JP2006120730A - Wiring structure using multilayered carbon nanotube for interlayer wiring, and its manufacturing method - Google Patents

Wiring structure using multilayered carbon nanotube for interlayer wiring, and its manufacturing method Download PDF

Info

Publication number
JP2006120730A
JP2006120730A JP2004304667A JP2004304667A JP2006120730A JP 2006120730 A JP2006120730 A JP 2006120730A JP 2004304667 A JP2004304667 A JP 2004304667A JP 2004304667 A JP2004304667 A JP 2004304667A JP 2006120730 A JP2006120730 A JP 2006120730A
Authority
JP
Japan
Prior art keywords
cnt
conductive layer
wiring structure
walled carbon
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004304667A
Other languages
Japanese (ja)
Inventor
Daiyu Kondo
大雄 近藤
Mizuhisa Nihei
瑞久 二瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2004304667A priority Critical patent/JP2006120730A/en
Publication of JP2006120730A publication Critical patent/JP2006120730A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a wiring structure capable of turning into low resistance, where a multilayered carbon nanotube (CNT) is used for interlayer wiring of two or more conductive layers. <P>SOLUTION: In the wiring structure, the multilayered CNT is used for the interlayer wiring of two or more conductive layers. A plurality of annular cut areas formed in concentric circular states by a graphene sheet contained in the multilayered CNT at the end of the CNT on the side far from the growing base point of the CNT is respectively brought into contact with the conductive layers. Since the conductive layers and graphene sheet are brought into contact with each other, without going through the intermediary of the portion of the cap layer of the CNT, the contact resistances between the conductive layers and graphene sheet become smaller than those of the conventional types. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ナノカーボンを用いた半導体製造技術に関し、特に層間配線に多層カーボンナノチューブ(多層CNT)を用いる配線構造及びその製造方法に関する。   The present invention relates to a semiconductor manufacturing technology using nanocarbon, and more particularly to a wiring structure using multi-walled carbon nanotubes (multi-walled CNT) for interlayer wiring and a manufacturing method thereof.

この種の技術分野では、今後のデバイスの微細化を実現するために、ナノカーボンを利用することが有望視されている。特に、多層CNTは、単層CNTとは異なり、優れた導電性を示し、集積回路の配線に使用することが期待されている(このようなCNTについては、例えば特許文献1参照。)。   In this kind of technical field, it is considered promising to use nanocarbon in order to realize future miniaturization of devices. In particular, multi-walled CNTs, unlike single-walled CNTs, exhibit excellent conductivity and are expected to be used for wiring of integrated circuits (see, for example, Patent Document 1 for such CNTs).

図1は、2つの導電層の層間配線に多層CNTを用いる配線構造を製造するためのいくつかの工程を示す。図1(A)に示される工程では、例えば銅(Cu)など1種類以上の金属元素より成る第1の導電層12に、層間絶縁膜14が成膜される。図1(B)に示される工程では、層間絶縁膜14の所定の部分にビア13が形成され、第1の導電層12が露出するようにする。露出した導電層12の部分には、例えばニッケル(Ni)のような触媒金属15が設けられる。図1(C)に示される工程では、例えば500℃程度の雰囲気でアセチレンガス等が反応炉内に供給される。これにより、触媒金属15を基点にして、多層CNTがビア13に沿って成長する。触媒金属15の種類、熱処理の温度等を制御することで、成長するCNTの種類や大きさ等を調整することができる。図1(D)に示される工程では、層間絶縁膜14及び多層CNT16上に、例えば銅など1種類以上の金属元素より成る第2の導電層18が成膜される。こうして、第1及び第2の導電層12,18の層間配線に多層CNT16を用いた配線構造を得ることができる(この種の配線構造については、例えば非特許文献1参照。)。
特開2003−81621号公報 M.Nihei,et al.,“Simultaneous Formation of Multiwall Carbon Nanotubes and their End−Bonded Ohmic Contacts to Ti Electrodes for Future ULSI Interconnections”,Japanese Journal of Applied Physics,Vol.43,No.4B,2004,pp.1856−1859
FIG. 1 shows several steps for manufacturing a wiring structure using multilayer CNTs for interlayer wiring of two conductive layers. In the step shown in FIG. 1A, an interlayer insulating film 14 is formed on the first conductive layer 12 made of one or more metal elements such as copper (Cu). In the step shown in FIG. 1B, a via 13 is formed in a predetermined portion of the interlayer insulating film 14 so that the first conductive layer 12 is exposed. A catalytic metal 15 such as nickel (Ni) is provided on the exposed portion of the conductive layer 12. In the step shown in FIG. 1C, acetylene gas or the like is supplied into the reactor in an atmosphere of about 500 ° C., for example. Thereby, the multilayer CNT grows along the via 13 with the catalyst metal 15 as a base point. By controlling the type of catalyst metal 15 and the temperature of the heat treatment, the type and size of the growing CNT can be adjusted. In the step shown in FIG. 1D, a second conductive layer 18 made of one or more kinds of metal elements such as copper is formed on the interlayer insulating film 14 and the multilayer CNT 16. In this way, it is possible to obtain a wiring structure using the multilayer CNT 16 for the interlayer wiring of the first and second conductive layers 12 and 18 (see, for example, Non-Patent Document 1 for this type of wiring structure).
JP 2003-81621 A M.M. Nihei, et al. , “Simultaneous Formation of Multiwall Carbon Nanotubes and the End End-Bonded Ohmic Contacts to Ti Electrodes for Future Amplitudes, Japan, USA”. 43, no. 4B, 2004, pp. 1856-1859

ところで、CNTは、グラフェンシートと呼ばれる側壁と、キャップ層と呼ばれる先端部分を有する。多層CNTでは、グラフェンシート及びキャップ層が入れ子状に幾層にも重なった構造が形成される。このような多層CNTは、それ自体は導電性を有するが、それが層間配線に利用される場合には、導電層との間の接触抵抗が大きくなるという問題がある。この場合に、非特許文献1記載発明は、成長基点側の導電層12にチタニウム(Ti)のような所定の金属より成る層を形成し、そこに触媒金属を設けて多層CNTを成長させることで、多層CNT16と導電層12との間の接触抵抗を減少させようとしている。しかしながら、上部の導電層18側との間では、主にキャップ層と導電層18との間の接触抵抗が大きいことに起因して、配線構造全体としての抵抗値が大きくなってしまうことが懸念される。   By the way, CNT has a side wall called a graphene sheet and a tip part called a cap layer. In multi-walled CNTs, a structure in which graphene sheets and cap layers are nested and overlapped is formed. Such multi-walled CNTs themselves have conductivity, but when they are used for interlayer wiring, there is a problem that the contact resistance with the conductive layer increases. In this case, according to the invention described in Non-Patent Document 1, a layer made of a predetermined metal such as titanium (Ti) is formed on the conductive layer 12 on the growth base side, and a catalyst metal is provided thereon to grow a multilayer CNT. Thus, the contact resistance between the multilayer CNT 16 and the conductive layer 12 is to be reduced. However, there is a concern that the resistance value of the entire wiring structure may increase due to the large contact resistance between the cap layer and the conductive layer 18 between the upper conductive layer 18 side. Is done.

