JP2004288833A - Ohmic connection structure to carbon element cylindrical structure and its manufacturing method - Google Patents

Ohmic connection structure to carbon element cylindrical structure and its manufacturing method Download PDF

Info

Publication number
JP2004288833A
JP2004288833A JP2003078353A JP2003078353A JP2004288833A JP 2004288833 A JP2004288833 A JP 2004288833A JP 2003078353 A JP2003078353 A JP 2003078353A JP 2003078353 A JP2003078353 A JP 2003078353A JP 2004288833 A JP2004288833 A JP 2004288833A
Authority
JP
Japan
Prior art keywords
carbon element
cylindrical structure
element cylindrical
layer
ohmic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003078353A
Other languages
Japanese (ja)
Other versions
JP4401094B2 (en
Inventor
Mizuhisa Nihei
瑞久 二瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003078353A priority Critical patent/JP4401094B2/en
Priority to US10/773,311 priority patent/US20040182600A1/en
Publication of JP2004288833A publication Critical patent/JP2004288833A/en
Priority to US12/458,308 priority patent/US8163647B2/en
Application granted granted Critical
Publication of JP4401094B2 publication Critical patent/JP4401094B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ohmic connection structure to a carbon element cylindrical structure, which can be realized at the same time as the growth of the carbon element cylindrical structure such as a carbon nanotube and a manufacturing method for the ohmic connection structure. <P>SOLUTION: In the ohmic connection structure, a metal material 59 is positioned in the joining section of the carbon element cylindrical structure 51 joined with an object to be connected, and the carbon element cylindrical structure 51 and the object to be connected 57 are connected by an ohmic connection. The ohmic connection structure can be manufactured by a method, in which the metal material is arranged on the object, which can be ohmic-contacted with the carbon element cylindrical type structure, the material of the object and the metal material are alloyed by a temperature rise in the case of a chemical vapor growth, and the carbon element cylindrical structure is grown while using the particles of the metal material in the alloy as a catalyst for the chemical vapor growth, as one method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、カーボンナノチューブに代表される炭素元素円筒型構造体へのオーミック接続構造及びその作製方法に関し、炭素元素円筒型構造体を電子デバイスに適用する場合に広く適用可能な技術に関する。
【0002】
【従来の技術】
近年、電子デバイスにおいて炭素元素円筒型構造体を導電性又は半導体材料として使用することが検討されている。電子デバイスにおいては、炭素元素円筒型構造体と電極や配線などとの接続部の電気抵抗の上昇を避けるため、それらをオーミック接続させることが要求される。
【0003】
図1に、電子デバイスの縦方向配線ビア材料としてビアホール内に形成した炭素元素円筒型構造体11とCuの下部配線層13及びCuの上部配線層15との接続を模式的に示す。下部配線層13上の層間絶縁膜17に形成したビアホール内に炭素元素円筒型構造体11の束が垂直配向形成されている。炭素元素円筒型構造体11は化学気相成長(CVD)法を用いて成長され、このとき、ビアホール内に露出した配線層上には炭素元素円筒型構造体の成長に必要な触媒金属(例えばNi)層19が存在する。一方、炭素元素円筒型構造体11と上部配線層15との間にはTi層21が挿入されている。
【0004】
炭素元素円筒型構造体11と上部配線層15との接続は、間に介在するTi層21のカーバイド化(TiC化)により、オーミック接続となっている。この方法は、炭素元素円筒型構造体とTi層を接触させた後に、高温の熱処理を行うことにより界面をTiC化することによってオーミック接触を得る技術である(Y. Zhang et al., Science 285, 1719 (1999))。
【0005】
【非特許文献1】
Y. Zhang et al., Science 285, 1719 (1999)
【0006】
【発明が解決しようとする課題】
図1に示すように、従来、下部配線(Cu)層13上には炭素元素円筒型構造体11の成長に必要な触媒金属(Ni)層19のみが存在する構造となる。この構造では、炭素元素円筒型構造体11と下部配線層13との間にTi層が存在しないため、TiC化によるオーミック接触を形成することはできない。また、下部配線層13との接触については、上部配線層15の場合のように炭素元素円筒型構造体11の成長後にTi層を堆積し、引き続き高温熱処理することによってオーミック接触を形成するといったことができない。つまり、従来の下部配線層上の構造では、炭素元素円筒型構造体との間に抵抗が十分に低いオーミック接触が形成できないために、炭素元素円筒型構造体で形成した配線ビア部で高抵抗となるという問題がある。
【0007】
本発明は、炭素元素円筒型構造体の成長と同時に実現できる炭素元素円筒型構造体へのオーミック接続構造とその作製方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明による炭素元素円筒型構造体へのオーミック接続構造は、接続対象に接合した炭素元素円筒型構造体の接合部の内部に金属材料が位置し、炭素元素円筒型構造体と接続対象とがオーミック接触により接続していることを特徴とする。オーミック接触での接続により、炭素元素円筒型構造体と接続対象との接続部の抵抗の上昇が抑制される。
【0009】
本発明の炭素元素円筒型構造体へのオーミック接続構造は、炭素元素円筒型構造体とのオーミック接触が可能である接続対象上に金属材料を配置し、この金属材料を触媒として化学気相成長により炭素元素円筒型構造体を、炭素元素円筒型構造体と接続対象とのオーミック接触を果たしながら形成する方法により作製することができる。接続対象を炭素元素円筒型構造体とオーミック接触可能な材料とすることにより、炭素元素円筒型構造体の成長と同時にそれらのオーミック接続構造を実現できる。
【0010】
あるいは、本発明の炭素元素円筒型構造体へのオーミック接続構造は、炭素元素円筒型構造体とのオーミック接触が可能な第一の材料と、この材料の上に配置した触媒金属の第二の材料との第一の積層体を形成し、真空中あるいは水素雰囲気中での熱処理により第一の積層体から、第一の材料と第二の材料との合金の下層、第一の材料の中間層、及び第二の材料からなる微粒子の上層から構成される第二の積層体を形成し、そしてこの第二の積層体表面の第二の材料の微粒子を触媒として化学気相成長により炭素元素円筒型構造体を形成して、第二の材料の微粒子を炭素元素円筒型構造体の内部に取り込むと同時に、炭素元素円筒型構造体の側壁を第一の材料の中間層にオーミック接触により接続させる方法により作製することができる。炭素元素円筒型構造体が、オーミック接触可能な第一の材料上に微粒子触媒の作用で成長するため、炭素元素円筒型構造体の成長と同時にそれを第一の材料の中間層にオーミック接触により接続することができる。
【0011】
ここで使用する炭素元素円筒型構造体という用語は、炭素原子から構成される線状ナノ構造体であり、カーボンナノチューブ、カップスタック型構造体、カーボンファイバーなどと呼ばれるものの総称である。以下においては、その一つの代表であるカーボンナノチューブを参照して、本発明を説明することにする。
【0012】
【発明の実施の形態】
図2(a)、2(b)に、本発明を電子デバイスの縦方向配線ビアに適用した場合の模式図を示す。下部配線(Cu)層33上の層間絶縁膜37に形成したビアホール内にカーボンナノチューブ31の束が垂直配向形成されている。本発明では、図3(a)に示したようにビアホール内の下部配線層33上に、カーボンナノチューブ31の下部配線層33への接合部のTiC化のためのTi層45を予め形成し、更にその上にナノチューブ成長に必要な触媒金属(例えばNi)層46を形成した積層膜を用いる。このようなNi/Ti積層膜を用いると、カーボンナノチューブを化学気相成長(CVD)法により成長する際に、基板温度上昇の作用を受けてNi/Ti積層膜はNiTi合金層45a(図3(b))に変化する。カーボンナノチューブ31は、NiTi合金層45a表面において合金中の触媒金属Ni微粒子を核として成長する。図2(a)のBで表示した部分の拡大図である図2(b)に示したように、Ni微粒子39は成長するカーボンナノチューブ31の根元の内部に包み込まれ、ナノチューブ31の側壁は合金層45a表面に残ったTiと接触する構造となる。この接触部分47では、Tiがカーバイド化されたオーミック接触の部位となる。言い換えれば、カーボンナノチューブ成長と同時に合金層45aとナノチューブ31がオーミック接触する構造が得られる。
【0013】
実際に、従来例(図1)と本発明(図2)の構造について、ナノチューブ11、31と下部配線層13、33との間の接触抵抗を測定したところ、本発明の方が1〜2桁低い抵抗を示す実験結果が得られた(従来例15MΩ、本発明130kΩ)。この結果より、本発明を用いると、カーボンナノチューブ成長と同時にカーボンナノチューブと下部配線層との接触部分でTiC化が起きていることが推測できる。
【0014】
ビアホール内に形成したカーボンナノチューブ31と上部配線層35とは、従来と同様に、それらの間に介在するTi層41のカーバイド化(TiC化)によりオーミック接続することができる。このように、本発明を用いると、カーボンナノチューブと下部及び上部の両配線層33、35とを良好なオーミック接触により接続することが可能となり、低抵抗な配線ビアが実現できる。
【0015】
上で説明した事例(第一の態様)では、カーボンナノチューブ31がオーミック接続する接続対象は合金層45aであり、その上の金属材料は触媒金属微粒子39である。
【0016】
次に、本発明を電子デバイスの縦方向配線ビアに適用した第二の態様を説明する。図2(a)、2(b)を参照して説明した第一の態様におけるのと同様に、図4(a)に示したようにビアホール内の下部配線層33上に、カーボンナノチューブの下部配線層33への接合部のTiC化のためのTi層52とその上の触媒金属Ni層53との第一の積層体54を形成する。この積層体を真空中又は水素雰囲気中で熱処理して、図2(b)と同様の部分拡大図である図4(b)に示したように、TiNi合金の下層55、Tiの中間層57、及びNi微粒子59の上層から構成される第二の積層体61を形成する。続いて、積層体61の表面のNi微粒子を触媒とする化学気相成長を行うことにより、Ni微粒子をカーボンナノチューブ51の内部に取り込むと同時に、カーボンナノチューブ51の側壁下部と接する中間層57のTiの一部がカーバイド化されて、カーボンナノチューブ51とTi中間層57とがオーミック接触により接合させる。
