合、発熱体と熱伝導性シートとの密着は熱伝導性樹脂層の寄与により非常に良好で、接触熱抵抗が低減し、効率良く熱を伝えることができる。一方、筐体側(放熱体側)は熱伝導性樹脂層がないため、密着性に乏しく、接触熱抵抗が非常に大きくなってしまう。この場合、厚み方向の熱伝達が悪くなるため、相対的に面内方向によく熱が伝わることになり、熱拡散という観点から見れば、最も効率がよい。   When laminating on one side, mounting is performed so that the resin layer contacts the heating element side, and the heat conduction layer is in contact with the heat dissipation body side. In this case, the adhesion between the heating element and the heat conductive sheet is very good due to the contribution of the heat conductive resin layer, the contact heat resistance is reduced, and heat can be transferred efficiently. On the other hand, since there is no thermally conductive resin layer on the housing side (heat radiator side), the adhesion is poor and the contact thermal resistance becomes very large. In this case, heat transfer in the thickness direction is deteriorated, so that heat is transferred relatively well in the in-plane direction, and is most efficient from the viewpoint of thermal diffusion.

図1は、スマートフォン、タブレットPC、ウルトラブック(商標登録)に代表されるような携帯端末10に、熱伝導層2の片面に熱伝導性樹脂層3を積層した熱伝導性シート1を適用した例を示す。即ち、基板12と半導体チップ14とを備えた携帯端末本体16の発熱体側(半導体チップ14側)に熱伝導性樹脂層3が配置され、熱伝導層2が携帯端末10の背面ケース18側に配置されるように熱伝導性シート1を実装したものである。   In FIG. 1, a thermal conductive sheet 1 in which a thermal conductive resin layer 3 is laminated on one side of a thermal conductive layer 2 is applied to a mobile terminal 10 typified by a smartphone, a tablet PC, and Ultrabook (registered trademark). An example is shown. That is, the heat conductive resin layer 3 is disposed on the heating element side (semiconductor chip 14 side) of the portable terminal body 16 including the substrate 12 and the semiconductor chip 14, and the heat conductive layer 2 is disposed on the back case 18 side of the portable terminal 10. The heat conductive sheet 1 is mounted so as to be disposed.

一方、両側に積層させる場合、発熱体側、筐体側共に密着性が良好になり、接触熱抵抗が低減し、厚み方向の熱伝達がよくなる。この場合、面内の熱拡散をさせながらも、厚み方向にも熱を逃がすことができる。   On the other hand, when laminating on both sides, both the heating element side and the housing side have good adhesion, the contact thermal resistance is reduced, and the heat transfer in the thickness direction is improved. In this case, heat can be released also in the thickness direction while performing in-plane thermal diffusion.

片側のみに熱伝導性樹脂層を積層させたものを用いるか両側に熱伝導性樹脂層を積層させたものを用いるかは、どのように熱を逃がしたいかという放熱設計次第である。   Whether the heat conductive resin layer laminated on only one side or the heat conductive resin layer laminated on both sides is used depends on the heat radiation design that wants to release heat.

本発明に係る熱伝導層に熱伝導性樹脂層を積層してなる熱伝導性シートは、厚み方向の熱伝導率が1.5W/mK以上、好ましくは2W/mK以上で、通常20W/mK以下、特に10W/mK以下であり、面内方向の熱伝導率を厚み方向の熱伝導率で割った値が2以上、好ましくは5以上、より好ましくは7以上である。その上限は特に制限されないが、100以下、特に70以下である。   The heat conductive sheet obtained by laminating the heat conductive resin layer on the heat conductive layer according to the present invention has a heat conductivity in the thickness direction of 1.5 W / mK or more, preferably 2 W / mK or more, and usually 20 W / mK. Hereinafter, it is 10 W / mK or less in particular, and the value obtained by dividing the thermal conductivity in the in-plane direction by the thermal conductivity in the thickness direction is 2 or more, preferably 5 or more, more preferably 7 or more. The upper limit is not particularly limited, but is 100 or less, particularly 70 or less.

