JP2004292873A - Zinc oxide film manufacturing method - Google Patents

Zinc oxide film manufacturing method Download PDF

Info

Publication number
JP2004292873A
JP2004292873A JP2003085653A JP2003085653A JP2004292873A JP 2004292873 A JP2004292873 A JP 2004292873A JP 2003085653 A JP2003085653 A JP 2003085653A JP 2003085653 A JP2003085653 A JP 2003085653A JP 2004292873 A JP2004292873 A JP 2004292873A
Authority
JP
Japan
Prior art keywords
zinc oxide
oxide film
dopant
electron mobility
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003085653A
Other languages
Japanese (ja)
Inventor
Tetsuya Yamamoto
哲也 山本
Toshiyuki Sakami
俊之 酒見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2003085653A priority Critical patent/JP2004292873A/en
Publication of JP2004292873A publication Critical patent/JP2004292873A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zinc oxide film manufacturing method capable of yielding a zinc oxide film having a predetermined electron mobility. <P>SOLUTION: A zinc oxide film is formed by depositing zinc oxide on a material for film deposition together with dopant in a film deposition chamber. The electron mobility of the obtained zinc oxide film is controlled by simultaneously doping the group three elements or the oxides thereof and silicon or the oxide thereof as dopant. In addition, electron mobility is controlled by adjusting the partial pressure of oxygen on the basis of the pre-grasped relationship between the electron mobility of the zinc oxide film in the predetermined doping quantity of dopant and the partial pressure of oxygen in the film deposition chamber. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、酸化亜鉛膜の製造方法に関する。
【0002】
【従来の技術】
酸化亜鉛膜は、ITO膜に比べると比抵抗が高いものの安価に製造することができるという利点を有する。
【0003】
このため、透明電極材料として酸化亜鉛膜を用いる場合、酸化亜鉛にAlやGa等の第3族元素をドーパントとして添加(ドーピング)して比抵抗の低い膜(以下、特に区別しない限りこれも酸化亜鉛膜という。)を成膜することが広く行われている。
【0004】
また、この場合、酸化亜鉛を主成分とするスパッタリングターゲットにガリウムとともに二酸化ケイ素を0.01〜1.5モル%添加してスパッタリングする方法が提案されている。そして、この方法によれば、成膜過程で成膜室中の水分が酸化亜鉛膜に取り込まれたときであっても、二酸化ケイ素が水分と強く結合し、プロトンの生成を抑制するため、耐湿性が改善され、酸化亜鉛膜の電気的特性の劣化を防止することができるとされている(特許文献1参照。)。
【0005】
また、これとは別に、スパッタリングターゲットにシリコンを第3族元素や第5族元素とともに含む群から択一的に選択したドーパントを添加する技術も提案されている。そして、この技術によれば、低抵抗の酸化亜鉛系透明電極膜を安定に製造することができるとされている(特許文献2参照。)。
【0006】
【特許文献1】
特開平8−111123号公報
【0007】
【特許文献2】
特開2000−40429号公報
【0008】
【発明が解決しようとする課題】
しかしながら、上記した、ドーパントとして通常用いられる3族元素や5族元素とともに併せて二酸化ケイ素を用いる従来の技術は、いずれも、酸化亜鉛膜の特性としての比抵抗を改善することを目的としており、酸化亜鉛膜を半導体として捉えたアプローチは行われていない。
【0009】
すなわち、酸化亜鉛膜の移動度やキャリア密度に直接着目した検討はなされていない。また、このため、当然に、酸化亜鉛膜の製造方法において、操作因子を調整することで移動度やキャリア密度を制御するという考え方は上記の従来技術には見られない。
