JP2003303588A - Electrode material and method of manufacturing the same, and negative electrode for nonaqueous secondary battery and nonaqueous secondary battery - Google Patents

Electrode material and method of manufacturing the same, and negative electrode for nonaqueous secondary battery and nonaqueous secondary battery

Info

Publication number
JP2003303588A
JP2003303588A JP2003030081A JP2003030081A JP2003303588A JP 2003303588 A JP2003303588 A JP 2003303588A JP 2003030081 A JP2003030081 A JP 2003030081A JP 2003030081 A JP2003030081 A JP 2003030081A JP 2003303588 A JP2003303588 A JP 2003303588A
Authority
JP
Japan
Prior art keywords
composite particles
electrode
carbon
particles
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003030081A
Other languages
Japanese (ja)
Other versions
JP3897709B2 (en
Inventor
Masayuki Yamada
將之 山田
Shigeo Aoyama
青山  茂夫
Eiyo Ka
永姚 夏
Tokuji Ueda
上田  篤司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2003030081A priority Critical patent/JP3897709B2/en
Publication of JP2003303588A publication Critical patent/JP2003303588A/en
Application granted granted Critical
Publication of JP3897709B2 publication Critical patent/JP3897709B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery of high capacity and superior cycling characteristic, by inhibiting the expansion of an electrode material. <P>SOLUTION: This electrode material is composed of complex particles including a material including lithium and an alloying element, and a conductive material, a ratio of the material including lithium and the alloying element is not less them 30 mass% and not more than 80 mass% to the total mass of the complex particles, the composite particles have cavities inside thereof, and Vs is at least 35% and not more than 70%, when bulk density of the complex particles is D1 (g/cm<SP>3</SP>), true density of the complex particles is D2 (g/cm<SP>3</SP>), and a volumetric population (%) of the cavities of the complex particles is Vs=(1-1.35×D1/D2)×100. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高容量でかつサイ
クル特性に優れた非水二次電池を構成することのできる
電極材料およびその製造方法、並びにその電極材料を用
いた非水二次電池用負極および非水二次電池に関する。
TECHNICAL FIELD The present invention relates to an electrode material capable of forming a non-aqueous secondary battery having a high capacity and excellent cycle characteristics, a method for producing the same, and a non-aqueous secondary battery using the electrode material. Negative electrode and a non-aqueous secondary battery.

【0002】[0002]

【従来の技術】非水二次電池は高容量かつ高電圧、高エ
ネルギー密度であることから、その発展に対して大きな
期待が寄せられている。この非水二次電池では、電解液
として有機溶媒にリチウム(Li)塩を溶解させた有機
溶媒系の電解液が用いられ、負極活物質としてLiまた
はLi合金が用いられてきた。しかし、負極活物質とし
てLiまたはLi合金を用いて二次電池として機能させ
た場合、充電時にLiのデンドライトが生成するために
内部短絡を起こしやすくなり、また、析出したデンドラ
イトは高比表面積で活性が高いため安全性に欠けるとい
う問題があった。さらに、そのデンドライトと電解液中
の溶媒とが反応して電子伝導性を欠いた被膜がデンドラ
イトの表面上に形成されて電池の内部抵抗が高くなり、
充放電効率が低下し、その結果としてサイクル耐久性が
乏しくなるという問題もあった。
2. Description of the Related Art Since non-aqueous secondary batteries have high capacity, high voltage and high energy density, great expectations are placed on their development. In this non-aqueous secondary battery, an organic solvent-based electrolytic solution in which a lithium (Li) salt is dissolved in an organic solvent has been used as the electrolytic solution, and Li or a Li alloy has been used as the negative electrode active material. However, when Li or a Li alloy is used as the negative electrode active material to function as a secondary battery, an internal short circuit is likely to occur because Li dendrites are generated during charging, and the deposited dendrites are active with a high specific surface area. However, there is a problem in that it lacks safety because of high cost. Furthermore, the dendrite and the solvent in the electrolytic solution react to form a film lacking electron conductivity on the surface of the dendrite, increasing the internal resistance of the battery,
There is also a problem that the charge / discharge efficiency is reduced, and as a result, the cycle durability is poor.