【0017】
この態様では、Ti層57が第一の態様におけるカーボンナノチューブのオーミック接続する接続対象に相当し、Ni微粒子59が同じく先の事例における触媒微粒子の金属材料に相当する。
【0018】
炭素元素円筒型構造体がオーミック接触により接続する接続対象は、先に説明した第一の態様ではNiTi合金層45aであり、これは予め形成したTi層45に由来している。第二の態様では、接続対象はTi中間層57であり、これも予め形成した(熱処理前の)Ti層に由来する。この意味において、どちらの態様においても、カーボンナノチューブの接続対象は予め形成した、カーバイド化のためのTi層(ナノチューブ成長に伴う熱処理前(第一の態様の場合)、又はナノチューブ成長前の熱処理(第二の態様の場合)の)、すなわちカーバイド化によりカーボンナノチューブにオーミック接続する材料であると見なすこともできる。
【0019】
本発明では、そのようなカーバイド化によりカーボンナノチューブにオーミック接続される材料(接続対象)として、上述のTi以外に、Nb、Si、Cを挙げることができる。接続対象の材料がC(炭素)の場合は、カーボンナノチューブと接続対象とは炭素−炭素結合により接続するが、ここではこの場合の炭素−炭素結合による接続もカーバイド化による接続と呼ぶことにする。
【0020】
CVD法によるカーボンナノチューブの成長用の触媒として働く金属材料としては、上述のNiのほかに、Fe又はCoを使用することができる。あるいは、Ni、Fe、Coのうちの少なくとも1種を含む合金の使用も可能である。
【0021】
【実施例】
次に、実施例により本発明を更に説明するが、本発明はこれらの例に限定されるものではない。
【0022】
(実施例1)
ここでは、本発明を配線ビアに適用した例を説明する。
図5(a)に示したように、初めに基板(図示せず)上のCuの下部配線層101の上にSiOの層間絶縁膜103(500nm)を堆積し、その上に、配線ビアとなる予定領域に開口を有するレジストパターン(図示せず)を形成する。レジストパターンをマスクに、相関絶縁膜103に配線ビア105を形成する。その後、基板全面に、スパッタ法あるいは蒸着法を用いてTi層(50nm)、Ni触媒金属層(10nm)をこの順に堆積する。続いて、レジスト膜を用いたリフトオフ法により、配線ビア内にTi層107(50nm)/Ni層109(10nm)の積層膜を残す。触媒金属層として、Ni層に代えて、Fe又はCoから形成した層を用いてもよく、あるいはNi、Fe、Coの少なくとも1種を含む合金を用いてもよい。触媒金属の薄層に代えて、微粒子を用いることも可能である。また、Ti層の代わりにNb層、Si層、あるいはグラファイトカーボン層を用いてもよい。
【0023】
CVD法を用いて配線ビア105内にカーボンナノチューブ111を成長する(図5(b))。カーボンナノチューブ成長には、例えば、熱CVD法を用いる。この場合、真空チャンバ(反応室)内に基板を入れ、そして例えば、反応ガスとしてアセチレンと水素の混合ガスをそれぞれ80sccm、20sccmの流量で真空チャンバ内に導入し、圧力200Pa、基板温度900℃とする。熱フィラメントによりガス解離を行う熱フィラメントCVD法を用いてもよい。この場合、例えば、反応ガスとしてアセチレンと水素の混合ガスをそれぞれ80sccm、20sccmの流量で真空チャンバ内に導入し、圧力1000Pa、基板温度600℃、熱フィラメント温度1800℃とする。あるいは、直流(DC)プラズマと熱フィラメントを組み合わせたDCプラズマ熱フィラメントCVD法を用いてもよい。この場合、例えば、反応ガスとしてアセチレンと水素の混合ガスをそれぞれ80sccm、20sccmの流量で真空チャンバ内に導入し、圧力1000Pa、基板温度600℃、熱フィラメント温度1800℃とする。垂直配向させるために、チャンバ(接地)に対して基板にマイナス400Vの直流(DC)電界を印加する。直流(DC)電界の印加は、基板に対し縦方向に配向したカーボンナノチューブを得るのに優位性がある。カーボンナノチューブ111は、根元の内部にNi層109からNi微粒子109aを取り込んで成長し、下層107のTiの一部のカーバイド化により生じたTiCを介してTi層107にオーミック接続する。
【0024】
カーボンナノチューブ成長前に、真空チャンバ内の基板を真空中あるいは水素雰囲気中において熱処理(例えば600℃、30分)することにより、Ni/Ti積層膜を合金化してもよい。この熱処理により、膜表面からNi微粒子、Ti層、NiTi合金層がこの順で形成される。その後、CVD法により、最上部のNi微粒子を触媒金属としてチューブ側壁の内部に取り込んでカーボンナノチューブ111を成長させ、同時にそのナノチューブの側壁を直下のTi層107aと接合させる。
【0025】
次に、図5(c)に示したように、Ti層113(50nm)、Cu層115(500nm)の順にスパッタ法あるいは蒸着法を用いて堆積する。引き続き、熱処理(例えば500〜800℃、30分)を行うことによりカーボンナノチューブ111の上端をTiC化する。これにより、カーボンナノチューブ111は上下の配線層101、115にオーミック接触により接続される。
【0026】
(実施例2)
ここでは、本発明を横方向配線に適用した例を説明する。
図6(a)に示したように、初めにSi基板121上にSiO絶縁膜123(500nm)を堆積し、その上に、電極となる予定領域に開口を有するレジストパターン(図示せず)を形成する。基板全面に、スパッタ法あるいは蒸着法を用いてTi層(50nm)、Ni触媒金属層(10nm)をこの順に堆積する。レジスト膜を用いたリフトオフ法により、レジストパターンの開口内のTi層125(50nm)/Ni層127(10nm)積層膜(電極パターン)のみを残す。
【0027】
CVD法を用いて、対向する一対の電極パターン間にカーボンナノチューブ129を成長する(図6(b))。使用するCVD法、成長条件は、実施例1で説明したとおりでよい。また、CVD法によるカーボンナノチューブ成長に先立ち、Ni/Ti積層膜を熱処理してよいことも、実施例1と同様である。カーボンナノチューブを基板面と平行に、横方向配向させるために、電極間に400Vの直流(DC)電界を印加する。カーボンナノチューブ129は、Ni層127の一部のNiを触媒金属127aとして内部に取り込んで成長し、Ti層125のTiの一部のカーバイド化により生じたTiCを介してTi層125にオーミック接続する。
【0028】
本発明は、以上説明したとおりであるが、その特徴を種々の態様ととも付記すれば、次のとおりである。
(付記1)接続対象に接合した炭素元素円筒型構造体の接合部の内部に金属材料が位置し、炭素元素円筒型構造体と接続対象とがオーミック接触により接続していることを特徴とする、炭素元素円筒型構造体へのオーミック接続構造。
(付記2)前記金属材料がNi、Fe又はCoであり、あるいはそれらのうちの少なくとも1種を含む合金である、付記1記載のオーミック接続構造。
(付記3)前記接続対象の材料がTi、Nb、Si又はCである、付記1又は2記載のオーミック接続構造。
(付記4)前記接続対象が電子デバイスにおける配線の一部である、付記1から3までのいずれか一つに記載のオーミック接続構造。
(付記5)前記炭素元素円筒型構造体がカーボンナノチューブである、付記1から4までのいずれか一つに記載のオーミック接続構造。
(付記6)炭素元素円筒型構造体とのオーミック接触が可能である接続対象上に金属材料を配置し、この金属材料を触媒として化学気相成長により炭素元素円筒型構造体を、炭素元素円筒型構造体と接続対象とのオーミック接触を果たしながら形成することを特徴とする、炭素元素円筒型構造体へのオーミック接続構造の作製方法。
(付記7)前記化学気相成長の際の温度上昇により前記接続対象の材料と前記金属材料とを合金化し、この合金中の当該金属材料の粒子を前記化学気相成長の触媒として炭素元素円筒型構造体を成長させる、付記6記載のオーミック接続構造の作製方法。
(付記8)前記接続対象の材料がTi、Nb、Si又はCである、付記6又は7記載のオーミック接続構造の作製方法。
(付記9)前記金属材料がNi、Fe又はCoであり、あるいはそれらのうちの少なくとも1種を含む合金である、付記6から8までのいずれか一つに記載のオーミック接続構造の作製方法。
(付記10)炭素元素円筒型構造体の成長方向に電界を印加して前記化学気相成長を行う、付記6から9までのいずれか一つに記載のオーミック接続構造の作製方法。
(付記11)前記炭素元素円筒型構造体がカーボンナノチューブである、付記6から10までのいずれか一つに記載のオーミック接続構造の作製方法。
(付記12)炭素元素円筒型構造体とのオーミック接触が可能な第一の材料と、この材料の上に配置した触媒金属の第二の材料との第一の積層体を形成し、真空中あるいは水素雰囲気中での熱処理により第一の積層体から、第一の材料と第二の材料との合金の下層、第一の材料の中間層、及び第二の材料からなる微粒子の上層から構成される第二の積層体を形成し、そしてこの第二の積層体表面の第二の材料の微粒子を触媒として化学気相成長により炭素元素円筒型構造体を形成して、第二の材料の微粒子を炭素元素円筒型構造体の内部に取り込むと同時に、炭素元素円筒型構造体の側壁を第一の材料の中間層にオーミック接触により接続させることを特徴とする、炭素元素円筒型構造体へのオーミック接続構造の作製方法。
(付記13)前記第一の材料がTi、Nb、Si又はCである、付記12記載のオーミック接続構造の作製方法。
(付記14)前記第二の材料がNi、Fe又はCoであり、あるいはそれらのうちの少なくとも1種を含む合金である、付記12又は13記載のオーミック接続構造の作製方法。
(付記15)炭素元素円筒型構造体の成長方向に電界を印加して前記化学気相成長を行う、付記12から14までのいずれか一つに記載のオーミック接続構造の作製方法。
(付記16)前記炭素元素円筒型構造体がカーボンナノチューブである、付記12から15までのいずれか一つに記載のオーミック接続構造の作製方法。
【0029】
【発明の効果】
本発明は、カーボンナノチューブが接続対象の金属材料(例えば電極材料や配線材料)と良好なオーミック接触により接続する構造を提供するものである。このオーミック接続構造はカーボンナノチューブの成長と同時に形成されるものであり、これにより、電子デバイスの配線ビアの下部の接合部において従来ナノチューブ成長後に行っていたオーミック接続構造の形成工程が不要となる。従って、特にULSI配線用に縦方向配線ビアの材料としてカーボンナノチューブを適用する場合、これまで作製が困難であったナノチューブ/下部接合部間に良好なオーミック接続を形成することが可能となる。
【図面の簡単な説明】
【図1】炭素元素円筒型構造体を電子デバイスの縦方向配線ビア材料に用いる従来技術を説明する模式図である。
【図2】電子デバイスの縦方向配線ビアに適用した本発明の第一の態様を説明する模式図である。
【図3】本発明で用いる積層膜とそれから得られる合金層を説明する模式図である。
【図4】本発明の第二の態様を説明する模式図である。
【図5】実施例1における製造過程を示す模式図である。
【図6】実施例2における製造過程を示す模式図である。
【符号の説明】
31、51…カーボンナノチューブ
33、35…配線層
37…層間絶縁膜
39…Ni微粒子
41、45…Ti層
45a…NiTi合金層
47…TiCの接触部分
55…TiNi合金層
57…Ti層
59…Ni微粒子
101…下部配線層
103…層間絶縁膜
107…Ti層
109…Ni層
109a…Ni微粒子
111…カーボンナノチューブ
121…Si基板
123…SiO絶縁膜
125…Ti層
127…Ni層
129…カーボンナノチューブ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ohmic connection structure to a carbon element cylindrical structure represented by a carbon nanotube and a method for manufacturing the same, and relates to a technique widely applicable when the carbon element cylindrical structure is applied to an electronic device.
[0002]
[Prior art]
In recent years, use of a carbon element cylindrical structure as a conductive or semiconductor material in electronic devices has been studied. In electronic devices, it is required that ohmic connections be made between the carbon element cylindrical structure and electrodes, wirings, and the like in order to avoid an increase in electrical resistance at the connection portion.
[0003]