また、CNTの成長の際に、プロセス条件に依存して、図1(D)右側の拡大図に示されるように、CNTの周囲にアモルファスカーボンが付着することがある。更には、このようなアモルファスカーボンが、CNTの多くの部分を包囲してしまうこともある。アモルファスカーボンの導電性は低いので、そのような余分な物質がCNTに付着すると、導電層18との間の抵抗値が大きくなってしまう。特許文献1記載発明は、CNTに付着したアモルファスカーボンを除去する技術を開示している。しかし、特許文献1記載発明は、CNTを乳鉢に入れて物理的機械的にCNTに付着した余分な物質を除去するので、ビアの中に成長させたCNTに対する余分な物質の除去には使用できない。   Further, during the growth of CNTs, depending on the process conditions, amorphous carbon may adhere around the CNTs as shown in the enlarged view on the right side of FIG. Furthermore, such amorphous carbon may surround many parts of the CNT. Since the conductivity of amorphous carbon is low, if such extra material adheres to the CNTs, the resistance value with respect to the conductive layer 18 increases. The invention described in Patent Document 1 discloses a technique for removing amorphous carbon adhering to CNTs. However, the invention described in Patent Document 1 cannot be used to remove excess material from CNT grown in vias because CNT is placed in a mortar and mechanically and mechanically attached to CNT is removed. .

本発明は、上記の問題点に鑑みてなされたものであり、その課題は、2以上の導線層の層間配線に多層CNTが使用される配線構造の低抵抗化を図ることの可能な配線構造及びその製造方法を提供することである。   The present invention has been made in view of the above-mentioned problems, and its problem is a wiring structure capable of reducing the resistance of a wiring structure in which a multilayer CNT is used for an interlayer wiring of two or more conductor layers. And a method of manufacturing the same.

本発明では、2以上の導電層の層間配線に多層カーボンナノチューブが使用される配線構造が使用される。前記多層カーボンナノチューブに含まれるグラフェンシートにより形成され且つ前記多層カーボンナノチューブの成長基点から遠い側の端部に同心状に形成される複数の環状の切り口が、導電層にそれぞれ接触する。   In the present invention, a wiring structure in which multi-walled carbon nanotubes are used for interlayer wiring of two or more conductive layers is used. A plurality of annular cuts formed by a graphene sheet contained in the multi-walled carbon nanotube and concentrically formed at an end portion far from the growth base point of the multi-walled carbon nanotube are in contact with the conductive layer.

本発明によれば、2以上の導線層の層間配線に多層CNTが使用される配線構造の低抵抗化を図ることができる。   According to the present invention, it is possible to reduce the resistance of a wiring structure in which a multilayer CNT is used for an interlayer wiring of two or more conductor layers.

本発明の一態様によれば、
第1の導電層上に設けられた絶縁層に、前記第1の導電層に至るビアが形成され、
前記ビアを貫通する多層CNTが形成され、
前記多層CNTを含む構造が、酸素を含む雰囲気で加熱され、
前記絶縁層及び前記多層CNT上に第2の導電層が成膜されることで、配線構造が作成される。
According to one aspect of the invention,
Vias reaching the first conductive layer are formed in the insulating layer provided on the first conductive layer,
A multilayer CNT penetrating the via is formed,
The structure including the multilayer CNT is heated in an atmosphere including oxygen,
A wiring structure is created by forming a second conductive layer on the insulating layer and the multilayer CNT.

前記多層CNTを含む構造が、酸素を含む雰囲気で加熱されると、多層CNTの先端部分と酸素が反応し、その先端部分が開端され、グラフェンシートにより形成される複数の環状の端部が露出する。この複数の環状の端部に接触するように第2の導電層が成膜される。第2の導電層は、CNTのキャップ層の部分を介さずにチューブのグラフェンシート側に接するので、導電層とCNTとの接触抵抗は従来よりも小さくなる。また、この開端の工程にて、多層CNTに付着した余分な物質(アモルファスカーボン)も、酸素と反応することで除去される。   When the structure including the multi-walled CNT is heated in an atmosphere containing oxygen, the front-end portion of the multi-walled CNT reacts with oxygen, the front-end portion is opened, and a plurality of annular ends formed by the graphene sheet are exposed. To do. A second conductive layer is formed so as to be in contact with the plurality of annular ends. Since the second conductive layer is in contact with the graphene sheet side of the tube without passing through the cap layer portion of the CNT, the contact resistance between the conductive layer and the CNT is smaller than in the conventional case. Also, in this open end step, excess substances (amorphous carbon) adhering to the multi-walled CNT are also removed by reacting with oxygen.

本発明の一態様によれば、前記多層CNTの内部に、所定の導電性物質より成る層間配線部材が設けられる。本発明の一態様では、その所定の導電性物質は、フラーレン又は金属元素より成る。チューブの中空部分に導電性物質が充填されることで、導電層とCNTとの間の電気抵抗を更に小さくすることができる。   According to one aspect of the present invention, an interlayer wiring member made of a predetermined conductive material is provided in the multilayer CNT. In one embodiment of the present invention, the predetermined conductive material is made of fullerene or a metal element. By filling the hollow portion of the tube with the conductive material, the electrical resistance between the conductive layer and the CNT can be further reduced.

本発明の一態様によれば、前記多層カーボンナノチューブの成長基点側とは異なる端部側の導電層が、所定の金属元素より成るコンタクト層と、コンタクト層とは異なる導電性の層より成る。本発明の一態様によれば、所定の金属元素は、チタニウム、モリブデン、タンタル、パラジウム、ルテニウム、アルミニウム、白金、金及び銅を含む群から選択された少なくとも1つの元素を含む。これにより、CNTとの間の電気抵抗を低減することができる。   According to an aspect of the present invention, the conductive layer on the end side different from the growth base point side of the multi-walled carbon nanotube includes a contact layer made of a predetermined metal element and a conductive layer different from the contact layer. According to one aspect of the present invention, the predetermined metal element includes at least one element selected from the group including titanium, molybdenum, tantalum, palladium, ruthenium, aluminum, platinum, gold, and copper. Thereby, the electrical resistance between CNTs can be reduced.

本発明の一態様によれば、前記コンタクト層が、多層に形成される。本発明の一態様によれば、前記コンタクト層が、タンタル及びチタニウムより成る2層から形成される。これにより、例えば、高温の製造工程中に、導電層中の元素がコンタクト層側に拡散することを抑制することが可能になる。   According to an aspect of the present invention, the contact layer is formed in multiple layers. According to an aspect of the present invention, the contact layer is formed of two layers made of tantalum and titanium. Thereby, for example, it becomes possible to suppress diffusion of elements in the conductive layer to the contact layer side during a high-temperature manufacturing process.