【0010】
酸化亜鉛膜が表示装置等に透明電極として用いられる場合、酸化亜鉛膜は通常必要な透明性を備えているため、極論すれば、前記のように比抵抗が極力低い膜を得ることのみが追求されているということができる。
【0011】
これに対して、例えば太陽電池の電極や薄膜トランジスタの半導体として、安価な酸化亜鉛膜を用いることを考えた場合、これらのデバイスの特性上、いずれも、移動度はできるだけ高い方が好ましいのに対してキャリア密度は低いことが必要とされる。
【0012】
したがって、上記のような酸化亜鉛膜の新たな用途展開を行う上において、移動度やキャリア密度を制御するという考え方は必須と思われる。
【0013】
本発明は、上記の課題に鑑みてなされたものであり、所定の電子移動度を有する酸化亜鉛膜を得ることができる酸化亜鉛膜の製造方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る酸化亜鉛膜の製造方法は、成膜室で、ドーパントとともに酸化亜鉛を被成膜材料に付着させて酸化亜鉛膜を形成する酸化亜鉛膜の製造方法において、該ドーパントとして第3族元素またはその酸化物およびケイ素またはその酸化物を同時にドーピングして、得られる酸化亜鉛膜の電子移動度を制御することを特徴とする。
【0015】
これにより、ケイ素(Si)の添加量に応じて酸化亜鉛膜の結晶欠陥が軽減され、所定の電子移動度を有する酸化亜鉛膜を得ることができる。
【0016】
この場合、予め把握した、前記ドーパントの所定のドーピング量における酸化亜鉛膜の前記電子移動度と前記成膜室の酸素分圧の関係に基づいて、酸素分圧を調整して前記電子を制御すると、酸素分圧を精密に調整することで電子移動度を精密に制御することができる。
【0017】
また,この場合、前記ドーパントのドーピング量および前記成膜室の酸素分圧を調整して、前記電子移動度および電子密度のバランスを制御すると、電子移動度をほぼ同一にした状態で電子密度のみを変化させることができるため、従来の酸化亜鉛膜とは異なる半導体特性を有する酸化亜鉛膜を得ることができる。
【0018】
また,この場合、イオンプレーティング法によって酸化亜鉛膜を形成すると、良好な結晶骨格構造をベースとしてドーピング効果を好適に発現することができる。
【0019】
【発明の実施の形態】
本発明に係る酸化亜鉛膜の製造方法の好適な実施の形態(以下、本実施の形態例という。)について、成膜法としてイオンプレーティング法を用いて酸化亜鉛膜を製造する場合を例にとり、図を参照して、以下に説明する。
【0020】
イオンプレーティング法は、成膜室に配設した電極部としてのハース等に、成膜材料として、ドーパントを含有する酸化亜鉛を配置し、この酸化亜鉛に例えばアルゴンプラズマを照射して酸化亜鉛を加熱し、蒸発させ、プラズマを通過した酸化亜鉛の各粒子をハース等に対向する位置に置かれた基板に成膜する方法である。
【0021】
イオンプレーティング法は、例えばスパッタ法に比べて、粒子の持つ運動エネルギが小さいため、粒子が衝突するときに基板や基板に積層して成膜される酸化亜鉛膜に与えるダメージが小さく、結晶性の良好な膜が得られることが知られている。
【0022】
本発明者等は、前記のように、酸化亜鉛膜の半導体としての性能を規定する移動度およびキャリア密度に着目し、製造条件との関係について鋭意検討した。その結果、例えば、ドーパントとして第3族元素であるGaを用いたときと、ドーパントとしてGaとともにSiを用いたときとでは、電子移動度(以下、単に移動度という。)および電子密度(以下、単にキャリア密度という。)の挙動が異なることを見出した。
【0023】
図1に、ドーパントとしてGaを4質量%およびSiを4質量%、同時に添加する実験によって得られた酸素分圧と移動度およびキャリア密度の関係を示す。
【0024】
また、比較例として、ドーパントとしてGa4質量%のみを添加する実験によって得られた酸素分圧と移動度およびキャリア密度の関係を図2に示す。
【0025】
上記の実験では、図1および図2いずれも、酸素分圧以外の操作因子として、プラズマガスとしてアルゴンを用い、アルゴン流量を30sccmの一定値に保ちながら、酸素流量を変化させることで、酸素分圧を変えた。なお、図1および図2では、便宜的に、酸素分圧に換算するまえの酸素流量を横軸にとっている。また、プラズマの放射電流は100Aの一定値に保った。また、酸化亜鉛膜の成膜厚みは、ほぼ200nmで一定とした。なお、酸化亜鉛膜が成膜される被成膜材料は、ガラス基板を用いた。
【0026】
実験のデータ数等が必ずしも十分ではないものの、図2のGaのみを添加した実験では、酸素流量が増すに連れて、移動度およびキャリア密度がいずれも低下する傾向が見られるのに対して、図1のGaおよびSiを同時添加した実験では、移動度とキャリア密度は明らかに異なる挙動を示しており、より詳細に見ると、キャリア密度は酸素流量の増加に伴って図2の場合と同様に低下する傾向を示しているのに対して、移動度は酸素流量の変化に関わらずほぼ一定の値を示していると見ることができる。
【0027】
上記の実験結果について考察する。
【0028】
成膜される酸化亜鉛膜には、通常、格子欠陥が存在する。この格子欠陥の形態は、種々のケースが考えられるが、代表的なものとして結晶格子中の酸素元素が抜け落ちることによる空隙の生成を挙げることができる。そして、この空隙にキャリアがトラップされることでキャリアの移動度が低下する。
【0029】
このとき、本発明の実験(図1)では、添加されるSiが上記の空隙に配置し、空隙が減少することでキャリアの移動度が回復するものと考えられる。
【0030】
図1および図2における移動度の挙動の違いは上記の機構により説明できる。なお、この場合、成膜材料粒子の運動速度がイオンプレーティグ法に比べて大きいとされるスパッタ法で酸化亜鉛膜を成膜する場合、格子欠陥がより多く発生し、上記の移動度の挙動の違いがより顕著に現われることが予測される。
