JP2004282472A - アダプティブアレイアンテナ受信装置 - Google Patents

アダプティブアレイアンテナ受信装置 Download PDF

Info

Publication number
JP2004282472A
JP2004282472A JP2003072012A JP2003072012A JP2004282472A JP 2004282472 A JP2004282472 A JP 2004282472A JP 2003072012 A JP2003072012 A JP 2003072012A JP 2003072012 A JP2003072012 A JP 2003072012A JP 2004282472 A JP2004282472 A JP 2004282472A
Authority
JP
Japan
Prior art keywords
weight
finger
array antenna
beamformer
adaptive array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003072012A
Other languages
English (en)
Inventor
Takashi Nakagawa
貴史 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2003072012A priority Critical patent/JP2004282472A/ja
Publication of JP2004282472A publication Critical patent/JP2004282472A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】アダプティブアレイアンテナ受信装置においてサーチャー部でもフィンガー部と同様なビーム形成の実現を容易なものにすると同時に、サーチャー部の受信品質を改善しアダプティブアレイアンテナのメリットを最大限生かす。
【解決手段】n個の無線受信部102はn個のアンテナ素子101からのRF信号をディジタルベースバンド信号に変換する。サーチャー部103はビーム毎にパスの位置を検出する。フィンガー部104はサーチャー部103が検出したタイミングで逆拡散を行い、MMSE等の適応アルゴリズムを用いてビームを形成し、最大比合成を行う。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明はアダプティブアレイアンテナ受信装置に関し、特に直接拡散CDMA(Code Division Multiple Access)方式を用いた移動体通信システムの無線基地局に、複数のアンテナ素子を有するアレイアンテナを設け、受信した複数の信号を乗算して合成することで所望のビームパターンを等価的に形成するアダプティブアレイアンテナ受信装置に関する。
【0002】
【従来の技術】
一般に、DS−CDMA方式(Direct Sequence−Code Division Multiple Access:直接拡散符号分割多重方式)は複数の通信者が同一の周波数帯を用いて多重通信を行う方式であり、各通信者は拡散符号によって分離識別される。移動通信では多重波伝搬の各受信波の伝搬路長にばらつきがあるため、伝搬遅延時間が異なる多重波が複数受信機に入力することになる。
【0003】
また移動局は基地局に対して変動するため、この遅延プロファイル(遅延時間に対する信号電力分布)も時間変動する。DS−CDMA通信においては、この時間分離した伝搬遅延時間の異なる複数のマルチパス信号をかき集め合成(RAK E合成)することで、パスダイバーシティ効果が得られて受信特性が向上する。
【0004】
あるいは、一定の受信品質に対してはRAKE合成に伴うダイバーシティ効果によって送信電力を低減することができる。
【0005】
一方、DS−CDMA方式を用いた移動体通信システムの基地局アンテナでは現在セクターアンテナが用いられている。セクターアンテナとは、360度の全周(セル)を複数のセクターに分割したとき各セクターを担当するアンテナである。このセルのセクター化はセクター外からの移動局から到来する干渉波を除去することができ、またセクター外の移動局への干渉を減らすことができるが、同一セクター内の他ユーザーからの到来波は干渉波となる。他ユーザーからの干渉はチャネル容量の低下や伝送品質を劣化させる主な要因となっている。
【0006】
この干渉を低減して伝送品質を向上する技術として、アダプティブアレイアンテナシステムの研究・開発が行われている。アダプティブアレイアンテナシステムは、各アンテナ出力にビームウェイト(振幅ウェイトおよび位相ウェイト)を乗算することで、アンテナの指向性パターン(ビーム)を等価的に形成し、そのビームを希望波到来方向に向ける、あるいは干渉波到来方向にヌルを向けることで、希望波利得の向上とエリア内の干渉を抑制することを可能にするものである。
