JP2004281317A - Electrode material for nonaqueous electrolyte secondary battery, its manufacturing method and nonaqueous electrolyte secondary battery using it - Google Patents

Electrode material for nonaqueous electrolyte secondary battery, its manufacturing method and nonaqueous electrolyte secondary battery using it Download PDF

Info

Publication number
JP2004281317A
JP2004281317A JP2003073837A JP2003073837A JP2004281317A JP 2004281317 A JP2004281317 A JP 2004281317A JP 2003073837 A JP2003073837 A JP 2003073837A JP 2003073837 A JP2003073837 A JP 2003073837A JP 2004281317 A JP2004281317 A JP 2004281317A
Authority
JP
Japan
Prior art keywords
secondary battery
electrode material
electrolyte secondary
aqueous electrolyte
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003073837A
Other languages
Japanese (ja)
Inventor
Hideaki Oyama
秀明 大山
Takayuki Nakamoto
貴之 中本
Masaki Hasegawa
正樹 長谷川
Harunari Shimamura
治成 島村
Yasuhiko Mifuji
靖彦 美藤
Masatoshi Kitagawa
雅俊 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003073837A priority Critical patent/JP2004281317A/en
Publication of JP2004281317A publication Critical patent/JP2004281317A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery whose charging and discharging cycle characteristics are excellent, an electrode material for the nonaqueous electrolyte secondary battery to realize the secondary battery and a manufacturing method of the electrode material for the nonaqueous electrolyte secondary battery. <P>SOLUTION: In an electrode material for the nonaqueous electrolyte secondary battery in which Li can be occluded and released reversibly, an Si active material has a cylindrical shape whose diameter is 10 nm or smaller. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質二次電池用電極材料とその製造方法、ならびにそれを用いた非水電解質二次電池に関する。
【0002】
【従来の技術】
従来、非水電解質二次電池の1種であるリチウムイオン二次電池の電極材料として、Liを可逆的に吸蔵および放出できる炭素材料が広く用いられている。リチウムイオン二次電池としては、上記炭素材料を負極の活物質として含む二次電池が一般的である。しかし、上記炭素材料の一例である黒鉛の理論容量は372mAh/gであり、より高容量の非水電解質二次電池用電極材料が求められている。
【0003】
現在、黒鉛などの炭素材料に比べて高容量である電極材料としては、Liと化合物を形成することができる単体金属材料や単体非金属材料などが知られている。例えば、Si、Sn、Znなどであり、それぞれ、式、Li22Si、Li22Sn、LiZnで示される組成になるまでLiを吸蔵することができる。また、これらの材料の理論容量は、それぞれ、4199mAh/g、993mAh/g、410mAh/gであり、いずれも黒鉛などの炭素材料の理論容量よりも大きい。
【0004】
その他、遷移元素からなる非鉄金属の珪化物(例えば、特許文献1参照)や、4B族元素、PおよびSbから選ばれる少なくとも1種の元素を含む金属間化合物からなり、その結晶構造がCaF型、ZnS型およびAlLiSi型から選ばれる少なくとも1種である化合物(例えば、特許文献2参照)などが、非水電解質二次電池用電極材料として提案されている。
【0005】
【特許文献1】
特開平7−240201号公報
【特許文献2】
特開平9−63651号公報
【0006】
【発明が解決しようとする課題】
しかしながら上記電極材料は、初期状態では黒鉛などの炭素材料よりも高容量であるが、充放電を繰り返す間に劣化し、容量が低下する場合がある。容量の低下の原因は明らかではないが、以下の理由が考えられる。例えば、特許文献2に記載の金属間化合物は合金の1種であり、充電時にはLiが合金内に吸蔵されるため上記合金は膨張する。放電時には、逆に、Liが合金内から放出されるため上記合金は収縮する。即ち、充放電の度に上記合金は膨張および収縮を繰り返しており、次第に歪みが蓄積し、微細化が進行することなどによって、劣化が進む。電極材料として、単体金属材料や単体非金属材料を用いる場合にも同様の現象が発生している。
【0007】
このような現象は、電極材料が結晶構造を有する場合に特に顕著であると考えられる。また、電極材料が、原子配列の特徴として、長距離の秩序性を持たない原子構造を有している(このような構造を有した固体を「非晶質」という)場合、歪みの蓄積や微細化は若干抑制されるものの、μmオーダーの割れが生じる可能性がある。
【0008】
特開2002−83594号公報に記載の発明では、凹凸を有する集電体上に電極材料を形成することによって、上記μmオーダーの割れを抑制することができる。さらに、特開2002−279974号公報に記載の発明では、集電体上に活物質薄膜を形成する際、メッシュを配置し、島状に活物質薄膜を形成することにより、上記μmオーダーの割れを抑制することができる。しかし、これらの発明では、Liの吸蔵および放出に伴う原子レベルでの歪や膨張収縮などを抑制することは難しいと考えられる。
【0009】
そこで、本発明は、充放電サイクル特性に優れる非水電解質二次電池と、上記二次電池を実現する非水電解質二次電池用電極材料を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明の非水電解質二次電池用電極材料は、Liを可逆的に吸蔵および放出できる非水電解質二次電池用電極材料であって、Si活物質が円柱型状の形状を有している。
【0011】
Liを可逆的に吸蔵および放出できる非水電解質二次電池用電極材料であって、Si活物質が円柱型状の直径が、10nm以下である。
【0012】
前記非水電解質二次電池用電極材料は非晶質Siである。
【0013】
前記非水電解質二次電池用電極材料は水素化された非晶質Siである。
【0014】
前記非水電解質二次電池用電極材料は水素原子を1原子%〜50原子%の範囲である。
【0015】
また、本発明の非水電解質二次電池用電極材料は、Liを可逆的に吸蔵および放出できる非水電解質二次電池用電極材料であって、Si活物質が集電体上にくし型状に立脚した構造を有している。
【0016】
Liを可逆的に吸蔵および放出できる非水電解質二次電池用電極材料であって、集電体上にくし型状に立脚したSi活物質の大きさが、直径10nm以下である。
【0017】
前記非水電解質二次電池用電極材料は非晶質Siである。
【0018】
前記非水電解質二次電池用電極材料は水素化された非晶質Siである。
【0019】
前記非水電解質二次電池用電極材料は水素原子を1原子%〜50原子%の範囲である。
【0020】
本発明の非水電解質二次電池用電極材料の製造方法は、Liを可逆的に吸蔵および放出できる非水電解質二次電池用電極材料の製造方法であって、
(i)Si活物質が円柱型状の形状を形成する工程、
(ii)基板上にSi活物質がくし型状の構造を形成する工程を、
含む非水電解質二次電池用電極材料の製造方法である。
【0021】
【発明の実施の形態】
(実施の形態1)
本実施の形態では、本発明の非水電解質二次電池用電極材料について説明する。
【0022】
本発明の電極材料は、Liを可逆的に吸蔵および放出できる非水電解質二次電池用電極材料であって、Si活物質が円柱型状の形状を有している非水電解質二次電池用電極材料である。
【0023】
Si内にLiが挿入されて生じた膨張と、Liが脱離することにより生じる収縮により、サイクル劣化が生じる。例えば、この膨張収縮によりマクロ的に粒子割れが生じたとき、割れる前まで、固相内部で固体的な物性を持っていた結晶面が、割れたことにより、より電気化学的に活性な面(新生面)として現れる。そして、新生面とLiと電解液との反応によって、Liが被膜として取り込まれ、不可逆なLiが増大することで、放電容量の低下が著しくなり、サイクル寿命を悪化させる。
【0024】
これらの現象は、Si固体内部に深くLiが挿入・脱離が繰り返されることにより、より生じやすい。この課題を解決するためには、Si内へのLiの挿入・脱離をより浅くすることがより好ましい。Liが可逆的にSiに進入・脱離する深さは、不明であるが、SiとLi22Siは、格子定数が、それぞれ、1.8nm、0.54nmと大きく異なる結晶構造を持っていることから、LiのSiへの進入・脱離は、大きな構造変化を伴うと考えられる。
【0025】
したがって、Liが可逆的にSiに進入・脱離する深さは、非常に浅くてはならず、それはたかだか数十原子層であり、究極にはSi固体が、すべて表面であることがより好ましい。その一つの形態として、集電体上への薄膜形成が考えられる。
【0026】
しかし、数十原子層の薄膜を形成したとしても、その挿入されるLi量は、制限されて、高容量の電池への適用は、不可能である。
【0027】
一方、Si活物質を微細化し、ナノサイズの粒子を形成すれば、数十原子層のすべてが表面である形態が実現できる。しかしながら、微細な一次粒子は、容易に凝集し、前記の課題を解決できない。そこで、数十原子層のすべてが表面であり、かつ凝集のしない形状として、円柱形状がより好ましい。
【0028】
どの表面からも深さ数十原子層にしかならない固体の構造として、ナノワイヤーの形成が報告されている。参考文献としては下記のものがある。参考文献例1“Thermal stability of Ti−catalyzed Sinanowires” T. I. Kamins, X. Li, R. Stanley Williams, Applied Physics Letters, Vol. 82, No. 2, 263−265, (2003), 参考文献例2”Growth of silicon nanowires via gold/silane vapor−liquid−solid reaction” J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, J. Vac. Sci.Technol., Vol. B 15 No. 3, 554−557,(1997)これらの構造は、Si電子素子への応用として開発が進められている。
【0029】
本発明の電極材料は、Liを可逆的に吸蔵および放出できる非水電解質二次電池用電極材料であって、Si活物質が円柱型状の直径が、10nm以下である非水電解質二次電池用電極材料である。
【0030】
上記のように、すべてが表面である形態として、円柱型状の直径は、10nm以下が好ましい。剛体の弾性限界を考察する際に用いられるHall−Petchの法則(参考文献例3:金属材料活用辞典、金属材料活用辞典編集委員会編、(株)産業調査会、p.100、2000年)を適用すると、Si内にLiが挿入されて生じた膨張と、Liが脱離することにより生じる収縮により、粒子割れが発生するのは、その粒子を球状と考えたとき直径10nm以上で割れが生じる。
【0031】
割れが生じると、割れる前まで、固相内部で固体的な物性を持っていた結晶面が、割れたことにより、より電気化学的に活性な面(新生面)として現れる。そして、新生面とLiと電解液との反応によって、Liが被膜として取り込まれ、不可逆なLiが増大することで、放電容量の低下が著しくなり、サイクル寿命は悪化する。
【0032】
本発明の電極材料は、原子配列の特徴として、長距離の秩序性を持たない原子構造を有している(このような構造を有した固体を「非晶質」という)Si(以下単に「非晶質Si」という)の非水電解質二次電池用電極材料である。Si固体内部にLiが挿入・脱離が繰り返されるとき、Siは、結晶構造を持たない非晶質のほうが好ましい。
【0033】
SiとLi22Siは、格子定数が、それぞれ、1.8nm、0.54nmと大きく異なる結晶構造を持っていることから、LiのSiへの進入・脱離は、大きな構造変化を伴うと考えられる。この際、もともとのSiが構造をもっていなければ、構造変化がより容易に行える。
【0034】
本発明の電極材料では、水素化された非晶質Siであってもよい。このような電極材料では、充放電サイクルによる劣化をより抑制することができる。また、このような電極材料を負極の活物質として含むことで、より充放電サイクル特性に優れた非水電解質二次電池を得ることができる。水素化された非晶質Siであれば、水素の存在により、隣接するSi原子間の距離をより増加させることができる。そのため、充放電に伴う体積変化がより抑制された電極材料とすることができる。
【0035】
本発明の電極材料では、前記材料が、水素原子を1原子%〜50原子%の範囲で含んでいてもよい。なかでも、前記材料が、水素原子を1原子%〜20原子%の範囲で含むことが好ましい。水素の存在により、隣接するSi原子間の距離をより増加させることができ、上記範囲において、充放電サイクルによる劣化がより抑制された電極材料とすることができる。水素原子の含有量が1原子%未満では、隣接するSi原子間の距離を増加させ、充放電に伴う体積変化をより抑制する効果が小さい可能性がある。また、50原子%以上では、電極材料の電子伝導性が低下する可能性がある。
【0036】
なお、本発明の電極材料では、電極材料がLiを可逆的に吸蔵および放出することを妨げない限り、Si以外の元素を含んでいてもよい。例えば、N、P、As、Sb、BiなどのV族元素が含まれていてもよい。これらの元素が電極材料中に含まれる割合は、Liを除き、例えば、0.1質量%以下である。また、本発明の電極材料は、Si化合物であってもよい。Si化合物としては、例えば、炭化珪素(SiC)、SiGeなどである。
【0037】
本発明の電極材料は、Liを可逆的に吸蔵および放出できる非水電解質二次電池用電極材料であって、Si活物質が集電体上にくし型状に立脚した構造を有している非水電解質二次電池用電極材料である。
【0038】
Si内にLiが挿入されて生じた膨張と、Liが脱離することにより生じる収縮により、サイクル劣化が生じる。例えば、この膨張収縮によりマクロ的に粒子割れが生じたとき、割れる前まで、固相内部で固体的な物性を持っていた結晶面が、割れたことにより、より電気化学的に活性な面(新生面)として現れる。そして、新生面とLiと電解液との反応によって、Liが被膜として取り込まれ、不可逆なLiが増大することで、放電容量の低下が著しくなり、サイクル寿命を悪化させる。
【0039】
これらの現象は、Si固体内部に深くLiが挿入・脱離が繰り返されることにより、より生じやすい。この課題を解決するためには、Si内へのLiの挿入・脱離をより浅くすることがより好ましい。Liが可逆的にSiに進入・脱離する深さは、不明であるが、Si固体中のLiの熱拡散係数から見積もると、およそ、数十原子層であり、究極には、すべてが表面であることがより好ましい。
【0040】
その一つの形態として、集電体上への薄膜形成が考えられる。しかし、数十原子層の薄膜を形成したとしても、その挿入されるLi量は、制限されて、高容量の電池への適用は、不可能である。一方、限られた集電体の面積に、くし型状に立脚した構造を形成することは、数十原子層の表面をより面積効率よく形成するのに好ましい。
【0041】
本発明の電極材料は、Liを可逆的に吸蔵および放出できる非水電解質二次電池用電極材料であって、集電体上にくし型状に立脚したSi活物質の大きさが、直径10nm以下である非水電解質二次電池用電極材料である。上記のように、すべてが表面である形態として、くし型状に立脚したSi活物質の直径は、10nm以下が好ましい。
【0042】
剛体の弾性限界を考察する際に用いられるHall−Petchの法則(参考文献例3:金属材料活用辞典、金属材料活用辞典編集委員会編、(株)産業調査会、p.100、2000年)を適用すると、Si内にLiが挿入されて生じた膨張と、Liが脱離することにより生じる収縮により、粒子割れが発生するのは、その粒子を球状と考えたとき直径10nm以上で割れが生じる。
【0043】
割れが生じると、割れる前まで、固相内部で固体的な物性を持っていた結晶面が、割れたことにより、より電気化学的に活性な面(新生面)として現れる。そして、新生面とLiと電解液との反応によって、Liが被膜として取り込まれ、不可逆なLiが増大することで、放電容量の低下が著しくなり、サイクル寿命を悪化する。
【0044】
本発明の電極材料は、非晶質Siの非水電解質二次電池用電極材料である。Si固体内部にLiが挿入・脱離が繰り返されるとき、Siは、結晶構造を持たない非晶質のほうが好ましい。SiとLi22Siは、格子定数が、それぞれ、1.8nm、0.54nmと大きく異なる結晶構造を持っていることから、LiのSiへの進入・脱離は、大きな構造変化を伴うと考えられる。この際、もともとのSiが構造をもっていなければ、構造変化がより容易に行える。
【0045】
本発明の電極材料では、水素化された非晶質Siであってもよい。このような電極材料では、充放電サイクルによる劣化をより抑制することができる。また、このような電極材料を負極の活物質として含むことで、より充放電サイクル特性に優れた非水電解質二次電池を得ることができる。
【0046】
水素化された非晶質Siであれば、水素の存在により、隣接するSi原子間の距離をより増加させることができる。そのため、充放電に伴う体積変化がより抑制された電極材料とすることができる。
【0047】
本発明の電極材料では、前記材料が、水素原子を1原子%〜50原子%の範囲で含んでいてもよい。なかでも、前記材料が、水素原子を1原子%〜20原子%の範囲で含むことが好ましい。水素の存在により、隣接するSi原子間の距離をより増加させることができ、上記範囲において、充放電サイクルによる劣化がより抑制された電極材料とすることができる。
【0048】
水素原子の含有量が1原子%未満では、隣接するSi原子間の距離を増加させ、充放電に伴う体積変化をより抑制する効果が小さい可能性がある。また、50原子%以上では、電極材料の電子伝導性が低下する可能性がある。
【0049】
なお、本発明の電極材料では、電極材料がLiを可逆的に吸蔵および放出することを妨げない限り、円柱状Si活物質の長さは、特に限定されない。
【0050】
なお、本発明の電極材料では、電極材料がLiを可逆的に吸蔵および放出することを妨げない限り、Si以外の元素を含んでいてもよい。例えば、N、P、As、Sb、BiなどのV族元素が含まれていてもよい。これらの元素が電極材料中に含まれる割合は、Liを除き、例えば、0.1質量%以下である。また、本発明の電極材料は、Si化合物であってもよい。Si化合物としては、例えば、炭化珪素(SiC)、SiGeなどである。
【0051】
(実施の形態2)
本実施の形態では、本発明における非水電解質二次電池用電極材料の製造方法について説明する。
【0052】
本発明の非水電解質二次電池用電極材料の製造方法は、Liを可逆的に吸蔵および放出できる非水電解質二次電池用電極材料の製造方法であって、
(i)Si活物質が円柱型状の形状を形成する工程、
(ii)基板上にSi活物質がくし型状の構造を形成する工程を含んでいる。
【0053】
このような製造方法とすることによって、充放電サイクルによる劣化がより抑制された電極材料を得ることができる。