[熱伝導性シートの熱伝導率]
熱伝導性シートの面内方向、厚み方向の熱伝導率は共に、ベテル社製商品名サーモウェーブアナライザーを用いて測定した。
[Thermal conductivity of thermal conductive sheet]
The thermal conductivity in the in-plane direction and the thickness direction of the heat conductive sheet were both measured using a Bethel brand name Thermowave Analyzer.

[熱伝導性シートの面内方向の熱伝導率]
熱伝導性シート自体の面内方向の熱伝導率は、サーモウェーブアナライザーによって測定される。測定原理としては、熱伝導性シートの片面の1点から周期加熱し、反対面から放射測温するときに、測温位置を移動させ、距離ごとの位相差を求め、面内方向の熱拡散率を求め、熱拡散率から熱伝導率を算出する。
上述したように、面内方向の熱伝導率を厚み方向の熱伝導率で割った値が2以上であることが好ましい。より好ましくは5以上である。熱伝導性シートの面内方向と厚み方向の熱伝導率に差が無ければ、熱を面内に効率的に拡散させることができないためである。
[Thermal conductivity in the in-plane direction of the thermal conductive sheet]
The thermal conductivity in the in-plane direction of the thermal conductive sheet itself is measured by a thermowave analyzer. As a measurement principle, when heating is performed periodically from one point on one side of the thermal conductive sheet and radiation temperature measurement is performed from the opposite side, the temperature measurement position is moved, the phase difference for each distance is obtained, and thermal diffusion in the in-plane direction The thermal conductivity is calculated from the thermal diffusivity.
As described above, the value obtained by dividing the thermal conductivity in the in-plane direction by the thermal conductivity in the thickness direction is preferably 2 or more. More preferably, it is 5 or more. If there is no difference between the thermal conductivity in the in-plane direction and the thickness direction of the thermal conductive sheet, heat cannot be efficiently diffused in the plane.

[熱伝導性シートの厚み方向の熱伝導率]
熱伝導性シート自体の厚み方向の熱伝導率は、サーモウェーブアナライザーによって測定される。測定原理としては、熱伝導性シートの片面の1点から周期加熱するときの加熱周波数を変化させることで、周波数ごとの位相差を求め、厚み方向の熱拡散率を求め、熱拡散率から熱伝導率を算出する。厚み方向への熱伝導率が低いと、効率的に熱伝導層に発熱体から発生した熱が効率良く伝わらないので、上述したように1.5W/mK以上が好ましい。
[Thermal conductivity in the thickness direction of the thermal conductive sheet]
The thermal conductivity in the thickness direction of the thermal conductive sheet itself is measured by a thermowave analyzer. As a measurement principle, by changing the heating frequency when periodically heating from one point on one side of the thermal conductive sheet, the phase difference for each frequency is obtained, the thermal diffusivity in the thickness direction is obtained, and the thermal diffusivity Calculate the conductivity. If the heat conductivity in the thickness direction is low, the heat generated from the heating element is not efficiently transmitted to the heat conductive layer efficiently, so that it is preferably 1.5 W / mK or more as described above.

本発明に係る熱伝導性シートが適用される電子機器としては、スマートフォン、タブレットPC、ウルトラブック(商標登録)に代表される携帯端末が挙げられる。   Examples of the electronic device to which the heat conductive sheet according to the present invention is applied include smartphones, tablet PCs, and portable terminals represented by Ultrabook (registered trademark).

以下に実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to the following examples.

実施例及び比較例で用いた成分は以下の通りである。
(A)成分:

Figure 2014003141
Xがビニル基である、オルガノポリシロキサン。
(A−1)粘度:600mm2/s(25℃)
(A−2)粘度:30,000mm2/s(25℃) The components used in Examples and Comparative Examples are as follows.
(A) component:
Figure 2014003141
Organopolysiloxane, wherein X is a vinyl group.
(A-1) Viscosity: 600 mm 2 / s (25 ° C.)
(A-2) Viscosity: 30,000 mm 2 / s (25 ° C.)