FIG. 1 schematically shows a connection between a carbon element cylindrical structure 11 formed in a via hole as a vertical wiring via material of an electronic device, a lower wiring layer 13 of Cu, and an upper wiring layer 15 of Cu. A bundle of carbon element cylindrical structures 11 is vertically oriented in via holes formed in the interlayer insulating film 17 on the lower wiring layer 13. The carbon element cylindrical structure 11 is grown using a chemical vapor deposition (CVD) method. At this time, a catalyst metal (for example, a catalyst metal necessary for growing the carbon element cylindrical structure) is formed on the wiring layer exposed in the via hole. Ni) layer 19 is present. On the other hand, a Ti layer 21 is inserted between the carbon element cylindrical structure 11 and the upper wiring layer 15.
[0004]
The connection between the carbon element cylindrical structure 11 and the upper wiring layer 15 is an ohmic connection due to the carbide (TiC) of the Ti layer 21 interposed therebetween. This method is a technique for obtaining ohmic contact by making the interface TiC by performing a high-temperature heat treatment after the carbon element cylindrical structure and the Ti layer are brought into contact (Y. Zhang et al., Science 285). , 1719 (1999)).
[0005]
[Non-patent document 1]
Y. Zhang et al. , Science 285, 1719 (1999).
[0006]
[Problems to be solved by the invention]
As shown in FIG. 1, conventionally, the lower wiring (Cu) layer 13 has a structure in which only the catalyst metal (Ni) layer 19 necessary for growing the carbon element cylindrical structure 11 is present. In this structure, since there is no Ti layer between the carbon element cylindrical structure 11 and the lower wiring layer 13, an ohmic contact by TiC cannot be formed. As for the contact with the lower wiring layer 13, as in the case of the upper wiring layer 15, a Ti layer is deposited after the growth of the carbon element cylindrical structure 11, and an ohmic contact is formed by successively performing a high-temperature heat treatment. Can not. In other words, the conventional structure on the lower wiring layer cannot form an ohmic contact with sufficiently low resistance with the carbon element cylindrical structure, so that the wiring via portion formed of the carbon element cylindrical structure has a high resistance. There is a problem that becomes.
[0007]
An object of the present invention is to provide an ohmic connection structure to a carbon element cylindrical structure that can be realized at the same time as the growth of the carbon element cylindrical structure, and a method of manufacturing the same.
[0008]
[Means for Solving the Problems]
In the ohmic connection structure to the carbon element cylindrical structure according to the present invention, the metal material is located inside the joint of the carbon element cylindrical structure joined to the connection object, and the carbon element cylindrical structure and the connection object are connected. It is characterized by being connected by ohmic contact. The connection by ohmic contact suppresses an increase in resistance at the connection between the carbon element cylindrical structure and the connection target.
[0009]
In the ohmic connection structure to the carbon element cylindrical structure of the present invention, a metal material is arranged on a connection target capable of ohmic contact with the carbon element cylindrical structure, and the metal material is used as a catalyst in chemical vapor deposition. Thus, the carbon element cylindrical structure can be formed by a method of forming while forming ohmic contact between the carbon element cylindrical structure and the connection target. By making the connection target a material capable of ohmic contact with the carbon element cylindrical structure, the ohmic connection structure can be realized simultaneously with the growth of the carbon element cylindrical structure.
[0010]
Alternatively, the ohmic connection structure to the carbon element cylindrical structure of the present invention comprises a first material capable of ohmic contact with the carbon element cylindrical structure, and a second material of the catalyst metal disposed on the material. Forming a first laminate with the material, and performing a heat treatment in a vacuum or a hydrogen atmosphere from the first laminate to a lower layer of an alloy of the first material and the second material, an intermediate layer of the first material; A second layered body composed of a layer and an upper layer of fine particles made of a second material, and a carbon element is formed by chemical vapor deposition using the fine particles of the second material on the surface of the second stacked body as a catalyst. Form a cylindrical structure, take in fine particles of the second material into the carbon element cylindrical structure, and simultaneously connect the side wall of the carbon element cylindrical structure to the intermediate layer of the first material by ohmic contact It can be produced by a method of causing Since the carbon element cylindrical structure grows on the first material capable of ohmic contact by the action of the fine particle catalyst, the carbon element cylindrical structure is simultaneously formed with the intermediate layer of the first material by ohmic contact with the growth. Can be connected.
[0011]
The term carbon element cylindrical structure used herein is a linear nanostructure composed of carbon atoms, and is a collective term for carbon nanotubes, cup-stacked structures, carbon fibers, and the like. In the following, the present invention will be described with reference to carbon nanotubes, one of which is representative.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