【0054】
上記(i)の工程において、円柱状Siを形成する方法としては、特に限定されない。一般的に用いられている薄膜成長方法を用いればよい(参考文献例3:「図解薄膜技術」p1、培風館、1999年)。
【0055】
例えば、エピタキシー法、CVD法、熱化学気相成長法、反応性スパッタリング法、光化学気相成長法などを用いればよい。なかでも、CVD法を用いることが好ましい。CVD法によれば、ナノサイズの円柱状Siを形成することが出来る。また、必要に応じて、上記活物質中にSi以外の原子を挿入することも可能である。具体的には、どの表面からも深さ数十原子層にしかならない固体の構造として、ナノワイヤーの形成が報告されている(参考文献例1、2参照)。これらの構造は、Si電子素子への応用として開発が進められている。これらの方法を用いた具体例については、実施例に後述する。
【0056】
上記円柱状Siを形成するための原材料としては、上記円柱状Siを形成することができれば特に限定されない。形成方法によっても異なるが、例えば、SiH(シラン)、Si、SiHCl、SiClなどを用いればよい。シランガスを用いれば、水素原子を含んだ、Siを含む材料の薄膜を形成することができ、また、上記円柱状Si中において水素原子が含まれる割合を制御することもできる。
【0057】
上記(ii)の工程において、基板上にSi活物質がくし型状の構造を形成する方法としては、特に限定されない。一般的に用いられている薄膜成長方法を用いればよい(参考文献例3参照)。
【0058】
例えば、エピタキシー法、CVD法、熱化学気相成長法、反応性スパッタリング法、光化学気相成長法などを用いればよい。なかでも、CVD法を用いることが好ましい。
【0059】
CVD法によれば、基板上にSi活物質がくし型状の構造を形成することが出来る。また、必要に応じて、上記活物質中にSi以外の原子を挿入することも可能である。具体的には、どの表面からも深さ数十原子層にしかならない固体の構造として、ナノワイヤーの形成が報告されている(参考文献例1、2参照)。これらの構造は、Si電子素子への応用として開発が進められている。これらの方法を用いた具体例については、実施例に後述する。
【0060】
基板としては、例えば、Si,銅、ニッケルなどを用いればよい。基板の厚さは、基板上にくし状Siの活物質を形成できる限り、特に限定されない。例えば、厚さが10μm〜200μmの範囲の基板としてもよい。
【0061】
Siを含む材料の薄膜を形成するための原材料としては、基板上に上記円柱状Siを形成することができれば特に限定されない。形成方法によっても異なるが、例えば、SiH(シラン)、Si、SiHCl、SiClなどを用いればよい。シランガスを用いれば、水素原子を含んだ、Siを含む材料の薄膜を形成することができ、また、上記円柱状Si中において水素原子が含まれる割合を制御することもできる。
【0062】
なお、本発明の電極材料の製造方法では、必要に応じ、上記(ii)の工程から形成したくし型状活物質を前記基板から分離してもよい。上記(ii)の工程において、形成したくし型状活物質を前記基板から分離する方法については、特に限定されない。例えば、機械的に分離すればよい。分離後の前記薄膜は、そのまま二次電池に用いてもよいし、粉砕などによって粉体状に加工した後に二次電池に用いてもよい。本発明の電極材料の形状としては、二次電池を構成することが可能であればよい。
【0063】
(実施の形態3)
本実施の形態では、本発明の非水電解質二次電池用電極材料を用いた非水電解質二次電池について説明する。図1は、本発明における二次電池の一例を示す模式断面図である。図1に示す二次電池は、例えば、次のようにして得ることができる。まず、Liを可逆的に吸蔵および放出できる正極1と負極2とを、セパレータ3を介して積層し、得られた積層体を捲回する。捲回した上記積層体を、底部に下部絶縁板4が設けられたケース5に収め、Li伝導性を有する電解質で全体を満たし、上部絶縁板6を配置する。その後、ガスケット7を周縁部に備える封口板8で封口すればよい。正極1および負極2は、正極リード9および負極リード10により二次電池の外部端子に電気的に接続される。
【0064】
このとき、本発明の電極材料を負極2の活物質として含むことによって、充放電サイクル特性に優れた二次電池とすることができる。本発明の電極材料を活物質として含む負極2について説明する。
【0065】
負極2は、本発明の電極材料すなわち円柱状Si、導電剤および結着剤などを含む電極合剤を、負極集電体の表面に塗着して形成することができる。負極2に用いる導電剤としては、電子伝導性を有する材料であれば特に限定されない。例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛、膨張黒鉛などのグラファイト類や、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカ−ボンブラック類、炭素繊維、金属繊維などの導電性繊維類、銅などの金属粉末類、ポリフェニレン誘導体などの有機導電性材料などを用いればよい。
【0066】
なかでも、人造黒鉛、アセチレンブラック、炭素繊維を用いることが好ましい。これらの材料を混合して用いてもよい。また、電極材料に対してこれらの材料を機械的に表面被覆させてもよい。
【0067】
負極2への上記導電剤の添加量は、特に限定されない。例えば、電極材料100重量部に対して1重量部〜50重量部の範囲であり、1重量部〜30重量部の範囲が好ましい。なお、本発明の電極材料は電子伝導性を有しているため、上記導電剤を添加しなくても二次電池として機能させることができる。
【0068】
負極2に用いる結着剤としては、電極合剤が集電体に結着した状態を維持できる限り、熱可塑性樹脂、熱硬化性樹脂のいずれを用いてもよい。例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデンーヘキサフルオロプロピレンーテトラフルオロエチレン共重合体、フッ化ビニリデンーパーフルオロメチルビニルエーテルーテトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸共重合体Naイオン架橋体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸共重合体Naイオン架橋体、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸メチル共重合体Naイオン架橋体、エチレン−メタクリル酸メチル共重合体、エチレン−メタクリル酸メチル共重合体Naイオン架橋体などを用いればよい。これらの材料を混合して用いてもよい。
【0069】
なかでも、スチレンブタジエンゴム、ポリフッ化ビニリデン、エチレン−アクリル酸共重合体、エチレン−アクリル酸共重合体Naイオン架橋体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸共重合体Naイオン架橋体、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸メチル共重合体Naイオン架橋体、エチレン−メタクリル酸メチル共重合体、エチレン−メタクリル酸メチル共重合体Naイオン架橋体が好ましい。
【0070】
負極2に用いる集電体としては、電子伝導性を有する材料であり、二次電池内で化学変化が起きない材料であれば特に限定されない。
【0071】
例えば、ステンレス鋼、ニッケル、銅、チタン、炭素、導電性樹脂や、あるいは、カーボン、ニッケルまたはチタンで表面処理した銅やステンレス鋼などを用いればよい。なかでも、銅および銅合金が好ましい。また、表面処理などにより、上記集電体の表面に凹凸を設けてもよい。
【0072】
集電体の形状としては、例えば、フォイル、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発泡体、繊維群成形体などとすればよい。集電体の厚さとしては特に限定されない。例えば、1μm〜500μm程度の範囲である。
【0073】
さらに、電極材料、導電剤および結着剤などを含む電極合剤の作製方法、および、作製した電極合剤を集電体へ塗着する方法としては、公知である一般的な方法を用いればよい。
【0074】
また、本発明の電極材料が、Si活物質の集電体上にくし型状に立脚した構造であるとき、負極2は、Si活物質の集電体上にくし型状に立脚した構造のみの極板である場合と、Si活物質の集電体上にくし型状に立脚した構造に、導電剤および結着剤などを含む電極合剤を、負極集電体の表面に塗着して形成することができる。
【0075】
後者の場合、負極2に用いる導電剤としては、電子伝導性を有する材料であれば特に限定されない。例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛、膨張黒鉛などのグラファイト類や、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカ−ボンブラック類、炭素繊維、金属繊維などの導電性繊維類、銅などの金属粉末類、ポリフェニレン誘導体などの有機導電性材料などを用いればよい。
【0076】
なかでも、人造黒鉛、アセチレンブラック、炭素繊維を用いることが好ましい。これらの材料を混合して用いてもよい。また、電極材料に対してこれらの材料を機械的に表面被覆させてもよい。
【0077】
負極2への上記導電剤の添加量は、特に限定されない。例えば、電極材料100重量部に対して1重量部〜50重量部の範囲であり、1重量部〜30重量部の範囲が好ましい。なお、本発明の電極材料は電子伝導性を有しているため、上記導電剤を添加しなくても二次電池として機能させることができる。
【0078】
負極2に用いる結着剤としては、電極合剤が集電体に結着した状態を維持できる限り、熱可塑性樹脂、熱硬化性樹脂のいずれを用いてもよい。例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデンーヘキサフルオロプロピレンーテトラフルオロエチレン共重合体、フッ化ビニリデンーパーフルオロメチルビニルエーテルーテトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸共重合体Naイオン架橋体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸共重合体Naイオン架橋体、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸メチル共重合体Naイオン架橋体、エチレン−メタクリル酸メチル共重合体、エチレン−メタクリル酸メチル共重合体Naイオン架橋体などを用いればよい。これらの材料を混合して用いてもよい。
【0079】
なかでも、負極2に用いる結着剤としては、スチレンブタジエンゴム、ポリフッ化ビニリデン、エチレン−アクリル酸共重合体、エチレン−アクリル酸共重合体Naイオン架橋体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸共重合体Naイオン架橋体、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸メチル共重合体Naイオン架橋体、エチレン−メタクリル酸メチル共重合体、エチレン−メタクリル酸メチル共重合体Naイオン架橋体が好ましい。
【0080】
負極2に用いる集電体としては、電子伝導性を有する材料であり、二次電池内で化学変化が起きない材料であれば特に限定されない。例えば、ステンレス鋼、ニッケル、銅、チタン、炭素、導電性樹脂や、あるいは、カーボン、ニッケルまたはチタンで表面処理した銅やステンレス鋼などを用いればよい。なかでも、銅および銅合金が好ましい。
【0081】
また、表面処理などにより、上記集電体の表面に凹凸を設けてもよい。集電体の形状としては、例えば、フォイル、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発泡体、繊維群成形体などとすればよい。集電体の厚さとしては特に限定されない。例えば、1μm〜500μm程度の範囲である。
【0082】
さらに、電極材料、導電剤および結着剤などを含む電極合剤の作製方法、および、作製した電極合剤を集電体へ塗着する方法としては、公知である一般的な方法を用いればよい。
【0083】
次に、正極1について説明する。正極1は、例えば、Liを可逆的に吸蔵および放出できる正極活物質、導電剤および結着剤などを含む電極合剤を、正極集電体の表面に塗着して形成することができる。
【0084】
正極1に用いる正極活物質としては、例えば、Liを含む金属酸化物を用いればよい。Liを含む金属酸化物としては、例えば、一般式LiCoO、一般式LiNiO、一般式LiMnOの式で示される金属酸化物などを用いればよい。ただし、上記の式において、xは、例えば、0<x≦1の範囲で調整される値である。なお、上記xの値は、二次電池の充放電により増減する値である。
【0085】
正極1に用いる正極活物質としては、上記金属酸化物以外にも、遷移金属のカルコゲン化物や、バナジウム酸化物およびそのリチウム化合物、ニオブ酸化物およびそのリチウム化合物、有機導電性物質からなる共役系ポリマー、シェブレル相化合物などを用いてもよい。また、複数の正極活物質を混合して用いてもよい。なお、正極活物質が粒子状である場合の平均粒径は、特に限定されない。例えば、1μm〜30μmの範囲である。
【0086】
正極1に用いる導電剤としては、電子伝導性を有する材料であり、かつ、正極活物質が取りうる電位領域内で化学変化が起きない材料であれば特に限定されない。例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカ−ボンブラック類、炭素繊維、金属繊維などの導電性繊維類、フッ化カーボン、アルミニウムなどの金属粉末類、酸化亜鉛、チタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、あるいは、ポリフェニレン誘導体などの有機導電性材料などを用いればよい。なかでも、人造黒鉛、アセチレンブラックを用いることが好ましい。これらの材料を混合して用いてもよい。
【0087】
正極1への上記導電剤の添加量は、特に限定されない。例えば、正極活物質100重量部に対して1重量部〜50重量部の範囲であり、1重量部〜30重量部の範囲が好ましい。
【0088】
正極1に用いる結着剤としては、電極合剤が集電体に結着した状態を維持できる限り、熱可塑性樹脂、熱硬化性樹脂のいずれを用いてもよい。例えば、上述した負極に用いる結着剤と同様の樹脂を用いればよい。
【0089】
正極1に用いる集電体としては、電子伝導性を有する材料であって、かつ、正極活物質の取りうる電位領域内で化学変化が起きない材料であれば特に限定されない。例えば、ステンレス鋼、アルミニウム、チタン、炭素、導電性樹脂や、あるいは、カーボンまたはチタンで表面処理したステンレス鋼などを用いればよい。なかでも、アルミニウムやアルミニウム合金が好ましい。また、表面処理などにより、上記集電体の表面に凹凸を設けてもよい。集電体の形状、厚さとしては、負極2に用いる集電体と同様であればよい。
【0090】
正極活物質、導電剤および結着剤などを含む電極合剤の作製方法や、作製した電極合剤を集電体へ塗着する方法としては、公知である一般的な方法を用いればよい。なお、正極1および負極2を二次電池に組み込む際には、正極1の電極合剤面と負極2の電極合剤面とが、セパレータ3を介して対向していることが好ましい。
【0091】
次に、本発明の二次電池に用いられる電解質およびセパレータ3について説明する。
【0092】
電解質としては、Li伝導性を有するものであれば特に限定されない。例えば、非水溶媒と、その溶媒に溶解するリチウム塩とからなる非水電解質を用いればよい。この場合、非水溶媒としては、特に限定されない。
【0093】
例えば、エチレンカーボネート、エチルメチルカーボネートなどを用いればよい。リチウム塩としては、上記非水溶媒に溶解する限り、特に限定されない。例えば、LiPFを用いればよい。また、非水溶媒に対するリチウム塩の溶解量は、特に限定されない。例えば、0.2mol/l〜2mol/lの範囲であり、0.5mol/l〜1.5mol/lの範囲が好ましい。なお、二次電池へ添加する電解質の量は、正極活物質および負極活物質の量や、二次電池のサイズによって任意に設定すればよい。
【0094】
セパレータ3としては、Li透過度が大きく、電池内部で腐食などを受けず、一定の機械的強度を有する電気絶縁性の薄膜であれば特に限定されない。例えば、非水電解質二次電池に一般的に用いられる、上記特性を備えた微多孔性薄膜を用いればよい。例えば、ポリプロピレンおよびポリエチレンから選ばれる少なくとも1種の樹脂を含むオレフィン系ポリマーやガラス繊維からなるシート、不織布、織布などを用いればよい。短絡などにより電池が一定の温度以上に達した場合に、孔が閉塞することによって電気抵抗が増大する機能を有したセパレータを用いてもよい。
【0095】
セパレータ3の厚さは、例えば、10μm〜300μmの範囲である。セパレータ3が微多孔性薄膜である場合、その平均孔径は、電極より脱離した正極および負極活物質や、結着剤、導電剤などが透過しない範囲であることが好ましく、例えば、0.01μm〜1μmの範囲である。また、セパレータ3の平均空孔率は、セパレータ3を構成する材料の電気絶縁性やLi透過性、セパレータの厚さなどにより設定すればよい。例えば、30vol%〜80vol%の範囲である。
【0096】
また、本発明の二次電池としては、図1に示す構造を有する二次電池の他に、非水溶媒とリチウム塩とからなる非水電解質をポリマー材料に吸収保持させたものを正極合剤および負極合剤に含ませ、上記ポリマー材料からなる多孔性のセパレータと正極および負極とを一体化した構造を有する二次電池であってもよい。この場合の上記ポリマー材料としては、電気絶縁性を有し、かつ、上記非水電解質を吸収保持できるものであればよい。例えば、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体を用いればよい。
【0097】
なお、本発明における非水電解質二次電池は、図1に示すような円筒型に特に限定されない。例えば、コイン型、ボタン型、シート型、積層型、偏平型、角型であってもよいし、電気自動車などに用いる大型のものであってもよい。任意の形状とすることができる。
【0098】
【実施例】
以下、実施例を用いて本発明をより詳細に説明するが、本発明は、以下の実施例に限定されるものではない。
【0099】
(実施例1)
まず、本実施例における電極材料の評価方法について説明する。本実施例では、作製した各電極材料の形状観察を行った。また、作製した各電極材料を用いて図1に示したような二次電池を作製し、得られた二次電池の容量および充放電サイクル特性の評価を行うことによって、充放電サイクルに伴う各電極材料の劣化の程度を評価した。
【0100】
電極材料の形状観察は、走査型電子顕微鏡(日立製作所社製、S−4500)により測定した。測定には、電極材料をカーボン粘着テープに付着させた試料を用いた。上記試料に対し、15KVの電圧を印加した電子線により、二次電子像を観察した。その走査画像から、Si活物質が円柱型状の直径を見積もった。その分解能は、およそ3nmである。
【0101】
作製した各電極材料に対して、走査電子顕微鏡観察によるSi活物質が円柱型状の直径評価を行った後、上記各電極材料を用いて二次電池を作製し、電池特性本実施例では容量維持率を用いる、の評価を行った。
【0102】
二次電池の容量および充放電サイクル特性の評価は以下のように行った。
【0103】
20℃の恒温槽中において、電池電圧が4.2Vになるまで1000mAの定電流で充電し、その後、電池電圧が2.0Vになるまで1000mAの定電流で放電する充放電サイクルを繰り返した。上記充放電サイクルは100サイクル行った。2サイクル目の放電容量を電池の初期放電容量とし、初期放電容量に対する100サイクル目の放電容量の比を、電池の容量維持率とした。
【0104】
(実施例2)
Si活物質が円柱型状の形状を有している各サンプルは、CVD法により作製した。成膜装置には、日本真空(株)製のCVD装置を用い、厚さ60μmの銅箔上にSiを含む材料の薄膜を厚さ500nm形成し、さらに、アネルバ製真空蒸着装置を用い、触媒金属としてAuを、厚さ0.5nm製膜した後、前記CVD装置を用い、Siワイヤーを形成した。原材料のガスは、SiH(シラン)およびHを用いた。原材料ガスの流量をそれぞれ4.0L/min、シラン分圧力を0.1〜1000Paとした。
【0105】
このとき、成膜温度を(表1)〜(表3)に示すように300℃、400℃、500℃と制御して形成した。この制御によって、各サンプル間では薄膜中の水素濃度が異なっている。また、得られた円柱状活物質の長さが、それぞれ約0.5μmとなるように成膜時間を制御した。そして、得られた円柱状Si活物質を基板から剥ぎ取った。
【0106】
【表1】

