JP2004292839A - Zinc oxide film manufacturing method - Google Patents

Zinc oxide film manufacturing method Download PDF

Info

Publication number
JP2004292839A
JP2004292839A JP2003083050A JP2003083050A JP2004292839A JP 2004292839 A JP2004292839 A JP 2004292839A JP 2003083050 A JP2003083050 A JP 2003083050A JP 2003083050 A JP2003083050 A JP 2003083050A JP 2004292839 A JP2004292839 A JP 2004292839A
Authority
JP
Japan
Prior art keywords
zinc oxide
oxide film
partial pressure
film
electron density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003083050A
Other languages
Japanese (ja)
Inventor
Tetsuya Yamamoto
哲也 山本
Toshiyuki Sakami
俊之 酒見
Sho Shirakata
祥 白方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2003083050A priority Critical patent/JP2004292839A/en
Publication of JP2004292839A publication Critical patent/JP2004292839A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zinc oxide film manufacturing method capable of controlling the electron density. <P>SOLUTION: A zinc oxide film is manufactured in a film deposition chamber by depositing zinc oxide on a material for film deposition by using group three elements or oxides thereof as a dopant. The predetermined electron density is obtained by adjusting the partial pressure of oxygen on the basis of the relationship between the pre-grasped electron density of the zinc oxide film and the partial pressure of oxygen in the film deposition chamber. The partial pressure of oxygen is adjusted on the basis of the negative correlation formula between the electron density and the partial pressure of oxygen in a predetermined electron density range of ≥ 8×10<SP>20</SP>/cm<SP>3</SP>. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、酸化亜鉛膜の製造方法に関する。
【0002】
【従来の技術】
酸化亜鉛膜は、ITO膜に比べると比抵抗が高い。このため、酸化亜鉛にAlやGa等の第3族元素をドーパントとして添加して比抵抗の低い膜を得ることが広く行われている。
【0003】
そして、比抵抗の低い膜を得るための製造条件として、例えば、スパッタ法で酸化亜鉛膜を主成分とする透明導電膜(以下、これも酸化亜鉛膜という。)を得る場合、無酸素雰囲気中で酸化亜鉛膜を成膜することが広く行われている。
【0004】
一方、比抵抗の高い絶縁性の酸化亜鉛膜を得るには、酸素雰囲気中で酸化亜鉛膜を成膜したり、Ni等の元素を添加して成膜することが広く行われている。
【0005】
また、イオンプレーティング法で比抵抗の低い酸化亜鉛膜を成膜する場合、上記Ga等の第3族元素を添加することで2×10−4Ωcm台の低い比抵抗の酸化亜鉛膜が得られることが知られている。
【0006】
ところで、例えば、化合物半導体を光吸収層に用いた薄膜太陽電池において、表面(上面)電極として、安価な酸化亜鉛膜を用いることが検討されている。この場合、酸化亜鉛膜は、光照射によって光吸収層内に生成した電子−正孔対のうちの電子を効率的に運搬するために比抵抗が低いことが求められるとともに、光吸収層に効率的に光を通すために光の透過率が高いことが求められる。
【0007】
一般に、透明電極が可視領域で透明であるためには、基礎吸収端が約0.4μm以下(光学ギャップが3eV以上)でなければならない。言いかえれば、光透過範囲の短波長(紫外領域)側の限界は、透明電極の材料が有する固有の光学ギャップ(バンドギャップ)によって一義的に決定されるものであり、酸化亜鉛膜の場合、光学ギャップは、約3.4eVである。
【0008】
これに対して、光透過範囲の長波長(赤外領域)側の限界は、光が強く吸収されるプラズマ共鳴波長によって決定される。このプラズマ共鳴波長は、キャリア密度(自由電子密度)の関数である。例えば金属(バルク)の場合、キャリア密度は1022/cm程度と高いため、プラズマ共鳴波長は紫外領域となり光が全反射する。一方、半導体の場合、キャリア密度は1020〜1021/cm程度であり、プラズマ共鳴波長が赤外領域に止まるため、可視域では透明となる。
【0009】
このため、透過率の高い膜を得るには、キャリア密度をある程度低くすることが必要となるが、この場合、通常、比抵抗の値が高くなることを避けることができない。
【0010】
【発明が解決しようとする課題】
上記の透明電極の光透過性についての周知の知見から、酸化亜鉛膜の比抵抗や光透過率等の特性に関して、キャリア密度に着目することが有意と考えられるが、従来、酸化亜鉛膜については、このようなアプローチはほとんど行われていないものと思われる。
【0011】
また、キャリア密度を制御することによって透過率と比抵抗を所定のバランスに制御することができる可能性があることも分かるが、このようなアプローチも酸化亜鉛膜については行われていない。
【0012】
本発明は、上記の課題に鑑みてなされたものであり、電子密度を制御することができる酸化亜鉛膜の製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る酸化亜鉛膜の製造方法は、成膜室で、ドーパントとして第3族元素またはその酸化物を用いて酸化亜鉛を被成膜材料に付着させて酸化亜鉛膜を形成する酸化亜鉛膜の製造方法において、予め把握した酸化亜鉛の電子密度と成膜室の酸素分圧の関係に基づいて、酸素分圧を調整して所定の電子密度を得ることを特徴とする。
【0014】
これにより、酸化亜鉛膜の電子密度を制御することができる。また、電子密度を制御することを通じて、膜の透過率や比抵抗を、さらには、透過率と比抵抗のバランスを制御することができ、膜特性についての広範囲な要請に応じることが可能となる。
【0015】
この場合、前記所定の電子密度が8×1020/cm以上の範囲において、前記電子密度と前記酸素分圧の負相関式に基づいて酸素分圧を調整して所定の電子密度を得ると、好適である。ここで、所定の電子密度の上限は、ドーパントを添加して得られる電子密度増加の限界として実質的に定まるものであり、例えば1022/cm程度である。
【0016】
また、この場合、イオンプレーティング法により成膜して前記酸化亜鉛膜を形成すると、本発明の効果を好適に奏することができる。
【0017】
また、この場合、前記第3族元素がAl、Ga、InまたはBであり、前記酸化物がAl、Ga、InまたはBであると好適である。
【0018】
【発明の実施の形態】
本発明に係る酸化亜鉛膜の製造方法の好適な実施の形態(以下、本実施の形態例という。)について、成膜法としてイオンプレーティング法を用いて酸化亜鉛膜を製造する場合を例にとり、図を参照して、以下に説明する。
【0019】
イオンプレーティング法は、成膜室に配設した電極部としてのハース等に、成膜材料として、ドーパントを含有する酸化亜鉛を配置し、この酸化亜鉛に例えばアルゴンプラズマを照射して酸化亜鉛を加熱し、蒸発させ、プラズマを通過した酸化亜鉛の各粒子をハース等に対向する位置に置かれた基板に成膜する方法である。
【0020】
イオンプレーティング法は、例えばスパッタ法に比べて、粒子の持つ運動エネルギが小さいため、粒子が衝突するときに基板や基板に積層して成膜される酸化亜鉛膜に与えるダメージが小さく、結晶性の良好な膜が得られることが知られている。