FIGS. 2A and 2B are schematic diagrams when the present invention is applied to a vertical wiring via of an electronic device. A bundle of carbon nanotubes 31 is vertically aligned in a via hole formed in the interlayer insulating film 37 on the lower wiring (Cu) layer 33. In the present invention, as shown in FIG. 3A, on the lower wiring layer 33 in the via hole, a Ti layer 45 for forming TiC at the junction of the carbon nanotube 31 to the lower wiring layer 33 is formed in advance, Further, a stacked film on which a catalyst metal (for example, Ni) layer 46 necessary for nanotube growth is formed is used. When such a Ni / Ti laminated film is used, when the carbon nanotubes are grown by the chemical vapor deposition (CVD) method, the Ni / Ti laminated film becomes an NiTi alloy layer 45a (FIG. (B)). The carbon nanotubes 31 grow on the surface of the NiTi alloy layer 45a with the catalyst metal Ni fine particles in the alloy as nuclei. As shown in FIG. 2B, which is an enlarged view of the portion indicated by B in FIG. 2A, the Ni fine particles 39 are wrapped inside the root of the growing carbon nanotube 31, and the side wall of the nanotube 31 is made of an alloy. The structure is such that it contacts the Ti remaining on the surface of the layer 45a. In this contact portion 47, Ti becomes a site of ohmic contact in which carbide is formed. In other words, a structure is obtained in which the alloy layer 45a and the nanotube 31 are in ohmic contact with the growth of the carbon nanotube.
[0013]
Actually, the contact resistance between the nanotubes 11 and 31 and the lower wiring layers 13 and 33 was measured for the structures of the conventional example (FIG. 1) and the present invention (FIG. 2). Experimental results showing an order of magnitude lower resistance were obtained (15 MΩ in the conventional example, 130 kΩ in the present invention). From these results, it can be inferred that when the present invention is used, TiC conversion occurs at the contact portion between the carbon nanotube and the lower wiring layer simultaneously with the growth of the carbon nanotube.
[0014]
As in the conventional case, the carbon nanotube 31 and the upper wiring layer 35 formed in the via hole can be ohmically connected to each other by forming a carbide (TiC) of the Ti layer 41 interposed therebetween. As described above, when the present invention is used, the carbon nanotube can be connected to the lower and upper wiring layers 33 and 35 by good ohmic contact, and a low-resistance wiring via can be realized.
[0015]
In the case described above (first mode), the connection object to which the carbon nanotubes 31 are ohmic-connected is the alloy layer 45a, and the metal material thereon is the catalytic metal fine particles 39.
[0016]
Next, a second embodiment in which the present invention is applied to a vertical wiring via of an electronic device will be described. As in the first embodiment described with reference to FIGS. 2A and 2B, the lower portion of the carbon nanotube is formed on the lower wiring layer 33 in the via hole as shown in FIG. A first stacked body 54 of a Ti layer 52 for forming a TiC portion at a junction with the wiring layer 33 and a catalytic metal Ni layer 53 thereon is formed. This laminate is heat-treated in a vacuum or hydrogen atmosphere, and as shown in FIG. 4B, which is a partially enlarged view similar to FIG. 2B, the lower layer 55 of the TiNi alloy and the intermediate layer 57 of Ti. , And a second laminate 61 composed of the upper layer of the Ni fine particles 59 is formed. Subsequently, by performing chemical vapor deposition using the Ni fine particles on the surface of the laminate 61 as a catalyst, the Ni fine particles are taken into the inside of the carbon nanotubes 51, and at the same time, the Ti of the intermediate layer 57 in contact with the lower side wall of the carbon nanotubes 51 is obtained. Is made into carbide, and the carbon nanotubes 51 and the Ti intermediate layer 57 are joined by ohmic contact.
[0017]
In this embodiment, the Ti layer 57 corresponds to the connection target for the ohmic connection of the carbon nanotubes in the first embodiment, and the Ni fine particles 59 also correspond to the metal material of the catalyst fine particles in the previous case.
[0018]
The connection object to which the carbon element cylindrical structure is connected by ohmic contact is the NiTi alloy layer 45a in the first embodiment described above, which is derived from the Ti layer 45 formed in advance. In the second embodiment, the connection target is the Ti intermediate layer 57, which also originates from the Ti layer formed beforehand (before the heat treatment). In this sense, in both embodiments, the connection target of the carbon nanotube is a previously formed Ti layer for carbide formation (before heat treatment accompanying nanotube growth (in the case of the first embodiment) or heat treatment before nanotube growth ( In the case of the second embodiment), that is, the material can be regarded as a material that makes ohmic connection to the carbon nanotube by the formation of carbide.
[0019]
In the present invention, in addition to Ti described above, Nb, Si, and C can be cited as a material (connection target) to be ohmic-connected to the carbon nanotube by such carbide formation. When the connection target material is C (carbon), the carbon nanotube and the connection target are connected by a carbon-carbon bond. In this case, the connection by the carbon-carbon bond is also referred to as a connection by carbide formation. .
[0020]
As a metal material that functions as a catalyst for growing carbon nanotubes by the CVD method, in addition to Ni described above, Fe or Co can be used. Alternatively, an alloy containing at least one of Ni, Fe, and Co can be used.
[0021]
【Example】
Next, the present invention will be further described with reference to examples, but the present invention is not limited to these examples.
[0022]
(Example 1)
Here, an example in which the present invention is applied to a wiring via will be described.