【0007】
図4は、従来のアダプティブアレイアンテナ受信装置を示すブロック図である。
【0008】
図4を参照すると、アンテナ素子101にて受信した信号は無線受信部102において中間周波数に周波数変換された後、自動利得増幅器(図示せず)で増幅され、I/Qチャネルのベースバンド信号に直交検波された後、A/D変換器(図示せず)でディジタル信号に変換される。この無線受信部102の出力のうち一つはサーチャー部401へ送られ、複数の無線受信部102の出力全てがフィンガー部402に送られる。
【0009】
サーチャー部401ではまず相関器405にて受信信号に含まれる所望波信号の符号相関を算出し、その結果より遅延プロファイル推定部407にて遅延プロファイル(遅延時間に対する信号電力分布)を生成する。パス検出回路408はこの遅延プロファイルよりマルチパス信号の受信タイミングをサーチして、フィンガー部402の各Fingerに割り当てる。
【0010】
一方、フィンガー部402は無線受信部102より得た信号を、パス検出回路408が出力する受信タイミング通知信号409を用いて逆拡散を行う。各Fingerは復調器110(各Finger内に全アンテナ素子数分の復調器を持つ)で、サーチャー部401が割り当てたパスの逆拡散を各々行う。逆拡散後の信号は、フィンガー部ビーム形成器111に入力されて、ウェイト制御部113内の適応アルゴリズムで算出されたビームウェイトを乗算されて、等価的にビームを形成する。フィンガー部ビーム形成器111の出力は、チャネル推定部112においてチャネル推定演算を施され、RAKE合成回路114に出力される。
【0011】
RAKE合成回路114は、各Finger出力をRAKE合成したのちに復号回路(図示せず)へ送出する。
【0012】
また、ウェイト制御部113内の適応制御アルゴリズムで必要とされる誤差信号は、参照信号115をチャネル推定部112でてチャネル推定値と乗算した後に、フィンガー部ビーム形成器111の出力との差分をとることで生成される。ウェイト制御部113は、この誤差信号が最小になるようビームウェイトを更新していくことで等価的にビームパターンを形成し、割り当てられたパスにビームを追従させる。
【0013】
ウェイト制御部113内でのウェイトを決定するアルゴリズムについては、MMSE(Minimum Mean Squared Error)などの適応アルゴリズムが用いられる。
【0014】
この従来のアダプティブアレイアンテナ受信装置では、フィンガー部402でのビーム形成により、同期補足がなされているパスに対してはその受信品質を向上させることが可能であったが、パスを検出するサーチャー部401においてはビームが形成されないため、環境の一時的な悪化などがあった場合、サーチャー部401がいくつかのパスを失う恐れがある。サーチャー部401がパスを失えば、フィンガー部402でのRAKE合成の効果が減少し、通話品質という点でセクターアンテナシステムの大きな向上が期待できなくなる。
【0015】
つまりこのような受信装置では、フィンガー部402は等価的にビーム形成を行い、その復調精度をセクターアンテナシステムにより改善することが可能であったが、サーチャー部401はビームを形成することができないため、パスの検出精度という点ではセクターアンテナシステムと同等のものとならざるを得ない。サーチャー部401がパスを失えば、フィンガー部402でのRAKE合成後の受信品質も悪化することになる。
【0016】
このように、従来のアダプティブアレイアンテナシステムの受信品質は、大きな問題を抱えたものであった。
【0017】
なお、上述以外に従来のアダプティブアレイアンテナ受信装置は、各パスのフェージングによる変動の平均化処理を行い遅延プロファイル部に格納し、複数のアンテナ素子の遅延プロファイルを加算合成し平均化を行うことで、サーチャー部のパス検出率を改善している(例えば、特許文献1参照。)。
【0018】
また、サーチャー部およびフィンガー部でマルチビーム(パスに追従しない複数の固定ビーム)を生成することでセクタ内を分割しているものもある(例えば、特許文献2参照。)。
【0019】
【特許文献1】
特開2002−84216号公報(第2−4頁、図1、図2)
【特許文献2】
特開2001−345747号公報(第3−5頁、図1、図5)
【0020】
【発明が解決しようとする課題】
上述した従来のアダプティブアレイアンテナ受信装置は、複数のアンテナ素子の遅延プロファイルを加算合成して平均化を行うことでサーチャー部のパス検出率を改善しているが、このような方法での検出率の改善はアンテナ素子数が多い場合、フィンガー部でのビーム形成による受信品質の改善率にはおよばず、ビーム形成による受信品質改善のメリットを最大限生かすことは、やはり不可能であること、セクター内の複数のビームに対してビームを移動するユーザーに追従させる適応制御を行わないので、受信品質が低下するという欠点を有している。