【0031】
一方、キャリア密度については、Siは特別に関与することはなく、このため、図1および図2いずれにおいても、同一の挙動を示している。
【0032】
なお、図1の実験では、SiをGaと同一量添加したため、Siが過剰であることが移動度やキャリア密度に影響し、得られた実験データのばらつきとなっていることが考えられ、Siの添加量を低減することにより、よりばらつきの少ないデータが得られるものと考えられる。
【0033】
上記の傾向は、ドーピング作用機構上、上記Gaに関わらず他のAl、InまたはB等の第3族元素を用いた場合にも発現し、また、これらの元素の酸化物であるAl、Ga、InまたはBを用いた場合にも発現するものと考えられる。同様に、Siに変えてSiO、等のケイ素酸化物を用いた場合にも上記の傾向が発現するものと考えられる。
【0034】
上記の知見に鑑み、本実施の形態例に係る酸化亜鉛の製造方法は、成膜室で、ドーパントとともに酸化亜鉛を被成膜材料に付着させて酸化亜鉛膜を形成する酸化亜鉛膜の製造方法において、ドーパントとして第3族元素またはその酸化物およびケイ素またはその酸化物を同時にドーピングして、得られる酸化亜鉛膜の電子移動度を制御する。
【0035】
これにより、Siの添加量に応じて酸化亜鉛膜の結晶欠陥が軽減され、所定の電子移動度を有する酸化亜鉛膜を得ることができる。
【0036】
また、本実施の形態例に係る酸化亜鉛の製造方法は、予め把握した、ドーパントの所定のドーピング量における酸化亜鉛膜の電子移動度と成膜室の酸素分圧の関係に基づいて、酸素分圧を調整して電子移動度を制御する。
【0037】
これにより、酸素分圧を精密に調整することで電子移動度を精密に制御することができる。
【0038】
また、本実施の形態例に係る酸化亜鉛の製造方法は、ドーパントのドーピング量および成膜室の酸素分圧を調整して、電子移動度および電子密度のバランスを制御する。
【0039】
これにより、電子移動度をほぼ同一にした状態で電子密度のみを変化させることができるため、従来の酸化亜鉛膜とは異なる半導体特性を有する酸化亜鉛膜を得ることができる。
【0040】
また、本実施の形態例に係る酸化亜鉛の製造方法は、イオンプレーティング法によって酸化亜鉛膜を形成する。
【0041】
酸化亜鉛膜は、ノンドープの条件において、例えばスパッタ法で成膜したものは結晶欠陥が比較的多いと考えられるが、これに対してイオンプレーティング法で成膜したものは結晶欠陥が比較的少ないと考えられる。このため、良好な結晶骨格構造をベースとして本発明のドーピング効果をより安定的に発現することができる。
【0042】
なお、本実施の形態例に係る酸化亜鉛膜の製造方法において、成膜法は、特に限定するものではなく、スパッタ法や、真空蒸着法を用いることもできる。
【0043】
【発明の効果】
本発明に係る酸化亜鉛膜の製造方法によれば、成膜室で、ドーパントとともに酸化亜鉛を被成膜材料に付着させて酸化亜鉛膜を形成する酸化亜鉛膜の製造方法において、ドーパントとして第3族元素またはその酸化物およびケイ素またはその酸化物を同時にドーピングして、得られる酸化亜鉛膜の電子移動度を制御するため、所定の電子移動度を有する酸化亜鉛膜を得ることができる。
【0044】
また、本発明に係る酸化亜鉛膜の製造方法によれば、予め把握した、ドーパントの所定のドーピング量における酸化亜鉛膜の電子移動度と成膜室の酸素分圧の関係に基づいて、酸素分圧を調整して前記電子移動度を制御するため、電子移動度を精密に制御することができる。
【0045】
また、本発明に係る酸化亜鉛膜の製造方法によれば、ドーパントのドーピング量および成膜室の酸素分圧を調整して、電子移動度および電子密度のバランスを制御するため、従来の酸化亜鉛膜とは異なる半導体特性を有する酸化亜鉛膜を得ることができる。
【0046】
また、本発明に係る酸化亜鉛膜の製造方法によれば、イオンプレーティング法によって酸化亜鉛膜を形成するため、良好な結晶骨格構造をベースとしてドーピング効果を好適に発現することができる。
【図面の簡単な説明】
【図1】本実施の形態例に係る酸化亜鉛膜の製造方法により得られる酸化亜鉛膜の移動度およびキャリア密度と酸素流量との関係を示す図である。
【図2】比較例の酸化亜鉛膜の製造方法により得られる酸化亜鉛膜の移動度およびキャリア密度と酸素流量との関係を示す図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a zinc oxide film.
[0002]
[Prior art]
The zinc oxide film has an advantage that it can be manufactured at low cost, though it has a higher specific resistance than the ITO film.
[0003]
For this reason, when a zinc oxide film is used as a transparent electrode material, a zinc oxide is doped with a Group 3 element such as Al or Ga as a dopant (doping), and a film having a low specific resistance (hereinafter also referred to as an oxide unless otherwise specified) It is widely performed to form a zinc film.
[0004]