As shown in FIG. 5A, first, an interlayer insulating film 103 (500 nm) of SiO 2 is deposited on a lower wiring layer 101 of Cu on a substrate (not shown), and a wiring via is formed thereon. A resist pattern (not shown) having an opening in a region to be formed is formed. A wiring via 105 is formed in the correlation insulating film 103 using the resist pattern as a mask. Thereafter, a Ti layer (50 nm) and a Ni catalytic metal layer (10 nm) are deposited in this order on the entire surface of the substrate by sputtering or vapor deposition. Subsequently, the laminated film of the Ti layer 107 (50 nm) / Ni layer 109 (10 nm) is left in the wiring via by a lift-off method using a resist film. As the catalytic metal layer, a layer formed of Fe or Co may be used instead of the Ni layer, or an alloy containing at least one of Ni, Fe, and Co may be used. Fine particles can be used instead of the thin layer of the catalyst metal. Further, an Nb layer, a Si layer, or a graphite carbon layer may be used instead of the Ti layer.
[0023]
The carbon nanotubes 111 are grown in the wiring vias 105 using the CVD method (FIG. 5B). For the growth of carbon nanotubes, for example, a thermal CVD method is used. In this case, the substrate is placed in a vacuum chamber (reaction chamber), and for example, a mixed gas of acetylene and hydrogen is introduced as a reaction gas into the vacuum chamber at a flow rate of 80 sccm and 20 sccm, respectively, at a pressure of 200 Pa and a substrate temperature of 900 ° C. I do. A hot filament CVD method in which gas is dissociated by a hot filament may be used. In this case, for example, a mixed gas of acetylene and hydrogen is introduced into the vacuum chamber at a flow rate of 80 sccm and 20 sccm as a reaction gas, and the pressure is set to 1000 Pa, the substrate temperature is set to 600 ° C., and the hot filament temperature is set to 1800 ° C. Alternatively, a DC plasma hot filament CVD method combining a direct current (DC) plasma and a hot filament may be used. In this case, for example, a mixed gas of acetylene and hydrogen is introduced into the vacuum chamber at a flow rate of 80 sccm and 20 sccm as a reaction gas, and the pressure is set to 1000 Pa, the substrate temperature is set to 600 ° C., and the hot filament temperature is set to 1800 ° C. For vertical alignment, a direct current (DC) electric field of minus 400 V is applied to the substrate with respect to the chamber (ground). The application of a direct current (DC) electric field is advantageous in obtaining carbon nanotubes oriented vertically in relation to the substrate. The carbon nanotubes 111 grow by taking in the Ni fine particles 109a from the Ni layer 109 inside the root, and make an ohmic connection to the Ti layer 107 via TiC generated by partly carbide of Ti of the lower layer 107.
[0024]
Before growing the carbon nanotubes, the Ni / Ti laminated film may be alloyed by subjecting the substrate in the vacuum chamber to a heat treatment (for example, 600 ° C., 30 minutes) in a vacuum or a hydrogen atmosphere. By this heat treatment, Ni fine particles, a Ti layer, and a NiTi alloy layer are formed in this order from the film surface. Thereafter, the uppermost Ni fine particles are taken into the inside of the tube side wall as a catalyst metal by the CVD method to grow the carbon nanotube 111, and at the same time, the side wall of the nanotube is bonded to the Ti layer 107a immediately below.
[0025]
Next, as shown in FIG. 5C, a Ti layer 113 (50 nm) and a Cu layer 115 (500 nm) are deposited in this order by a sputtering method or an evaporation method. Subsequently, heat treatment (for example, at 500 to 800 ° C. for 30 minutes) is performed to convert the upper end of the carbon nanotube 111 into TiC. Thereby, the carbon nanotube 111 is connected to the upper and lower wiring layers 101 and 115 by ohmic contact.
[0026]
(Example 2)
Here, an example in which the present invention is applied to a horizontal wiring will be described.
As shown in FIG. 6A, first, a SiO 2 insulating film 123 (500 nm) is deposited on a Si substrate 121, and a resist pattern (not shown) having an opening in a region where an electrode is to be formed is formed thereon. To form A Ti layer (50 nm) and a Ni catalyst metal layer (10 nm) are deposited in this order on the entire surface of the substrate by sputtering or vapor deposition. By a lift-off method using a resist film, only the Ti layer 125 (50 nm) / Ni layer 127 (10 nm) laminated film (electrode pattern) in the opening of the resist pattern is left.
[0027]
Carbon nanotubes 129 are grown between a pair of opposed electrode patterns by using a CVD method (FIG. 6B). The CVD method and growth conditions used may be the same as those described in the first embodiment. Also, as in the first embodiment, the Ni / Ti laminated film may be heat-treated before growing the carbon nanotubes by the CVD method. A direct current (DC) electric field of 400 V is applied between the electrodes in order to orient the carbon nanotubes in the horizontal direction parallel to the substrate surface. The carbon nanotube 129 grows by taking in a part of Ni of the Ni layer 127 as a catalyst metal 127a and growing, and ohmic-connecting to the Ti layer 125 via TiC generated by part of carbide of Ti of the Ti layer 125. .
[0028]
Although the present invention has been described above, the features of the present invention will be described below with various aspects thereof.
(Supplementary Note 1) The metal material is located inside the joint of the carbon element cylindrical structure joined to the connection object, and the carbon element cylindrical structure and the connection object are connected by ohmic contact. , Ohmic connection structure to carbon element cylindrical structure.
(Supplementary note 2) The ohmic connection structure according to supplementary note 1, wherein the metal material is Ni, Fe, or Co, or an alloy including at least one of them.
(Supplementary note 3) The ohmic connection structure according to supplementary note 1 or 2, wherein the material to be connected is Ti, Nb, Si or C.