【0003】現状では、LiやLi合金に代えて、Li
イオンをドープ・脱ドープすることが可能なコークスや
ガラス状炭素などの非晶質炭素、天然または人造の黒鉛
などの炭素材料を負極材料として用いることによってサ
イクル耐久性を改善し、二次電池として機能させてい
る。
At present, Li or Li alloy is replaced with Li
Improves cycle durability by using amorphous carbon such as coke or glassy carbon that can be doped or dedoped with ions, or carbon material such as natural or artificial graphite, as a secondary battery It's working.

【0004】また最近では、小型化および多機能化した
携帯機器用二次電池の高容量化が望まれるにつれて、ケ
イ素(Si)や錫(Sn)などのように、より多くのL
iを合金化して吸蔵可能な半金属および金属が負極材料
として注目を集めており、単位体積当たりの容量を大き
くするため、Siまたはその化合物を負極活物質とする
試みがされている。例えば、特許文献1には、Lit
i(0≦t≦5)を負極活物質として用いた非水二次電
池が開示されている。
Recently, as the capacity of secondary batteries for portable devices, which have been miniaturized and multifunctional, has been increased, more L such as silicon (Si) and tin (Sn) has been demanded.
Metalloids and metals capable of occluding and storing i have attracted attention as negative electrode materials, and attempts have been made to use Si or a compound thereof as a negative electrode active material in order to increase the capacity per unit volume. For example, in Patent Document 1, Li t S
A non-aqueous secondary battery using i (0 ≦ t ≦ 5) as a negative electrode active material is disclosed.

【0005】また、本発明に関連する先行技術として
は、例えば特許文献2などがある。
As a prior art related to the present invention, there is, for example, Patent Document 2.

【0006】[0006]

【特許文献1】特開平7−29602号公報[Patent Document 1] JP-A-7-29602

【0007】[0007]

【特許文献2】特開2000−272911号公報[Patent Document 2] Japanese Patent Laid-Open No. 2000-272911

【0008】[0008]

【発明が解決しようとする課題】しかし、上記Liと合
金化可能な負極材料は炭素材料に比べて高容量である
が、充放電を繰り返すと、負極材料自体が膨張・収縮を
繰り返して微粉末化し、負極の膨潤や電解液の不必要な
吸収を引き起し、電極特性が劣化するという問題があ
る。その理由は以下のように考えられる。
However, although the negative electrode material that can be alloyed with Li has a higher capacity than the carbon material, when the charge and discharge are repeated, the negative electrode material itself repeatedly expands and contracts to form fine powder. And swelling of the negative electrode and unnecessary absorption of the electrolytic solution, which deteriorates the electrode characteristics. The reason is considered as follows.

【0009】例えば、Siは、その結晶学的な単位格子
(立方晶、空間群Fd−3m)に8個のSi原子を含ん
でいる。格子定数a=0.5431nmから換算して、
単位格子体積は0.1602nm3であり、Si原子1
個の占める体積(単位格子体積を単位格子中のSi原子
数で除した値)は0.0199nm3である。ここで、
Siを含む負極をLiを基準とした電位で100mV以
下まで充電する(Liを挿入させる)と、Liを多く含
む化合物Li15Si4やLi21Si5が生じ、容量は約4
000mAh/gに相当するが、負極の体積膨張率が極
めて大きくなる。例えば、Li21Si5の単位格子(立
方晶、空間群F−43m)には83個のSi原子が含ま
れている。その格子定数a=1.8750nmから換算
して、単位格子体積は6.5918nm3であり、Si
原子1個あたりの体積は0.079nm3である。この
値は単体Siの3.95倍であり、このように充放電時
の体積差が極めて大きいため、負極粒子に大きな歪みが
生じ、負極粒子が微粉化するものと考えられる。その結
果、負極粒子間に空間が生じ、負極粒子間の電気的接触
(電子伝導ネットワーク)が分断され、電気化学的な反
応に関与できない部分が増加し、充放電容量が低下する
ものと考えられる。
For example, Si contains eight Si atoms in its crystallographic unit cell (cubic crystal, space group Fd-3m). Converted from the lattice constant a = 0.5431 nm,
The unit cell volume is 0.1602 nm 3 , and Si atom 1
The volume occupied by each (unit cell volume divided by the number of Si atoms in the unit cell) is 0.0199 nm 3 . here,
When the negative electrode containing Si is charged to 100 mV or less at a potential based on Li (insertion of Li), compounds Li 15 Si 4 and Li 21 Si 5 containing a large amount of Li are generated, and the capacity is about 4
Although it corresponds to 000 mAh / g, the negative electrode has an extremely large volume expansion coefficient. For example, the unit cell of Li 21 Si 5 (cubic crystal, space group F-43m) contains 83 Si atoms. Converted from the lattice constant a = 1.750 nm, the unit lattice volume is 6.5918 nm 3 , and Si
The volume per atom is 0.079 nm 3 . This value is 3.95 times that of simple substance Si, and it is considered that since the volume difference during charging and discharging is extremely large as described above, the negative electrode particles are greatly distorted and the negative electrode particles are pulverized. As a result, it is considered that a space is generated between the negative electrode particles, the electric contact (electron conduction network) between the negative electrode particles is divided, the portion that cannot participate in the electrochemical reaction increases, and the charge / discharge capacity decreases. .