Figure 2004281317
【0107】
【表2】
Figure 2004281317
【0108】
【表3】
Figure 2004281317
【0109】
負極は、以下のようにして作製した。作製した電極材料100重量部に対し、導電剤としてアセチレンブラック(AB)25重量部と、結着剤としてポリフッ化ビニリデン樹脂5重量部とを混合した。この混合物をN−メチル−2−ピロリドンに分散させてスラリー状とし、銅箔(厚さ14μm)からなる負極集電体に塗布し、極板厚さが全部でおよそ100μmになるようにし、乾燥後、負極を得た。
【0110】
正極は、以下のようにして作製した。コバルト酸リチウム粉末85重量部に対し、導電剤としてAB10重量部と、結着剤としてポリフッ化ビニリデン樹脂5重量部とを混合した。この混合物を脱水N−メチルピロリジノンに分散させてスラリー状とし、アルミニウム箔(厚さ20μm)からなる正極集電体上に厚さ150μmで塗布し、乾燥後、圧延して正極を得た。
【0111】
上記のようにして準備した負極および正極と、ポリエチレンからなる微多孔質セパレータと、エチレンカーボネートとエチルメチルカーボネートとの混合溶媒(体積比1:1)にLiPFを1.5mol/lの濃度で溶解させた非水電解質とを用いて、図1に示したような円筒形の二次電池を作製した。なお、二次電池の直径は18mm、高さは650mmとした。
【0112】
二次電池の容量および充放電サイクル特性の評価は以下のように行った。初期放電容量は、全てのサンプルでほぼ同様の値となっている。その値は、約2400〜2480mAhであり、電極材料として黒鉛材料を用いた場合(およそ1800mAh程度)よりも高容量の二次電池とすることができた。
【0113】
20℃の恒温槽中において、電池電圧が4.2Vになるまで1000mAの定電流で充電し、その後、電池電圧が2.0Vになるまで1000mAの定電流で放電する充放電サイクルを繰り返した。上記充放電サイクルは100サイクル行った。2サイクル目の放電容量を電池の初期放電容量とし、初期放電容量に対する100サイクル目の放電容量の比を、電池の容量維持率とした以下の(表1)〜(表3)で、各サンプルにおける平均直径の測定結果および各サンプルを用いて作製した二次電池の容量維持率を示す。
【0114】
(表1)〜(表3)の結果に基づき、図2に、各サンプルのシラン分圧力と平均直径の関係を示す。図2に示すように、各製膜温度においてシラン分圧を増加させることにより、平均直径を減少させることが出来る。
【0115】
同じく、(表1)〜(表3)の結果に基づき、図3に、各サンプルの平均直径と、各サンプルを用いて作製した二次電池の容量維持率との関係を示す。図3に示すように、平均直径がより大きくなると、容量維持率が低下している。これは、Si活物質の粒子割れが発生したことによると考えられる。さらに、製膜温度がより低温なほど、容量維持率が高い。
【0116】
これは、Si活物質が低温製膜において、より非晶質であることによるものと考えられる。以上より、各サンプルの平均直径がより小さいもの、とくに10nm以下のサンプルにおいて、より充放電サイクル特性に優れる二次電池が得られることがわかる。
【0117】
(実施例3)
Si活物質が集電体上にくし型状に立脚した構造を有している各サンプルは、CVD法により作製した。成膜装置には、日本真空(株)製のCVD装置を用い、厚さ60μmの銅箔上にSiを含む材料の薄膜を厚さ0.5μm形成し、さらに、アネルバ製真空蒸着装置を用い、触媒金属としてAuを、厚さ0.5nm製膜した後、前記CVD装置を用い、Siワイヤーを形成した。
【0118】
原材料のガスは、SiH(シラン)およびHを用いた。原材料ガスの流量をそれぞれ4.0L/min、シラン分圧力を0.1〜1000Paとした。このとき、成膜温度を表1〜6に示すように300℃、400℃、500℃と制御して形成した。この制御によって、各サンプル間では薄膜中の水素濃度は異なっている。また、得られた円柱状活物質の長さが、それぞれ約0.5μmとなるように成膜時間を制御した。
【0119】
負極は、以下のようにして作製した。Si活物質100重量部に対し、導電剤としてアセチレンブラック(AB)25重量部と、結着剤としてポリフッ化ビニリデン樹脂5重量部で、導電材と結着剤を混合した。この混合物をN−メチル−2−ピロリドンに分散させてスラリー状とし、集電体上にくし型状に立脚した構造を有している各サンプルに塗布し、極板厚さが全部でおよそ100μmになるようにし、乾燥後、負極を得た。
【0120】
正極は、以下のようにして作製した。コバルト酸リチウム粉末85重量部に対し、導電剤としてAB10重量部と、結着剤としてポリフッ化ビニリデン樹脂5重量部とを混合した。この混合物を脱水N−メチルピロリジノンに分散させてスラリー状とし、アルミニウム箔(厚さ20μm)からなる正極集電体上に厚さ150μmで塗布し、乾燥後、圧延して正極を得た。
【0121】
上記のようにして準備した負極および正極と、ポリエチレンからなる微多孔質セパレータと、エチレンカーボネートとエチルメチルカーボネートとの混合溶媒(体積比1:1)にLiPFを1.5mol/lの濃度で溶解させた非水電解質とを用いて、図1に示したような円筒形の二次電池を作製した。なお、二次電池の直径は18mm、高さは650mmとした。
【0122】
初期放電容量は、全てのサンプルでほぼ同様の値となっている。その値は、約2400〜2480mAhであり、電極材料として黒鉛材料を用いた場合(およそ1800mAh程度)よりも高容量の二次電池とすることができた。
【0123】
以下の(表4)〜(表6)で、各サンプルにおける平均直径の測定結果および各サンプルを用いて作製した二次電池の容量維持率を示す。
【0124】
【表4】
Figure 2004281317
【0125】
【表5】
Figure 2004281317
【0126】
【表6】
Figure 2004281317
【0127】
(表4)〜(表6)の結果に基づき、図4に、各サンプルのシラン分圧力と平均直径の関係を示す。図4に示すように、各製膜温度においてシラン分圧を増加させることにより、平均直径を減少させることが出来る。
【0128】
同じく、(表4)〜(表6)の結果に基づき、図5に、各サンプルの平均直径と、各サンプルを用いて作製した二次電池の容量維持率との関係を示す。図5に示すように、平均直径がより大きくなると、容量維持率が低下している。これは、Si活物質の粒子割れが発生したことによると考えられる。さらに、製膜温度がより低温なほど、容量維持率が高い。これは、Si活物質が低温製膜において、より非晶質であることによるものと考えられる。以上より、各サンプルの平均直径がより小さいもの、とくに10nm以下のサンプルにおいて、より充放電サイクル特性に優れる二次電池が得られることがわかる。
【0129】
(実施例4)
Si活物質が集電体上にくし型状に立脚した構造を有している各サンプルは、CVD法により作製した。成膜装置には、日本真空(株)製のCVD装置を用い、厚さ60μmの銅箔上にSiを含む材料の薄膜を厚さ0.5μm形成し、さらに、アネルバ製真空蒸着装置を用い、触媒金属としてAuを、厚さ0.5nm製膜した後、前記CVD装置を用い、Siワイヤーを形成した。
【0130】
原材料のガスは、SiH(シラン)およびHを用いた。原材料ガスの流量をそれぞれ4.0l/min、シラン分圧力を500Paとした。このとき、成膜温度を200℃に制御して形成した。このサンプルに対して、▲1▼380℃、真空(3×10−3Pa)中で熱処理と、▲2▼製膜したままのサンプルに分類した。この制御によって、各サンプルの水素濃度は、二次イオン質量分析法により定量分析した結果、▲1▼0.5wt%、▲2▼55wt%であった。また、得られた円柱状活物質の長さが、それぞれ約0.5μmとなるように成膜時間を制御した。
【0131】
負極は、以下のようにして作製した。Si活物質100重量部に対し、導電剤としてアセチレンブラック(AB)25重量部と、結着剤としてポリフッ化ビニリデン樹脂5重量部で、導電材と結着剤を混合した。この混合物をN−メチル−2−ピロリドンに分散させてスラリー状とし、集電体上にくし型状に立脚した構造を有している各サンプルに塗布し、極板厚さが全部でおよそ100μmになるようにし、乾燥後、負極を得た。
【0132】
正極は、以下のようにして作製した。コバルト酸リチウム粉末85重量部に対し、導電剤としてAB10重量部と、結着剤としてポリフッ化ビニリデン樹脂5重量部とを混合した。この混合物を脱水N−メチルピロリジノンに分散させてスラリー状とし、アルミニウム箔(厚さ20μm)からなる正極集電体上に厚さ150μmで塗布し、乾燥後、圧延して正極を得た。
【0133】
上記のようにして準備した負極および正極と、ポリエチレンからなる微多孔質セパレータと、エチレンカーボネートとエチルメチルカーボネートとの混合溶媒(体積比1:1)にLiPFを1.5mol/lの濃度で溶解させた非水電解質とを用いて、図1に示したような円筒形の二次電池を作製した。なお、二次電池の直径は18mm、高さは650mmとした。
【0134】
初期放電容量は、▲1▼2400mAh、▲2▼1900mAhであった。この値は、電極材料として黒鉛材料を用いた場合(およそ1800mAh程度)と比較して、▲1▼は、よりも高容量であるが、▲2▼においては、より高容量の効果が現れていない。これは、水素濃度が高いため、電子伝導性の低下により、容量が低下したものと考えられる。
【0135】
さらに、容量維持率は、▲1▼30%、▲2▼60%と低い値であった。これは、特に▲1▼に対しては、水素原子の含有量が1原子%未満では、隣接するSi原子間の距離を増加させ、充放電に伴う体積変化をより抑制する効果が小さいため、Si活物質の粒子割れが発生したことによると考えられる。
【0136】
【発明の効果】
以上説明したように、本発明によれば、充放電サイクル特性に優れる非水電解質二次電池と、上記二次電池を実現する非水電解質二次電池用電極材料を提供することができる。また、上記非水電解質二次電池用電極材料の製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の非水電解質二次電池の一例を示す模式断面図
【図2】電極材料サンプルにおけるシラン分圧力と平均直径との関係を示す図
【図3】電極材料サンプルにおける平均直径と二次電池の容量維持率との関係を示す図
【図4】電極材料サンプルにおけるシラン分圧力と平均直径との関係を示す図
【図5】電極材料サンプルにおける平均直径と二次電池の容量維持率との関係を示す図
【符号の説明】
1 正極
2 負極
3 セパレータ
4 下部絶縁板
5 ケース
6 上部絶縁板
7 ガスケット
8 封口板
9 正極リード
10 負極リード[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrode material for a non-aqueous electrolyte secondary battery, a method for producing the same, and a non-aqueous electrolyte secondary battery using the same.
[0002]
[Prior art]
Conventionally, as an electrode material of a lithium ion secondary battery, which is one type of nonaqueous electrolyte secondary battery, a carbon material capable of reversibly occluding and releasing Li has been widely used. As a lithium ion secondary battery, a secondary battery including the above carbon material as an active material of a negative electrode is generally used. However, the theoretical capacity of graphite, which is an example of the carbon material, is 372 mAh / g, and a higher capacity electrode material for nonaqueous electrolyte secondary batteries is required.
[0003]
At present, as an electrode material having a higher capacity than a carbon material such as graphite, a simple metal material or a simple nonmetal material which can form a compound with Li is known. For example, Si, Sn, Zn, etc., each having the formula, Li 22 Si 5 , Li 22 Sn 5 , And LiZn. The theoretical capacities of these materials are 4199 mAh / g, 993 mAh / g, and 410 mAh / g, respectively, which are larger than the theoretical capacities of carbon materials such as graphite.
[0004]
In addition, it is composed of a non-ferrous metal silicide composed of a transition element (for example, see Patent Document 1) or an intermetallic compound containing at least one element selected from Group 4B elements, P and Sb, and has a crystal structure of CaF 2 A compound that is at least one type selected from the group consisting of a ZnS type, a ZnS type and an AlLiSi type (see, for example, Patent Document 2) has been proposed as an electrode material for a non-aqueous electrolyte secondary battery.
[0005]
[Patent Document 1]
JP-A-7-240201
[Patent Document 2]
JP-A-9-63651
[0006]
[Problems to be solved by the invention]
However, although the above-mentioned electrode material has a higher capacity than a carbon material such as graphite in an initial state, it may deteriorate during repeated charging and discharging, and the capacity may be reduced. Although the cause of the decrease in capacity is not clear, the following reasons are considered. For example, the intermetallic compound described in Patent Document 2 is one kind of alloy, and the alloy expands during charging because Li is occluded in the alloy. On the contrary, at the time of discharging, the alloy shrinks because Li is released from the inside of the alloy. That is, the alloy repeatedly expands and contracts each time charge and discharge is performed, and the deterioration gradually progresses due to the accumulation of strain and the progress of miniaturization. The same phenomenon occurs when a simple metal material or a simple nonmetal material is used as the electrode material.
[0007]
Such a phenomenon is considered to be particularly remarkable when the electrode material has a crystal structure. When the electrode material has an atomic structure that does not have long-range order as a characteristic of the atomic arrangement (a solid having such a structure is referred to as “amorphous”), accumulation of distortion or Although miniaturization is slightly suppressed, cracks on the order of μm may occur.
[0008]
In the invention described in JP-A-2002-83594, the cracks on the order of μm can be suppressed by forming an electrode material on a current collector having irregularities. Further, according to the invention described in JP-A-2002-279974, when forming an active material thin film on a current collector, a mesh is arranged and the active material thin film is formed in an island shape, whereby the cracks on the order of μm are formed. Can be suppressed. However, in these inventions, it is considered that it is difficult to suppress distortion or expansion / contraction at the atomic level due to occlusion and release of Li.
[0009]
Therefore, an object of the present invention is to provide a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics and an electrode material for a non-aqueous electrolyte secondary battery realizing the secondary battery.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, an electrode material for a non-aqueous electrolyte secondary battery of the present invention is an electrode material for a non-aqueous electrolyte secondary battery capable of reversibly occluding and releasing Li, wherein the Si active material has a cylindrical shape. Shape.
[0011]
An electrode material for a non-aqueous electrolyte secondary battery capable of reversibly inserting and extracting Li, wherein the Si active material has a columnar diameter of 10 nm or less.
[0012]
The electrode material for the non-aqueous electrolyte secondary battery is amorphous Si.
[0013]
The electrode material for the non-aqueous electrolyte secondary battery is hydrogenated amorphous Si.
[0014]
The electrode material for a non-aqueous electrolyte secondary battery has a hydrogen atom content in the range of 1 to 50 atomic%.
[0015]
Further, the electrode material for a non-aqueous electrolyte secondary battery of the present invention is an electrode material for a non-aqueous electrolyte secondary battery capable of reversibly occluding and releasing Li, wherein a Si active material is comb-shaped on a current collector. The structure is based on
[0016]
An electrode material for a non-aqueous electrolyte secondary battery capable of reversibly occluding and releasing Li, wherein a size of a Si active material standing in a comb shape on a current collector is 10 nm or less in diameter.
[0017]
The electrode material for the non-aqueous electrolyte secondary battery is amorphous Si.
[0018]
The electrode material for the non-aqueous electrolyte secondary battery is hydrogenated amorphous Si.
[0019]
The electrode material for a non-aqueous electrolyte secondary battery has a hydrogen atom content in the range of 1 to 50 atomic%.
[0020]
The method for producing an electrode material for a non-aqueous electrolyte secondary battery of the present invention is a method for producing an electrode material for a non-aqueous electrolyte secondary battery that can reversibly occlude and release Li,
(I) a step in which the Si active material forms a columnar shape;
(Ii) the step of forming a comb-shaped structure of the Si active material on the substrate,
This is a method for producing an electrode material for a non-aqueous electrolyte secondary battery.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment 1)
In the present embodiment, an electrode material for a non-aqueous electrolyte secondary battery of the present invention will be described.
[0022]
The electrode material of the present invention is an electrode material for a non-aqueous electrolyte secondary battery capable of reversibly occluding and releasing Li, for a non-aqueous electrolyte secondary battery in which a Si active material has a columnar shape. It is an electrode material.
[0023]
Cycle deterioration is caused by expansion caused by insertion of Li into Si and contraction caused by desorption of Li. For example, when a particle crack occurs macroscopically due to this expansion and contraction, the crystal plane, which had solid physical properties inside the solid phase before cracking, becomes more electrochemically active surface ( New face). Then, by the reaction between the new surface, Li and the electrolyte, Li is taken in as a film, and irreversible Li is increased, so that the discharge capacity is significantly reduced and the cycle life is deteriorated.
[0024]
These phenomena are more likely to occur due to repeated insertion / desorption of Li deep inside the Si solid. In order to solve this problem, it is more preferable to make the insertion and desorption of Li into Si shallower. The depth at which Li reversibly enters and leaves Si is unknown, but Si and Li 22 Si 5 Has a crystal structure whose lattice constants are significantly different, 1.8 nm and 0.54 nm, respectively, and it is considered that the intrusion / desorption of Li into Si involves a large structural change.
[0025]
Therefore, the depth at which Li reversibly enters and leaves Si must not be very shallow, it is at most several tens of atomic layers, and ultimately it is more preferable that the Si solids are all surfaces. . As one of the modes, formation of a thin film on a current collector can be considered.
[0026]
However, even if a thin film having several tens of atomic layers is formed, the amount of inserted Li is limited, and application to a high-capacity battery is impossible.
[0027]
On the other hand, if the Si active material is miniaturized and nano-sized particles are formed, a form in which all tens of atomic layers are surfaces can be realized. However, fine primary particles easily aggregate, and the above-mentioned problems cannot be solved. Therefore, a cylindrical shape is more preferable as a shape in which all of the tens of atomic layers are surfaces and do not agglomerate.
[0028]
The formation of nanowires has been reported as a solid structure that is only tens of atomic layers deep from any surface. References include the following. Reference Example 1 “Thermal stability of Ti-catalyzed Sinanowires” I. Kamins, X.A. Li, R .; Stanley Williams, Applied Physics Letters, Vol. 82, no. 2, 263-265, (2003), Reference Example 2 "Growth of silicon nanowires via gold / silane vapor-liquid-solid reaction", J. Am. Westwater, D.W. P. Gosain, S.M. Tomiya, S.M. Usui, J. et al. Vac. Sci. Technol. , Vol. B 15 No. 3, 554-557, (1997) These structures are being developed for application to Si electronic devices.
[0029]
The electrode material of the present invention is an electrode material for a non-aqueous electrolyte secondary battery capable of reversibly occluding and releasing Li, wherein the Si active material has a columnar diameter of 10 nm or less. Electrode material.
[0030]
As described above, as a form in which everything is a surface, the diameter of the columnar shape is preferably 10 nm or less. Hall-Petch's law used when considering the elastic limit of a rigid body (Reference example 3: Dictionary of utilization of metal materials, edited edition of Dictionary of utilization of metal materials, Industrial Research Institute, p.100, 2000) Is applied, the expansion caused by the insertion of Li into Si and the shrinkage caused by the desorption of Li cause the particle cracking, because when the particle is considered to be spherical, the crack occurs when the diameter is 10 nm or more. Occurs.
[0031]
When a crack occurs, a crystal plane having solid physical properties inside the solid phase before cracking appears as a more electrochemically active surface (new surface) due to the crack. Then, by the reaction between the new surface, Li and the electrolyte, Li is taken in as a film, and irreversible Li increases, so that the discharge capacity is significantly reduced and the cycle life is deteriorated.
[0032]
The electrode material of the present invention has an atomic arrangement characterized by an atomic structure having no long-range order (a solid having such a structure is referred to as “amorphous”) Si (hereinafter simply referred to as “amorphous”). Amorphous Si ”) is an electrode material for non-aqueous electrolyte secondary batteries. When Li is repeatedly inserted and removed from the inside of the Si solid, Si is preferably amorphous without a crystal structure.
[0033]
Si and Li 22 Si 5 Has crystal structures whose lattice constants are significantly different, 1.8 nm and 0.54 nm, respectively, and it is considered that the intrusion / desorption of Li into Si involves a large structural change. At this time, if the original Si has no structure, the structural change can be performed more easily.
[0034]
In the electrode material of the present invention, hydrogenated amorphous Si may be used. In such an electrode material, deterioration due to charge / discharge cycles can be further suppressed. In addition, by including such an electrode material as an active material of a negative electrode, a nonaqueous electrolyte secondary battery having more excellent charge / discharge cycle characteristics can be obtained. In the case of hydrogenated amorphous Si, the distance between adjacent Si atoms can be further increased due to the presence of hydrogen. Therefore, it is possible to provide an electrode material in which a change in volume due to charge and discharge is further suppressed.
[0035]
In the electrode material of the present invention, the material may contain hydrogen atoms in a range of 1 atomic% to 50 atomic%. In particular, the material preferably contains hydrogen atoms in the range of 1 to 20 atomic%. Due to the presence of hydrogen, the distance between adjacent Si atoms can be further increased, and in the above range, an electrode material can be obtained in which deterioration due to charge / discharge cycles is further suppressed. When the content of hydrogen atoms is less than 1 atomic%, the effect of increasing the distance between adjacent Si atoms and further suppressing the volume change due to charge and discharge may be small. If the content is 50 atomic% or more, the electron conductivity of the electrode material may be reduced.
[0036]
The electrode material of the present invention may contain an element other than Si as long as the electrode material does not prevent Li from reversibly occluding and releasing Li. For example, a group V element such as N, P, As, Sb, or Bi may be contained. The ratio of these elements contained in the electrode material, excluding Li, is, for example, 0.1% by mass or less. Further, the electrode material of the present invention may be a Si compound. Examples of the Si compound include silicon carbide (SiC) and SiGe.
[0037]
The electrode material of the present invention is a non-aqueous electrolyte secondary battery electrode material capable of reversibly occluding and releasing Li, and has a structure in which a Si active material stands on a current collector in a comb shape. It is an electrode material for non-aqueous electrolyte secondary batteries.
[0038]
Cycle deterioration is caused by expansion caused by insertion of Li into Si and contraction caused by desorption of Li. For example, when a particle crack occurs macroscopically due to this expansion and contraction, the crystal plane, which had solid physical properties inside the solid phase before cracking, becomes more electrochemically active surface ( New face). Then, by the reaction between the new surface, Li and the electrolyte, Li is taken in as a film, and irreversible Li is increased, so that the discharge capacity is significantly reduced and the cycle life is deteriorated.
[0039]
These phenomena are more likely to occur due to repeated insertion / desorption of Li deep inside the Si solid. In order to solve this problem, it is more preferable to make the insertion and desorption of Li into Si shallower. The depth at which Li reversibly enters and leaves Si is unknown, but when estimated from the thermal diffusion coefficient of Li in Si solids, it is about several tens of atomic layers, and ultimately, all are Is more preferable.
[0040]
As one of the modes, formation of a thin film on a current collector can be considered. However, even if a thin film having several tens of atomic layers is formed, the amount of inserted Li is limited, and application to a high-capacity battery is impossible. On the other hand, forming a comb-shaped structure on a limited area of the current collector is preferable for forming the surface of several tens of atomic layers with more area efficiency.
[0041]
The electrode material of the present invention is a non-aqueous electrolyte secondary battery electrode material capable of reversibly inserting and extracting Li, and the size of the Si active material standing in a comb shape on the current collector has a diameter of 10 nm. The following are nonaqueous electrolyte secondary battery electrode materials. As described above, the diameter of the Si active material standing in a comb shape is preferably 10 nm or less in a form in which everything is a surface.
[0042]