(Supplementary note 4) The ohmic connection structure according to any one of supplementary notes 1 to 3, wherein the connection target is a part of a wiring in an electronic device.
(Supplementary note 5) The ohmic connection structure according to any one of supplementary notes 1 to 4, wherein the carbon element cylindrical structure is a carbon nanotube.
(Supplementary Note 6) A metal material is placed on a connection target capable of ohmic contact with the carbon element cylindrical structure, and the carbon element cylindrical structure is formed by chemical vapor deposition using the metal material as a catalyst. A method for producing an ohmic connection structure to a carbon element cylindrical structure, characterized in that the formation is performed while achieving ohmic contact between the mold structure and a connection object.
(Supplementary Note 7) The material to be connected and the metal material are alloyed by a rise in temperature during the chemical vapor deposition, and particles of the metal material in the alloy are used as a catalyst for the chemical vapor deposition to form a carbon element cylinder. 7. The method for producing an ohmic connection structure according to supplementary note 6, wherein the mold structure is grown.
(Supplementary note 8) The method for producing an ohmic connection structure according to supplementary note 6 or 7, wherein the material to be connected is Ti, Nb, Si, or C.
(Supplementary note 9) The method of manufacturing an ohmic connection structure according to any one of Supplementary notes 6 to 8, wherein the metal material is Ni, Fe, or Co, or an alloy including at least one of them.
(Supplementary note 10) The method for producing an ohmic connection structure according to any one of Supplementary notes 6 to 9, wherein the chemical vapor deposition is performed by applying an electric field in a growth direction of the carbon element cylindrical structure.
(Supplementary Note 11) The method of manufacturing an ohmic connection structure according to any one of Supplementary Notes 6 to 10, wherein the carbon element cylindrical structure is a carbon nanotube.
(Supplementary Note 12) A first laminate of a first material capable of ohmic contact with the carbon element cylindrical structure and a second material of the catalyst metal disposed on the first material is formed, and Alternatively, the first laminated body is formed by heat treatment in a hydrogen atmosphere, the lower layer of the alloy of the first material and the second material, the intermediate layer of the first material, and the upper layer of fine particles of the second material. Forming a second element, and forming a carbon element cylindrical structure by chemical vapor deposition using the fine particles of the second material on the surface of the second element as a catalyst, At the same time that the fine particles are taken into the carbon element cylindrical structure, the side wall of the carbon element cylindrical structure is connected to the intermediate layer of the first material by ohmic contact. Method for producing ohmic connection structure
(Supplementary note 13) The method for producing an ohmic connection structure according to supplementary note 12, wherein the first material is Ti, Nb, Si, or C.
(Supplementary note 14) The method for producing an ohmic connection structure according to supplementary note 12 or 13, wherein the second material is Ni, Fe, or Co, or an alloy containing at least one of them.
(Supplementary note 15) The method for producing an ohmic connection structure according to any one of Supplementary notes 12 to 14, wherein the chemical vapor deposition is performed by applying an electric field in a growth direction of the carbon element cylindrical structure.
(Supplementary Note 16) The method of manufacturing an ohmic connection structure according to any one of Supplementary Notes 12 to 15, wherein the carbon element cylindrical structure is a carbon nanotube.
[0029]
【The invention's effect】
The present invention provides a structure in which a carbon nanotube is connected to a metal material to be connected (for example, an electrode material or a wiring material) by good ohmic contact. This ohmic connection structure is formed at the same time as the growth of the carbon nanotubes, thereby eliminating the need for the step of forming the ohmic connection structure conventionally performed after the nanotube growth at the junction under the wiring via of the electronic device. Therefore, particularly when a carbon nanotube is applied as a material of a vertical wiring via for a ULSI wiring, it is possible to form a good ohmic connection between the nanotube / lower junction, which has been difficult to fabricate until now.
[Brief description of the drawings]
FIG. 1 is a schematic view illustrating a conventional technique using a carbon element cylindrical structure as a vertical wiring via material of an electronic device.
FIG. 2 is a schematic diagram illustrating a first embodiment of the present invention applied to a vertical wiring via of an electronic device.
FIG. 3 is a schematic view illustrating a laminated film used in the present invention and an alloy layer obtained therefrom.
FIG. 4 is a schematic diagram illustrating a second embodiment of the present invention.
FIG. 5 is a schematic view showing a manufacturing process in the first embodiment.
FIG. 6 is a schematic diagram showing a manufacturing process in Example 2.
[Explanation of symbols]
31, 51 ... Carbon nanotubes 33, 35 ... Wiring layer 37 ... Interlayer insulating film 39 ... Ni fine particles 41, 45 ... Ti layer 45a ... NiTi alloy layer 47 ... TiC contact part 55 ... TiNi alloy layer 57 ... Ti layer 59 ... Ni Fine particles 101 ... Lower wiring layer 103 ... Interlayer insulating film 107 ... Ti layer 109 ... Ni layer 109a ... Ni fine particles 111 ... Carbon nanotube 121 ... Si substrate 123 ... SiO 2 insulating film 125 ... Ti layer 127 ... Ni layer 129 ... Carbon nanotube