【0010】また、特許文献2では、Si粒子が黒鉛お
よび非結晶質炭素中に埋設された複合体粒子を負極に用
いたリチウム二次電池が開示され、充放電特性に優れた
リチウム二次電池を実現している。このようにSi粒子
を黒鉛および非結晶質炭素と複合化することによって、
Siの膨張が緩和でき、サイクル特性は向上する。しか
し、およそ1000mAh/g以上の高容量を発現する
ような複合体粒子では、サイクル特性は完全ではなく実
用化に適するレベルに達しない。これは、上記のような
高容量を発現するには、Siに多くのLiが挿入される
必要があるため、Siの膨張がさらに大きくなり、複合
体粒子の構造が破壊されるためと考えられる。
Further, Patent Document 2 discloses a lithium secondary battery using a composite particle in which Si particles are embedded in graphite and amorphous carbon as a negative electrode, and a lithium secondary battery excellent in charge / discharge characteristics. Has been realized. Thus, by combining Si particles with graphite and amorphous carbon,
The expansion of Si can be relaxed and the cycle characteristics are improved. However, in the case of composite particles that express a high capacity of approximately 1000 mAh / g or more, the cycle characteristics are not perfect and do not reach a level suitable for practical use. It is considered that this is because a large amount of Li needs to be inserted into Si in order to develop the high capacity as described above, so that the expansion of Si further increases and the structure of the composite particle is destroyed. .

【0011】本発明は、上記従来の問題を解決し、高容
量でかつサイクル特性に優れた非水二次電池を構成する
ことのできる電極材料およびその製造方法、並びにその
電極材料を用いた非水二次電池用負極および非水二次電
池を提供するものである。
The present invention solves the above-mentioned conventional problems and is capable of forming a non-aqueous secondary battery having a high capacity and excellent cycle characteristics, a method for producing the same, and a non-electrode material using the electrode material. The present invention provides a negative electrode for a water secondary battery and a non-aqueous secondary battery.

【0012】[0012]

【課題を解決するための手段】本発明は、リチウムと合
金化可能な元素を含む材料と、導電性材料とを含む複合
体粒子からなる電極材料であって、前記リチウムと合金
化可能な元素を含む材料の割合が、前記複合体粒子の全
質量に対して30質量%以上80質量%以下であり、前
記複合体粒子が、内部に空隙を有し、前記複合体粒子の
嵩密度をD1(g/cm3)、前記複合体粒子の真密度
をD2(g/cm3)、前記複合体粒子の空隙体積占有
率(%)をVs=(1−1.35×D1/D2)×10
0とした場合、Vsが35%以上70%以下である電極
材料を提供する。
The present invention is an electrode material comprising composite particles containing a material containing an element capable of alloying with lithium and a conductive material, the element being capable of alloying with lithium. The ratio of the material containing is 30 mass% or more and 80 mass% or less with respect to the total mass of the composite particles, the composite particles have voids inside, and the bulk density of the composite particles is D1. (G / cm 3 ), the true density of the composite particles is D2 (g / cm 3 ), and the void volume occupancy (%) of the composite particles is Vs = (1-1.35 × D1 / D2) × 10
When set to 0, an electrode material having Vs of 35% or more and 70% or less is provided.