(B)成分:

Figure 2014003141
ハイドロジェンポリシロキサン
平均重合度が下記の通りである、両末端が水素で封鎖されたハイドロジェンポリシロキサン
平均重合度:o=28、p=2 (B) component:
Figure 2014003141
Hydrogen polysiloxane average degree of polymerization is as follows, hydrogenpolysiloxane average degree of polymerization blocked at both ends with hydrogen: o = 28, p = 2

(C)成分:
平均粒径が下記の通りである水酸化アルミニウム。
(C−1)平均粒径1μm:アルミニウム粉
(C−2)平均粒径10μm:アルミニウム粉
(C−3)平均粒径1μm:アルミナ
(C−4)平均粒径10μm:アルミナ
(C) component:
Aluminum hydroxide whose average particle size is as follows.
(C-1) Average particle size 1 μm: Aluminum powder (C-2) Average particle size 10 μm: Aluminum powder (C-3) Average particle size 1 μm: Alumina (C-4) Average particle size 10 μm: Alumina

(D)成分:
5質量%塩化白金酸2−エチルヘキサノール溶液
(D) component:
5% by mass chloroplatinic acid 2-ethylhexanol solution

(E)成分:
付加反応制御剤として、エチニルメチリデンカルビノール。
(E) component:
Ethynylmethylidenecarbinol as an addition reaction control agent.

(F)成分:

Figure 2014003141
平均重合度30である片末端がトリメトキシシリル基で封鎖されたジメチルポリシロキサン。 (F) component:
Figure 2014003141
A dimethylpolysiloxane having an average degree of polymerization of 30 and having one end blocked with a trimethoxysilyl group.

(G)成分:
可塑剤としてジメチルポリシロキサン。

Figure 2014003141
r=80のジメチルポリシロキサン。 (G) component:
Dimethylpolysiloxane as a plasticizer.
Figure 2014003141
Dimethylpolysiloxane with r = 80.

材料の混練にはプラネタリーミキサーを用い、組成物イ〜ホを得た。   A planetary mixer was used for kneading the materials to obtain compositions i to e.

(熱伝導層)
アルミニウム箔 厚み50μm
アルミニウム箔 厚み30μm
グラファイトシート 厚み100μm
(Thermal conduction layer)
Aluminum foil thickness 50μm
Aluminum foil thickness 30μm
Graphite sheet thickness 100μm

[実施例1〜4]
表1に示すシリコーン組成物イ〜ホに対して、トルエンを添加し、20質量%のトルエン溶液を調製した。この溶液を熱伝導層上にスペーサーを用いてコーティングし、80℃でトルエンを揮発させ、続いて120℃で硬化させた。熱伝導層の両側に積層させる場合には、もう片方の面にも熱伝導性シリコーン組成物のトルエン溶液の塗工を行った。熱伝導層の片側を表面とし、その裏側を裏面とする。表面に塗工する組成物と裏面に塗工する組成物は異なっていてもよい。
[Examples 1 to 4]
Toluene was added to the silicone compositions i to e shown in Table 1 to prepare a 20% by mass toluene solution. This solution was coated on the heat conductive layer using a spacer, and toluene was volatilized at 80 ° C., followed by curing at 120 ° C. When laminating on both sides of the heat conductive layer, the other side was coated with a toluene solution of the heat conductive silicone composition. One side of the heat conductive layer is the front side, and the back side is the back side. The composition applied to the front surface and the composition applied to the back surface may be different.

評価方法としては、上述したようにサーモウェーブアナライザーによって面内方向、及び厚み方向の熱伝導率を測定した。   As an evaluation method, the thermal conductivity in the in-plane direction and the thickness direction was measured with a thermowave analyzer as described above.