Hall-Petch's law used when considering the elastic limit of a rigid body (Reference example 3: Dictionary of utilization of metal materials, edited edition of Dictionary of utilization of metal materials, Industrial Research Institute, p.100, 2000) Is applied, the expansion caused by the insertion of Li into Si and the shrinkage caused by the desorption of Li cause the particle cracking because when the particle is considered to be spherical, the crack occurs when the diameter is 10 nm or more. Occurs.
[0043]
When a crack occurs, a crystal plane having solid physical properties inside the solid phase before cracking appears as a more electrochemically active surface (new surface) due to the crack. Then, Li is taken in as a film by the reaction between the newly formed surface, Li and the electrolytic solution, and irreversible Li increases, so that the discharge capacity is significantly reduced and the cycle life is deteriorated.
[0044]
The electrode material of the present invention is an electrode material for an amorphous Si non-aqueous electrolyte secondary battery. When Li is repeatedly inserted and removed from the inside of the Si solid, Si is preferably amorphous without a crystal structure. Si and Li 22 Si 5 Has crystal structures whose lattice constants are significantly different, 1.8 nm and 0.54 nm, respectively, and it is considered that the intrusion / desorption of Li into Si involves a large structural change. At this time, if the original Si has no structure, the structural change can be performed more easily.
[0045]
In the electrode material of the present invention, hydrogenated amorphous Si may be used. In such an electrode material, deterioration due to charge / discharge cycles can be further suppressed. In addition, by including such an electrode material as an active material of a negative electrode, a nonaqueous electrolyte secondary battery having more excellent charge / discharge cycle characteristics can be obtained.
[0046]
In the case of hydrogenated amorphous Si, the distance between adjacent Si atoms can be further increased due to the presence of hydrogen. Therefore, it is possible to provide an electrode material in which a change in volume due to charge and discharge is further suppressed.
[0047]
In the electrode material of the present invention, the material may contain hydrogen atoms in a range of 1 atomic% to 50 atomic%. In particular, the material preferably contains hydrogen atoms in the range of 1 to 20 atomic%. Due to the presence of hydrogen, the distance between adjacent Si atoms can be further increased, and in the above range, an electrode material can be obtained in which deterioration due to charge / discharge cycles is further suppressed.
[0048]
When the content of hydrogen atoms is less than 1 atomic%, the effect of increasing the distance between adjacent Si atoms and further suppressing the volume change due to charge and discharge may be small. If the content is 50 atomic% or more, the electron conductivity of the electrode material may be reduced.
[0049]
In the electrode material of the present invention, the length of the columnar Si active material is not particularly limited as long as the electrode material does not prevent reversible occlusion and release of Li.
[0050]
The electrode material of the present invention may contain an element other than Si as long as the electrode material does not prevent Li from reversibly occluding and releasing Li. For example, a group V element such as N, P, As, Sb, or Bi may be contained. The ratio of these elements contained in the electrode material, excluding Li, is, for example, 0.1% by mass or less. Further, the electrode material of the present invention may be a Si compound. Examples of the Si compound include silicon carbide (SiC) and SiGe.
[0051]
(Embodiment 2)
In the present embodiment, a method for producing an electrode material for a non-aqueous electrolyte secondary battery according to the present invention will be described.
[0052]
The method for producing an electrode material for a non-aqueous electrolyte secondary battery of the present invention is a method for producing an electrode material for a non-aqueous electrolyte secondary battery that can reversibly occlude and release Li,
(I) a step in which the Si active material forms a columnar shape;
(Ii) forming a comb-shaped structure of the Si active material on the substrate.
[0053]
By adopting such a manufacturing method, it is possible to obtain an electrode material in which deterioration due to charge / discharge cycles is further suppressed.
[0054]
In the step (i), the method for forming the columnar Si is not particularly limited. A generally used thin film growth method may be used (Reference example 3: “Illustrated thin film technology” p1, Baifukan, 1999).
[0055]
For example, an epitaxy method, a CVD method, a thermal chemical vapor deposition method, a reactive sputtering method, a photochemical vapor deposition method, or the like may be used. Especially, it is preferable to use the CVD method. According to the CVD method, nano-sized cylindrical Si can be formed. If necessary, it is also possible to insert atoms other than Si into the active material. Specifically, formation of nanowires has been reported as a solid structure having a depth of only tens of atomic layers from any surface (see Reference Examples 1 and 2). These structures are being developed for application to Si electronic devices. Specific examples using these methods will be described later in Examples.
[0056]
A raw material for forming the columnar Si is not particularly limited as long as the columnar Si can be formed. Although it differs depending on the forming method, for example, SiH 4 (Silane), Si 2 H 6 , SiH 2 Cl 2 , SiCl 4 Etc. may be used. When a silane gas is used, a thin film of a material containing Si containing hydrogen atoms can be formed, and the ratio of hydrogen atoms contained in the columnar Si can be controlled.
[0057]
In the step (ii), the method for forming the comb-shaped structure of the Si active material on the substrate is not particularly limited. A generally used thin film growth method may be used (see Reference Example 3).
[0058]
For example, an epitaxy method, a CVD method, a thermal chemical vapor deposition method, a reactive sputtering method, a photochemical vapor deposition method, or the like may be used. Especially, it is preferable to use the CVD method.
[0059]
According to the CVD method, a comb-like structure can be formed on the substrate by the Si active material. Further, if necessary, atoms other than Si can be inserted into the active material. Specifically, formation of nanowires has been reported as a solid structure having a depth of only tens of atomic layers from any surface (see Reference Examples 1 and 2). These structures are being developed for application to Si electronic devices. Specific examples using these methods will be described later in Examples.
[0060]
As the substrate, for example, Si, copper, nickel, etc. may be used. The thickness of the substrate is not particularly limited as long as the comb-like Si active material can be formed on the substrate. For example, the substrate may have a thickness in the range of 10 μm to 200 μm.
[0061]
A raw material for forming a thin film of a material containing Si is not particularly limited as long as the above-mentioned columnar Si can be formed on a substrate. Although it differs depending on the forming method, for example, SiH 4 (Silane), Si 2 H 6 , SiH 2 Cl 2 , SiCl 4 Etc. may be used. When a silane gas is used, a thin film of a material containing Si containing hydrogen atoms can be formed, and the ratio of hydrogen atoms contained in the columnar Si can be controlled.
[0062]
In the method of manufacturing an electrode material according to the present invention, the comb-shaped active material formed in the step (ii) may be separated from the substrate, if necessary. In the step (ii), the method for separating the comb-shaped active material formed from the substrate is not particularly limited. For example, it may be mechanically separated. The separated thin film may be used as it is for a secondary battery, or may be used in a secondary battery after being processed into a powder by pulverization or the like. The shape of the electrode material of the present invention may be any shape as long as it can constitute a secondary battery.
[0063]
(Embodiment 3)
In the present embodiment, a non-aqueous electrolyte secondary battery using the electrode material for a non-aqueous electrolyte secondary battery of the present invention will be described. FIG. 1 is a schematic sectional view showing an example of the secondary battery according to the present invention. The secondary battery shown in FIG. 1 can be obtained, for example, as follows. First, a positive electrode 1 and a negative electrode 2 capable of reversibly inserting and extracting Li are laminated with a separator 3 interposed therebetween, and the obtained laminate is wound. The wound laminate is placed in a case 5 provided with a lower insulating plate 4 at the bottom, filled entirely with an electrolyte having Li conductivity, and an upper insulating plate 6 is arranged. Thereafter, the gasket 7 may be sealed with a sealing plate 8 provided on the periphery. Positive electrode 1 and negative electrode 2 are electrically connected to external terminals of the secondary battery by positive electrode lead 9 and negative electrode lead 10.
[0064]
At this time, by including the electrode material of the present invention as an active material of the negative electrode 2, a secondary battery having excellent charge / discharge cycle characteristics can be obtained. The negative electrode 2 containing the electrode material of the present invention as an active material will be described.
[0065]
The negative electrode 2 can be formed by applying the electrode material of the present invention, that is, an electrode mixture containing columnar Si, a conductive agent, a binder and the like to the surface of the negative electrode current collector. The conductive agent used for the negative electrode 2 is not particularly limited as long as it is a material having electron conductivity. For example, graphites such as natural graphite (flaky graphite, etc.), artificial graphite, expanded graphite, carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black, thermal black, and carbon fiber For example, conductive fibers such as metal fibers, metal powders such as copper, and organic conductive materials such as polyphenylene derivatives may be used.
[0066]
Especially, it is preferable to use artificial graphite, acetylene black, and carbon fiber. These materials may be mixed and used. Further, these materials may be mechanically coated on the surface of the electrode material.
[0067]
The amount of the conductive agent added to the negative electrode 2 is not particularly limited. For example, the range is from 1 to 50 parts by weight, preferably from 1 to 30 parts by weight, per 100 parts by weight of the electrode material. Since the electrode material of the present invention has electron conductivity, it can function as a secondary battery without adding the above conductive agent.
[0068]
As the binder used for the negative electrode 2, any of a thermoplastic resin and a thermosetting resin may be used as long as the state in which the electrode mixture is bound to the current collector can be maintained. For example, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), Tetrafluoroethylene-perfluoroalkylvinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE), Polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoro Ethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethylvinyl ether-tetrafluoroethylene copolymer, ethylene-acrylic acid copolymer, ethylene-acryl Acid copolymer Na + Ion crosslinked product, ethylene-methacrylic acid copolymer, ethylene-methacrylic acid copolymer Na + Ion crosslinked product, ethylene-methyl acrylate copolymer, ethylene-methyl acrylate copolymer Na + Ion crosslinked product, ethylene-methyl methacrylate copolymer, ethylene-methyl methacrylate copolymer Na + An ionic cross-linker or the like may be used. These materials may be mixed and used.
[0069]
Among them, styrene butadiene rubber, polyvinylidene fluoride, ethylene-acrylic acid copolymer, ethylene-acrylic acid copolymer Na + Ion crosslinked product, ethylene-methacrylic acid copolymer, ethylene-methacrylic acid copolymer Na + Ion crosslinked product, ethylene-methyl acrylate copolymer, ethylene-methyl acrylate copolymer Na + Ion crosslinked product, ethylene-methyl methacrylate copolymer, ethylene-methyl methacrylate copolymer Na + Ionic cross-linkers are preferred.
[0070]
The current collector used for the negative electrode 2 is a material having electron conductivity, and is not particularly limited as long as it does not cause a chemical change in the secondary battery.
[0071]
For example, stainless steel, nickel, copper, titanium, carbon, a conductive resin, or copper or stainless steel surface-treated with carbon, nickel, or titanium may be used. Among them, copper and copper alloy are preferred. In addition, unevenness may be provided on the surface of the current collector by a surface treatment or the like.
[0072]
The shape of the current collector may be, for example, a foil, a film, a sheet, a net, a punched material, a lath body, a porous body, a foam, a fiber group molded body, or the like. The thickness of the current collector is not particularly limited. For example, it is in the range of about 1 μm to 500 μm.
[0073]
Further, as a method for preparing an electrode mixture including an electrode material, a conductive agent and a binder, and a method for applying the prepared electrode mixture to a current collector, a known general method may be used. Good.
[0074]
Further, when the electrode material of the present invention has a comb-like structure on a current collector of Si active material, the negative electrode 2 has only a structure of a comb-like structure on a current collector of Si active material. An electrode mixture containing a conductive agent and a binder is applied to the surface of the negative electrode current collector in a case where the electrode plate includes a conductive agent and a binder. Can be formed.
[0075]
In the latter case, the conductive agent used for the negative electrode 2 is not particularly limited as long as it is a material having electron conductivity. For example, graphites such as natural graphite (flaky graphite, etc.), artificial graphite, expanded graphite, carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black, thermal black, and carbon fiber For example, conductive fibers such as metal fibers, metal powders such as copper, and organic conductive materials such as polyphenylene derivatives may be used.
[0076]
Especially, it is preferable to use artificial graphite, acetylene black, and carbon fiber. These materials may be mixed and used. Further, these materials may be mechanically coated on the surface of the electrode material.
[0077]
The amount of the conductive agent added to the negative electrode 2 is not particularly limited. For example, the range is from 1 to 50 parts by weight, preferably from 1 to 30 parts by weight, per 100 parts by weight of the electrode material. Since the electrode material of the present invention has electron conductivity, it can function as a secondary battery without adding the above conductive agent.
[0078]
As the binder used for the negative electrode 2, any of a thermoplastic resin and a thermosetting resin may be used as long as the state in which the electrode mixture is bound to the current collector can be maintained. For example, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), Tetrafluoroethylene-perfluoroalkylvinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE), Polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoro Ethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethylvinyl ether-tetrafluoroethylene copolymer, ethylene-acrylic acid copolymer, ethylene-acryl Acid copolymer Na + Ion crosslinked product, ethylene-methacrylic acid copolymer, ethylene-methacrylic acid copolymer Na + Ion crosslinked product, ethylene-methyl acrylate copolymer, ethylene-methyl acrylate copolymer Na + Ion crosslinked product, ethylene-methyl methacrylate copolymer, ethylene-methyl methacrylate copolymer Na + An ionic cross-linker or the like may be used. These materials may be mixed and used.
[0079]
Above all, styrene butadiene rubber, polyvinylidene fluoride, ethylene-acrylic acid copolymer, ethylene-acrylic acid copolymer Na + Ion crosslinked product, ethylene-methacrylic acid copolymer, ethylene-methacrylic acid copolymer Na + Ion crosslinked product, ethylene-methyl acrylate copolymer, ethylene-methyl acrylate copolymer Na + Ion crosslinked product, ethylene-methyl methacrylate copolymer, ethylene-methyl methacrylate copolymer Na + Ionic cross-linkers are preferred.
[0080]
The current collector used for the negative electrode 2 is a material having electron conductivity, and is not particularly limited as long as it does not cause a chemical change in the secondary battery. For example, stainless steel, nickel, copper, titanium, carbon, a conductive resin, or copper or stainless steel surface-treated with carbon, nickel, or titanium may be used. Among them, copper and copper alloy are preferred.
[0081]
In addition, unevenness may be provided on the surface of the current collector by a surface treatment or the like. The shape of the current collector may be, for example, a foil, a film, a sheet, a net, a punched material, a lath body, a porous body, a foam, a fiber group molded body, or the like. The thickness of the current collector is not particularly limited. For example, it is in the range of about 1 μm to 500 μm.
[0082]
Further, as a method for preparing an electrode mixture including an electrode material, a conductive agent and a binder, and a method for applying the prepared electrode mixture to a current collector, a known general method may be used. Good.
[0083]
Next, the positive electrode 1 will be described. The positive electrode 1 can be formed, for example, by applying an electrode mixture containing a positive electrode active material capable of reversibly occluding and releasing Li, a conductive agent, a binder, and the like to the surface of the positive electrode current collector.
[0084]
As the positive electrode active material used for the positive electrode 1, for example, a metal oxide containing Li may be used. As the metal oxide containing Li, for example, the general formula Li x CoO 2 , The general formula Li x NiO 2 , The general formula Li x MnO 2 A metal oxide represented by the following formula may be used. However, in the above formula, x is a value adjusted in the range of 0 <x ≦ 1 for example. The value of x is a value that increases or decreases due to charging and discharging of the secondary battery.
[0085]
Examples of the positive electrode active material used for the positive electrode 1 include, in addition to the above metal oxides, transition metal chalcogenides, vanadium oxides and lithium compounds thereof, niobium oxides and lithium compounds thereof, and conjugated polymers composed of organic conductive materials. And a chevrel phase compound. Further, a plurality of positive electrode active materials may be mixed and used. The average particle size when the positive electrode active material is in particulate form is not particularly limited. For example, the range is 1 μm to 30 μm.
[0086]
The conductive agent used for the positive electrode 1 is not particularly limited as long as it is a material having electron conductivity and does not cause a chemical change in a potential region that the positive electrode active material can take. For example, graphites such as natural graphite (such as flake graphite) and artificial graphite, carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black, carbon fibers, metal fibers, and the like. Conductive fibers, carbon fluoride, metal powders such as aluminum, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, and organic conductive materials such as polyphenylene derivatives Etc. may be used. Especially, it is preferable to use artificial graphite and acetylene black. These materials may be mixed and used.
[0087]
The amount of the conductive agent to be added to the positive electrode 1 is not particularly limited. For example, the range is 1 to 50 parts by weight, preferably 1 to 30 parts by weight, based on 100 parts by weight of the positive electrode active material.
[0088]
As the binder used for the positive electrode 1, any of a thermoplastic resin and a thermosetting resin may be used as long as the state in which the electrode mixture is bound to the current collector can be maintained. For example, a resin similar to the binder used for the above-described negative electrode may be used.
[0089]