【0021】
また、サーチャー部で独自に適応アルゴリズムを用いビームウェイトを生成することは膨大な計算量を必要とし実現することが困難であるという欠点を有している。
【0022】
本発明の目的は、アダプティブアレイアンテナ受信装置においてサーチャー部でもフィンガー部と同様なパス検出過程におけるビーム生成の実現を容易なものにすると同時に、従来ボトルネックとなっていたサーチャー部のパス検出精度を改善することで、RAKE合成後の受信品質を改善しアダプティブアレイアンテナのメリットを最大限生かすことを可能とするアダプティブアレイアンテナ受信装置を提供することにある。
【0023】
【課題を解決するための手段】
本発明の第1のアダプティブアレイアンテナ受信装置は、
直接拡散CDMA(Code Division Multiple Access)方式を用いた移動体通信システムの無線基地局に複数のアンテナ素子を有するアレイアンテナを設け、受信した信号に任意の振幅ウェイト、位相ウェイトを乗算して合成することで所望のビームパターンを等価的に形成することを特徴としている。
【0024】
本発明の第2のアダプティブアレイアンテナ受信装置は、
アダプティブアレイアンテナ受信装置において、
n(nは1以上の整数)個のアンテナ素子と;
各々の前記アンテナ素子からのRF(Radio Frequency)信号をディジタルベースバンド信号に変換するn個の無線受信部と;
これらの無線受信部と接続し、ビーム毎に受信タイミングとしてのパスの位置を検出するサーチャー部と;
このサーチャー部が検出したタイミングで逆拡散を行い、MMSE(Minimum Mean Squared Error:最小平均二乗誤差)適応アルゴリズムを用いてビームを形成し、最大比合成を行うフィンガー部と;
を備えたことを特徴としている。
【0025】
本発明の第3のアダプティブアレイアンテナ受信装置は、前記第2のアダプティブアレイアンテナ受信装置において、
前記サーチャー部は、
n個の前記アンテナ素子に対応した数の相関器と、生成するビームの数に対応したサーチャー部ビーム形成器と、前記ビームの数に対応した遅延プロファイルを生成する遅延プロファイル推定部と、前記遅延プロファイルから各々のパスを検出するパス検出回路とを有していることを特徴としている。
【0026】
本発明の第4のアダプティブアレイアンテナ受信装置は、前記第2または第3のアダプティブアレイアンテナ受信装置において、
前記フィンガー部は、
複数のFingerを持ち、各Finger内には前記アンテナ素子の数に対応した復調器と、フィンガー部ビーム形成器と、チャネル推定部と、ウェイト制御部と、RAKE合成回路とを有し、
前記ウェイト制御部は、前記チャネル推定部で参照信号との差分により前記MMSE適応アルゴリズムを用いて求められた最適な振幅ウェイト・位相ウェイトを前記ウェイト情報として、前記フィンガー部ビーム形成器だけでなく、前記サーチャー部ビーム形成器にも通知することを特徴としている。
【0027】
本発明の第5のアダプティブアレイアンテナ受信装置は、前記第3または第4のアダプティブアレイアンテナ受信装置において、
前記サーチャー部ビーム形成器は、
前記相関器から入力された全ての前記アンテナ素子の入力信号の相関値に前記ウェイト制御部より通知された振幅ウェイト・位相ウェイトの前記ウェイト情報を乗算し合成することで、パスの存在する方向に等価的にビームを形成することを特徴としている。
【0028】
本発明の第6のアダプティブアレイアンテナ受信装置は、前記第3のアダプティブアレイアンテナ受信装置において、
前記遅延プロファイル推定部は、
前記サーチャー部ビーム形成器の出力よりビーム毎の遅延プロファイルを生成し、前記パス検出回路は前記遅延プロファイルよりマルチパス信号の受信タイミングをサーチして、受信タイミング通知信号を前記フィンガー部に通知することを特徴としている。
【0029】
本発明の第7のアダプティブアレイアンテナ受信装置は、前記第2または第3のアダプティブアレイアンテナ受信装置において、
前記フィンガー部は、
複数のFingerを持ち、各Finger内には前記アンテナ素子の数に対応した復調器と、フィンガー部ビーム形成器と、チャネル推定部と、ウェイト制御部と、RAKE合成回路とを有し、
前記パス検出回路が出力する受信タイミング通知信号を用いて前記無線受信部より得た信号のパスの逆拡散を前記復調器でそれぞれ行い、逆拡散後の信号は前記フィンガー部ビーム形成器に入力し、前記ウェイト制御部内の前記MMSE適応アルゴリズムで算出したビームウェイトを乗算することで等価的にビームを形成することを特徴としている。
【0030】
本発明の第8のアダプティブアレイアンテナ受信装置は、前記第4または第7のアダプティブアレイアンテナ受信装置において、