Figure 2014003141
Figure 2014003141

Figure 2014003141
Figure 2014003141

実施例1〜4のように、熱伝導層の片側又は両側に熱伝導性樹脂層を積層させることで、接触熱抵抗が低減し、効率的に熱伝導層に熱が伝わり、面内への熱伝導率を厚み方向の熱伝導率で割った値が2以上であることを確認した。厚み方向の熱伝導率も1.5W/mK以上を持つ。また、熱伝導層の片面にのみ熱伝導性樹脂層を積層させた場合、面内方向の熱伝導率を厚み方向の熱伝導率で割った値が大きくなる。一方、比較例1のように熱伝導性樹脂層の熱伝導率が低いと、厚み方向の熱伝導率が十分得られない。比較例2のように熱伝導層がないと、面内方向と厚み方向の熱伝導率に差が出ない。比較例3のように、グラファイトシートは面内方向に優れた熱伝導率を示す。ただ、実装した際には、発熱体との接触熱抵抗が加味されるため、期待しているほどの熱拡散性は得られないと予想される。   As in Examples 1 to 4, by laminating a heat conductive resin layer on one side or both sides of the heat conductive layer, contact thermal resistance is reduced, heat is efficiently transmitted to the heat conductive layer, It was confirmed that the value obtained by dividing the thermal conductivity by the thermal conductivity in the thickness direction was 2 or more. The thermal conductivity in the thickness direction is 1.5 W / mK or more. Moreover, when a heat conductive resin layer is laminated | stacked only on the single side | surface of a heat conductive layer, the value which divided the heat conductivity of the in-plane direction by the heat conductivity of the thickness direction becomes large. On the other hand, when the thermal conductivity of the thermally conductive resin layer is low as in Comparative Example 1, sufficient thermal conductivity in the thickness direction cannot be obtained. If there is no heat conductive layer as in Comparative Example 2, there is no difference in the thermal conductivity between the in-plane direction and the thickness direction. As in Comparative Example 3, the graphite sheet exhibits excellent thermal conductivity in the in-plane direction. However, when mounted, the contact thermal resistance with the heating element is taken into account, so it is expected that the thermal diffusivity as expected cannot be obtained.

実装した際の熱拡散性をシュミレーションするために、図2に示す装置を用いて温度を測定した。結果を表3に示す。
〔実装した際の熱拡散の実験の条件〕
熱源(ヒーター)材質:SUS 304
電力:6W(25V)
温度の測定方法:非接触型赤外線温度計
<手順>
1. 断熱材20の上に測定用サンプル22を置く(サンプルサイズ:16×16cm)。
2. サンプル22の中心に、直径20cm角の熱源(ヒーター)21を置く(電力:6W)。
3. 1分後、熱源の温度と熱源の中心から30mm離れた点の温度を測定する。
<測定サンプル>
・ 実施例1,3記載の熱伝導性シート(熱伝導性樹脂層側に熱源を置く)
・ 比較例1,3記載の熱伝導性シート
In order to simulate the thermal diffusibility at the time of mounting, the temperature was measured using the apparatus shown in FIG. The results are shown in Table 3.
[Conditions for thermal diffusion experiments when mounted]
Heat source (heater) material: SUS 304
Power: 6W (25V)
Temperature measurement method: Non-contact infrared thermometer
<Procedure>
1. A measurement sample 22 is placed on the heat insulating material 20 (sample size: 16 × 16 cm).
2. A heat source (heater) 21 having a diameter of 20 cm square is placed at the center of the sample 22 (power: 6 W).
3. After 1 minute, the temperature of the heat source and the temperature at a point 30 mm away from the center of the heat source are measured.
<Measurement sample>
-Thermally conductive sheet described in Examples 1 and 3 (a heat source is placed on the thermally conductive resin layer side)
-Thermally conductive sheet described in Comparative Examples 1 and 3

Figure 2014003141
Figure 2014003141

上記表3の結果から示すように、実施例1,3記載の熱伝導性シートを用いた場合、熱源の温度と30mm離れた点の温度差が、比較例1,3記載の熱伝導性シートを用いた場合に比べて小さいことがわかる。これは、効果的に熱が拡散していることを示す。   As shown from the results in Table 3 above, when the thermally conductive sheets described in Examples 1 and 3 were used, the temperature difference between the temperature of the heat source and the point 30 mm away was the thermal conductive sheet described in Comparative Examples 1 and 3. It can be seen that it is smaller than when using. This indicates that heat is effectively diffusing.