The current collector used for the positive electrode 1 is not particularly limited as long as it is a material having electron conductivity and does not cause a chemical change in a potential region that the positive electrode active material can take. For example, stainless steel, aluminum, titanium, carbon, a conductive resin, or stainless steel surface-treated with carbon or titanium may be used. Among them, aluminum and aluminum alloy are preferable. In addition, unevenness may be provided on the surface of the current collector by a surface treatment or the like. The shape and thickness of the current collector may be the same as those of the current collector used for the negative electrode 2.
[0090]
As a method for preparing an electrode mixture including a positive electrode active material, a conductive agent and a binder, and a method for applying the prepared electrode mixture to a current collector, a known general method may be used. When the positive electrode 1 and the negative electrode 2 are incorporated in a secondary battery, it is preferable that the electrode mixture surface of the positive electrode 1 and the electrode mixture surface of the negative electrode 2 face each other with the separator 3 interposed therebetween.
[0091]
Next, the electrolyte and the separator 3 used in the secondary battery of the present invention will be described.
[0092]
The electrolyte is not particularly limited as long as it has Li conductivity. For example, a non-aqueous electrolyte composed of a non-aqueous solvent and a lithium salt dissolved in the solvent may be used. In this case, the non-aqueous solvent is not particularly limited.
[0093]
For example, ethylene carbonate, ethyl methyl carbonate, or the like may be used. The lithium salt is not particularly limited as long as it dissolves in the non-aqueous solvent. For example, LiPF 6 May be used. The amount of the lithium salt dissolved in the non-aqueous solvent is not particularly limited. For example, the range is 0.2 mol / l to 2 mol / l, and the range is preferably 0.5 mol / l to 1.5 mol / l. Note that the amount of the electrolyte added to the secondary battery may be arbitrarily set depending on the amounts of the positive electrode active material and the negative electrode active material and the size of the secondary battery.
[0094]
The separator 3 is not particularly limited as long as it is an electrically insulating thin film having a large Li permeability, not being corroded inside the battery, and having a certain mechanical strength. For example, a microporous thin film having the above characteristics and generally used for a nonaqueous electrolyte secondary battery may be used. For example, a sheet, nonwoven fabric, woven fabric, or the like made of an olefin-based polymer or glass fiber containing at least one resin selected from polypropylene and polyethylene may be used. When the battery reaches a certain temperature or higher due to a short circuit or the like, a separator having a function of increasing electric resistance by closing holes may be used.
[0095]
The thickness of the separator 3 is, for example, in a range of 10 μm to 300 μm. When the separator 3 is a microporous thin film, the average pore size is preferably in a range in which the positive electrode and negative electrode active materials detached from the electrode, the binder, the conductive agent, and the like do not pass. 11 μm. In addition, the average porosity of the separator 3 may be set according to the electrical insulation property and Li permeability of the material forming the separator 3, the thickness of the separator, and the like. For example, the range is 30 vol% to 80 vol%.
[0096]
As the secondary battery of the present invention, in addition to the secondary battery having the structure shown in FIG. 1, a battery in which a non-aqueous electrolyte made of a non-aqueous solvent and a lithium salt is absorbed and held in a polymer material is used as a positive electrode mixture. And a secondary battery having a structure in which a porous separator made of the above polymer material is integrated with a positive electrode and a negative electrode by being included in a negative electrode mixture. As the polymer material in this case, any material may be used as long as it has electrical insulation properties and can absorb and hold the non-aqueous electrolyte. For example, a copolymer of vinylidene fluoride and hexafluoropropylene may be used.
[0097]
The non-aqueous electrolyte secondary battery in the present invention is not particularly limited to a cylindrical type as shown in FIG. For example, it may be a coin type, a button type, a sheet type, a laminated type, a flat type, a square type, or a large type used for an electric vehicle or the like. Any shape can be used.
[0098]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
[0099]
(Example 1)
First, a method for evaluating an electrode material in this example will be described. In this example, the shape of each of the manufactured electrode materials was observed. Also, a secondary battery as shown in FIG. 1 was produced using each of the produced electrode materials, and the capacity and charge / discharge cycle characteristics of the obtained secondary battery were evaluated. The degree of deterioration of the electrode material was evaluated.
[0100]
The shape observation of the electrode material was measured by a scanning electron microscope (S-4500, manufactured by Hitachi, Ltd.). For the measurement, a sample in which an electrode material was attached to a carbon adhesive tape was used. A secondary electron image was observed on the sample with an electron beam applied with a voltage of 15 KV. From the scanned image, the diameter of the cylindrical shape of the Si active material was estimated. Its resolution is about 3 nm.
[0101]
For each of the prepared electrode materials, the diameter of the Si active material was evaluated in a columnar shape by observation with a scanning electron microscope, and then a secondary battery was prepared using each of the above electrode materials. Using the retention rate was evaluated.
[0102]
Evaluation of the capacity and charge / discharge cycle characteristics of the secondary battery was performed as follows.
[0103]
A charge / discharge cycle in which the battery was charged at a constant current of 1000 mA in a thermostat at 20 ° C. until the battery voltage reached 4.2 V, and then discharged at a constant current of 1000 mA until the battery voltage reached 2.0 V was repeated. The charge / discharge cycle was performed 100 times. The discharge capacity at the second cycle was defined as the initial discharge capacity of the battery, and the ratio of the discharge capacity at the 100th cycle to the initial discharge capacity was defined as the capacity retention rate of the battery.
[0104]
(Example 2)
Each sample in which the Si active material had a columnar shape was produced by a CVD method. As a film forming apparatus, a CVD apparatus manufactured by Japan Vacuum Co., Ltd. was used, a thin film of a material containing Si was formed to a thickness of 500 nm on a copper foil having a thickness of 60 μm, and a catalyst was formed using a vacuum deposition apparatus manufactured by Anelva. After a film of Au was formed as a metal to a thickness of 0.5 nm, a Si wire was formed using the CVD apparatus. The raw material gas is SiH 4 (Silane) and H 2 Was used. The flow rate of the raw material gas was 4.0 L / min, and the silane partial pressure was 0.1 to 1000 Pa.
[0105]
At this time, as shown in (Table 1) to (Table 3), the film formation temperature was controlled at 300 ° C., 400 ° C., and 500 ° C. By this control, the hydrogen concentration in the thin film differs between the samples. Further, the film forming time was controlled so that the length of each of the obtained columnar active materials was about 0.5 μm. Then, the obtained columnar Si active material was peeled off from the substrate.
[0106]
[Table 1]
Figure 2004281317
[0107]
[Table 2]
Figure 2004281317
[0108]
[Table 3]
Figure 2004281317
[0109]
The negative electrode was produced as follows. For 100 parts by weight of the prepared electrode material, 25 parts by weight of acetylene black (AB) as a conductive agent and 5 parts by weight of polyvinylidene fluoride resin as a binder were mixed. This mixture was dispersed in N-methyl-2-pyrrolidone to form a slurry, which was applied to a negative electrode current collector made of copper foil (thickness: 14 μm) so that the thickness of the electrode plate became about 100 μm in total, and dried. Thereafter, a negative electrode was obtained.
[0110]
The positive electrode was produced as follows. For 85 parts by weight of lithium cobalt oxide powder, 10 parts by weight of AB as a conductive agent and 5 parts by weight of polyvinylidene fluoride resin as a binder were mixed. This mixture was dispersed in dehydrated N-methylpyrrolidinone to form a slurry, which was applied on a positive electrode current collector made of aluminum foil (thickness: 20 μm) at a thickness of 150 μm, dried, and then rolled to obtain a positive electrode.
[0111]
The negative electrode and the positive electrode prepared as described above, a microporous separator made of polyethylene, and LiPF in a mixed solvent of ethylene carbonate and ethyl methyl carbonate (volume ratio 1: 1) 6 Was dissolved at a concentration of 1.5 mol / l with a non-aqueous electrolyte to produce a cylindrical secondary battery as shown in FIG. The secondary battery had a diameter of 18 mm and a height of 650 mm.
[0112]
Evaluation of the capacity and charge / discharge cycle characteristics of the secondary battery was performed as follows. The initial discharge capacity has almost the same value in all samples. The value was about 2400 to 2480 mAh, and it was possible to obtain a secondary battery having a higher capacity than when a graphite material was used as the electrode material (about 1800 mAh).
[0113]
A charge / discharge cycle in which the battery was charged at a constant current of 1000 mA in a thermostat at 20 ° C. until the battery voltage reached 4.2 V, and then discharged at a constant current of 1000 mA until the battery voltage reached 2.0 V was repeated. The charge / discharge cycle was performed 100 times. The discharge capacity in the second cycle was defined as the initial discharge capacity of the battery, and the ratio of the discharge capacity in the 100th cycle to the initial discharge capacity was defined as the capacity retention rate of the battery. 3 shows the measurement results of the average diameter and the capacity retention ratio of the secondary battery manufactured using each sample.
[0114]
FIG. 2 shows the relationship between the silane partial pressure and the average diameter of each sample based on the results of (Table 1) to (Table 3). As shown in FIG. 2, the average diameter can be reduced by increasing the silane partial pressure at each film forming temperature.
[0115]
Similarly, based on the results of (Table 1) to (Table 3), FIG. 3 shows the relationship between the average diameter of each sample and the capacity retention of a secondary battery manufactured using each sample. As shown in FIG. 3, as the average diameter becomes larger, the capacity retention ratio decreases. This is considered to be due to the occurrence of particle cracks in the Si active material. Further, the lower the film forming temperature, the higher the capacity retention ratio.
[0116]
This is considered to be because the Si active material is more amorphous in the low-temperature film formation. From the above, it is understood that a secondary battery having more excellent charge / discharge cycle characteristics can be obtained in a sample in which the average diameter of each sample is smaller, particularly in a sample of 10 nm or less.
[0117]
(Example 3)
Each sample having a structure in which the Si active material was erected in a comb shape on the current collector was produced by a CVD method. As a film forming apparatus, a CVD apparatus manufactured by Japan Vacuum Co., Ltd. was used, a thin film of a material containing Si was formed to a thickness of 0.5 μm on a copper foil having a thickness of 60 μm, and a vacuum deposition apparatus manufactured by Anelva was used. After forming a film of Au as a catalyst metal to a thickness of 0.5 nm, a Si wire was formed using the CVD apparatus.
[0118]
The raw material gas is SiH 4 (Silane) and H 2 Was used. The flow rate of the raw material gas was 4.0 L / min, and the silane partial pressure was 0.1 to 1000 Pa. At this time, the film formation temperature was controlled at 300 ° C., 400 ° C., and 500 ° C. as shown in Tables 1 to 6. By this control, the hydrogen concentration in the thin film differs between the samples. Further, the film forming time was controlled so that the length of each of the obtained columnar active materials was about 0.5 μm.
[0119]
The negative electrode was produced as follows. A conductive material and a binder were mixed with 25 parts by weight of acetylene black (AB) as a conductive agent and 5 parts by weight of polyvinylidene fluoride resin as a binder with respect to 100 parts by weight of the Si active material. This mixture was dispersed in N-methyl-2-pyrrolidone to form a slurry, which was applied to each sample having a comb-shaped structure on a current collector, and the total electrode plate thickness was approximately 100 μm. After drying, a negative electrode was obtained.
[0120]
The positive electrode was produced as follows. For 85 parts by weight of lithium cobalt oxide powder, 10 parts by weight of AB as a conductive agent and 5 parts by weight of polyvinylidene fluoride resin as a binder were mixed. This mixture was dispersed in dehydrated N-methylpyrrolidinone to form a slurry, which was applied on a positive electrode current collector made of aluminum foil (thickness: 20 μm) at a thickness of 150 μm, dried, and then rolled to obtain a positive electrode.
[0121]
The negative electrode and the positive electrode prepared as described above, a microporous separator made of polyethylene, and LiPF in a mixed solvent of ethylene carbonate and ethyl methyl carbonate (volume ratio 1: 1) 6 Was dissolved at a concentration of 1.5 mol / l with a non-aqueous electrolyte to produce a cylindrical secondary battery as shown in FIG. The secondary battery had a diameter of 18 mm and a height of 650 mm.
[0122]
The initial discharge capacity has almost the same value in all samples. The value was about 2400 to 2480 mAh, and it was possible to obtain a secondary battery having a higher capacity than when a graphite material was used as the electrode material (about 1800 mAh).
[0123]
The following (Table 4) to (Table 6) show the measurement results of the average diameter of each sample and the capacity retention ratio of the secondary battery manufactured using each sample.
[0124]
[Table 4]
Figure 2004281317
[0125]
[Table 5]
Figure 2004281317
[0126]
[Table 6]
Figure 2004281317
[0127]
Based on the results of Tables 4 to 6, FIG. 4 shows the relationship between the silane partial pressure and the average diameter of each sample. As shown in FIG. 4, the average diameter can be reduced by increasing the silane partial pressure at each film forming temperature.
[0128]
Similarly, based on the results of (Table 4) to (Table 6), FIG. 5 shows the relationship between the average diameter of each sample and the capacity retention of the secondary battery manufactured using each sample. As shown in FIG. 5, as the average diameter becomes larger, the capacity retention ratio decreases. This is considered to be due to the occurrence of particle cracks in the Si active material. Further, the lower the film forming temperature, the higher the capacity retention ratio. This is considered to be because the Si active material is more amorphous in the low-temperature film formation. From the above, it is understood that a secondary battery having more excellent charge / discharge cycle characteristics can be obtained in a sample in which the average diameter of each sample is smaller, particularly in a sample of 10 nm or less.
[0129]
(Example 4)
Each sample having a structure in which the Si active material was erected in a comb shape on the current collector was produced by a CVD method. As a film forming apparatus, a CVD apparatus manufactured by Japan Vacuum Co., Ltd. was used, a thin film of a material containing Si was formed to a thickness of 0.5 μm on a copper foil having a thickness of 60 μm, and a vacuum deposition apparatus manufactured by Anelva was used. After forming a film of Au as a catalyst metal to a thickness of 0.5 nm, a Si wire was formed using the CVD apparatus.
[0130]
The raw material gas is SiH 4 (Silane) and H 2 Was used. The raw material gas flow rate was 4.0 l / min, and the silane partial pressure was 500 Pa. At this time, the film was formed by controlling the film formation temperature to 200 ° C. For this sample, (1) 380 ° C., vacuum (3 × 10 -3 In Pa), the samples were classified into heat-treated and (2) samples as formed. By this control, the hydrogen concentration of each sample was quantitatively analyzed by secondary ion mass spectrometry, and as a result, (1) 0.5 wt% and (2) 55 wt%. Further, the film forming time was controlled so that the length of each of the obtained columnar active materials was about 0.5 μm.
[0131]
The negative electrode was produced as follows. A conductive material and a binder were mixed with 25 parts by weight of acetylene black (AB) as a conductive agent and 5 parts by weight of polyvinylidene fluoride resin as a binder with respect to 100 parts by weight of the Si active material. This mixture was dispersed in N-methyl-2-pyrrolidone to form a slurry, which was applied to each sample having a comb-shaped structure on a current collector, and the total electrode plate thickness was approximately 100 μm. After drying, a negative electrode was obtained.
[0132]
The positive electrode was produced as follows. For 85 parts by weight of lithium cobalt oxide powder, 10 parts by weight of AB as a conductive agent and 5 parts by weight of polyvinylidene fluoride resin as a binder were mixed. This mixture was dispersed in dehydrated N-methylpyrrolidinone to form a slurry, which was applied on a positive electrode current collector made of aluminum foil (thickness: 20 μm) at a thickness of 150 μm, dried, and then rolled to obtain a positive electrode.
[0133]
The negative electrode and the positive electrode prepared as described above, a microporous separator made of polyethylene, and LiPF in a mixed solvent of ethylene carbonate and ethyl methyl carbonate (volume ratio 1: 1) 6 Was dissolved at a concentration of 1.5 mol / l with a non-aqueous electrolyte to produce a cylindrical secondary battery as shown in FIG. The secondary battery had a diameter of 18 mm and a height of 650 mm.
[0134]
The initial discharge capacity was (1) 2400 mAh and (2) 1900 mAh. This value is higher in (1) than in the case where a graphite material is used as the electrode material (about 1800 mAh), but in (2), the effect of higher capacity appears. Absent. This is considered to be because the capacity was reduced due to the decrease in electron conductivity due to the high hydrogen concentration.
[0135]
Further, the capacity retention rates were as low as (1) 30% and (2) 60%. This is because, particularly for (1), if the content of hydrogen atoms is less than 1 atomic%, the effect of increasing the distance between adjacent Si atoms and suppressing the volume change due to charging and discharging is small. It is considered that the particle crack of the Si active material occurred.
[0136]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a nonaqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics and an electrode material for a nonaqueous electrolyte secondary battery realizing the above secondary battery. In addition, a method for producing the electrode material for a non-aqueous electrolyte secondary battery can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an example of a non-aqueous electrolyte secondary battery of the present invention.
FIG. 2 is a diagram showing a relationship between a silane partial pressure and an average diameter in an electrode material sample.
FIG. 3 is a diagram showing the relationship between the average diameter of the electrode material sample and the capacity retention of the secondary battery.
FIG. 4 is a diagram showing a relationship between a silane partial pressure and an average diameter in an electrode material sample.
FIG. 5 is a diagram showing the relationship between the average diameter of the electrode material sample and the capacity retention of the secondary battery.
[Explanation of symbols]
1 positive electrode
2 Negative electrode
3 separator
4 Lower insulating plate
5 cases
6 Upper insulating plate
7 Gasket
8 Sealing plate
9 Positive electrode lead
10 Negative electrode lead