前記フィンガー部ビーム形成器の出力は、前記チャネル推定部においてチャネル推定演算が施され前記RAKE合成回路に出力され、同相合成されることを特徴としている。
【0031】
本発明の第9のアダプティブアレイアンテナ受信装置は、前記第4のアダプティブアレイアンテナ受信装置において、
前記ウェイト制御部は、
前記適応制御アルゴリズムで必要な誤差信号を、前記チャネル推定部で前記参照信号とチャネル推定値に乗算した後、前記フィンガー部ビーム形成器の出力との差分をとることで生成し、前記誤差信号が最小になるように前記ビームウェイトを更新していくことで等価的にビームパターンを形成し、割り当てられたパスにビームを追従させることを特徴としている。
【0032】
本発明の第10のアダプティブアレイアンテナ受信装置は、前記第2〜4または第7のいずれかのアダプティブアレイアンテナ受信装置において、
前記サーチャー部ビーム形成器でのビームウェイトは、前記フィンガー部内の前記ウェイト制御部からウェイト情報として通知がある場合はその値を用いることでビームを生成し、初回同期補足時に前記フィンガー部から前記ウェイト情報として前記ビームウェイトの通知がない場合は、全ビームウェイトを同一の値とすることで特定のビームを形成せず全方向をサーチすることを特徴としている。
【0033】
本発明の第11のアダプティブアレイアンテナ受信装置は、前記第3のアダプティブアレイアンテナ受信装置において、
前記サーチャー部ビーム形成器は、
前記アンテナ素子数n個分の複素積和を行うため、(4×n)個の乗算器と、(2×n)個の加算器と、n個のアンテナ素子nI出力と、n個のアンテナ素子nQ出力とをそれぞれ加算合成し、I信号、Q信号を出力するアキュムレータを2個内蔵し、前記nI出力及び前記nQ出力に前記ビームウェイトが前記乗算器により乗算され、前記アンテナ素子の相関値出力は合成されることで、素子間の位相が補正されてそれぞれ一つのビームを生成し、この生成された出力は補足すべきパスの到来方向を向いたビームの受信相関値出力となることを特徴としている。
【0034】
【発明の実施の形態】
次に、本発明の実施の形態について図面を参照して説明する。
【0035】
図1は本発明のアダプティブアレイアンテナ受信装置の一つの実施の形態を示すブロック図である。
【0036】
なお、図1において図4に示す構成要素に対応するものは同一の参照数字または符号を付し、その説明を省略する。
【0037】
図1に示す本実施の形態は、n個のアンテナ素子101と、各々のアンテナ素子101からのRF信号をディジタルベースバンド信号に変換するn個の無線受信部102と、ビーム毎にパスの位置(受信タイミング)を検出するサーチャー部103と、サーチャー部103が検出したタイミングで逆拡散を行い、MMSE(Minimum Mean Squared Error:最小平均二乗誤差)等の適応アルゴリズムを用いてビームを形成し、最大比合成を行うフィンガー部104とから構成されている。
【0038】
なお、サーチャー部103は、n個のアンテナ素子101に対応した数の相関器105と、生成するビームの数に対応したサーチャー部ビーム形成器106と、ビームの数に対応した遅延プロファイル推定部107と、各々のパスを検出するパス検出回路108とを有している。
【0039】
ここで、遅延プロファイルとは遅延時間に対する信号電力分布を示す。
【0040】
また、フィンガー部104は複数のFingerを持ち、各Finger内にはアンテナ素子101の数に対応した復調器110と、フィンガー部ビーム形成器111と、チャネル推定部112と、ウェイト制御部113と、RAKE合成回路114とを有している。
【0041】
ここで、Finger数とはRAKE合成に用いられるマルチパスの数を示す。
【0042】
サーチャー部103はサーチャー部ビーム形成器106を有しており、サーチャー部ビーム形成器106はフィンガー部104内のウェイト制御部113からのウェイト情報109を通知される。
【0043】
従来どおり、フィンガー部104内のチャネル推定部112で参照信号115との差分を求め、MMSE(Minimum Mean Squared Error)等の適応アルゴリズムを用いて最適な振幅ウェイト・位相ウェイトを求める。こうして最適な振幅ウェイト及び位相ウェイトを求めたウェイト制御部113は、それらのウェイト情報109をフィンガー部ビーム形成器111だけでなく、サーチャー部ビーム形成器106にも通知する。
【0044】
一方、サーチャー部ビーム形成器106は、全てのアンテナ素子101の入力信号の相関値が相関器105から入力され、この相関値にウェイト制御部113より通知された振幅ウェイト・位相ウェイトのウェイト情報109を乗算し合成することで、パスの存在する方向に等価的にビームを形成することが可能となる。
【0045】
図2は図1のビーム形成器の一例を示す詳細ブロック図である。
【0046】