本発明の一態様によれば、前記熱処理を施す前に、水素雰囲気中で、前記多層カーボンナノチューブを含む構造に熱処理が施される。これにより、CNTに与える影響を少なくしつつ、余分なアモルファスカーボンを除去することができる。   According to one aspect of the present invention, the heat treatment is performed on the structure including the multi-walled carbon nanotubes in a hydrogen atmosphere before the heat treatment. Thereby, excess amorphous carbon can be removed while reducing the influence on CNTs.

図2は、2つの導電層の層間配線に多層CNTを用いる配線構造を製造する方法におけるいくつかの工程を示す。簡単のため、上下2層の導電層に対する層間配線構造が説明されるが、更に多くの導電層を有する配線構造に本発明を使用することもできる。図2(A)に示される工程では、第1の導電層202に、層間絶縁膜204が成膜される。第1の導電層202は、用途に応じて、例えば銅(Cu)、金(Au)その他任意の導電性物質から構成することができる。   FIG. 2 shows several steps in a method of manufacturing a wiring structure using multilayer CNTs for interlayer wiring of two conductive layers. For simplicity, an interlayer wiring structure for two upper and lower conductive layers is described, but the present invention can also be used for a wiring structure having more conductive layers. In the step shown in FIG. 2A, an interlayer insulating film 204 is formed over the first conductive layer 202. The first conductive layer 202 can be made of, for example, copper (Cu), gold (Au), or any other conductive material depending on the application.

図2(B)に示される工程では、層間絶縁膜204の所定の部分にビア206が形成され、第1の導電層202が露出するようにする。ビア206は、フォトリソグラフィ法のような既存の技術を用いて形成することができる。導電層202の露出した部分には、例えばニッケル(Ni)、コバルト(Co)、鉄(Fe)のような触媒金属208が設けられる。このような触媒金属208は、ビア206を形成した後に設けてもよいし、ビア206を形成する前に事前に設けておいてもよい。後者の場合は、第1の導電層202に層間絶縁膜204が形成される前に、第1の導電層202に触媒金属が設けられることになる。本実施例では、銅より成る第1の導電層202上にタンタル(Ta)及びチタニウム(Ti)より成る層(図示せず)が成膜され、さらにそのチタニウム層に触媒金属が設けられる。タンタル層により第1の導電層202を構成する銅の拡散が防止される。また、後に形成される多層CNTと第1の導電層202との間にチタニウム層が介在することによって、多層CNT及び第1の導電層202間の電気抵抗が小さく抑制される。   In the step shown in FIG. 2B, a via 206 is formed in a predetermined portion of the interlayer insulating film 204 so that the first conductive layer 202 is exposed. The via 206 can be formed using an existing technique such as a photolithography method. The exposed portion of the conductive layer 202 is provided with a catalytic metal 208 such as nickel (Ni), cobalt (Co), or iron (Fe). Such a catalyst metal 208 may be provided after the via 206 is formed, or may be provided in advance before the via 206 is formed. In the latter case, a catalyst metal is provided on the first conductive layer 202 before the interlayer insulating film 204 is formed on the first conductive layer 202. In this embodiment, a layer (not shown) made of tantalum (Ta) and titanium (Ti) is formed on the first conductive layer 202 made of copper, and a catalyst metal is further provided on the titanium layer. The diffusion of copper constituting the first conductive layer 202 is prevented by the tantalum layer. Further, since the titanium layer is interposed between the multilayer CNT formed later and the first conductive layer 202, the electrical resistance between the multilayer CNT and the first conductive layer 202 is suppressed to be small.

図2(C)に示される工程では、例えば500℃程度の雰囲気でアセチレンガス(C)等が反応炉内に供給される。これにより、触媒金属208は微粒子状になり、その微粒子に炭素が吸収される。微粒子による炭素の吸収が飽和すると、微粒子を基点にして、多層CNTがビアに沿って成長する。触媒金属208の種類、熱処理の温度、触媒金属の下地層(チタニウム層)の膜厚等を制御することで、成長するCNTの種類や大きさ等を調整することができる。本実施例では、最も外側の直径が5乃至20nm程度の多層CNTがビア206内に多数形成される。図示の例では、6つの多層CNTが模式的に描かれている。CNTの成長を促進させる工程は、多層CNT210が層間絶縁膜204の膜厚程度に成長するまで継続される。 In the step shown in FIG. 2C, acetylene gas (C 2 H 2 ) or the like is supplied into the reactor in an atmosphere of about 500 ° C., for example. As a result, the catalytic metal 208 is in the form of fine particles, and carbon is absorbed by the fine particles. When the absorption of carbon by the fine particles is saturated, the multi-walled CNT grows along the vias starting from the fine particles. By controlling the type of catalyst metal 208, the temperature of the heat treatment, the thickness of the underlayer (titanium layer) of the catalyst metal, the type and size of the grown CNTs can be adjusted. In this embodiment, a number of multi-walled CNTs having an outermost diameter of about 5 to 20 nm are formed in the via 206. In the illustrated example, six multilayer CNTs are schematically drawn. The process of promoting the growth of CNT is continued until the multilayer CNT 210 is grown to the thickness of the interlayer insulating film 204.

図2(D)に示される工程では、所定のプロセス条件の下で熱処理が行われる。この工程は、例えば、500℃程度の温度で、真空排気後に反応炉に導入された1キロパスカル程度の酸素の雰囲気中で、5分乃至10分間行われる。これにより、多層CNT210の先端部分(キャップ層)が、酸素と反応して除去され、構造的に閉じているCNTの端部が開端される(図3参照)。CNTの先端部分は、6員環で安定的に構成される側壁部(グラフェンシート)とは異なり、5員環を含む比較的不安定な構造を有する。従って、酸素と反応する際には、先端部分が優先して反応し、最外殻から最内殻まで順に開端されてゆく。開端された後の多層CNTは、図2(D)右側の拡大図に模式的に示されるような形状を有する。   In the step shown in FIG. 2D, heat treatment is performed under predetermined process conditions. This step is performed, for example, at a temperature of about 500 ° C. for 5 to 10 minutes in an atmosphere of oxygen of about 1 kilopascal introduced into the reactor after evacuation. Thereby, the front-end | tip part (cap layer) of multilayer CNT210 reacts with oxygen, is removed, and the edge part of CNT structurally closed is opened (refer FIG. 3). Unlike the side wall portion (graphene sheet) that is stably composed of a 6-membered ring, the tip portion of the CNT has a relatively unstable structure including a 5-membered ring. Therefore, when reacting with oxygen, the tip portion reacts preferentially, and the ends are sequentially opened from the outermost shell to the innermost shell. The multilayer CNT after being opened has a shape as schematically shown in the enlarged view on the right side of FIG.