Claims (11)

Liを可逆的に吸蔵および放出できる非水電解質二次電池用電極材料であって、Si活物質が円柱型状の形状を有していることを特徴とする非水電解質二次電池用電極材料。An electrode material for a non-aqueous electrolyte secondary battery capable of reversibly occluding and releasing Li, wherein the Si active material has a columnar shape. . Liを可逆的に吸蔵および放出できる非水電解質二次電池用電極材料であって、Si活物質が円柱型状の直径が、10nm以下であることを特徴とする非水電解質二次電池用電極材料。An electrode material for a non-aqueous electrolyte secondary battery capable of reversibly inserting and extracting Li, wherein the Si active material has a columnar diameter of 10 nm or less. material. 非水電解質二次電池用電極材料は非晶質Siであることを特徴とする請求項1または2に記載の非水電解質二次電池用電極材料。The electrode material for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the electrode material for a non-aqueous electrolyte secondary battery is amorphous Si. 非水電解質二次電池用電極材料は水素化された非晶質Siであることを特徴とする請求項1または2に記載の非水電解質二次電池用電極材料。The electrode material for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the electrode material for a non-aqueous electrolyte secondary battery is hydrogenated amorphous Si. 非水電解質二次電池用電極材料は水素原子を1原子%〜50原子%の範囲であることを特徴とする請求項4に記載の非水電解質二次電池用電極材料。The electrode material for a non-aqueous electrolyte secondary battery according to claim 4, wherein the electrode material for a non-aqueous electrolyte secondary battery has a hydrogen atom content in a range of 1 atomic% to 50 atomic%. Liを可逆的に吸蔵および放出できる非水電解質二次電池用電極材料であって、Si活物質が集電体上にくし型状に立脚した構造を有している非水電解質二次電池用電極材料。An electrode material for a non-aqueous electrolyte secondary battery capable of reversibly occluding and releasing Li, for a non-aqueous electrolyte secondary battery having a structure in which a Si active material stands in a comb shape on a current collector. Electrode material. Liを可逆的に吸蔵および放出できる非水電解質二次電池用電極材料であって、集電体上にくし型状に立脚したSi活物質の大きさが、直径10nm以下である非水電解質二次電池用電極材料。An electrode material for a non-aqueous electrolyte secondary battery capable of reversibly occluding and releasing Li, wherein the size of a Si active material standing in a comb shape on a current collector is 10 nm or less in diameter. Electrode materials for secondary batteries. 非水電解質二次電池用電極材料は非晶質Siであることを特徴とする請求項6または7に記載の非水電解質二次電池用電極材料。The electrode material for a non-aqueous electrolyte secondary battery according to claim 6, wherein the electrode material for a non-aqueous electrolyte secondary battery is amorphous Si. 非水電解質二次電池用電極材料は水素化された非晶質Siであることを特徴とする請求項6または7に記載の非水電解質二次電池用電極材料。The electrode material for a non-aqueous electrolyte secondary battery according to claim 6 or 7, wherein the electrode material for a non-aqueous electrolyte secondary battery is hydrogenated amorphous Si. 非水電解質二次電池用電極材料は水素原子を1原子%〜50原子%の範囲であることを特徴とする請求項9に記載の非水電解質二次電池用電極材料。The electrode material for a non-aqueous electrolyte secondary battery according to claim 9, wherein the electrode material for a non-aqueous electrolyte secondary battery has a hydrogen atom content in the range of 1 to 50 atomic%. Liを可逆的に吸蔵および放出できる非水電解質二次電池用電極材料の製造方法であって、
(i)Si活物質が円柱型状の形状を形成する工程、
(ii)基板上にSi活物質がくし型状の構造を形成する工程を、
含む非水電解質二次電池用電極材料の製造方法。
A method for producing an electrode material for a non-aqueous electrolyte secondary battery capable of reversibly occluding and releasing Li,
(I) a step in which the Si active material forms a columnar shape;
(Ii) the step of forming a comb-shaped structure of the Si active material on the substrate,
A method for producing an electrode material for a non-aqueous electrolyte secondary battery comprising
JP2003073837A 2003-03-18 2003-03-18 Electrode material for nonaqueous electrolyte secondary battery, its manufacturing method and nonaqueous electrolyte secondary battery using it Pending JP2004281317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003073837A JP2004281317A (en) 2003-03-18 2003-03-18 Electrode material for nonaqueous electrolyte secondary battery, its manufacturing method and nonaqueous electrolyte secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073837A JP2004281317A (en) 2003-03-18 2003-03-18 Electrode material for nonaqueous electrolyte secondary battery, its manufacturing method and nonaqueous electrolyte secondary battery using it