ビーム形成器は図1のサーチャー部103にサーチャー部ビーム形成器106として、フィンガー部104にフィンガー部ビーム形成器111としてそれぞれ含まれている。一つのビーム形成器はアンテナ素子数n個分の複素積和を行うため、(4×n)個の乗算器201と、(2×n)個の加算器202と、さらにn個のアンテナ素子101のI信号出力であるアンテナ素子1I、アンテナ素子2I〜アンテナ素子nIの出力と、n個のアンテナ素子101のQ信号出力であるアンテナ素子1Q、アンテナ素子2Q〜アンテナ素子nQの出力とをそれぞれ加算合成し、I信号、Q信号を出力するアキュムレータ203を2個内蔵している。なお、各アンテナ素子の信号出力にビームウェイト204が乗算器201により掛け合わされる。
【0047】
次に、図1および図2を参照して本実施の形態の動作をより詳細に説明する。
【0048】
n個のアンテナ素子101にて受信されたRF信号はアンテナ素子101毎にそれぞれ無線受信部102に送られる。無線受信部102において、このRF信号は中間周波数(IF帯)に周波数変換された後、自動利得増幅器(図示せず)で増幅され、I/Qチャネルのベースバンド信号に直交検波された後、A/D変換器(図示せず)でディジタル信号に変換される。この無線受信部102の出力はサーチャー部103とフィンガー部104に送られる。
【0049】
サーチャー部103ではまずn個の相関器105にて受信信号に含まれる所望波信号の符号相関値をアンテナ素子101毎に算出する。相関器105のn個の出力全てがサーチャー部ビーム形成器106に送られ、サーチャー部ビーム形成器106内でビームウェイト204により重み付けが行われる。
【0050】
ここで、図2を用いてサーチャー部ビーム形成器106の動作について説明を行う。サーチャー部ビーム形成器106は、アンテナ素子101ごとに入力された所望波信号の符号相関値に乗算器201と加算器202を用いてビームウェイト204を掛け合わせた後に、アンテナ素子101ごとの結果をアキュムレータ203にて加算合成を行う。各アンテナ素子101の相関値出力はサーチャー部ビーム形成器106にてビームウェイト204を乗算された後に合成されることで、素子間の位相が補正されることになる。これによって、サーチャー部ビーム形成器106はそれぞれ一つのビームを生成し、その出力は補足すべきパスの到来方向を向いたビームの受信相関値出力となる。
【0051】
図1に戻って、遅延プロファイル推定部107は、サーチャー部ビーム形成器106の出力よりビーム毎の遅延プロファイルを生成する。パス検出回路108はこの遅延プロファイルよりマルチパス信号の受信タイミングをサーチして、受信タイミング通知信号116をフィンガー部104の各Fingerに通知する。
【0052】
一方、フィンガー部104は無線受信部102より得た信号を、パス検出回路108が出力する受信タイミング通知信号116を用いて逆拡散を行う。各Fingerは復調器110(各Finger内に全アンテナ素子数分の復調器を持つ)で、サーチャー部103が割り当てたパスの逆拡散をそれぞれ行う。
【0053】
逆拡散後の信号はフィンガー部ビーム形成器111に入力されて、ウェイト制御部113内の適応アルゴリズムで算出されたビームウェイト204を乗算されて等価的にビームを形成する。
【0054】
フィンガー部ビーム形成器111の出力はチャネル推定部112においてチャネル推定演算を施され、RAKE合成回路114に出力される。RAKE合成回路114では各Finger出力をかき集め同相合成(RAKE合成)したのちに復号回路(図示せず)へ送る。
【0055】
また、ウェイト制御部113内の適応制御アルゴリズムで必要である誤差信号は、参照信号115をチャネル推定部112においてチャネル推定値に乗算した後、フィンガー部ビーム形成器111の出力との差分をとることで生成する。
【0056】
ウェイト制御部113ではこの誤差信号が最小になるようビームウェイト204を更新していくことで等価的にビームパターンを形成し、割り当てられたパスにビームを追従させる。ウェイト制御部113内でのウェイトを決定するアルゴリズムについてはMMSEなどの適応アルゴリズムが用いられる。
【0057】
なお上述の実施の形態では、サーチャー部ビーム形成器106でのビームウェイト204は、フィンガー部104内のウェイト制御部113からウェイト情報109として通知がある場合は、その値を用いることでビームを生成することができるが、初回同期補足時のようにフィンガー部104からウェイト情報109としてビームウェイト204の通知がない場合(例えば、サーチャー部103がパスの受信タイミング情報116を1度もフィンガー部104に通知していない場合)などは、全ビームウェイトを同一の値とすることで特定のビームを形成せず全方向をサーチするものとする。
【0058】
あるいは、以下の式(1)で求められるビームウェイト204を使用することで、マルチビームを形成することも可能である。マルチビームは、セクター内を複数の固定ビームで分けたもので、各ビームのピーク位置に他のビームのヌル点がくるように構成されたものである。