図2(E)に示される工程では、層間絶縁膜204及び多層CNT210上に、例えば銅より成る第2の導電層212が成膜される。導電層の成膜は、例えばスパッタリング法を用いて行うことができる。こうして、第1及び第2の導電層202,212の層間配線に多層CNT210を用いた配線構造を得ることができる。   In the step shown in FIG. 2E, a second conductive layer 212 made of, for example, copper is formed on the interlayer insulating film 204 and the multilayer CNT 210. The conductive layer can be formed by using, for example, a sputtering method. Thus, a wiring structure using the multilayer CNT 210 for the interlayer wiring between the first and second conductive layers 202 and 212 can be obtained.

本実施例によれば、図2(D)右側に示されるような、複数の環状の端部が第2の導電層212にそれぞれ接触するので、最外殻の先端部分のみが導電層に接触していた従来例よりも低い接触抵抗が得られる。   According to the present embodiment, as shown in the right side of FIG. 2D, a plurality of annular ends are in contact with the second conductive layer 212, respectively, so that only the tip portion of the outermost shell is in contact with the conductive layer. The contact resistance is lower than that of the conventional example.

ところで、背景技術の図1(D)に関連して説明されたように、ビアに沿って成長したCNTには、余分な物質(アモルファスカーボン)が付着していることがある。しかしながら、本実施例では、図2(D)の酸化工程にて、そのようなアモルファスカーボンが除去される。アモルファスカーボンはCNTよりも不安定な構造を有し、酸素と反応しやすいからである。従って、図2(D)の酸化工程では、多層CNTが開端されることに加えて、アモルファスカーボンの除去も行われる。アモルファスカーボンを除去する観点からは、上記のように、酸素雰囲気中で製造途中の配線構造を加熱してもよいし、或いは配線構造を酸素プラズマにさらしてもよい。前者は配線構造自体を高温に加熱しなければならないが、後者は室温で行うことができる。従って、配線構造に与える熱的な影響を少なくする観点からは、後者の酸素プラズマを用いる方が有利であろう。   By the way, as described with reference to FIG. 1D of the background art, an extra substance (amorphous carbon) may be attached to the CNT grown along the via. However, in this embodiment, such amorphous carbon is removed in the oxidation step of FIG. This is because amorphous carbon has a more unstable structure than CNT and easily reacts with oxygen. Therefore, in the oxidation process of FIG. 2D, in addition to the opening of the multi-layer CNT, the removal of amorphous carbon is also performed. From the viewpoint of removing amorphous carbon, the wiring structure being manufactured may be heated in an oxygen atmosphere as described above, or the wiring structure may be exposed to oxygen plasma. The former has to heat the wiring structure itself to a high temperature, while the latter can be performed at room temperature. Therefore, it is more advantageous to use the latter oxygen plasma from the viewpoint of reducing the thermal influence on the wiring structure.

また、図2(C)及び(D)に示される工程の間に、例えば500乃至600℃の温度で、真空排気後に反応炉に導入された1キロパスカル程度の水素の雰囲気中で熱処理を行うことで、アモルファスカーボンを除去してもよい。アモルファスカーボンは、水素とも反応しやすいからである。但し、CNTの先端部分との反応性に関しては、水素は酸素より弱い反応性を示すので、水素を用いるこの工程でCNTのキャップ層部分を除去することは困難であろう。従って、この工程は、多層CNTにさほど影響を与えずに、余分な物質を除去する観点からは好都合であろう。   Also, during the steps shown in FIGS. 2C and 2D, heat treatment is performed in a hydrogen atmosphere of about 1 kilopascal introduced into the reaction furnace after evacuation at a temperature of 500 to 600 ° C., for example. Thus, amorphous carbon may be removed. This is because amorphous carbon easily reacts with hydrogen. However, regarding the reactivity with the tip portion of the CNT, since hydrogen shows a weaker reactivity than oxygen, it will be difficult to remove the cap layer portion of the CNT in this process using hydrogen. Therefore, this step may be advantageous from the viewpoint of removing excess material without significantly affecting the multi-walled CNTs.

上述したように、多層CNTは、筒状のチューブが幾重にも重なった構造を有するので、最も内側のCNTの内部は中空である。本発明の第2実施例では、この中空の領域に、導電性の電流経路が設けられる。   As described above, the multi-walled CNT has a structure in which the cylindrical tubes overlap each other, so that the inside of the innermost CNT is hollow. In the second embodiment of the present invention, a conductive current path is provided in this hollow region.

図4の左側の図は、多層CNTの一端(終端側)が開端された直後の様子を示し、これは図2(D)の工程が終了した時点の様子に相当する。次に、最も内側のCNT内部の中空の領域内に、銅のような導電性物質が導入される。導電性物質の導入は、分子線エピタキシ(MBE)、気相成長法等の手法を用いて行うことができる。中空の領域内は構造的に安定で低エネルギ状態であり、雰囲気中に漂う導電性物質はその領域内に入りやすいからである。その結果、図4右側に示されるように、最も内側のCNT内部を導電性物質で充填することができる。以後、図2(E)に示されるような工程を行うことで、配線構造が完成する。なお、スパッタリング等により第2の導電層を成膜する際に多層CNT上に飛来する導電性物質は、多層CNTの直径より大きな塊状の物質であるので、そのような物質は多層CNTの中空領域には内包されにくいであろう。   The diagram on the left side of FIG. 4 shows a state immediately after one end (terminal side) of the multilayer CNT is opened, which corresponds to the state at the time when the step of FIG. Next, a conductive material such as copper is introduced into a hollow region inside the innermost CNT. The introduction of the conductive substance can be performed using a technique such as molecular beam epitaxy (MBE) or vapor phase epitaxy. This is because the hollow region is structurally stable and has a low energy state, and the conductive substance floating in the atmosphere tends to enter the region. As a result, as shown on the right side of FIG. 4, the innermost CNT can be filled with the conductive material. Thereafter, the wiring structure is completed by performing the steps as shown in FIG. Note that the conductive material flying on the multi-walled CNT when the second conductive layer is formed by sputtering or the like is a massive material larger than the diameter of the multi-walled CNT. Therefore, such a material is a hollow region of the multi-walled CNT. It will be difficult to enclose.

本実施例によれば、筒状のCNT構造内に、芯のような導電性経路を設けるので、第1及び第2の導電層間の抵抗を更に低くすることができる。CNTに充填する導電性物質としては、用途に応じて任意の原子及び分子を使用することができる。例えば、直径10nm程度の筒状中空部分に直径1nm未満の微小球のフラーレン(例えば、C60等)が多数充填されてもよい。 According to the present embodiment, since a conductive path such as a core is provided in the cylindrical CNT structure, the resistance between the first and second conductive layers can be further reduced. Arbitrary atoms and molecules can be used as the conductive material filled in the CNTs depending on the application. For example, the fullerene of the microspheres having a diameter of less than 1nm to the cylindrical hollow portion having a diameter of about 10 nm (e.g., C 60, etc.) may be filled many.