1 熱伝導性シート
2 熱伝導層
3 熱伝導性樹脂層
10 携帯端末
12 基板
14 半導体チップ
16 携帯端末本体
18 背面ケース
20 断熱材
21 熱源
22 サンプル
DESCRIPTION OF SYMBOLS 1 Thermal conductive sheet 2 Thermal conductive layer 3 Thermal conductive resin layer 10 Portable terminal 12 Board | substrate 14 Semiconductor chip 16 Portable terminal main body 18 Back case 20 Heat insulating material 21 Heat source 22 Sample

Claims (12)

熱伝導層の片面又は両面に熱伝導性樹脂層を積層させてなり、厚み方向の熱伝導率が1.5W/mK以上で、面内方向の熱伝導率を厚み方向の熱伝導率で割った値が2以上であることを特徴とする熱伝導性シート。   A thermal conductive resin layer is laminated on one side or both sides of the thermal conductive layer, the thermal conductivity in the thickness direction is 1.5 W / mK or more, and the thermal conductivity in the in-plane direction is divided by the thermal conductivity in the thickness direction. The heat conductive sheet characterized by having a value of 2 or more. 熱伝導性樹脂層が、ポリマーマトリックスと熱伝導性充填剤とを含む樹脂層から形成されることを特徴とする請求項1記載の熱伝導性シート。   The thermally conductive sheet according to claim 1, wherein the thermally conductive resin layer is formed of a resin layer containing a polymer matrix and a thermally conductive filler. 熱伝導性樹脂層の厚みが400μm以下であることを特徴とする請求項1又は2記載の熱伝導性シート。   The thermally conductive sheet according to claim 1 or 2, wherein the thickness of the thermally conductive resin layer is 400 µm or less. 熱伝導性樹脂層の熱伝導率が1.0W/mK以上であることを特徴とする請求項1〜3のいずれか1項記載の熱伝導性シート。   The heat conductive sheet according to any one of claims 1 to 3, wherein the heat conductivity of the heat conductive resin layer is 1.0 W / mK or more. 熱伝導性樹脂層の硬さがAsker Cで60以下であることを特徴とする請求項1〜4のいずれか1項記載の熱伝導性シート。   The hardness of a heat conductive resin layer is 60 or less by Asker C, The heat conductive sheet of any one of Claims 1-4 characterized by the above-mentioned. 熱伝導性樹脂層が、
(A)分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン:100質量部、
(B)ケイ素原子に直接結合した水素原子が少なくとも2個以上有するオルガノハイドロジェンポリシロキサン:ケイ素原子に直接結合した水素原子のモル数が(A)成分由来のアルケニル基のモル数の0.1〜5.0倍量となる量、
(C)熱伝導性充填剤:200〜2,500質量部、
(D)白金系硬化触媒:(A)成分に対して白金族元素質量換算で0.1〜1,000ppm
を含むシリコーン組成物の硬化物からなることを特徴とする請求項1〜5のいずれか1項記載の熱伝導性シート。
Thermally conductive resin layer
(A) Organopolysiloxane having at least two alkenyl groups in the molecule: 100 parts by mass
(B) Organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to silicon atoms: The number of moles of hydrogen atoms directly bonded to silicon atoms is 0.1 of the number of moles of alkenyl groups derived from component (A). An amount that is -5.0 times the amount,
(C) Thermally conductive filler: 200 to 2,500 parts by mass,
(D) Platinum-based curing catalyst: 0.1 to 1,000 ppm in terms of platinum group element mass relative to component (A)
The thermally conductive sheet according to claim 1, comprising a cured product of a silicone composition containing