【0059】
【数1】
Figure 2004282472
【0060】
ただし、
m:ビームナンバー(ビーム形成器の数)
n:アンテナ素子ナンバー
s:ビーム数
t:アンテナ素子数
とする。
【0061】
上述の通り本発明は、直接拡散CDMA方式を用いた移動体通信システムの無線基地局に複数のアンテナ素子を有するアレイアンテナを設け、受信した信号に任意の振幅ウェイト、位相ウェイトを乗算して合成することで所望のビームパターンを等価的に形成するアダプティブアレイアンテナシステムの受信装置であり、その受信装置内のパス検出過程(サーチャー部)におけるビームパターン生成方法を示すものである。したがって、パス検出過程におけるビーム生成を容易に実現することを可能とし、従来のアダプティブアレイアンテナシステムにおいてボトルネックとなっていたパス検出精度を改善する。これはひいてはアダプティブアレイアンテナシステムの受信品質改善、通信容量の増大へとつながるものである。
【0062】
本受信装置を用いれば、サーチャー部103におけるビーム形成を容易に実現することが可能となり、ダイナミックに変動するマルチパス環境下でもパスの検出精度を改善することができる。
【0063】
なお本発明はアンテナ素子数、生成するビーム数、Finger数(RAKE合成に用いられるマルチパス数)に限定されるものではない。
【0064】
図3はビーム指向特性を示す図である。
【0065】
例として、アンテナ素子数4、ビーム数4のビームパターンを示しており、4ビームを形成した場合のビーム指向特性を示す図である。
【0066】
横軸はアレイアンテナのビーム放射角度、縦軸はアレイアンテナのアンテナ利得を示す。サーチャー部ビーム形成器106の各ビーム出力であるビーム1、ビーム2、ビーム3、ビーム4に対応して、ビーム到来角に対する各ビームの利得を示している。
【0067】
なお、RAKE合成後のSIR(信号対干渉電力比)を一定とするように送信電力制御が行われるCDMAシステムにおいては、本発明は送信電力の低減を可能とし、通信容量の増大をも実現することになる。
【0068】
【発明の効果】
以上説明したように、本発明のアダプティブアレイアンテナ受信装置は、パス検出過程におけるビーム生成を容易に実現することができるので、アダプティブアレイアンテナにおいてボトルネックとなっていたパス検出精度を改善することができるという効果を有している。
【0069】
また、パス検出精度の改善により、より多くのマルチパスを補足することが可能となるので、RAKE合成後の受信品質を大幅に改善することができるという効果を有している。
【図面の簡単な説明】
【図1】本発明のアダプティブアレイアンテナ受信装置の一つの実施の形態を示すブロック図である。
【図2】図1のビーム形成器の一例を示す詳細ブロック図である。
【図3】ビーム指向特性を示す図である。
【図4】従来のアダプティブアレイアンテナ受信装置を示すブロック図である。
【符号の説明】
101 アンテナ素子
102 無線受信部
103 サーチャー部
104 フィンガー部
105 相関器
106 サーチャー部ビーム形成器
107 遅延プロファイル推定部
108 パス検出回路
109 ウェイト情報
110 復調器
111 フィンガー部ビーム形成器
112 チャネル推定部
113 ウェイト制御部
114 RAKE合成回路
115 参照信号
116 受信タイミング通知信号
201 乗算器
202 加算器
203 アキュムレータ
204 ビームウェイト
401 サーチャー部
402 フィンガー部
405 相関器
407 遅延プロファイル推定部
408 パス検出回路
409 受信タイミング通知信号

Claims (11)

  1. 直接拡散CDMA(Code Division Multiple Access)方式を用いた移動体通信システムの無線基地局に複数のアンテナ素子を有するアレイアンテナを設け、受信した信号に任意の振幅ウェイト、位相ウェイトを乗算して合成することで所望のビームパターンを等価的に形成することを特徴とするアダプティブアレイアンテナ受信装置。
  2. アダプティブアレイアンテナ受信装置において、
    n(nは1以上の整数)個のアンテナ素子と;
    各々の前記アンテナ素子からのRF(Radio Frequency)信号をディジタルベースバンド信号に変換するn個の無線受信部と;
    これらの無線受信部と接続し、ビーム毎に受信タイミングとしてのパスの位置を検出するサーチャー部と;
    このサーチャー部が検出したタイミングで逆拡散を行い、MMSE(Minimum Mean Squared Error:最小平均二乗誤差)適応アルゴリズムを用いてビームを形成し、最大比合成を行うフィンガー部と;
    を備えたことを特徴とするアダプティブアレイアンテナ受信装置。
  3. 前記サーチャー部は、