Further, in this case, there has been proposed a method of adding 0.01 to 1.5 mol% of silicon dioxide together with gallium to a sputtering target containing zinc oxide as a main component and performing sputtering. According to this method, even when moisture in the deposition chamber is taken into the zinc oxide film during the deposition process, the silicon dioxide is strongly bonded to the moisture and the generation of protons is suppressed, so that moisture resistance is reduced. It is described that the properties are improved and the electrical characteristics of the zinc oxide film can be prevented from deteriorating (see Patent Document 1).
[0005]
Separately, a technique has been proposed in which a sputtering target is doped with a dopant selected from a group containing silicon together with a Group 3 element or a Group 5 element. According to this technique, a low-resistance zinc oxide-based transparent electrode film can be stably manufactured (see Patent Document 2).
[0006]
[Patent Document 1]
JP-A-8-111123
[Patent Document 2]
Japanese Patent Application Laid-Open No. 2000-40429
[Problems to be solved by the invention]
However, the above-mentioned conventional techniques using silicon dioxide in combination with a group 3 element or a group 5 element usually used as a dopant are all aimed at improving the specific resistance as a characteristic of a zinc oxide film, No approach has been taken that regards the zinc oxide film as a semiconductor.
[0009]
That is, no studies have been made directly focusing on the mobility and carrier density of the zinc oxide film. For this reason, naturally, the concept of controlling the mobility and the carrier density by adjusting the operation factor in the method for manufacturing the zinc oxide film is not found in the above-described conventional technology.
[0010]
When a zinc oxide film is used as a transparent electrode in a display device or the like, the zinc oxide film usually has the necessary transparency. Therefore, in extreme cases, it is only necessary to obtain a film having a specific resistance as low as possible. It can be said that.
[0011]
On the other hand, when considering the use of an inexpensive zinc oxide film as an electrode of a solar cell or a semiconductor of a thin film transistor, for example, the mobility is preferably as high as possible in the characteristics of these devices. Therefore, the carrier density must be low.
[0012]
Therefore, in developing a new use of the zinc oxide film as described above, the concept of controlling the mobility and the carrier density seems to be essential.