図5は、CNTに導電性物質を内包させていない場合(内包前)及び内包させた場合(内包後)のCNTの導電性を示す。図中横軸はCNTの両端にかかる電圧を示し、縦軸はCNTに沿って流れる電流を示す。図示されているように、CNTに導電性物質を内包させることで、グラフの傾きを更に急峻にし、CNTの電気抵抗を低減できることが分かる。   FIG. 5 shows the conductivity of CNTs when the conductive material is not encapsulated in CNT (before encapsulation) and when encapsulated (after encapsulation). In the figure, the horizontal axis indicates the voltage applied to both ends of the CNT, and the vertical axis indicates the current flowing along the CNT. As shown in the figure, it can be seen that the inclusion of a conductive substance in the CNTs can make the slope of the graph more steep and reduce the electrical resistance of the CNTs.

図6は、本発明の一実施例による配線構造を示す。第1実施例で説明済みの要素(図2)には同様な参照番号が付されている。図6左側に示されるように、本実施例では、多層CNT210上に、チタニウム(Ti)より成るコンタクト層220が設けられ、そのコンタクト層220上に第2の導電層212が設けられている。そのようなコンタクト層は、例えば、室温におけるスパッタリングで成膜し、場合によっては加熱することにより形成される。コンタクト層220中のチタニウムは、CNT側との間でチタニウムカーバイト(TiC)を形成し、電気的に良好な接合部を形成する。従って、本実施例によれば、配線構造の低抵抗化を更に促すことができる。コンタクト層220は、チタニウムだけでなく、タンタル(Ta)、モリブデン(Mo)、パラジウム(Pd)、ルテニウム(Ru)、アルミニウム(Al)、白金(Pt)、金(Au)、銅(Cu)等の導電性物質で構成してもよい。コンタクト層220の形成は、第2の導電層212を成膜する前に行われる。具体的には、図2(D)の工程と図2(E)の工程の間に行われる。コンタクト層220は、単一の材料層としてもよいし、多層の材料層としてもよい。なお、図6右側に示されるように、コンタクト層220をビアの外に設けてもよい。   FIG. 6 shows a wiring structure according to an embodiment of the present invention. Elements already described in the first embodiment (FIG. 2) have similar reference numbers. As shown on the left side of FIG. 6, in this embodiment, a contact layer 220 made of titanium (Ti) is provided on the multilayer CNT 210, and a second conductive layer 212 is provided on the contact layer 220. Such a contact layer is formed, for example, by sputtering at room temperature and in some cases by heating. Titanium in the contact layer 220 forms titanium carbide (TiC) with the CNT side to form an electrically good junction. Therefore, according to this embodiment, the resistance of the wiring structure can be further reduced. The contact layer 220 is not only titanium but also tantalum (Ta), molybdenum (Mo), palladium (Pd), ruthenium (Ru), aluminum (Al), platinum (Pt), gold (Au), copper (Cu), etc. The conductive material may be used. The contact layer 220 is formed before the second conductive layer 212 is formed. Specifically, it is performed between the step of FIG. 2D and the step of FIG. The contact layer 220 may be a single material layer or a multilayer material layer. As shown on the right side of FIG. 6, the contact layer 220 may be provided outside the via.

図7は、コンタクト層220を多層の材料層で形成した場合の一例を示す。図7左側に示される例では、コンタクト層220が、チタニウムより成る第1層222と、その上に設けられたタンタルより成る第2層224とを含む。一般に、銅は高温の環境下では隣接する層内に拡散する性質を有する。タンタルの第2層224を設けることで、銅がチタニウムの第1層222側に拡散することを抑制することができる。この例についても、図7右側に示されるように、コンタクト層220を構成する第1層222及び第2層224を、ビアの外に設けてもよい。   FIG. 7 shows an example in which the contact layer 220 is formed of multiple material layers. In the example shown on the left side of FIG. 7, the contact layer 220 includes a first layer 222 made of titanium and a second layer 224 made of tantalum provided thereon. In general, copper has the property of diffusing into adjacent layers in high temperature environments. By providing the second layer 224 of tantalum, it is possible to suppress the diffusion of copper to the first layer 222 side of titanium. Also in this example, as shown on the right side of FIG. 7, the first layer 222 and the second layer 224 constituting the contact layer 220 may be provided outside the via.

以下、本発明により教示される手段を例示的に列挙する。   Hereinafter, the means taught by the present invention will be listed as an example.

(付記1)
2以上の導電層の層間配線に多層カーボンナノチューブが使用される配線構造であって、
前記多層カーボンナノチューブに含まれるグラフェンシートにより形成され且つ前記多層カーボンナノチューブの成長基点から遠い側の端部に同心状に形成される複数の環状の切り口が、導電層にそれぞれ接触する
ことを特徴とする配線構造。
(Appendix 1)
A wiring structure in which multi-walled carbon nanotubes are used for interlayer wiring of two or more conductive layers,
A plurality of annular cuts formed by a graphene sheet contained in the multi-walled carbon nanotube and concentrically formed at an end far from the growth base point of the multi-walled carbon nanotube are in contact with the conductive layer, respectively. Wiring structure.

(付記2)
前記多層カーボンナノチューブの内部に、所定の導電性物質より成る層間配線部材が設けられる
ことを特徴とする付記1記載の配線構造。
(Appendix 2)
The wiring structure according to appendix 1, wherein an interlayer wiring member made of a predetermined conductive material is provided inside the multi-walled carbon nanotube.

(付記3)
前記所定の導電性物質が、フラーレンなどの分子又は金属元素より成る
ことを特徴とする付記2記載の配線構造。
(Appendix 3)
The wiring structure according to appendix 2, wherein the predetermined conductive material is made of a molecule such as fullerene or a metal element.

(付記4)
前記多層カーボンナノチューブの成長基点から遠い側に設けられる導電層が、所定の金属元素より成るコンタクト層と、コンタクト層とは異なる導電性の層より成る
ことを特徴とする付記1記載の配線構造。
(Appendix 4)
The wiring structure according to claim 1, wherein the conductive layer provided on the side far from the growth base point of the multi-walled carbon nanotube includes a contact layer made of a predetermined metal element and a conductive layer different from the contact layer.

(付記5)
前記所定の金属元素が、チタニウム、モリブデン、タンタル、パラジウム、ルテニウム、アルミニウム、白金、金及び銅を含む群から選択された少なくとも1つの元素を含む
ことを特徴とする付記4記載の配線構造。
(Appendix 5)
The wiring structure according to claim 4, wherein the predetermined metal element includes at least one element selected from the group including titanium, molybdenum, tantalum, palladium, ruthenium, aluminum, platinum, gold, and copper.

(付記6)
前記コンタクト層が、多層に形成される
ことを特徴とする付記4記載の配線構造。
(Appendix 6)
The wiring structure according to appendix 4, wherein the contact layer is formed in multiple layers.

(付記7)
前記コンタクト層が、銅、タンタル及びチタニウムより成る3層から形成される
ことを特徴とする付記6記載の配線構造。
(Appendix 7)
The wiring structure according to appendix 6, wherein the contact layer is formed of three layers made of copper, tantalum, and titanium.