    n個の前記アンテナ素子に対応した数の相関器と、生成するビームの数に対応したサーチャー部ビーム形成器と、前記ビームの数に対応した遅延プロファイルを生成する遅延プロファイル推定部と、前記遅延プロファイルから各々のパスを検出するパス検出回路とを有していることを特徴とする請求項2記載のアダプティブアレイアンテナ受信装置。
  4. 前記フィンガー部は、
    複数のFingerを持ち、各Finger内には前記アンテナ素子の数に対応した復調器と、フィンガー部ビーム形成器と、チャネル推定部と、ウェイト制御部と、RAKE合成回路とを有し、
    前記ウェイト制御部は、前記チャネル推定部で参照信号との差分により前記MMSE適応アルゴリズムを用いて求められた最適な振幅ウェイト・位相ウェイトを前記ウェイト情報として、前記フィンガー部ビーム形成器だけでなく、前記サーチャー部ビーム形成器にも通知することを特徴とする請求項2又は請求項3記載のアダプティブアレイアンテナ受信装置。
  5. 前記サーチャー部ビーム形成器は、
    前記相関器から入力された全ての前記アンテナ素子の入力信号の相関値に前記ウェイト制御部より通知された振幅ウェイト・位相ウェイトの前記ウェイト情報を乗算し合成することで、パスの存在する方向に等価的にビームを形成することを特徴とする請求項3又は請求項4記載のアダプティブアレイアンテナ受信装置。
  6. 前記遅延プロファイル推定部は、
    前記サーチャー部ビーム形成器の出力よりビーム毎の遅延プロファイルを生成し、前記パス検出回路は前記遅延プロファイルよりマルチパス信号の受信タイミングをサーチして、受信タイミング通知信号を前記フィンガー部に通知することを特徴とする請求項3記載のアダプティブアレイアンテナ受信装置。
  7. 前記フィンガー部は、
    複数のFingerを持ち、各Finger内には前記アンテナ素子の数に対応した復調器と、フィンガー部ビーム形成器と、チャネル推定部と、ウェイト制御部と、RAKE合成回路とを有し、
    前記パス検出回路が出力する受信タイミング通知信号を用いて前記無線受信部より得た信号のパスの逆拡散を前記復調器でそれぞれ行い、逆拡散後の信号は前記フィンガー部ビーム形成器に入力し、前記ウェイト制御部内の前記MMSE適応アルゴリズムで算出したビームウェイトを乗算することで等価的にビームを形成することを特徴とする請求項2又は請求項3記載のアダプティブアレイアンテナ受信装置。
  8. 前記フィンガー部ビーム形成器の出力は、前記チャネル推定部においてチャネル推定演算が施され前記RAKE合成回路に出力され、同相合成されることを特徴とする請求項4又は請求項7記載のアダプティブアレイアンテナ受信装置。
  9. 前記ウェイト制御部は、
    前記適応制御アルゴリズムで必要な誤差信号を、前記チャネル推定部で前記参照信号とチャネル推定値に乗算した後、前記フィンガー部ビーム形成器の出力との差分をとることで生成し、前記誤差信号が最小になるように前記ビームウェイトを更新していくことで等価的にビームパターンを形成し、割り当てられたパスにビームを追従させることを特徴とする請求項4記載のアダプティブアレイアンテナ受信装置。
  10. 前記サーチャー部ビーム形成器でのビームウェイトは、前記フィンガー部内の前記ウェイト制御部からウェイト情報として通知がある場合はその値を用いることでビームを生成し、初回同期補足時に前記フィンガー部から前記ウェイト情報として前記ビームウェイトの通知がない場合は、全ビームウェイトを同一の値とすることで特定のビームを形成せず全方向をサーチすることを特徴とする請求項2、3、4又は7記載のアダプティブアレイアンテナ受信装置。
  11. 前記サーチャー部ビーム形成器は、
    前記アンテナ素子数n個分の複素積和を行うため、(4×n)個の乗算器と、(2×n)個の加算器と、n個のアンテナ素子nI出力と、n個のアンテナ素子nQ出力とをそれぞれ加算合成し、I信号、Q信号を出力するアキュムレータを2個内蔵し、前記nI出力及び前記nQ出力に前記ビームウェイトが前記乗算器により乗算され、前記アンテナ素子の相関値出力は合成されることで素子間の位相が補正されそれぞれ一つのビームを生成し、この生成された出力は補足すべきパスの到来方向を向いたビームの受信相関値出力となることを特徴とする請求項10記載のアダプティブアレイアンテナ受信装置。
JP2003072012A 2003-03-17 2003-03-17 アダプティブアレイアンテナ受信装置 Pending JP2004282472A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003072012A JP2004282472A (ja) 2003-03-17 2003-03-17 アダプティブアレイアンテナ受信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003072012A JP2004282472A (ja) 2003-03-17 2003-03-17 アダプティブアレイアンテナ受信装置