[0013]
The present invention has been made in view of the above problems, and has as its object to provide a method for manufacturing a zinc oxide film capable of obtaining a zinc oxide film having a predetermined electron mobility.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, a method of manufacturing a zinc oxide film according to the present invention is directed to a method of manufacturing a zinc oxide film in which a zinc oxide film is formed by attaching zinc oxide together with a dopant to a material to be formed in a film forming chamber. Wherein the group III element or its oxide and silicon or its oxide are simultaneously doped as the dopant to control the electron mobility of the resulting zinc oxide film.
[0015]
Thereby, crystal defects of the zinc oxide film are reduced according to the amount of silicon (Si) added, and a zinc oxide film having a predetermined electron mobility can be obtained.
[0016]
In this case, based on the relationship between the electron mobility of the zinc oxide film at a predetermined doping amount of the dopant and the oxygen partial pressure of the film formation chamber, the oxygen partial pressure is adjusted to control the electrons. By precisely adjusting the oxygen partial pressure, the electron mobility can be precisely controlled.
[0017]
In this case, if the doping amount of the dopant and the oxygen partial pressure of the film forming chamber are adjusted to control the balance between the electron mobility and the electron density, only the electron density is kept in a state where the electron mobility is almost the same. Can be changed, so that a zinc oxide film having semiconductor characteristics different from those of a conventional zinc oxide film can be obtained.
[0018]
Further, in this case, when the zinc oxide film is formed by the ion plating method, the doping effect can be suitably exhibited based on the good crystal skeleton structure.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
In a preferred embodiment of a method for manufacturing a zinc oxide film according to the present invention (hereinafter, referred to as an embodiment), a case where a zinc oxide film is manufactured using an ion plating method as a film forming method will be described as an example. This will be described below with reference to FIG.
[0020]
In the ion plating method, zinc oxide containing a dopant is disposed as a film-forming material on a hearth or the like serving as an electrode portion provided in a film-forming chamber, and the zinc oxide is irradiated with, for example, argon plasma to apply the zinc oxide. This is a method of heating, evaporating, and forming each zinc oxide particle that has passed through the plasma on a substrate placed at a position facing a hearth or the like.
[0021]
In the ion plating method, for example, the kinetic energy of the particles is smaller than that of the sputtering method, so that when the particles collide, the damage to the substrate and the zinc oxide film deposited on the substrate is small, and the crystallinity is low. It is known that a film having a good quality can be obtained.
[0022]
As described above, the present inventors have focused on the mobility and carrier density, which determine the performance of a zinc oxide film as a semiconductor, and have intensively studied the relationship with the manufacturing conditions. As a result, for example, when Ga as a Group 3 element is used as a dopant and when Si is used together with Ga as a dopant, the electron mobility (hereinafter, simply referred to as mobility) and the electron density (hereinafter, simply referred to as mobility). (Hereinafter simply referred to as carrier density).
[0023]
FIG. 1 shows the relationship between the oxygen partial pressure, the mobility, and the carrier density obtained by an experiment in which 4% by mass of Ga and 4% by mass of Si are simultaneously added as dopants.
[0024]
As a comparative example, FIG. 2 shows the relationship between the oxygen partial pressure, the mobility, and the carrier density obtained in an experiment in which only Ga 4% by mass was added as a dopant.
[0025]
In the above experiment, both FIGS. 1 and 2 used argon as a plasma gas as an operation factor other than the oxygen partial pressure, and changed the oxygen flow while maintaining the argon flow at a constant value of 30 sccm. Changed pressure. In FIGS. 1 and 2, the abscissa represents the oxygen flow rate before conversion into the oxygen partial pressure for convenience. The emission current of the plasma was kept at a constant value of 100A. The thickness of the zinc oxide film was set to be constant at approximately 200 nm. Note that a glass substrate was used as a material on which the zinc oxide film was formed.
[0026]
Although the number of data in the experiment is not always sufficient, in the experiment in which only Ga in FIG. 2 is added, both the mobility and the carrier density tend to decrease as the oxygen flow rate increases, whereas In the experiment in which Ga and Si are simultaneously added in FIG. 1, the mobility and the carrier density clearly show different behaviors. In more detail, the carrier density is similar to that in FIG. 2 with an increase in the oxygen flow rate. It can be seen that the mobility shows a substantially constant value regardless of the change in the oxygen flow rate.