【0021】
本発明者等は、前記のように、酸化亜鉛膜の半導体としての性能を規定する電子密度(以下、キャリア密度という。)に着目し、製造条件との関係について鋭意検討した。その結果、主要な操作因子である成膜室の酸素分圧がキャリア密度と有意な関係があることを見出した。
【0022】
図1に、実験によって得られた酸素分圧とキャリア密度の関係を示す。また、図2には、キャリア密度と合わせて測定した導電率と酸素分圧との関係を示す。
【0023】
上記の実験では、酸素分圧以外の操作因子として、プラズマガスとしてアルゴンを用い、アルゴン流量を30sccmの一定値に保ちながら、酸素流量を0〜30sccmの範囲内で変化させることで、酸素分圧を変えた。また、プラズマの放射電流は100Aの一定値に保った。また、キャリアをドーピングするドーパントとして酸化ガリウム(Ga)を2、3、4質量%の3水準で酸化亜鉛(ZnO)に添加したターゲット(成膜材料)を調製して用いた。また、酸化亜鉛膜の成膜厚みは、ほぼ200nmで一定とした。なお、酸化亜鉛膜が成膜される被成膜材料は、無アルカリガラス基板を用いた。
【0024】
図1および図2より、酸素分圧とキャリア密度の間には、酸素分圧が約1.5×10−4Torrの付近に変曲点を有するほぼ二次曲線状の有意な関係があることが分かる。また、図2より、酸素分圧と導電率との間にも同様の関係があることが分かる。
【0025】
ここで、酸素分圧とキャリア密度の関係を定量化することを目的として、また、後述する理由により、図1においてプロットした酸素分圧4×10−2Torr以上のときのキャリア密度のデータを省略するとともに、図1および図2にプロットされていない酸素分圧0Torr近傍(0.0035Pa)のときのキャリア密度のデータを加えて各データをプロットした結果を図3に示す。
【0026】
前記のように、酸化亜鉛膜の成膜に関して、酸化亜鉛膜を半導体として捉えてそのキャリア密度等の特性を検討することは従来行われていない。また、同様に、この成膜現象を化学平衡論的観点からアプローチすることも従来は行われていないように思われる。
【0027】
本発明者等は、上記の点に着目し、化学平衡論的観点からのアプローチの妥当性について下記の要領で検討した。
【0028】
化学平衡論的アプローチが可能と仮定すると、下記式で示す反応式を得ることができる。
【0029】
Ga→2GaZn+2e+2O+1/2O
上記の反応式において、GaZnは結晶格子のZnの位置に置換したGaを、Oは結晶格子の酸素の位置を占有する酸素を、Oは気相中の酸素をそれぞれ示す。
【0030】
そして、上記の反応式から、下記の平衡式が得られる。
【0031】
[Ga] /([GaZn[eo2 1/2)=K (a)
上記平衡式においてKは平衡定数(化学平衡定数)を示す。なお、平衡式において[O]の項が含まれていないのは、[O]はキャリア生成に寄与しないためである。また、 [Ga]は定数項として式から除外でき、 [GaZn] および[e]は、それぞれキャリア生成に等価的に寄与することから、さらに下記式を導くことができる。
【0032】
[eo2 1/2=[Ga]o2 1/2=K (b)
∴[e=[Ga]=K・Po2 ―1/2 (c)
∴[e]=[Ga]=K・Po2 ―1/8 (d)
上記式(d)より、[e]、言いかえれば、ドーピングされるキャリア密度は、酸素濃度の−1/8乗に比例することがわかる。
【0033】
図3において、酸素分圧とキャリア密度は負相関関係にある。さらにその関係を詳細に見ると、図3に挿入した、上記式(d)の酸素分圧の指数である−1/8乗に相当する勾配と、データ群の勾配とが近似する結果が得られた。上記式(d)では、Gaに比べて少ないものの、過剰なZnやO空隙からも生じ得るキャリアを考慮していないことによる誤差の存在や、使用した実験データ数が必ずしも十分でない点を含め、定量的な評価を厳密に行うまでには至っていないものの、上記した化学平衡論的アプローチの妥当性、および、それに基づく酸素分圧とキャリア密度の関係の把握の妥当性はある程度検証できたものと思われる。
【0034】
さらに、上記の知見から、成膜材料である酸化亜鉛に添加する成分として、GaのみでなくGaを、さらにまた、GaやGaのみでなく、Al、In、B、AlInまたはBを用いた場合においても酸素分圧とキャリア密度についての上記の関係を適用することができるものと思われる。
【0035】
ここで、上記の関係を検討するに際して酸素分圧4×10−2Torr以上のときのキャリア密度のデータを除いた理由を説明する。
【0036】
一般に、酸素分圧が過大な領域では、亜鉛の空孔が誘導され、これがキャリア(ドナー)を捕獲し、消費するいわゆるドナーキラーという現象を生じ、膜内のキャリア密度が急激に減少することが知られている。そして、本実験においても、酸素分圧4×10−2Torr以上の領域では、このドナーキラーの現象が現れているものと考えられる。ドナーキラーの現象が現れている領域では、当然に上記の平衡論的なアプローチを行うことはできない。このため、平衡論的なアプローチを行う前提としてドナーキラーの現象が現れている領域のデータを除いたものである。
【0037】
上記の新たな知見に基づき、本実施の形態例に係る酸化亜鉛膜の製造方法は、成膜室で、ドーパントとして第3族元素またはその酸化物を用いて酸化亜鉛を被成膜材料に付着させて酸化亜鉛膜を形成する酸化亜鉛膜の製造方法において、予め把握した酸化亜鉛膜のキャリア密度と成膜室の酸素分圧の関係に基づいて、酸素分圧を調整して所定のキャリア密度を有する酸化亜鉛膜(ドーピング酸化亜鉛膜)を得るものである。
【0038】
このとき、第3族元素として、好適にはAl、Ga、InまたはBを用い、酸化物として、好適にはAl、Ga、InまたはBを用いる。
【0039】
上記本実施の形態例に係る酸化亜鉛膜の製造方法により、成膜するときの成膜室の酸素分圧を制御することにより酸化亜鉛膜のキャリア密度を精密に制御することができる。また、キャリア密度を精密に制御することを通じて、膜の透過率や比抵抗を、さらには、透過率と比抵抗のバランスを制御することができ、例えばTFT(薄膜トランジスタ)の活性半導体層や太陽電池の電極等に酸化亜鉛膜を用いる場合等の膜特性についての広範囲な要請に応じることが可能となる。
【0040】
また、本実施の形態例に係る酸化亜鉛膜の製造方法において、所定のキャリア密度が8×1020/cm以上の範囲で、キャリア密度と酸素分圧の負相関式に基づいて酸素分圧を調整すると、より精密にキャリア密度を制御することができる。特に、酸化亜鉛膜の広範な用途を検討する場合において、膜の透明性および非抵抗を実用的に許容できる範囲は、8×1020/cm以上で例えば1021〜1022/cm以下の範囲のキャリア密度に対応するものと考えられるため、この範囲のキャリア密度を精密に制御することは有用である。
【0041】
また、本実施の形態例に係る酸化亜鉛膜の製造方法において、成膜法は、特に限定するものではなく、スパッタ法や、真空蒸着法を用いることもできるが、より好ましくは、イオンプレーティング法により成膜する。
【0042】
【発明の効果】
本発明に係る酸化亜鉛膜の製造方法によれば、成膜室で、ドーパントとして第3族元素またはその酸化物を用いて酸化亜鉛を被成膜材料に付着させて酸化亜鉛膜を形成する酸化亜鉛膜の製造方法において、予め把握した酸化亜鉛の電子密度と成膜室の酸素分圧の関係に基づいて、酸素分圧を調整して所定の電子密度を得るため、酸化亜鉛膜の電子密度を精密に制御することができる。また、電子密度を精密に制御することを通じて、膜の透過率や比抵抗を、さらには、透過率と比抵抗のバランスを制御することができ、膜特性についての広範囲な要請に応じることが可能となる。
【図面の簡単な説明】
【図1】酸素分圧とキャリア密度の関係を示す図である。
【図2】酸素分圧と導電率の関係を示す図である。
【図3】図1のデータを一部削除等して示す図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a zinc oxide film.
[0002]
[Prior art]
The zinc oxide film has a higher specific resistance than the ITO film. For this reason, it is widely practiced to add a Group 3 element such as Al or Ga as a dopant to zinc oxide to obtain a film having a low specific resistance.
[0003]
As a manufacturing condition for obtaining a film having a low specific resistance, for example, when a transparent conductive film mainly containing a zinc oxide film (hereinafter, also referred to as a zinc oxide film) is obtained by a sputtering method, an oxygen-free atmosphere is used. It is widely practiced to form a zinc oxide film.