熱伝導層が、厚み方向の熱伝導率が30W/mK以上で、面内方向の熱伝導率が200W/mK以上であることを特徴とする請求項1〜6のいずれか1項記載の熱伝導性シート。   The heat conduction layer according to any one of claims 1 to 6, wherein the heat conduction layer has a heat conductivity in the thickness direction of 30 W / mK or more and a heat conductivity in the in-plane direction of 200 W / mK or more. Conductive sheet. 熱伝導層の比重が6以下であることを特徴とする請求項1〜7のいずれか1項記載の熱伝導性シート。   The heat conductive sheet according to any one of claims 1 to 7, wherein the specific gravity of the heat conductive layer is 6 or less. 熱伝導層の厚みが100μm以下であることを特徴とする請求項1〜8のいずれか1項記載の熱伝導性シート。   The thickness of a heat conductive layer is 100 micrometers or less, The heat conductive sheet of any one of Claims 1-8 characterized by the above-mentioned. 熱伝導層の材質がアルミニウムであることを特徴とする請求項1〜9のいずれか1項記載の熱伝導性シート。   The heat conductive sheet according to claim 1, wherein the material of the heat conductive layer is aluminum. 熱伝導層の片側に熱伝導性樹脂層を積層させた請求項1〜10のいずれか1項記載の熱伝導性シートを熱伝導性樹脂層が発熱体側に、熱伝導層が放熱体側になるように実装された電子機器。   The thermally conductive sheet according to any one of claims 1 to 10, wherein a thermally conductive resin layer is laminated on one side of the thermally conductive layer, the thermally conductive resin layer is on the heating element side, and the thermally conductive layer is on the radiator side. Electronic equipment implemented as follows. 熱伝導層の片側に熱伝導性樹脂層を積層させた請求項1〜10のいずれか1項記載の熱伝導性シートを、携帯端末本体の背面に、熱伝導性樹脂層が発熱体側に、熱伝導層が背面ケース側になるように実装された携帯端末。   The heat conductive sheet according to any one of claims 1 to 10, wherein a heat conductive resin layer is laminated on one side of the heat conductive layer, the heat conductive resin layer on the heating element side on the back surface of the mobile terminal body, A portable terminal mounted with the heat conduction layer facing the back case.
JP2012137133A 2012-06-18 2012-06-18 Thermally conductive sheet, and electronic apparatus Pending JP2014003141A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012137133A JP2014003141A (en) 2012-06-18 2012-06-18 Thermally conductive sheet, and electronic apparatus
TW102118795A TW201412967A (en) 2012-06-18 2013-05-28 Thermal conductive sheet and electronic machines
CN201310237627.4A CN103507353A (en) 2012-06-18 2013-06-17 Thermal conduction sheet and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012137133A JP2014003141A (en) 2012-06-18 2012-06-18 Thermally conductive sheet, and electronic apparatus

Publications (1)

Publication Number Publication Date
JP2014003141A true JP2014003141A (en) 2014-01-09

Family

ID=49891018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012137133A Pending JP2014003141A (en) 2012-06-18 2012-06-18 Thermally conductive sheet, and electronic apparatus

Country Status (3)