Publications (1)

Publication Number Publication Date
JP2004282472A true JP2004282472A (ja) 2004-10-07

Family

ID=33288316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003072012A Pending JP2004282472A (ja) 2003-03-17 2003-03-17 アダプティブアレイアンテナ受信装置

Country Status (1)

Country Link
JP (1) JP2004282472A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007512763A (ja) * 2003-11-20 2007-05-17 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 空間統合探索チャネル推定器
US8036295B2 (en) 2005-05-31 2011-10-11 Nec Corporation Radio communication system that uses a MIMO receiver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007512763A (ja) * 2003-11-20 2007-05-17 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 空間統合探索チャネル推定器
US8036295B2 (en) 2005-05-31 2011-10-11 Nec Corporation Radio communication system that uses a MIMO receiver

Similar Documents

Publication Publication Date Title
JP3424659B2 (ja) マルチビーム受信装置
JP3888189B2 (ja) 適応アンテナ基地局装置
JP4421106B2 (ja) Cdma通信容量を改善するための実用的な空間−時間無線方法
JP3092798B2 (ja) 適応送受信装置
JP3796721B2 (ja) フェイズドアレイ・スペクトラム拡散システムおよび方法
US6385181B1 (en) Array antenna system of wireless base station
KR100271120B1 (ko) 다이버시티 수신기 및 그 제어방법
JP3465739B2 (ja) Cdma適応アンテナ受信装置及び通信システム
JPH11274976A (ja) 無線基地局のアレーアンテナシステム
JPH1155216A (ja) Cdma適応受信装置
JP2002368652A (ja) 適応アンテナ受信装置
JP2002237766A (ja) 適応アンテナ受信装置
JP2000082982A (ja) アレーアンテナ受信装置
US20040174300A1 (en) Adaptive array antenna reception apparatus and method
KR100453423B1 (ko) 무선 기지국 장치 및 무선 통신 방법
JP2002176384A (ja) 受信機
JP3856126B2 (ja) パスタイミング検出方法、パスタイミング検出装置及び適応アレーアンテナシステム
JP3328930B2 (ja) 適応受信装置
US6317611B1 (en) Communication device with adaptive antenna
WO2003098855A1 (fr) Dispositif et procede de recherche de trajets, dispositif de reception sous forme d'antenne reseau mettant en application ce procede
JP4022810B2 (ja) アレーアンテナ無線通信装置及び受信装置
JP4329594B2 (ja) アレーアンテナ無線通信装置およびそのパスタイミング検出方法
JPWO2004079945A1 (ja) 初期段階から指向性ビームの受信品質が良好な適応アンテナ受信装置
KR100296053B1 (ko) 시디엠에이 적응배열 안테나 시스템의 레이크 수신기
JP2004282472A (ja) アダプティブアレイアンテナ受信装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080902