[0004]
On the other hand, in order to obtain an insulating zinc oxide film having a high specific resistance, it is widely practiced to form a zinc oxide film in an oxygen atmosphere or to add an element such as Ni.
[0005]
When a zinc oxide film having a low specific resistance is formed by an ion plating method, a zinc oxide film having a low specific resistance of the order of 2 × 10 −4 Ωcm is obtained by adding a Group 3 element such as Ga. Is known to be.
[0006]
By the way, for example, in a thin film solar cell using a compound semiconductor for a light absorption layer, use of an inexpensive zinc oxide film as a surface (upper surface) electrode is being studied. In this case, the zinc oxide film is required to have a low specific resistance in order to efficiently transport electrons of the electron-hole pairs generated in the light absorbing layer by light irradiation, and to have a high efficiency in the light absorbing layer. It is required that the light transmittance be high in order to transmit light.
[0007]
Generally, in order for a transparent electrode to be transparent in the visible region, the fundamental absorption edge must be about 0.4 μm or less (the optical gap is 3 eV or more). In other words, the limit on the short wavelength (ultraviolet region) side of the light transmission range is uniquely determined by the inherent optical gap (band gap) of the material of the transparent electrode. In the case of a zinc oxide film, The optical gap is about 3.4 eV.
[0008]
On the other hand, the limit on the long wavelength (infrared region) side of the light transmission range is determined by the plasma resonance wavelength at which light is strongly absorbed. This plasma resonance wavelength is a function of the carrier density (free electron density). For example, in the case of metal (bulk), since the carrier density is as high as about 10 22 / cm 3 , the plasma resonance wavelength is in an ultraviolet region, and light is totally reflected. On the other hand, in the case of a semiconductor, the carrier density is about 10 20 to 10 21 / cm 3 , and the plasma resonance wavelength remains in the infrared region, so that the semiconductor is transparent in the visible region.
[0009]
For this reason, in order to obtain a film having a high transmittance, it is necessary to lower the carrier density to some extent, but in this case, it is usually unavoidable to increase the value of the specific resistance.
[0010]
[Problems to be solved by the invention]
From the well-known knowledge about the light transmittance of the transparent electrode, it is considered significant to pay attention to the carrier density with respect to the properties such as the specific resistance and the light transmittance of the zinc oxide film. It seems that such an approach has rarely been implemented.
[0011]
It is also understood that there is a possibility that the transmittance and the specific resistance can be controlled to a predetermined balance by controlling the carrier density. However, such an approach has not been performed for the zinc oxide film.
[0012]
The present invention has been made in view of the above problems, and has as its object to provide a method for manufacturing a zinc oxide film capable of controlling the electron density.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, a method for manufacturing a zinc oxide film according to the present invention is characterized in that in a film formation chamber, zinc oxide is attached to a material to be film-formed by using a group 3 element or an oxide thereof as a dopant. In a method for manufacturing a zinc oxide film for forming a zinc film, it is possible to obtain a predetermined electron density by adjusting an oxygen partial pressure based on a relationship between a previously grasped electron density of zinc oxide and an oxygen partial pressure in a deposition chamber. Features.
[0014]