Claims (10)

接続対象に接合した炭素元素円筒型構造体の接合部の内部に金属材料が位置し、炭素元素円筒型構造体と接続対象とがオーミック接触により接続していることを特徴とする、炭素元素円筒型構造体へのオーミック接続構造。A metal element cylinder is characterized in that a metal material is located inside a joint portion of a carbon element cylindrical structure joined to a connection object, and the carbon element cylindrical structure and the connection object are connected by ohmic contact. Ohmic connection structure to mold structure. 前記金属材料がNi、Fe又はCoであり、あるいはそれらのうちの少なくとも1種を含む合金である、請求項1記載のオーミック接続構造。The ohmic connection structure according to claim 1, wherein the metal material is Ni, Fe, or Co, or an alloy including at least one of them. 前記接続対象の材料がTi、Nb、Si又はCである、請求項1又は2記載のオーミック接続構造。3. The ohmic connection structure according to claim 1, wherein the material to be connected is Ti, Nb, Si or C. 前記炭素元素円筒型構造体がカーボンナノチューブである、請求項1から3までのいずれか一つに記載のオーミック接続構造。The ohmic connection structure according to any one of claims 1 to 3, wherein the carbon element cylindrical structure is a carbon nanotube. 炭素元素円筒型構造体とのオーミック接触が可能である接続対象上に金属材料を配置し、この金属材料を触媒として化学気相成長により炭素元素円筒型構造体を、炭素元素円筒型構造体と接続対象とのオーミック接触を果たしながら形成することを特徴とする、炭素元素円筒型構造体へのオーミック接続構造の作製方法。A metal material is arranged on a connection target capable of ohmic contact with the carbon element cylindrical structure, and the carbon element cylindrical structure is formed as a carbon element cylindrical structure by chemical vapor deposition using the metal material as a catalyst. A method for producing an ohmic connection structure to a carbon element cylindrical structure, wherein the method is formed while achieving ohmic contact with a connection target. 前記化学気相成長の際の温度上昇により前記接続対象の材料と前記金属材料とを合金化し、この合金中の当該金属材料の粒子を前記化学気相成長の触媒として炭素元素円筒型構造体を成長させる、請求項5記載のオーミック接続構造の作製方法。The material to be connected and the metal material are alloyed by the temperature rise during the chemical vapor deposition, and the particles of the metal material in the alloy are used as a catalyst for the chemical vapor deposition to form a carbon element cylindrical structure. 6. The method for producing an ohmic connection structure according to claim 5, wherein said method is grown. 炭素元素円筒型構造体とのオーミック接触が可能な第一の材料と、この材料の上に配置した触媒金属の第二の材料との第一の積層体を形成し、真空中あるいは水素雰囲気中での熱処理により第一の積層体から、第一の材料と第二の材料との合金の下層、第一の材料の中間層、及び第二の材料からなる微粒子の上層から構成される第二の積層体を形成し、そしてこの第二の積層体表面の第二の材料の微粒子を触媒として化学気相成長により炭素元素円筒型構造体を形成して、第二の材料の微粒子を炭素元素円筒型構造体の内部に取り込むと同時に、炭素元素円筒型構造体の側壁を第一の材料の中間層にオーミック接触により接続させることを特徴とする、炭素元素円筒型構造体へのオーミック接続構造の作製方法。Form a first laminate of a first material capable of ohmic contact with a carbon element cylindrical structure and a second material of a catalyst metal disposed on this material, and form the first laminate in a vacuum or in a hydrogen atmosphere. From the first laminate by the heat treatment in, the second layer composed of the lower layer of the alloy of the first material and the second material, the intermediate layer of the first material, and the upper layer of fine particles of the second material A carbon element cylindrical structure is formed by chemical vapor deposition using the fine particles of the second material on the surface of the second laminate as a catalyst, and the fine particles of the second material are An ohmic connection structure to the carbon element cylindrical structure, wherein the side wall of the carbon element cylindrical structure is connected to the intermediate layer of the first material by ohmic contact at the same time as being taken into the inside of the cylindrical structure. Method of manufacturing. 前記接続対象の材料がTi、Nb、Si又はCである、請求項5から7までのいずれか一つに記載のオーミック接続構造の作製方法。The method of manufacturing an ohmic connection structure according to any one of claims 5 to 7, wherein the material to be connected is Ti, Nb, Si, or C. 前記金属材料がNi、Fe又はCoであり、あるいはそれらのうちの少なくとも1種を含む合金である、請求項5から8までのいずれか一つに記載のオーミック接続構造の作製方法。The method for manufacturing an ohmic connection structure according to any one of claims 5 to 8, wherein the metal material is Ni, Fe, or Co, or an alloy including at least one of them. 炭素元素円筒型構造体の成長方向に電界を印加して前記化学気相成長を行う、請求項5から9までのいずれか一つに記載のオーミック接続構造の作製方法。The method for producing an ohmic connection structure according to claim 5, wherein the chemical vapor deposition is performed by applying an electric field in a growth direction of the carbon element cylindrical structure.
JP2003078353A 2003-03-20 2003-03-20 Ohmic connection structure to cylindrical structure of carbon element and method for producing the same Expired - Lifetime JP4401094B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003078353A JP4401094B2 (en) 2003-03-20 2003-03-20 Ohmic connection structure to cylindrical structure of carbon element and method for producing the same
US10/773,311 US20040182600A1 (en) 2003-03-20 2004-02-09 Method for growing carbon nanotubes, and electronic device having structure of ohmic connection to carbon element cylindrical structure body and production method thereof
US12/458,308 US8163647B2 (en) 2003-03-20 2009-07-08 Method for growing carbon nanotubes, and electronic device having structure of ohmic connection to carbon element cylindrical structure body and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003078353A JP4401094B2 (en) 2003-03-20 2003-03-20 Ohmic connection structure to cylindrical structure of carbon element and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004288833A true JP2004288833A (en) 2004-10-14
JP4401094B2 JP4401094B2 (en) 2010-01-20