[0027]
Consider the above experimental results.
[0028]
Usually, lattice defects are present in the formed zinc oxide film. Although various forms of the lattice defect can be considered, a typical example is the formation of a void due to the dropout of an oxygen element in the crystal lattice. Then, the carriers are trapped in the voids, so that the mobility of the carriers is reduced.
[0029]
At this time, in the experiment of the present invention (FIG. 1), it is considered that Si to be added is arranged in the above-mentioned gap, and the mobility of the carrier is recovered by reducing the gap.
[0030]
The difference in the mobility behavior between FIG. 1 and FIG. 2 can be explained by the above mechanism. In this case, when the zinc oxide film is formed by the sputtering method in which the motion speed of the film forming material particles is assumed to be higher than that of the ion plating method, more lattice defects are generated, and the mobility behavior described above is caused. It is expected that the differences will be more pronounced.
[0031]
On the other hand, regarding the carrier density, Si is not particularly involved, and therefore, the same behavior is shown in both FIG. 1 and FIG.
[0032]
In the experiment of FIG. 1, since the same amount of Si as Ga was added, it is considered that the excess of Si affects the mobility and carrier density, resulting in variations in the obtained experimental data. It is considered that by reducing the addition amount of, data with less variation can be obtained.
[0033]
Due to the doping action mechanism, the above tendency also appears when other Group 3 elements such as Al, In, or B are used irrespective of Ga, and the oxides of these elements, Al 2 O 3 , Ga 2 O 3 , In 2 O 3, or B 2 O 3 are also considered to occur. Similarly, it is considered that the above tendency is exhibited when a silicon oxide such as SiO 2 is used instead of Si.
[0034]
In view of the above findings, a method for manufacturing a zinc oxide film according to the present embodiment is a method for manufacturing a zinc oxide film in which a zinc oxide film is formed by attaching zinc oxide to a material to be formed with a dopant in a film formation chamber. , A group III element or its oxide and silicon or its oxide are simultaneously doped as dopants to control the electron mobility of the resulting zinc oxide film.
[0035]
Thereby, crystal defects of the zinc oxide film are reduced according to the amount of Si added, and a zinc oxide film having a predetermined electron mobility can be obtained.
[0036]
In addition, the method for producing zinc oxide according to the present embodiment is based on the relationship between the electron mobility of the zinc oxide film and the oxygen partial pressure of the deposition chamber at a predetermined doping amount of the dopant. Adjust the pressure to control the electron mobility.
[0037]
Thus, the electron mobility can be precisely controlled by precisely adjusting the oxygen partial pressure.
[0038]
Further, in the method for manufacturing zinc oxide according to the present embodiment, the balance between the electron mobility and the electron density is controlled by adjusting the doping amount of the dopant and the oxygen partial pressure in the deposition chamber.
[0039]
Accordingly, only the electron density can be changed while keeping the electron mobility substantially the same, so that a zinc oxide film having semiconductor characteristics different from those of a conventional zinc oxide film can be obtained.
[0040]
In the method for manufacturing zinc oxide according to the present embodiment, a zinc oxide film is formed by an ion plating method.
[0041]
Under the non-doped condition, a zinc oxide film formed by, for example, a sputtering method is considered to have relatively many crystal defects, whereas a film formed by an ion plating method has relatively few crystal defects. it is conceivable that. For this reason, the doping effect of the present invention can be more stably exhibited based on a good crystal skeleton structure.
[0042]
Note that, in the method for manufacturing a zinc oxide film according to this embodiment, the film formation method is not particularly limited, and a sputtering method or a vacuum evaporation method can also be used.
[0043]
【The invention's effect】
According to the method for manufacturing a zinc oxide film according to the present invention, in the method for manufacturing a zinc oxide film in which a zinc oxide film is formed by attaching zinc oxide together with a dopant to a material to be formed in a film forming chamber, Since a group element or its oxide and silicon or its oxide are simultaneously doped to control the electron mobility of the obtained zinc oxide film, a zinc oxide film having a predetermined electron mobility can be obtained.