Thereby, the electron density of the zinc oxide film can be controlled. Further, by controlling the electron density, the transmittance and the specific resistance of the film, and furthermore, the balance between the transmittance and the specific resistance can be controlled, so that it is possible to meet a wide range of requirements regarding the film characteristics. .
[0015]
In this case, when the predetermined electron density is in the range of 8 × 10 20 / cm 3 or more, the predetermined electron density is obtained by adjusting the oxygen partial pressure based on the negative correlation between the electron density and the oxygen partial pressure. Is preferred. Here, the upper limit of the predetermined electron density is substantially determined as the limit of the electron density increase obtained by adding the dopant, and is, for example, about 10 22 / cm 3 .
[0016]
In this case, when the zinc oxide film is formed by ion plating, the effects of the present invention can be suitably exhibited.
[0017]
In this case, it is preferable that the Group 3 element is Al, Ga, In or B, and the oxide is Al 2 O 3 , Ga 2 O 3 , In 2 O 3 or B 2 O 3. .
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
In a preferred embodiment of a method for manufacturing a zinc oxide film according to the present invention (hereinafter, referred to as an embodiment), a case where a zinc oxide film is manufactured using an ion plating method as a film forming method will be described as an example. This will be described below with reference to FIG.
[0019]
In the ion plating method, zinc oxide containing a dopant is disposed as a film-forming material on a hearth or the like serving as an electrode portion provided in a film-forming chamber, and the zinc oxide is irradiated with, for example, argon plasma to apply the zinc oxide. This is a method of heating, evaporating, and forming each zinc oxide particle that has passed through the plasma on a substrate placed at a position facing a hearth or the like.
[0020]
In the ion plating method, for example, the kinetic energy of the particles is smaller than that of the sputtering method, so that when the particles collide, the damage to the substrate and the zinc oxide film deposited on the substrate is small, and the crystallinity is low. It is known that a film having a good quality can be obtained.
[0021]
As described above, the present inventors have focused on the electron density (hereinafter, referred to as carrier density) that defines the performance of a zinc oxide film as a semiconductor, and have intensively studied the relationship with the manufacturing conditions. As a result, it was found that the oxygen partial pressure in the film formation chamber, which is a main operation factor, had a significant relationship with the carrier density.
[0022]
FIG. 1 shows the relationship between the oxygen partial pressure and the carrier density obtained by the experiment. FIG. 2 shows the relationship between the conductivity measured together with the carrier density and the oxygen partial pressure.
[0023]
In the above experiment, argon was used as a plasma gas as an operation factor other than the oxygen partial pressure, and the oxygen flow rate was changed within a range of 0 to 30 sccm while maintaining the argon flow rate at a constant value of 30 sccm. Was changed. The emission current of the plasma was kept at a constant value of 100A. A target (film-forming material) was prepared by adding gallium oxide (Ga 2 O 3 ) as a dopant for doping carriers to zinc oxide (ZnO) at three levels of 2, 3, and 4 mass%. The thickness of the zinc oxide film was set to be constant at approximately 200 nm. Note that a non-alkali glass substrate was used as a material on which the zinc oxide film was formed.
[0024]
1 and 2, there is a significant relationship between the oxygen partial pressure and the carrier density, which is substantially quadratic curve having an inflection point near the oxygen partial pressure of about 1.5 × 10 −4 Torr. You can see that. FIG. 2 also shows that there is a similar relationship between the oxygen partial pressure and the conductivity.