Family

ID=33292859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003078353A Expired - Lifetime JP4401094B2 (en) 2003-03-20 2003-03-20 Ohmic connection structure to cylindrical structure of carbon element and method for producing the same

Country Status (1)

Country Link
JP (1) JP4401094B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043329A1 (en) * 2004-10-22 2006-04-27 Fujitsu Limited Semiconductor device and manufacturing method thereof
JP2006120730A (en) * 2004-10-19 2006-05-11 Fujitsu Ltd Wiring structure using multilayered carbon nanotube for interlayer wiring, and its manufacturing method
JP2006339552A (en) * 2005-06-06 2006-12-14 Fujitsu Ltd Electric connection structure, manufacturing method thereof, and semiconductor integrated circuit device
JP2007070137A (en) * 2005-09-05 2007-03-22 Hitachi Zosen Corp Method for producing carbon nanotube and three-layer structure used therefor
JP2007220742A (en) * 2006-02-14 2007-08-30 Sony Corp Semiconductor device, and manufacturing method thereof
JP2008527700A (en) * 2005-01-07 2008-07-24 インターナショナル・ビジネス・マシーンズ・コーポレーション Self-aligned process for nanotube / nanowire FETs
JP2008226921A (en) * 2007-03-08 2008-09-25 Ulvac Japan Ltd Method of manufacturing magnetic device and apparatus of manufacturing the same
JP2008258187A (en) * 2007-03-30 2008-10-23 Fujitsu Ltd Electronic device, and manufacturing method thereof
JP2009508325A (en) * 2005-08-26 2009-02-26 スモルテック エービー Interconnection and heat dissipation based on nanostructures
JP2009123941A (en) * 2007-11-15 2009-06-04 Fujitsu Ltd Electronic component and its manufacturing method
WO2009107229A1 (en) * 2008-02-29 2009-09-03 富士通株式会社 Sheet structure, semiconductor device and method of growing carbon structure
JP2010062333A (en) * 2008-09-03 2010-03-18 Fujitsu Ltd Integrated circuit device and method of manufacturing the same
JP2010138033A (en) * 2008-12-11 2010-06-24 Denso Corp Substrate for synthesizing cnt, production method of the substrate, and production method of cnt
JP2010263227A (en) * 2010-06-16 2010-11-18 Fujitsu Ltd Method for manufacturing electrical connection structure
JP2013037860A (en) * 2011-08-05 2013-02-21 Fujikura Ltd Carbon nanofiber composite electrode
JP2014177398A (en) * 2007-09-12 2014-09-25 Smoltek Ab Connection and joining of adjacent layer by nanostructure

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120730A (en) * 2004-10-19 2006-05-11 Fujitsu Ltd Wiring structure using multilayered carbon nanotube for interlayer wiring, and its manufacturing method
US8034676B2 (en) 2004-10-22 2011-10-11 Fujitsu Semiconductor Limited Semiconductor device and method of manufacturing the same
JPWO2006043329A1 (en) * 2004-10-22 2008-05-22 富士通株式会社 Semiconductor device and manufacturing method thereof
WO2006043329A1 (en) * 2004-10-22 2006-04-27 Fujitsu Limited Semiconductor device and manufacturing method thereof
JP5045103B2 (en) * 2004-10-22 2012-10-10 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof
US7700978B2 (en) 2004-10-22 2010-04-20 Fujitsu Microelectronics Limited Semiconductor device and method of manufacturing the same
JP2008527700A (en) * 2005-01-07 2008-07-24 インターナショナル・ビジネス・マシーンズ・コーポレーション Self-aligned process for nanotube / nanowire FETs
US8338822B2 (en) 2005-06-06 2012-12-25 Fujitsu Limited Electrical connection structure having elongated carbon structures with fine catalyst particle layer
JP2006339552A (en) * 2005-06-06 2006-12-14 Fujitsu Ltd Electric connection structure, manufacturing method thereof, and semiconductor integrated circuit device
JP2009508325A (en) * 2005-08-26 2009-02-26 スモルテック エービー Interconnection and heat dissipation based on nanostructures
JP2007070137A (en) * 2005-09-05 2007-03-22 Hitachi Zosen Corp Method for producing carbon nanotube and three-layer structure used therefor
JP2007220742A (en) * 2006-02-14 2007-08-30 Sony Corp Semiconductor device, and manufacturing method thereof
JP4735314B2 (en) * 2006-02-14 2011-07-27 ソニー株式会社 Semiconductor device and manufacturing method thereof
JP2008226921A (en) * 2007-03-08 2008-09-25 Ulvac Japan Ltd Method of manufacturing magnetic device and apparatus of manufacturing the same
JP2008258187A (en) * 2007-03-30 2008-10-23 Fujitsu Ltd Electronic device, and manufacturing method thereof
JP2014177398A (en) * 2007-09-12 2014-09-25 Smoltek Ab Connection and joining of adjacent layer by nanostructure
JP2009123941A (en) * 2007-11-15 2009-06-04 Fujitsu Ltd Electronic component and its manufacturing method
US8258060B2 (en) 2008-02-29 2012-09-04 Fujitsu Limited Sheet structure, semiconductor device and method of growing carbon structure
US8350391B2 (en) 2008-02-29 2013-01-08 Fujitsu Limited Sheet structure, semiconductor device and method of growing carbon structure
JP5506657B2 (en) * 2008-02-29 2014-05-28 富士通株式会社 Sheet-like structure, semiconductor device, and carbon structure growth method
WO2009107229A1 (en) * 2008-02-29 2009-09-03 富士通株式会社 Sheet structure, semiconductor device and method of growing carbon structure
JP2010062333A (en) * 2008-09-03 2010-03-18 Fujitsu Ltd Integrated circuit device and method of manufacturing the same
JP2010138033A (en) * 2008-12-11 2010-06-24 Denso Corp Substrate for synthesizing cnt, production method of the substrate, and production method of cnt
JP2010263227A (en) * 2010-06-16 2010-11-18 Fujitsu Ltd Method for manufacturing electrical connection structure
JP2013037860A (en) * 2011-08-05 2013-02-21 Fujikura Ltd Carbon nanofiber composite electrode

Also Published As

Publication number Publication date
JP4401094B2 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
US8163647B2 (en) Method for growing carbon nanotubes, and electronic device having structure of ohmic connection to carbon element cylindrical structure body and production method thereof
JP4401094B2 (en) Ohmic connection structure to cylindrical structure of carbon element and method for producing the same
JP4448356B2 (en) Semiconductor device and manufacturing method thereof
JP5708493B2 (en) Semiconductor device and manufacturing method thereof
Wei et al. Directed assembly of carbon nanotube electronic circuits
KR101298789B1 (en) Semiconductor device
JP2002329723A (en) Integrated circuit device and its manufacturing method
US20120107597A1 (en) Embedded arrays of vertically aligned carbon nanotube carpets and methods for making them
JP5009511B2 (en) Electrical connection structure, manufacturing method thereof, and semiconductor integrated circuit device
TWI336897B (en) Ultra low k plasma cvd nanotube/spin-on dielectrics with improved properties for advanced nanoelectronic device fabrication
JP2010212619A (en) Graphene manufacturing method, graphene, graphene manufacturing device, and semiconductor device
JP4984498B2 (en) Functional element and manufacturing method thereof
US20060071344A1 (en) Wiring connection structure and method for forming the same
US7932510B2 (en) Carbon nanotube grown on catalyst and manufacture method
JP2008258184A (en) Electronic device and its manufacturing method
JP5168984B2 (en) Device structure with carbon nanotube metal composite
JP2005272271A (en) Method for producing carbon nanotube and method for manufacturing semiconductor device
US7365003B2 (en) Carbon nanotube interconnects in porous diamond interlayer dielectrics
JP2014523616A (en) Device including nanostructure and manufacturing method thereof
JP3443646B1 (en) Carbon nanotube growth method
JP5769916B2 (en) Method for producing carbon nanotube mat deposited on a conductor or semiconductor substrate
TW201221467A (en) Process method for carbon nanotube of interconnection
JP4907017B2 (en) Method for producing carbon nanotube film body
JP5478958B2 (en) Metal bonding method to carbon nanotube and wiring structure using carbon nanotube
JP2010263227A (en) Method for manufacturing electrical connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091027

R150 Certificate of patent or registration of utility model

Ref document number: 4401094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

EXPY Cancellation because of completion of term