Country Link
JP (1) JP2014003141A (en)
CN (1) CN103507353A (en)
TW (1) TW201412967A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063573A1 (en) * 2014-10-21 2016-04-28 信越化学工業株式会社 Heat dissipation sheet
KR20160116438A (en) * 2015-03-30 2016-10-10 주식회사 솔루에타 Heat conduction tape to horizontality and preparation method thereof
WO2016204064A1 (en) * 2015-06-15 2016-12-22 株式会社ラヴォックス Device heat dissipation method
KR20170021798A (en) * 2014-06-30 2017-02-28 도레이 카부시키가이샤 Composite semipermeable membrane
JP2017183349A (en) * 2016-03-28 2017-10-05 北川工業株式会社 Heat conduction member, manufacturing method for heat conduction member, and heat conduction structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104788968B (en) * 2015-04-21 2018-08-03 深圳市安品有机硅材料有限公司 Organosilicon heat conductive isolation sheet and preparation method thereof
CN105086464B (en) * 2015-07-28 2017-11-28 惠州市安品新材料有限公司 A kind of organosilicon heat-conducting composite sheet
JP6558301B2 (en) * 2016-05-19 2019-08-14 信越化学工業株式会社 Thermally conductive composite sheet

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0471236U (en) * 1990-10-30 1992-06-24
JPH091738A (en) * 1995-06-22 1997-01-07 Shin Etsu Chem Co Ltd Thermally conductive composite silicone rubber sheet
JPH0917923A (en) * 1995-04-28 1997-01-17 Shin Etsu Polymer Co Ltd Heat condition sheet
JP2002305271A (en) * 2001-04-06 2002-10-18 Shin Etsu Chem Co Ltd Heat dissipating structure of electronic component, and heat dissipating sheet used for the same
JP2002327116A (en) * 2001-05-01 2002-11-15 Shin Etsu Chem Co Ltd Thermoconductive silicone composition and semiconductor device
JP2004311577A (en) * 2003-04-03 2004-11-04 Shin Etsu Chem Co Ltd Thermally conductive composite sheet and method of manufacturing the same
JP2007305700A (en) * 2006-05-10 2007-11-22 Denki Kagaku Kogyo Kk Anisotropic heat conductive lamination type heat radiating member
JP2008198917A (en) * 2007-02-15 2008-08-28 Polymatech Co Ltd Thermal diffusion sheet and manufacturing method therefor
JP2009234112A (en) * 2008-03-27 2009-10-15 Shin Etsu Chem Co Ltd Heat conductive laminate and its manufacturing method
JP2010013521A (en) * 2008-07-02 2010-01-21 Shin-Etsu Chemical Co Ltd Heat conductive silicone composition
JP2010171350A (en) * 2009-01-26 2010-08-05 Inoac Corp Heat dissipation structure
JP2010219290A (en) * 2009-03-17 2010-09-30 Shin-Etsu Chemical Co Ltd Thermally conductive composite sheet and method of manufacturing the same
JP2012064691A (en) * 2010-09-15 2012-03-29 Furukawa Electric Co Ltd:The Thermal diffusion sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176016A (en) * 2002-11-29 2004-06-24 Shin Etsu Chem Co Ltd Thermal conductive silicone composition and molding therefrom
WO2007142273A1 (en) * 2006-06-08 2007-12-13 International Business Machines Corporation Highly heat conductive, flexible sheet
JP5574532B2 (en) * 2009-10-08 2014-08-20 信越化学工業株式会社 Thermally conductive silicone rubber composite sheet