[0025]
Here, for the purpose of quantifying the relationship between the oxygen partial pressure and the carrier density, and for the reason described later, the data of the carrier density at the oxygen partial pressure of 4 × 10 −2 Torr or more plotted in FIG. FIG. 3 shows the results obtained by adding the data of the carrier density when the oxygen partial pressure is near 0 Torr (0.0035 Pa) and not plotted in FIGS. 1 and 2, and plotting each data.
[0026]
As described above, regarding the formation of a zinc oxide film, it has not been conventionally performed to consider the zinc oxide film as a semiconductor and to examine characteristics such as carrier density. Similarly, it seems that conventionally, this film formation phenomenon has not been approached from the viewpoint of chemical equilibrium.
[0027]
The present inventors have paid attention to the above points, and have examined the validity of the approach from the viewpoint of chemical equilibrium in the following manner.
[0028]
Assuming that a chemical equilibrium approach is possible, the following equation can be obtained.
[0029]
Ga 2 O 3 → 2Ga Zn + 2e - + 2O o + 1 / 2O 2
In the above reaction formula, Ga Zn is the Ga substituted on position of Zn in the crystal lattice, O o represents oxygen occupying the position of oxygen in the crystal lattice, O 2 is the oxygen in the gas phase, respectively.
[0030]
Then, the following equilibrium equation is obtained from the above reaction equation.
[0031]
[Ga 2 O 3] / ( [Ga Zn] 2 [e -] 2 P o2 1/2) = K (a)
In the above equation, K represents an equilibrium constant (chemical equilibrium constant). The reason that the term [O o ] is not included in the equilibrium equation is that [O o ] does not contribute to carrier generation. In addition, [Ga 2 O 3 ] can be excluded from the equation as a constant term, and [Ga Zn ] and [e ] contribute equivalently to carrier generation, so that the following equation can be further derived.
[0032]
[E -] 4 P o2 1/2 = [Ga] 4 P o2 1/2 = K (b)
∴ [e ] 4 = [Ga] 4 = K · Po2 -1/2 (c)
∴ [e -] = [Ga ] = K · P o2 -1/8 (d)
From the above equation (d), it can be seen that [e ], in other words, the density of the carrier to be doped is proportional to the −1.8 power of the oxygen concentration.
[0033]
In FIG. 3, the oxygen partial pressure and the carrier density have a negative correlation. Looking further at the relationship in detail, a result obtained by approximating the gradient of the data group, which is inserted in FIG. Was done. In the above equation (d), although there is an error due to not considering carriers that can be generated even from excessive Zn or O voids, although the number is smaller than that of Ga, and the fact that the number of experimental data used is not always sufficient, Although the quantitative evaluation was not strictly performed, the validity of the above-mentioned chemical equilibrium approach and the validity of grasping the relationship between the oxygen partial pressure and the carrier density based on it were verified to some extent. Seem.
[0034]
Further, from the above findings, as a component to be added to zinc oxide which is a film forming material, not only Ga 2 O 3 but also Ga, and not only Ga 2 O 3 and Ga, but also Al, In, B, Al Even when 2 O 3 In 2 O 3 or B 2 O 3 is used, it is considered that the above relationship between the oxygen partial pressure and the carrier density can be applied.
[0035]
Here, the reason for excluding the data of the carrier density when the oxygen partial pressure is 4 × 10 −2 Torr or more when examining the above relationship will be described.
[0036]
Generally, in a region where the oxygen partial pressure is excessive, zinc vacancies are induced, and this phenomenon causes a so-called donor killer that captures and consumes carriers (donors), and the carrier density in the film may rapidly decrease. Are known. Also in this experiment, it is considered that the phenomenon of the donor killer appears in the region where the oxygen partial pressure is 4 × 10 −2 Torr or more. Naturally, the above-mentioned equilibrium approach cannot be performed in the region where the donor killer phenomenon appears. Therefore, the data in the region where the donor killer phenomenon appears as a prerequisite for performing the equilibrium approach is excluded.