(付記8)
第1の導電層上に設けられた絶縁層に、前記第1の導電層に至るビアを形成し、
前記ビアを貫通する多層カーボンナノチューブを成長させ、
酸素を含む雰囲気で、前記多層カーボンナノチューブを含む構造に熱処理もしくはプラズマ処理を施し、
前記絶縁層及び前記多層カーボンナノチューブ上に第2の導電層を成膜する
ことを特徴とする配線構造の製造方法。
(Appendix 8)
Forming a via leading to the first conductive layer in an insulating layer provided on the first conductive layer;
Growing multi-walled carbon nanotubes through the vias;
In an atmosphere containing oxygen, the structure containing the multi-walled carbon nanotubes is subjected to heat treatment or plasma treatment,
A method of manufacturing a wiring structure, comprising forming a second conductive layer on the insulating layer and the multi-walled carbon nanotube.

(付記9)
前記第2の導電層を成膜する前に、開端された多層カーボンナノチューブの筒状の中空部分に導電性物質を導入する
ことを特徴とする付記8記載の製造方法。
(Appendix 9)
The manufacturing method according to appendix 8, wherein a conductive substance is introduced into the cylindrical hollow portion of the opened multi-walled carbon nanotube before forming the second conductive layer.

(付記10)
前記導電性物質が、フラーレンなどの分子又は金属元素より成る
ことを特徴とする付記8記載の製造方法。
(Appendix 10)
The manufacturing method according to appendix 8, wherein the conductive substance is made of a molecule such as fullerene or a metal element.

(付記11)
前記第2の導電層を成膜する前に、少なくとも前記多層カーボンナノチューブ上に所定の金属元素より成るコンタクト層を成膜する
ことを特徴とする付記8記載の製造方法。
(Appendix 11)
9. The manufacturing method according to appendix 8, wherein a contact layer made of a predetermined metal element is formed on at least the multi-walled carbon nanotube before forming the second conductive layer.

(付記12)
前記コンタクト層を多層に形成する
ことを特徴とする付記11記載の製造方法。
(Appendix 12)
The manufacturing method according to appendix 11, wherein the contact layer is formed in multiple layers.

(付記13)
前記熱処理を施す前に、水素を含む雰囲気で、前記多層カーボンナノチューブを含む構造に熱処理を施す
ことを特徴とする付記8記載の製造方法。
(Appendix 13)
The manufacturing method according to appendix 8, wherein the structure including the multi-walled carbon nanotubes is subjected to a heat treatment in an atmosphere containing hydrogen before the heat treatment.

従来の配線構造を製造する主要な工程の概略断面図を示す。The schematic sectional drawing of the main processes which manufacture the conventional wiring structure is shown. 本発明の一実施例による配線構造を製造する主要な工程の概略断面図を示す。The schematic sectional drawing of the main processes which manufacture the wiring structure by one Example of this invention is shown. 開端される多層CNTを示す図である。It is a figure which shows the multilayer CNT opened. 多層CNTに導電性物質が充填される様子を示す図である。It is a figure which shows a mode that a conductive material is filled into multilayer CNT. 多層CNTの導電性を示すグラフである。It is a graph which shows the electroconductivity of multilayer CNT. 本発明の一実施例による配線構造を示す図である。It is a figure which shows the wiring structure by one Example of this invention. 本発明の一実施例による配線構造を示す図である。It is a figure which shows the wiring structure by one Example of this invention.

符号の説明Explanation of symbols

12,18 導電層; 13ビア; 14 層間絶縁膜; 15 触媒金属; 16 多層CNT;
202,212 導電層; 204 層間絶縁膜; 206 ビア; 208 触媒金属; 210 多層CNT; 220 コンタクト層
12, 18 conductive layer; 13 vias; 14 interlayer insulating film; 15 catalytic metal; 16 multilayer CNT;
202, 212 Conductive layer; 204 Interlayer insulating film; 206 Via; 208 Catalytic metal; 210 Multi-layer CNT; 220 Contact layer

Claims (5)

2以上の導電層の層間配線に多層カーボンナノチューブが使用される配線構造であって、
前記多層カーボンナノチューブに含まれるグラフェンシートにより形成され且つ前記多層カーボンナノチューブの成長基点から遠い側の端部に同心状に形成される複数の環状の切り口が、導電層にそれぞれ接触する
ことを特徴とする配線構造。
A wiring structure in which multi-walled carbon nanotubes are used for interlayer wiring of two or more conductive layers,
A plurality of annular cuts formed by a graphene sheet contained in the multi-walled carbon nanotube and concentrically formed at an end far from the growth base point of the multi-walled carbon nanotube are in contact with the conductive layer, respectively. Wiring structure.
前記多層カーボンナノチューブの内部に、所定の導電性物質より成る層間配線部材が設けられる
ことを特徴とする請求項1記載の配線構造。
The wiring structure according to claim 1, wherein an interlayer wiring member made of a predetermined conductive material is provided inside the multi-walled carbon nanotube.
前記多層カーボンナノチューブの成長基点から遠い側に設けられる導電層が、所定の金属元素より成るコンタクト層と、コンタクト層とは異なる導電性の層より成る
ことを特徴とする請求項1記載の配線構造。
The wiring structure according to claim 1, wherein the conductive layer provided on the side far from the growth base point of the multi-walled carbon nanotube includes a contact layer made of a predetermined metal element and a conductive layer different from the contact layer. .
第1の導電層上に設けられた絶縁層に、前記第1の導電層に至るビアを形成し、
前記ビアを貫通する多層カーボンナノチューブを成長させ、
酸素を含む雰囲気で、前記多層カーボンナノチューブを含む構造に熱処理もしくはプラズマ処理を施し、
前記絶縁層及び前記多層カーボンナノチューブ上に第2の導電層を成膜する
ことを特徴とする配線構造の製造方法。
Forming a via leading to the first conductive layer in an insulating layer provided on the first conductive layer;
Growing multi-walled carbon nanotubes through the vias;
In an atmosphere containing oxygen, the structure containing the multi-walled carbon nanotubes is subjected to heat treatment or plasma treatment,
A method of manufacturing a wiring structure, comprising forming a second conductive layer on the insulating layer and the multi-walled carbon nanotube.
前記第2の導電層を成膜する前に、開端された多層カーボンナノチューブの筒状の中空部分に導電性物質を導入する
ことを特徴とする請求項6記載の製造方法。
The manufacturing method according to claim 6, wherein a conductive substance is introduced into the cylindrical hollow portion of the opened multi-walled carbon nanotube before forming the second conductive layer.
JP2004304667A 2004-10-19 2004-10-19 Wiring structure using multilayered carbon nanotube for interlayer wiring, and its manufacturing method Pending JP2006120730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004304667A JP2006120730A (en) 2004-10-19 2004-10-19 Wiring structure using multilayered carbon nanotube for interlayer wiring, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004304667A JP2006120730A (en) 2004-10-19 2004-10-19 Wiring structure using multilayered carbon nanotube for interlayer wiring, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006120730A true JP2006120730A (en) 2006-05-11