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0471236U (en) * 1990-10-30 1992-06-24
JPH0917923A (en) * 1995-04-28 1997-01-17 Shin Etsu Polymer Co Ltd Heat condition sheet
JPH091738A (en) * 1995-06-22 1997-01-07 Shin Etsu Chem Co Ltd Thermally conductive composite silicone rubber sheet
JP2002305271A (en) * 2001-04-06 2002-10-18 Shin Etsu Chem Co Ltd Heat dissipating structure of electronic component, and heat dissipating sheet used for the same
JP2002327116A (en) * 2001-05-01 2002-11-15 Shin Etsu Chem Co Ltd Thermoconductive silicone composition and semiconductor device
JP2004311577A (en) * 2003-04-03 2004-11-04 Shin Etsu Chem Co Ltd Thermally conductive composite sheet and method of manufacturing the same
JP2007305700A (en) * 2006-05-10 2007-11-22 Denki Kagaku Kogyo Kk Anisotropic heat conductive lamination type heat radiating member
JP2008198917A (en) * 2007-02-15 2008-08-28 Polymatech Co Ltd Thermal diffusion sheet and manufacturing method therefor
JP2009234112A (en) * 2008-03-27 2009-10-15 Shin Etsu Chem Co Ltd Heat conductive laminate and its manufacturing method
JP2010013521A (en) * 2008-07-02 2010-01-21 Shin-Etsu Chemical Co Ltd Heat conductive silicone composition
JP2010171350A (en) * 2009-01-26 2010-08-05 Inoac Corp Heat dissipation structure
JP2010219290A (en) * 2009-03-17 2010-09-30 Shin-Etsu Chemical Co Ltd Thermally conductive composite sheet and method of manufacturing the same
JP2012064691A (en) * 2010-09-15 2012-03-29 Furukawa Electric Co Ltd:The Thermal diffusion sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170021798A (en) * 2014-06-30 2017-02-28 도레이 카부시키가이샤 Composite semipermeable membrane
WO2016063573A1 (en) * 2014-10-21 2016-04-28 信越化学工業株式会社 Heat dissipation sheet
KR20160116438A (en) * 2015-03-30 2016-10-10 주식회사 솔루에타 Heat conduction tape to horizontality and preparation method thereof
WO2016204064A1 (en) * 2015-06-15 2016-12-22 株式会社ラヴォックス Device heat dissipation method
CN107683637A (en) * 2015-06-15 2018-02-09 日希机电株式会社 The heat dissipating method of machine
EP3310142A4 (en) * 2015-06-15 2019-03-06 Loveox Co., Ltd. Device heat dissipation method
JP2017183349A (en) * 2016-03-28 2017-10-05 北川工業株式会社 Heat conduction member, manufacturing method for heat conduction member, and heat conduction structure

Also Published As

Publication number Publication date
CN103507353A (en) 2014-01-15
TW201412967A (en) 2014-04-01

Similar Documents

Publication Publication Date Title
JP2014003141A (en) Thermally conductive sheet, and electronic apparatus
JP5283346B2 (en) Thermally conductive cured product and method for producing the same
JP5233325B2 (en) Thermally conductive cured product and method for producing the same
CN101544089B (en) Heat-conductive laminated material and manufacturing method thereof
JP6194861B2 (en) Thermally conductive silicone composition and thermally conductive silicone molding
KR102149708B1 (en) Thermal conductive composite silicone rubber sheet
JP6032359B2 (en) Thermally conductive composite sheet and heat dissipation structure
TWI635169B (en) Thermally conductive composite sheet
JP6020187B2 (en) Thermally conductive composite sheet
JP6202475B2 (en) Thermally conductive composite silicone rubber sheet
JP6314915B2 (en) Heat dissipation putty sheet
JP2020002236A (en) Heat-conductive silicone composition, heat-conductive silicone sheet, and method of manufacturing the same
JP2014003152A (en) Method for forming thermal interface material and heat dissipation structure
JP2020128463A (en) Thermally conductive silicone rubber sheet having thermally conductive adhesive layer
JP2015092534A (en) Silicone heat conduction sheet
WO2019198424A1 (en) Heat-conductive silicone composition and cured product thereof
JP2009235279A (en) Heat-conductive molding and manufacturing method therefor
JP5131648B2 (en) Thermally conductive silicone composition and thermally conductive silicone molding using the same
WO2016204064A1 (en) Device heat dissipation method
CN107399115B (en) Thermally conductive composite sheet
JP2016219732A (en) Thermal conducive composite silicone rubber sheet
KR20230174219A (en) Mounting method for thermally conductive composite sheets and heat-generating electronic components
JP7165647B2 (en) Thermally conductive silicone resin composition
JP5418620B2 (en) Thermal conduction member
TW202000762A (en) Low-specific-gravity silicone sheet with thermal conductivity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161101