[0037]
Based on the above new knowledge, the method for manufacturing a zinc oxide film according to the present embodiment uses a Group 3 element or its oxide as a dopant to attach zinc oxide to a material to be film-formed in a film-forming chamber. In the method for manufacturing a zinc oxide film by forming a zinc oxide film, a predetermined carrier density is adjusted by adjusting the oxygen partial pressure based on the relationship between the carrier density of the zinc oxide film and the oxygen partial pressure of the deposition chamber which is grasped in advance. To obtain a zinc oxide film (doped zinc oxide film).
[0038]
At this time, Al, Ga, In, or B is preferably used as a Group 3 element, and Al 2 O 3 , Ga 2 O 3 , In 2 O 3, or B 2 O 3 is preferably used as an oxide. .
[0039]
By the method for manufacturing a zinc oxide film according to the present embodiment, the carrier density of the zinc oxide film can be precisely controlled by controlling the oxygen partial pressure in the film formation chamber at the time of film formation. Further, by precisely controlling the carrier density, the transmittance and the specific resistance of the film, and the balance between the transmittance and the specific resistance can be controlled. For example, an active semiconductor layer of a TFT (thin film transistor) or a solar cell can be controlled. It is possible to meet a wide range of requirements for film characteristics, such as when a zinc oxide film is used for the electrode and the like.
[0040]
Further, in the method for manufacturing a zinc oxide film according to the present embodiment, when the predetermined carrier density is in a range of 8 × 10 20 / cm 3 or more, the oxygen partial pressure is determined based on the negative correlation between the carrier density and the oxygen partial pressure. Is adjusted, the carrier density can be controlled more precisely. In particular, when examining a wide range of applications of the zinc oxide film, the range in which the transparency and non-resistance of the film can be practically tolerated is 8 × 10 20 / cm 3 or more, for example, 10 21 to 10 22 / cm 3 or less. Therefore, it is useful to precisely control the carrier density in this range.
[0041]
In the method for manufacturing a zinc oxide film according to this embodiment, the film formation method is not particularly limited, and a sputtering method or a vacuum evaporation method can be used, but more preferably, an ion plating method is used. The film is formed by a method.
[0042]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the manufacturing method of a zinc oxide film which concerns on this invention, a zinc oxide is made to adhere to a to-be-formed material using a Group 3 element or its oxide as a dopant in a film-forming chamber, and the zinc oxide film is formed. In the method for manufacturing a zinc film, the electron density of the zinc oxide film is adjusted in order to obtain a predetermined electron density by adjusting the oxygen partial pressure based on the relationship between the electron density of the zinc oxide and the oxygen partial pressure of the film formation chamber, which is grasped in advance. Can be precisely controlled. In addition, by precisely controlling the electron density, it is possible to control the transmittance and specific resistance of the film, and also to control the balance between the transmittance and the specific resistance, thereby meeting a wide range of requirements for film characteristics. It becomes.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between an oxygen partial pressure and a carrier density.
FIG. 2 is a diagram showing a relationship between oxygen partial pressure and electric conductivity.
FIG. 3 is a diagram showing the data of FIG.