Publications (1)

Publication Number Publication Date
JP2004281317A true JP2004281317A (en) 2004-10-07

Family

ID=33289636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073837A Pending JP2004281317A (en) 2003-03-18 2003-03-18 Electrode material for nonaqueous electrolyte secondary battery, its manufacturing method and nonaqueous electrolyte secondary battery using it

Country Status (1)

Country Link
JP (1) JP2004281317A (en)

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128724A (en) * 2005-11-02 2007-05-24 Sony Corp Anode and battery
JP2007305569A (en) * 2006-05-09 2007-11-22 Samsung Sdi Co Ltd Negative electrode material containing metal nanocrystal composite, method of manufacturing the same, and anode and lithium battery containing the negative electrode active material
US7771861B2 (en) 2005-10-13 2010-08-10 3M Innovative Properties Company Method of using an electrochemical cell
JP2010533637A (en) * 2007-07-17 2010-10-28 ネグゼオン・リミテッド Method for producing structured particles composed of silicon or silicon-based materials and their use in lithium batteries
WO2010128681A1 (en) * 2009-05-08 2010-11-11 古河電気工業株式会社 Negative electrodes for secondary battery, copper foil for electrode, secondary battery, and processes for producing negative electrodes for secondary battery
JP2010262754A (en) * 2009-04-30 2010-11-18 Furukawa Electric Co Ltd:The Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, slurry for negative electrode production for lithium ion secondary battery, and method of manufacturing negative electrode for lithium ion secondary battery
JP2010536158A (en) * 2007-08-10 2010-11-25 ザ ボード オブ トラスティーズ オブ ザ リランド スタンフォード ジュニア ユニヴァーシティ Method and configuration of nanowire battery
JP2011082179A (en) * 2006-01-23 2011-04-21 Nexeon Ltd Method of manufacturing fibers comprising silicon or silicon material, and use of the same in lithium storage battery
JP2011090806A (en) * 2009-10-20 2011-05-06 Toyota Central R&D Labs Inc Electrode for lithium secondary battery, and lithium secondary battery equipped with the same
JP2011165403A (en) * 2010-02-05 2011-08-25 Sony Corp Anode for lithium ion secondary battery, lithium ion secondary battery, power tool, electric vehicle, and power storage system
WO2011118369A1 (en) * 2010-03-26 2011-09-29 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and method for manufacturing electrode of the same
WO2011154692A1 (en) 2010-06-07 2011-12-15 Nexeon Limited An additive for lithium ion rechargeable battery cells
WO2012028857A1 (en) 2010-09-03 2012-03-08 Nexeon Limited Porous electroactive material
WO2012175998A1 (en) 2011-06-24 2012-12-27 Nexeon Limited Structured particles
KR20130012022A (en) * 2010-03-26 2013-01-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Secondary battery and method for forming electrode of secondary battery
JP2013030464A (en) * 2011-06-24 2013-02-07 Semiconductor Energy Lab Co Ltd Power storage device, electrode thereof, and method of manufacturing power storage device
US8384058B2 (en) 2002-11-05 2013-02-26 Nexeon Ltd. Structured silicon anode
US8455044B2 (en) 2010-11-26 2013-06-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, method for manufacturing the same, and power storage device
WO2013128201A2 (en) 2012-02-28 2013-09-06 Nexeon Limited Structured silicon particles
US8585918B2 (en) 2006-01-23 2013-11-19 Nexeon Ltd. Method of etching a silicon-based material
US8642211B2 (en) 2007-07-17 2014-02-04 Nexeon Limited Electrode including silicon-comprising fibres and electrochemical cells including the same
US8658246B2 (en) 2010-10-15 2014-02-25 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of group of whiskers
US8669009B2 (en) 2010-07-01 2014-03-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, positive electrode of power storage device, power storage device, manufacturing method of positive electrode active material of power storage device
US8772174B2 (en) 2010-04-09 2014-07-08 Nexeon Ltd. Method of fabricating structured particles composed of silicon or silicon-based material and their use in lithium rechargeable batteries
US8821601B2 (en) 2011-01-21 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Hydrogen generating element, hydrogen generation device, power generation device, and driving device
US8835048B2 (en) 2010-06-11 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US8846530B2 (en) 2010-06-30 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Method for forming semiconductor region and method for manufacturing power storage device
US8845764B2 (en) 2010-06-14 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Power storage device comprising solid electrolyte layer over active material and second electrolyte and method of manufacturing the same
US8852294B2 (en) 2010-05-28 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US8896098B2 (en) 2010-05-28 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US8932759B2 (en) 2008-10-10 2015-01-13 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material
US8962183B2 (en) 2009-05-07 2015-02-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
US9012079B2 (en) 2007-07-17 2015-04-21 Nexeon Ltd Electrode comprising structured silicon-based material
US9012080B2 (en) 2010-09-21 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Needle-like microstructure and device having needle-like microstructure
US9112224B2 (en) 2010-06-30 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Energy storage device and method for manufacturing the same
US9129754B2 (en) 2011-09-02 2015-09-08 Semiconductor Energy Laboratory Co., Ltd. Electrode for power storage device and power storage device
US9136530B2 (en) 2010-05-28 2015-09-15 Semiconductor Energy Laboratory Co., Ltd. Energy storage device and manufacturing method thereof
US9183995B2 (en) 2012-06-01 2015-11-10 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US9184438B2 (en) 2008-10-10 2015-11-10 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9252426B2 (en) 2007-05-11 2016-02-02 Nexeon Limited Silicon anode for a rechargeable battery
US9276261B2 (en) 2013-05-23 2016-03-01 Nexeon Limited Surface treated silicon containing active materials for electrochemical cells
US9281134B2 (en) 2010-06-02 2016-03-08 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US9337475B2 (en) 2011-08-30 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9362556B2 (en) 2010-12-07 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9384904B2 (en) 2012-04-06 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, method for forming the same, and power storage device
US9401247B2 (en) 2011-09-21 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US9543577B2 (en) 2010-12-16 2017-01-10 Semiconductor Energy Laboratory Co., Ltd. Active material, electrode including the active material and manufacturing method thereof, and secondary battery
US9548489B2 (en) 2012-01-30 2017-01-17 Nexeon Ltd. Composition of SI/C electro active material
US9608272B2 (en) 2009-05-11 2017-03-28 Nexeon Limited Composition for a secondary battery cell
US9647263B2 (en) 2010-09-03 2017-05-09 Nexeon Limited Electroactive material
US9685275B2 (en) 2010-04-28 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US9735431B2 (en) 2013-10-15 2017-08-15 Nexeon Limited Reinforced current collecting substrate assemblies for electrochemical cells
US9799461B2 (en) 2011-09-02 2017-10-24 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing electrode
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
US9929407B2 (en) 2011-12-21 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for non-aqueous secondary battery, non-aqueous secondary battery, and manufacturing methods thereof
US9960225B2 (en) 2010-06-30 2018-05-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of power storage device
JP2018078125A (en) * 2009-05-19 2018-05-17 ワンディー マテリアル エルエルシー Nanostructured materials for battery applications
USRE46921E1 (en) 2004-12-09 2018-06-26 Oned Material Llc Nanostructured catalyst supports
US10008716B2 (en) 2012-11-02 2018-06-26 Nexeon Limited Device and method of forming a device
US10090513B2 (en) 2012-06-01 2018-10-02 Nexeon Limited Method of forming silicon
US10388467B2 (en) 2012-11-07 2019-08-20 Semiconductor Energy Laboratory Co., Ltd. Electrode for power storage device, power storage device, and manufacturing method of electrode for power storage device
US10396355B2 (en) 2014-04-09 2019-08-27 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10476072B2 (en) 2014-12-12 2019-11-12 Nexeon Limited Electrodes for metal-ion batteries
US10586976B2 (en) 2014-04-22 2020-03-10 Nexeon Ltd Negative electrode active material and lithium secondary battery comprising same
US10658661B2 (en) 2011-08-30 2020-05-19 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing electrode