Family

ID=36538349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004304667A Pending JP2006120730A (en) 2004-10-19 2004-10-19 Wiring structure using multilayered carbon nanotube for interlayer wiring, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006120730A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006133318A1 (en) * 2005-06-08 2006-12-14 Intel Corporation Carbon nanotube interconnect contacts
EP1975999A1 (en) 2007-03-30 2008-10-01 Fujitsu Limited Electronic device and method of manufacturing the same
WO2009060556A1 (en) * 2007-11-06 2009-05-14 Panasonic Corporation Wiring structure and method for forming the same
JP2010010661A (en) * 2008-06-25 2010-01-14 Commiss Energ Atom Horizontal interconnection architecture based on carbon nanotube
US7790242B1 (en) 2007-10-09 2010-09-07 University Of Louisville Research Foundation, Inc. Method for electrostatic deposition of graphene on a substrate
CN101861645A (en) * 2007-12-21 2010-10-13 先进微装置公司 Integrated circuit system with contact integration
JP2011014598A (en) * 2009-06-30 2011-01-20 Ulvac Japan Ltd Method for joining metal to carbon nanotube and wiring structure using carbon nanotube
JP2011061026A (en) * 2009-09-10 2011-03-24 Toshiba Corp Carbon nanotube wiring and method for manufacturing the same
JP2011091258A (en) * 2009-10-23 2011-05-06 Fujitsu Semiconductor Ltd Method of manufacturing electronic circuit element
JP2012501079A (en) * 2008-08-29 2012-01-12 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Semiconductor devices with carbon-based materials for through-hole vias
WO2012005851A2 (en) * 2010-07-09 2012-01-12 Micron Technology, Inc. Electrically conductive laminate structures, electrical interconnects, and method of forming electrical interconnects
CN102376624A (en) * 2010-08-11 2012-03-14 中国科学院微电子研究所 Graphene device and production method thereof
US8410608B2 (en) 2010-10-05 2013-04-02 Kabushiki Kaisha Toshiba Interconnect structure device
KR101298789B1 (en) 2010-08-31 2013-08-22 가부시끼가이샤 도시바 Semiconductor device
JP2014086622A (en) * 2012-10-25 2014-05-12 Toshiba Corp Semiconductor device and manufacturing method of the same
US9117885B2 (en) 2010-10-05 2015-08-25 Kabushiki Kaisha Toshiba Graphene interconnection and method of manufacturing the same
US9159615B2 (en) 2010-10-05 2015-10-13 Kabushiki Kaisha Toshiba Graphene interconnection and method of manufacturing the same
CN105244249A (en) * 2015-10-20 2016-01-13 天津师范大学 Graphene sheet-carbon nanotube film flexible composite material, preparation method and application thereof
JP6077076B1 (en) * 2015-09-11 2017-02-08 株式会社東芝 Graphene wiring structure and method for producing graphene wiring structure
WO2019083036A1 (en) 2017-10-26 2019-05-02 古河電気工業株式会社 Carbon nanotube coated electric wire and coil
WO2019083031A1 (en) 2017-10-26 2019-05-02 古河電気工業株式会社 Coated carbon nanotube wire
WO2019083038A1 (en) 2017-10-26 2019-05-02 古河電気工業株式会社 Carbon nanotube composite wire, carbon nanotube-coated electric wire, and wire harness
WO2019083037A1 (en) 2017-10-26 2019-05-02 古河電気工業株式会社 Carbon nanotube composite wire, carbon nanotube-coated electric wire, and wire harness, robot wiring, and overhead line
WO2019083025A1 (en) 2017-10-26 2019-05-02 古河電気工業株式会社 Carbon nanotube-coated electric wire
WO2019083026A1 (en) 2017-10-26 2019-05-02 古河電気工業株式会社 Carbon nanotube-coated electric wire
WO2019083039A1 (en) 2017-10-26 2019-05-02 古河電気工業株式会社 Carbon nanotube composite wire, carbon nanotube-coated electric wire, and wire harness
CN113932274A (en) * 2021-06-04 2022-01-14 重庆重铝新材料科技有限公司 Energy-saving environment-friendly antibacterial graphene self-heating aluminum veneer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329723A (en) * 2001-05-02 2002-11-15 Fujitsu Ltd Integrated circuit device and its manufacturing method
JP2003523608A (en) * 2000-02-16 2003-08-05 インフィネオン テクノロジーズ アクチエンゲゼルシャフト Electronic component having electrically conductive connection made of carbon nanotube and method of manufacturing the same
JP2004006864A (en) * 2002-05-10 2004-01-08 Texas Instruments Inc Semiconductor device inside integrated circuit and configuration method thereof
JP2004031497A (en) * 2002-06-24 2004-01-29 Nec Corp Semiconductor device and its manufacturing method
JP2004288833A (en) * 2003-03-20 2004-10-14 Fujitsu Ltd Ohmic connection structure to carbon element cylindrical structure and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523608A (en) * 2000-02-16 2003-08-05 インフィネオン テクノロジーズ アクチエンゲゼルシャフト Electronic component having electrically conductive connection made of carbon nanotube and method of manufacturing the same
JP2002329723A (en) * 2001-05-02 2002-11-15 Fujitsu Ltd Integrated circuit device and its manufacturing method
JP2004006864A (en) * 2002-05-10 2004-01-08 Texas Instruments Inc Semiconductor device inside integrated circuit and configuration method thereof
JP2004031497A (en) * 2002-06-24 2004-01-29 Nec Corp Semiconductor device and its manufacturing method
JP2004288833A (en) * 2003-03-20 2004-10-14 Fujitsu Ltd Ohmic connection structure to carbon element cylindrical structure and its manufacturing method