Claims (4)

成膜室で、ドーパントとして第3族元素またはその酸化物を用いて酸化亜鉛を被成膜材料に付着させて酸化亜鉛膜を形成する酸化亜鉛膜の製造方法において、
予め把握した酸化亜鉛膜の電子密度と成膜室の酸素分圧の関係に基づいて、酸素分圧を調整して所定の電子密度を得ることを特徴とする酸化亜鉛膜の製造方法。
In a method for manufacturing a zinc oxide film, a zinc oxide film is formed by attaching zinc oxide to a deposition target material using a Group 3 element or an oxide thereof as a dopant in a deposition chamber.
A method for producing a zinc oxide film, wherein a predetermined electron density is obtained by adjusting an oxygen partial pressure based on a relationship between an electron density of a zinc oxide film and an oxygen partial pressure of a film formation chamber which is grasped in advance.
前記所定の電子密度が8×1020/cm以上の範囲において、前記電子密度と前記酸素分圧の負相関式に基づいて酸素分圧を調整することを特徴とする請求項1記載の酸化亜鉛膜の製造方法。In the predetermined electron density 8 × 10 20 / cm 3 or more ranges, oxidation of claim 1, wherein adjusting the oxygen partial pressure on the basis of a negative correlation equation of the electron density and the oxygen partial pressure A method for manufacturing a zinc film. イオンプレーティング法により成膜して前記酸化亜鉛膜を形成することを特徴とする請求項1または2記載の酸化亜鉛膜の製造方法。The method for producing a zinc oxide film according to claim 1, wherein the zinc oxide film is formed by an ion plating method. 前記第3族元素がAl、Ga、InまたはBであり、前記酸化物がAl、Ga、InまたはBであることを特徴とする請求項1〜3のいずれか1項に記載の酸化亜鉛膜の製造方法。The third group element Al, Ga, In, or B, according to claim 1, wherein the oxide is characterized in that it is a Al 2 O 3, Ga 2 O 3, In 2 O 3 or B 2 O 3 4. The method for producing a zinc oxide film according to any one of items 3.
JP2003083050A 2003-03-25 2003-03-25 Zinc oxide film manufacturing method Pending JP2004292839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003083050A JP2004292839A (en) 2003-03-25 2003-03-25 Zinc oxide film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003083050A JP2004292839A (en) 2003-03-25 2003-03-25 Zinc oxide film manufacturing method