Cited By (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8384058B2 (en) 2002-11-05 2013-02-26 Nexeon Ltd. Structured silicon anode
USRE46921E1 (en) 2004-12-09 2018-06-26 Oned Material Llc Nanostructured catalyst supports
US7771861B2 (en) 2005-10-13 2010-08-10 3M Innovative Properties Company Method of using an electrochemical cell
TWI416779B (en) * 2005-10-13 2013-11-21 3M Innovative Properties Co Method of using an electrochemical cell
JP2007128724A (en) * 2005-11-02 2007-05-24 Sony Corp Anode and battery
US8101298B2 (en) 2006-01-23 2012-01-24 Nexeon Ltd. Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9583762B2 (en) 2006-01-23 2017-02-28 Nexeon Limited Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
JP2011082179A (en) * 2006-01-23 2011-04-21 Nexeon Ltd Method of manufacturing fibers comprising silicon or silicon material, and use of the same in lithium storage battery
US8597831B2 (en) 2006-01-23 2013-12-03 Nexeon Ltd. Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
TWI513083B (en) * 2006-01-23 2015-12-11 Nexeon Ltd A method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8585918B2 (en) 2006-01-23 2013-11-19 Nexeon Ltd. Method of etching a silicon-based material
JP2011216496A (en) * 2006-01-23 2011-10-27 Nexeon Ltd Method of fabricating fibers including silicon or silicon-based materials and usage of the same in lithium accumulator
JP4839381B2 (en) * 2006-01-23 2011-12-21 ネグゼオン・リミテッド Method for producing fibers composed of silicon or silicon-based materials and their use in lithium batteries
JP2007305569A (en) * 2006-05-09 2007-11-22 Samsung Sdi Co Ltd Negative electrode material containing metal nanocrystal composite, method of manufacturing the same, and anode and lithium battery containing the negative electrode active material
US9252426B2 (en) 2007-05-11 2016-02-02 Nexeon Limited Silicon anode for a rechargeable battery
US9871249B2 (en) 2007-05-11 2018-01-16 Nexeon Limited Silicon anode for a rechargeable battery
US8642211B2 (en) 2007-07-17 2014-02-04 Nexeon Limited Electrode including silicon-comprising fibres and electrochemical cells including the same
JP2010533637A (en) * 2007-07-17 2010-10-28 ネグゼオン・リミテッド Method for producing structured particles composed of silicon or silicon-based materials and their use in lithium batteries
US8870975B2 (en) 2007-07-17 2014-10-28 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8940437B2 (en) 2007-07-17 2015-01-27 Nexeon Limited Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9871244B2 (en) 2007-07-17 2018-01-16 Nexeon Limited Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9012079B2 (en) 2007-07-17 2015-04-21 Nexeon Ltd Electrode comprising structured silicon-based material
JP4834814B2 (en) * 2007-07-17 2011-12-14 ネグゼオン・リミテッド Method for producing structured particles composed of silicon or silicon-based materials and their use in lithium batteries
JP2011222522A (en) * 2007-07-17 2011-11-04 Nexeon Ltd Method of producing structured particles consisting of silicon or silicon based material, and use thereof in lithium storage battery
JP2010536158A (en) * 2007-08-10 2010-11-25 ザ ボード オブ トラスティーズ オブ ザ リランド スタンフォード ジュニア ユニヴァーシティ Method and configuration of nanowire battery
US8877374B2 (en) 2007-08-10 2014-11-04 The Board Of Trustees Of The Leland Stanford Junior University Nanowire battery methods and arrangements
US8932759B2 (en) 2008-10-10 2015-01-13 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material
US9184438B2 (en) 2008-10-10 2015-11-10 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
JP2010262754A (en) * 2009-04-30 2010-11-18 Furukawa Electric Co Ltd:The Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, slurry for negative electrode production for lithium ion secondary battery, and method of manufacturing negative electrode for lithium ion secondary battery
US8962183B2 (en) 2009-05-07 2015-02-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
US9553304B2 (en) 2009-05-07 2017-01-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
WO2010128681A1 (en) * 2009-05-08 2010-11-11 古河電気工業株式会社 Negative electrodes for secondary battery, copper foil for electrode, secondary battery, and processes for producing negative electrodes for secondary battery
US10050275B2 (en) 2009-05-11 2018-08-14 Nexeon Limited Binder for lithium ion rechargeable battery cells
US9608272B2 (en) 2009-05-11 2017-03-28 Nexeon Limited Composition for a secondary battery cell
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
JP2018078125A (en) * 2009-05-19 2018-05-17 ワンディー マテリアル エルエルシー Nanostructured materials for battery applications
US10490817B2 (en) 2009-05-19 2019-11-26 Oned Material Llc Nanostructured materials for battery applications
US11233240B2 (en) 2009-05-19 2022-01-25 Oned Material, Inc. Nanostructured materials for battery applications
US11600821B2 (en) 2009-05-19 2023-03-07 Oned Material, Inc. Nanostructured materials for battery applications
JP2011090806A (en) * 2009-10-20 2011-05-06 Toyota Central R&D Labs Inc Electrode for lithium secondary battery, and lithium secondary battery equipped with the same
JP2011165403A (en) * 2010-02-05 2011-08-25 Sony Corp Anode for lithium ion secondary battery, lithium ion secondary battery, power tool, electric vehicle, and power storage system
CN102823028A (en) * 2010-03-26 2012-12-12 株式会社半导体能源研究所 Secondary battery and method for manufacturing electrode of the same
US8623550B2 (en) 2010-03-26 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and method for manufacturing electrode of the same
US9735419B2 (en) 2010-03-26 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and method for forming electrode of secondary battery
WO2011118369A1 (en) * 2010-03-26 2011-09-29 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and method for manufacturing electrode of the same
CN106099090A (en) * 2010-03-26 2016-11-09 株式会社半导体能源研究所 The forming method of the electrode of secondary cell and secondary cell
KR101893129B1 (en) * 2010-03-26 2018-08-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Secondary battery and method for forming electrode of secondary battery
KR20130012022A (en) * 2010-03-26 2013-01-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Secondary battery and method for forming electrode of secondary battery
US8772174B2 (en) 2010-04-09 2014-07-08 Nexeon Ltd. Method of fabricating structured particles composed of silicon or silicon-based material and their use in lithium rechargeable batteries
US10236502B2 (en) 2010-04-28 2019-03-19 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US9685275B2 (en) 2010-04-28 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US9136530B2 (en) 2010-05-28 2015-09-15 Semiconductor Energy Laboratory Co., Ltd. Energy storage device and manufacturing method thereof
US8852294B2 (en) 2010-05-28 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US8896098B2 (en) 2010-05-28 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US9281134B2 (en) 2010-06-02 2016-03-08 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US9685277B2 (en) 2010-06-02 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Electrode
WO2011154692A1 (en) 2010-06-07 2011-12-15 Nexeon Limited An additive for lithium ion rechargeable battery cells
US8945774B2 (en) 2010-06-07 2015-02-03 Nexeon Ltd. Additive for lithium ion rechageable battery cells
US9368836B2 (en) 2010-06-07 2016-06-14 Nexeon Ltd. Additive for lithium ion rechargeable battery cells
US8835048B2 (en) 2010-06-11 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US8845764B2 (en) 2010-06-14 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Power storage device comprising solid electrolyte layer over active material and second electrolyte and method of manufacturing the same
US9112224B2 (en) 2010-06-30 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Energy storage device and method for manufacturing the same
US9960225B2 (en) 2010-06-30 2018-05-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of power storage device
US10283765B2 (en) 2010-06-30 2019-05-07 Semiconductor Energy Laboratory Co., Ltd. Energy storage device and method for manufacturing the same
US8846530B2 (en) 2010-06-30 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Method for forming semiconductor region and method for manufacturing power storage device
US8669009B2 (en) 2010-07-01 2014-03-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, positive electrode of power storage device, power storage device, manufacturing method of positive electrode active material of power storage device
US9947920B2 (en) 2010-09-03 2018-04-17 Nexeon Limited Electroactive material
US9871248B2 (en) 2010-09-03 2018-01-16 Nexeon Limited Porous electroactive material
US9647263B2 (en) 2010-09-03 2017-05-09 Nexeon Limited Electroactive material
EP2889097A1 (en) 2010-09-03 2015-07-01 Nexeon Limited Method of making a porous electroactive material
WO2012028857A1 (en) 2010-09-03 2012-03-08 Nexeon Limited Porous electroactive material
US9012080B2 (en) 2010-09-21 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Needle-like microstructure and device having needle-like microstructure
US8658246B2 (en) 2010-10-15 2014-02-25 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of group of whiskers
US8455044B2 (en) 2010-11-26 2013-06-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, method for manufacturing the same, and power storage device
US8643182B2 (en) 2010-11-26 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, method for manufacturing the same, and power storage device
US9362556B2 (en) 2010-12-07 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US10128498B2 (en) 2010-12-07 2018-11-13 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9543577B2 (en) 2010-12-16 2017-01-10 Semiconductor Energy Laboratory Co., Ltd. Active material, electrode including the active material and manufacturing method thereof, and secondary battery
US8821601B2 (en) 2011-01-21 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Hydrogen generating element, hydrogen generation device, power generation device, and driving device
US10077506B2 (en) 2011-06-24 2018-09-18 Nexeon Limited Structured particles
US10822713B2 (en) 2011-06-24 2020-11-03 Nexeon Limited Structured particles
US9620769B2 (en) 2011-06-24 2017-04-11 Semiconductor Energy Laboratory Co., Ltd. Power storage device, electrode thereof, and method for manufacturing power storage device
JP2017004964A (en) * 2011-06-24 2017-01-05 株式会社半導体エネルギー研究所 Electrode of power storage device
JP2013030464A (en) * 2011-06-24 2013-02-07 Semiconductor Energy Lab Co Ltd Power storage device, electrode thereof, and method of manufacturing power storage device
WO2012175998A1 (en) 2011-06-24 2012-12-27 Nexeon Limited Structured particles
US9337475B2 (en) 2011-08-30 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US10658661B2 (en) 2011-08-30 2020-05-19 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing electrode
US9799461B2 (en) 2011-09-02 2017-10-24 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing electrode
US9129754B2 (en) 2011-09-02 2015-09-08 Semiconductor Energy Laboratory Co., Ltd. Electrode for power storage device and power storage device
US9401247B2 (en) 2011-09-21 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US9929407B2 (en) 2011-12-21 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for non-aqueous secondary battery, non-aqueous secondary battery, and manufacturing methods thereof
US10388948B2 (en) 2012-01-30 2019-08-20 Nexeon Limited Composition of SI/C electro active material
US9548489B2 (en) 2012-01-30 2017-01-17 Nexeon Ltd. Composition of SI/C electro active material
WO2013128201A2 (en) 2012-02-28 2013-09-06 Nexeon Limited Structured silicon particles
US10103379B2 (en) 2012-02-28 2018-10-16 Nexeon Limited Structured silicon particles
US9384904B2 (en) 2012-04-06 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, method for forming the same, and power storage device
US11056678B2 (en) 2012-04-06 2021-07-06 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, method for forming the same, and power storage device
US9685653B2 (en) 2012-04-06 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, method for forming the same, and power storage device
US9899660B2 (en) 2012-04-06 2018-02-20 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, method for forming the same, and power storage device
US11605804B2 (en) 2012-04-06 2023-03-14 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, method for forming the same, and power storage device
US10263243B2 (en) 2012-04-06 2019-04-16 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, method for forming the same, and power storage device
US9911971B2 (en) 2012-06-01 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US10090513B2 (en) 2012-06-01 2018-10-02 Nexeon Limited Method of forming silicon
US9698412B2 (en) 2012-06-01 2017-07-04 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US9183995B2 (en) 2012-06-01 2015-11-10 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US10541409B2 (en) 2012-06-01 2020-01-21 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US9490080B2 (en) 2012-06-01 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US10008716B2 (en) 2012-11-02 2018-06-26 Nexeon Limited Device and method of forming a device
US10388467B2 (en) 2012-11-07 2019-08-20 Semiconductor Energy Laboratory Co., Ltd. Electrode for power storage device, power storage device, and manufacturing method of electrode for power storage device
US9276261B2 (en) 2013-05-23 2016-03-01 Nexeon Limited Surface treated silicon containing active materials for electrochemical cells
US9401506B2 (en) 2013-05-23 2016-07-26 Nexeon Limited Surface treated silicon containing active materials for electrochemical cells
US9735431B2 (en) 2013-10-15 2017-08-15 Nexeon Limited Reinforced current collecting substrate assemblies for electrochemical cells
US10396355B2 (en) 2014-04-09 2019-08-27 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10693134B2 (en) 2014-04-09 2020-06-23 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10586976B2 (en) 2014-04-22 2020-03-10 Nexeon Ltd Negative electrode active material and lithium secondary battery comprising same
US10476072B2 (en) 2014-12-12 2019-11-12 Nexeon Limited Electrodes for metal-ion batteries

Similar Documents

Publication Publication Date Title
JP2004281317A (en) Electrode material for nonaqueous electrolyte secondary battery, its manufacturing method and nonaqueous electrolyte secondary battery using it
KR102014983B1 (en) Cathode and lithium battery using same
WO2021145420A1 (en) Positive electrode active material for all-solid-state lithium ion battery, electrode, and all-solid-state lithium ion battery
JP4910297B2 (en) Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the same
JP2004071305A (en) Non-aqueous electrolyte rechargeable battery
JP2015537347A (en) Device and device forming method
JP2010129471A (en) Cathode active material and nonaqueous electrolyte battery
JP2003303588A (en) Electrode material and method of manufacturing the same, and negative electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2005123175A (en) Composite particle, manufacturing method of the same, negative electrode material and negative electrode for lithium-ion secondary battery, and the lithium-ion secondary battery
CN107742702A (en) The CNT and tin ash of three-dimensional &#34; upper thread face &#34; structure are modified titanium carbide lithium ion battery negative material and preparation method
US9331334B2 (en) Solid solution lithium-containing transition metal oxide and lithium ion secondary battery
JP2020077611A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
JP5087842B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
KR20180003577A (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP2004055505A (en) Lithium secondary battery and negative electrode material therefor
JP2017139168A (en) Positive electrode for nonaqueous electrolyte secondary battery
JP2003100284A (en) Lithium secondary battery
JP2002251992A (en) Electrode material for nonaqueous solvent secondary battery, electrode and secondary battery
JP3992529B2 (en) Nonaqueous electrolyte secondary battery
JP2004327330A (en) Electrode material for nonaqueous electrolyte secondary battery, manufacturing method of same, and nonaqueous electrolyte secondary battery using same
JP7040903B2 (en) Fluoride Ion Conductive Materials and Fluoride Shuttle Rechargeable Batteries
KR20170105873A (en) Positive active material composition for lithium secondary battery, and positive electrode and lithium secondary battery including the same
KR100950312B1 (en) Negative active material for lithium secondary battery, method of preparing same and lithium secondary battery comprising same
JP2005340132A (en) Negative electrode for lithium ion secondary battery, manufacturing method thereof and lithium ion secondary battery using the same
JP6838383B2 (en) A positive electrode for an electric device, an electric device using the positive electrode, and a method for manufacturing a positive electrode for an electric device.