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006133318A1 (en) * 2005-06-08 2006-12-14 Intel Corporation Carbon nanotube interconnect contacts
GB2442634A (en) * 2005-06-08 2008-04-09 Intel Corp Carbon nanotube interconnect contacts
EP1975999A1 (en) 2007-03-30 2008-10-01 Fujitsu Limited Electronic device and method of manufacturing the same
US7960277B2 (en) 2007-03-30 2011-06-14 Fujitsu Semiconductor Limited Electronic device and method of manufacturing the same
US7790242B1 (en) 2007-10-09 2010-09-07 University Of Louisville Research Foundation, Inc. Method for electrostatic deposition of graphene on a substrate
WO2009060556A1 (en) * 2007-11-06 2009-05-14 Panasonic Corporation Wiring structure and method for forming the same
CN101861645A (en) * 2007-12-21 2010-10-13 先进微装置公司 Integrated circuit system with contact integration
JP2011508418A (en) * 2007-12-21 2011-03-10 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Integrated circuit system with integrated contacts
US8709941B2 (en) 2007-12-21 2014-04-29 Advanced Micro Devices, Inc. Method for forming contact in an integrated circuit
JP2010010661A (en) * 2008-06-25 2010-01-14 Commiss Energ Atom Horizontal interconnection architecture based on carbon nanotube
JP2012501079A (en) * 2008-08-29 2012-01-12 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Semiconductor devices with carbon-based materials for through-hole vias
JP2011014598A (en) * 2009-06-30 2011-01-20 Ulvac Japan Ltd Method for joining metal to carbon nanotube and wiring structure using carbon nanotube
JP2011061026A (en) * 2009-09-10 2011-03-24 Toshiba Corp Carbon nanotube wiring and method for manufacturing the same
JP2011091258A (en) * 2009-10-23 2011-05-06 Fujitsu Semiconductor Ltd Method of manufacturing electronic circuit element
US10879178B2 (en) 2010-07-09 2020-12-29 Micron Technology, Inc. Electrically conductive laminate structures
US10381308B2 (en) 2010-07-09 2019-08-13 Micron Technology, Inc. Electrically conductive laminate structures
US8946903B2 (en) 2010-07-09 2015-02-03 Micron Technology, Inc. Electrically conductive laminate structure containing graphene region
JP2013529859A (en) * 2010-07-09 2013-07-22 マイクロン テクノロジー, インク. A method of forming a conductive thin layer structure, electrical interconnects and electrical interconnects.
US10141262B2 (en) 2010-07-09 2018-11-27 Micron Technology, Inc. Electrically conductive laminate structures
US9997461B2 (en) 2010-07-09 2018-06-12 Micron Technology, Inc. Electrically conductive laminate structures
WO2012005851A2 (en) * 2010-07-09 2012-01-12 Micron Technology, Inc. Electrically conductive laminate structures, electrical interconnects, and method of forming electrical interconnects
US10679943B2 (en) 2010-07-09 2020-06-09 Micron Technology, Inc. Electrically conductive laminate structures
WO2012005851A3 (en) * 2010-07-09 2012-03-29 Micron Technology, Inc. Electrically conductive laminate structures, electrical interconnects, and method of forming electrical interconnects
CN102376624A (en) * 2010-08-11 2012-03-14 中国科学院微电子研究所 Graphene device and production method thereof
KR101298789B1 (en) 2010-08-31 2013-08-22 가부시끼가이샤 도시바 Semiconductor device
US9159615B2 (en) 2010-10-05 2015-10-13 Kabushiki Kaisha Toshiba Graphene interconnection and method of manufacturing the same
US8410608B2 (en) 2010-10-05 2013-04-02 Kabushiki Kaisha Toshiba Interconnect structure device
TWI501299B (en) * 2010-10-05 2015-09-21 Toshiba Kk Semiconductor device
KR101311032B1 (en) * 2010-10-05 2013-09-24 가부시끼가이샤 도시바 Semiconductor device
US9117885B2 (en) 2010-10-05 2015-08-25 Kabushiki Kaisha Toshiba Graphene interconnection and method of manufacturing the same
JP2014086622A (en) * 2012-10-25 2014-05-12 Toshiba Corp Semiconductor device and manufacturing method of the same
US9924593B2 (en) 2015-09-11 2018-03-20 Kabushiki Kaisha Toshiba Graphene wiring structure and method for manufacturing graphene wiring structure
JP6077076B1 (en) * 2015-09-11 2017-02-08 株式会社東芝 Graphene wiring structure and method for producing graphene wiring structure
CN105244249A (en) * 2015-10-20 2016-01-13 天津师范大学 Graphene sheet-carbon nanotube film flexible composite material, preparation method and application thereof
WO2019083031A1 (en) 2017-10-26 2019-05-02 古河電気工業株式会社 Coated carbon nanotube wire
WO2019083038A1 (en) 2017-10-26 2019-05-02 古河電気工業株式会社 Carbon nanotube composite wire, carbon nanotube-coated electric wire, and wire harness
WO2019083037A1 (en) 2017-10-26 2019-05-02 古河電気工業株式会社 Carbon nanotube composite wire, carbon nanotube-coated electric wire, and wire harness, robot wiring, and overhead line
WO2019083025A1 (en) 2017-10-26 2019-05-02 古河電気工業株式会社 Carbon nanotube-coated electric wire
WO2019083026A1 (en) 2017-10-26 2019-05-02 古河電気工業株式会社 Carbon nanotube-coated electric wire
WO2019083039A1 (en) 2017-10-26 2019-05-02 古河電気工業株式会社 Carbon nanotube composite wire, carbon nanotube-coated electric wire, and wire harness
WO2019083036A1 (en) 2017-10-26 2019-05-02 古河電気工業株式会社 Carbon nanotube coated electric wire and coil
CN113932274A (en) * 2021-06-04 2022-01-14 重庆重铝新材料科技有限公司 Energy-saving environment-friendly antibacterial graphene self-heating aluminum veneer

Similar Documents

Publication Publication Date Title
JP2006120730A (en) Wiring structure using multilayered carbon nanotube for interlayer wiring, and its manufacturing method
Graham et al. Towards the integration of carbon nanotubes in microelectronics
EP2011572B1 (en) Method for forming catalyst nanoparticles for growing elongated nanostructures
JP4272700B2 (en) Nanostructure and manufacturing method thereof
US7883968B2 (en) Field effect transistor and its manufacturing method
EP2586744B1 (en) Nanostructure and precursor formation on conducting substrate
JP5708493B2 (en) Semiconductor device and manufacturing method thereof
US6689674B2 (en) Method for selective chemical vapor deposition of nanotubes
JP4880644B2 (en) Branched carbon nanotube growth method
JP4984498B2 (en) Functional element and manufacturing method thereof
Kim et al. Fabrication of an ultralow-resistance ohmic contact to MWCNT–metal interconnect using graphitic carbon by electron beam-induced deposition (EBID)
WO2004070854A1 (en) Chemical vapor deposition of single walled carbon nanotubes
JP2008105906A (en) Single wall carbon nanotube heterojunction, its manufacturing method, semiconductor device, and its manufacturing method
JP2007182375A (en) Method for manufacturing nitrogen-doped single-walled carbon nanotube
JP2008085336A (en) Forming method of carbon nanotube interconnection, and forming method of semiconductor element interconnection using the same
JP6330415B2 (en) Manufacturing method of semiconductor device
EP2587514B1 (en) Nanostructure-based electron beam writer
JP4904696B2 (en) Field effect transistor and manufacturing method thereof
JP2011057466A (en) Carbon nanotube sheet structure and method for producing the same, semiconductor device
JP2004165297A (en) Semiconductor device
JP2005272271A (en) Method for producing carbon nanotube and method for manufacturing semiconductor device
JP2009023881A (en) Carbon nanotube and carbon nanotube structure
JP6158798B2 (en) Device including nanostructure and manufacturing method thereof
KR20020003782A (en) fabrication method of carbon nanotubes
CN101133190A (en) Producing a stable catalyst for nanotube growth

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070906

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Effective date: 20090929

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20091124

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

A02 Decision of refusal

Effective date: 20110118

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20110415

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20110422

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110527