Publications (1)

Publication Number Publication Date
JP2004292839A true JP2004292839A (en) 2004-10-21

Family

ID=33398634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003083050A Pending JP2004292839A (en) 2003-03-25 2003-03-25 Zinc oxide film manufacturing method

Country Status (1)

Country Link
JP (1) JP2004292839A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090806A1 (en) * 2005-02-24 2006-08-31 Sekisui Chemical Co., Ltd. Gallium-containing zinc oxide
JP2006307254A (en) * 2005-04-27 2006-11-09 Micro Denshi Kk Thin film formation system utilizing microwave oxygen plasma
JP2007304689A (en) * 2006-05-09 2007-11-22 Toppan Printing Co Ltd Film sensor and glass structure
EP2571032A4 (en) * 2010-05-14 2017-09-06 LINTEC Corporation Zinc oxide-based conductive multilayer structure, process for producing same, and electronic device
JP2021004402A (en) * 2019-06-27 2021-01-14 住友重機械工業株式会社 Film deposition method and film deposition apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090806A1 (en) * 2005-02-24 2006-08-31 Sekisui Chemical Co., Ltd. Gallium-containing zinc oxide
US7651640B2 (en) 2005-02-24 2010-01-26 Sekisui Chemical Co., Ltd. Gallium containing zinc oxide
JP2006307254A (en) * 2005-04-27 2006-11-09 Micro Denshi Kk Thin film formation system utilizing microwave oxygen plasma
JP2007304689A (en) * 2006-05-09 2007-11-22 Toppan Printing Co Ltd Film sensor and glass structure
EP2571032A4 (en) * 2010-05-14 2017-09-06 LINTEC Corporation Zinc oxide-based conductive multilayer structure, process for producing same, and electronic device
JP2021004402A (en) * 2019-06-27 2021-01-14 住友重機械工業株式会社 Film deposition method and film deposition apparatus
TWI750711B (en) * 2019-06-27 2021-12-21 日商住友重機械工業股份有限公司 Film forming method and film forming device
JP7448909B2 (en) 2019-06-27 2024-03-13 住友重機械工業株式会社 Film-forming method and film-forming device

Similar Documents

Publication Publication Date Title
Moholkar et al. Development of CZTS thin films solar cells by pulsed laser deposition: influence of pulse repetition rate
JP4397511B2 (en) Low resistance ITO thin film and manufacturing method thereof
US8303856B2 (en) Conductive laminated body and method for preparing the same
Matsubara et al. Room-temperature deposition of Al-doped ZnO films by oxygen radical-assisted pulsed laser deposition
JP2004158619A (en) Electronic device and manufacturing method therefor
Noirfalise et al. Synthesis of fluorine doped zinc oxide by reactive magnetron sputtering
Akin et al. Influence of RF power on the opto-electrical and structural properties of gallium-doped zinc oxide thin films
Wang et al. Effects of hydrogen on the optical and electrical characteristics of the sputter-deposited Al 2 O 3-doped ZnO thin films
Otieno et al. Effect of thermal treatment on ZnO: Tb 3+ nano-crystalline thin films and application for spectral conversion in inverted organic solar cells
Horwat et al. New strategies for the synthesis of ZnO and Al‐doped ZnO films by reactive magnetron sputtering at room temperature
Kumar et al. Mechanism of ultraviolet photoconductivity in zinc oxide nanoneedles
JP2004043851A (en) Oxide transparent conductive film and its manufacturing method
JP2004292839A (en) Zinc oxide film manufacturing method
Hymavathi et al. Influence of sputtering power on structural, electrical and optical properties of reactive magnetron sputtered Cr doped CdO thin films
Kumar et al. XRD and AFM studies on nanostructured zinc aluminum oxide thin films prepared by Multi-Target magnetron sputtering
Qiu et al. ZnO‐Doped In2O3 Front Transparent Contact Enables> 24.0% Silicon Heterojunction Solar Cells
JP2004292873A (en) Zinc oxide film manufacturing method
Houng et al. Effect of discharge power density on the properties of Al and F co-doped ZnO thin films prepared at room temperature
WO2006103966A1 (en) METHOD FOR FORMING In-Ga-Zn-O FILM AND SOLAR CELL
JP4397451B2 (en) Transparent conductive thin film and method for producing the same
Agawane et al. Investigations on chemo-mechano stabilities of the molybdenum thin films deposited by DC-sputter technique
JP4818247B2 (en) Method for forming zinc oxide film
Kim et al. Optimization of titanium‐doped indium oxide anodes for heterojunction organic solar cells
WO2010051282A1 (en) Low-temperature pulsed dc reactive sputtering deposition of thin films from metal targets
Okuhara et al. Near-infrared reflection from Al-doped ZnO films prepared by multi-target reactive sputtering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050408

A977 Report on retrieval

Effective date: 20071207

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20071211

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080408

Free format text: JAPANESE INTERMEDIATE CODE: A02