[0044]
Further, according to the method for manufacturing a zinc oxide film of the present invention, the oxygen content is determined based on the relationship between the electron mobility of the zinc oxide film and the oxygen partial pressure of the film formation chamber at a predetermined doping amount of the dopant, which is grasped in advance. Since the electron mobility is controlled by adjusting the pressure, the electron mobility can be precisely controlled.
[0045]
Further, according to the method for manufacturing a zinc oxide film according to the present invention, the conventional zinc oxide is used to control the balance between the electron mobility and the electron density by adjusting the doping amount of the dopant and the oxygen partial pressure of the film formation chamber. A zinc oxide film having semiconductor characteristics different from that of the film can be obtained.
[0046]
Further, according to the method for manufacturing a zinc oxide film of the present invention, since the zinc oxide film is formed by the ion plating method, the doping effect can be suitably exhibited based on a good crystal skeleton structure.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between mobility and carrier density and oxygen flow rate of a zinc oxide film obtained by a method for manufacturing a zinc oxide film according to an embodiment of the present invention.
FIG. 2 is a diagram showing the relationship between the mobility and carrier density of a zinc oxide film obtained by a method for manufacturing a zinc oxide film of a comparative example and the oxygen flow rate.

Claims (4)

成膜室で、ドーパントとともに酸化亜鉛を被成膜材料に付着させて酸化亜鉛膜を形成する酸化亜鉛膜の製造方法において、
該ドーパントとして第3族元素またはその酸化物およびケイ素またはその酸化物を同時にドーピングして、得られる酸化亜鉛膜の電子移動度を制御することを特徴とする酸化亜鉛膜の製造方法。
In a method for manufacturing a zinc oxide film, a zinc oxide film is formed by attaching zinc oxide to a material to be formed with a dopant in a deposition chamber.
A method for producing a zinc oxide film, comprising simultaneously doping a Group III element or its oxide and silicon or its oxide as the dopant to control the electron mobility of the resulting zinc oxide film.
予め把握した、前記ドーパントの所定のドーピング量における酸化亜鉛膜の電子移動度と前記成膜室の酸素分圧の関係に基づいて、酸素分圧を調整して前記電子移動度を制御することを特徴とする請求項1記載の酸化亜鉛膜の製造方法。Controlling the electron mobility by adjusting the oxygen partial pressure based on the relationship between the electron mobility of the zinc oxide film and the oxygen partial pressure of the film formation chamber at a predetermined doping amount of the dopant, grasped in advance. The method for producing a zinc oxide film according to claim 1, wherein: 前記ドーパントのドーピング量および前記成膜室の酸素分圧を調整して、前記電子移動度および電子密度のバランスを制御することを特徴とする請求項2記載の酸化亜鉛膜の製造方法。3. The method according to claim 2, wherein a balance between the electron mobility and the electron density is controlled by adjusting a doping amount of the dopant and an oxygen partial pressure of the film forming chamber. イオンプレーティング法によって酸化亜鉛膜を形成することを特徴とする請求項1〜3のいずれか1項に記載の酸化亜鉛膜の製造方法。The method for producing a zinc oxide film according to any one of claims 1 to 3, wherein the zinc oxide film is formed by an ion plating method.
JP2003085653A 2003-03-26 2003-03-26 Zinc oxide film manufacturing method Pending JP2004292873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003085653A JP2004292873A (en) 2003-03-26 2003-03-26 Zinc oxide film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003085653A JP2004292873A (en) 2003-03-26 2003-03-26 Zinc oxide film manufacturing method

Publications (1)

Publication Number Publication Date
JP2004292873A true JP2004292873A (en) 2004-10-21

Family

ID=33400527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003085653A Pending JP2004292873A (en) 2003-03-26 2003-03-26 Zinc oxide film manufacturing method

Country Status (1)

Country Link
JP (1) JP2004292873A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006090806A1 (en) * 2005-02-24 2008-07-24 積水化学工業株式会社 Gallium-containing zinc oxide
WO2009145152A1 (en) * 2008-05-27 2009-12-03 株式会社カネカ Transparent conductive film and method for producing the same
WO2010090101A1 (en) * 2009-02-06 2010-08-12 株式会社カネカ Thin film photoelectric conversion device and manufacturing method therefor
JP2011009719A (en) * 2009-05-29 2011-01-13 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
KR101078231B1 (en) * 2009-02-23 2011-11-01 주식회사 앰트 Manufacturing method of metal separator for polymer electrolyte fuel cell coated with conductive metal oxide
EP2571032A4 (en) * 2010-05-14 2017-09-06 LINTEC Corporation Zinc oxide-based conductive multilayer structure, process for producing same, and electronic device
US11011673B2 (en) 2018-07-24 2021-05-18 Samsung Electronics Co., Ltd. Quantum dot device and display device
US11094909B2 (en) 2013-12-26 2021-08-17 Japan Science And Technology Agency Thin film of metal oxide, organic electroluminescent device including the thin film, photovoltaic cell including the thin film and organic photovoltaic cell including the thin film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006090806A1 (en) * 2005-02-24 2008-07-24 積水化学工業株式会社 Gallium-containing zinc oxide
WO2009145152A1 (en) * 2008-05-27 2009-12-03 株式会社カネカ Transparent conductive film and method for producing the same
WO2010090101A1 (en) * 2009-02-06 2010-08-12 株式会社カネカ Thin film photoelectric conversion device and manufacturing method therefor
JPWO2010090101A1 (en) * 2009-02-06 2012-08-09 株式会社カネカ Thin film photoelectric conversion device and manufacturing method thereof
KR101078231B1 (en) * 2009-02-23 2011-11-01 주식회사 앰트 Manufacturing method of metal separator for polymer electrolyte fuel cell coated with conductive metal oxide
JP2011009719A (en) * 2009-05-29 2011-01-13 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
US8872171B2 (en) 2009-05-29 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9947797B2 (en) 2009-05-29 2018-04-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
EP2571032A4 (en) * 2010-05-14 2017-09-06 LINTEC Corporation Zinc oxide-based conductive multilayer structure, process for producing same, and electronic device
US11094909B2 (en) 2013-12-26 2021-08-17 Japan Science And Technology Agency Thin film of metal oxide, organic electroluminescent device including the thin film, photovoltaic cell including the thin film and organic photovoltaic cell including the thin film
US11011673B2 (en) 2018-07-24 2021-05-18 Samsung Electronics Co., Ltd. Quantum dot device and display device

Similar Documents

Publication Publication Date Title
US8062777B2 (en) Semiconductor thin film and process for producing the same
JP2019176177A (en) Semiconductor device
JP2004292873A (en) Zinc oxide film manufacturing method
JP4164068B2 (en) Controlling the stoichiometry and morphology of silver selenide films in sputter deposition.
US20150011047A1 (en) Method for fabricating igzo layer and tft
JP3615647B2 (en) Method for producing transparent conductive film and transparent conductive film
JP2004292839A (en) Zinc oxide film manufacturing method
TW201526118A (en) Semiconductor device and method for manufacturing semiconductor device
JP5035857B2 (en) Low resistance ITO thin film and manufacturing method thereof
JP2000273617A (en) Production of transparent electrically conductive film
KR20090012198A (en) Method for making metal nano particle
JPH07106615A (en) Transparent conductive film and production of photoelectric conversion semiconductor device
WO2009144492A2 (en) Improved physical vapour deposition processes
JP2003188100A (en) Amorphous ferrosilicide film exhibiting semiconductor characteristic and its forming method
US9219254B2 (en) Method of forming nanocrystals and method of manufacturing an organic light-emitting display apparatus including a thin film having nanocrystals
JP2004059964A (en) Transparent conductive film and method for manufacturing the same
JP2005226131A (en) Method for manufacturing zinc oxide film
JP3660980B2 (en) Method for producing zinc oxide-based thin film material
JP5632135B2 (en) Method for forming ZnO film
JPH05279846A (en) Target for sputtering and formation of sputtered tion film
JP2004247060A (en) Transparent conductive oxide complex as well as solar cell and display device using the same
JP2010077453A (en) Target for sputtering, transparent conductive film using the same and method of manufacturing the same
JP2008186737A (en) Zinc oxide-based transparent conductive film and its manufacturing method
JPH0753902B2 (en) Method of manufacturing oxide thin film
Kirkpatrick et al. Amorphous Silicon Films for Solar Cells by Ionized Cluster Beam Deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050408

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408