【0013】また、本発明は、上記電極材料の製造方法
であって、前記リチウムと合金化可能な元素を含む材料
と、前記導電性材料と、樹脂とを混合して造粒すること
により複合体粒子を形成する工程と、前記複合体粒子を
加熱して前記樹脂を燃焼または昇華させて除去すること
により、前記複合体粒子内に空隙を形成する工程とを含
む電極材料の製造方法を提供する。
The present invention is also the method for producing the above electrode material, wherein the material containing the element capable of alloying with lithium, the conductive material, and the resin are mixed and granulated. Provided is a method for producing an electrode material, which comprises a step of forming body particles, and a step of heating the composite particles to burn or sublimate the resin to remove the resin to form voids in the composite particles. To do.

【0014】また、本発明は、上記電極材料の製造方法
であって、前記リチウムと合金化可能な元素を含む材料
と、前記導電性材料とを溶媒中で分散させて混合物と
し、前記混合物を噴霧して乾燥するスプレードライ法に
より造粒することにより複合体粒子を形成する工程を含
む電極材料の製造方法を提供する。
The present invention is also the method for producing the above electrode material, wherein the material containing the element capable of alloying with lithium and the conductive material are dispersed in a solvent to form a mixture, and the mixture is prepared. Provided is a method for producing an electrode material, which comprises a step of forming composite particles by granulating by a spray drying method of spraying and drying.

【0015】また、本発明は、上記電極材料を含む非水
二次電池用負極を提供する。
The present invention also provides a negative electrode for a non-aqueous secondary battery containing the above electrode material.

【0016】また、本発明は、上記非水二次電池用負極
と、正極と、非水電解質とを備えた非水二次電池を提供
する。
Further, the present invention provides a non-aqueous secondary battery comprising the above-mentioned negative electrode for non-aqueous secondary battery, a positive electrode and a non-aqueous electrolyte.

【0017】[0017]

【発明の実施の形態】先ず、本発明の電極材料の実施の
形態について説明する。本発明の電極材料の一形態は、
リチウムと合金化可能な元素を含む材料と、導電性材料
とを含む複合体粒子からなる電極材料であって、リチウ
ムと合金化可能な元素を含む材料の割合が、複合体粒子
の全質量に対して30質量%以上80質量%以下であ
り、その複合体粒子が内部に空隙を有し、複合体粒子の
嵩密度をD1(g/cm3)、複合体粒子の真密度をD
2(g/cm3)、複合体粒子の空隙体積占有率(%)
をVs=(1−1.35×D1/D2)×100とした
場合、Vsが35%以上70%以下である。
BEST MODE FOR CARRYING OUT THE INVENTION First, embodiments of the electrode material of the present invention will be described. One form of the electrode material of the present invention is
A material containing an element capable of alloying with lithium, and an electrode material comprising a composite particle containing a conductive material, wherein the ratio of the material containing an element capable of alloying with lithium is in the total mass of the composite particle. On the other hand, the content is 30% by mass or more and 80% by mass or less, the composite particles have voids inside, the bulk density of the composite particles is D1 (g / cm 3 ), and the true density of the composite particles is D.
2 (g / cm 3 ), void volume occupation rate (%) of composite particles
Is Vs = (1-1.35 × D1 / D2) × 100, Vs is 35% or more and 70% or less.

【0018】ここで、空隙体積占有率Vs=(1−1.
35×D1/D2)×100は、複合体粒子の体積に対
する複合体粒子内の空隙体積の割合を意味する。すなわ
ち、複合体粒子を真球状であると仮定すると、その球が
3次元的に最密充填する場合、面心立方格子状に充填さ
れ、その充填率(%)は、下記のとおりとなる。
Here, the void volume occupancy Vs = (1-1.
35 × D1 / D2) × 100 means the ratio of the void volume in the composite particles to the volume of the composite particles. That is, assuming that the composite particles are spherical, when the spheres are three-dimensionally closest packed, they are packed in a face-centered cubic lattice, and the packing ratio (%) is as follows.

【0019】[0019]

【数1】 [Equation 1]

【0020】よって、嵩密度は最密充填に伴う粒子間の
空隙と粒子内の空隙とを合わせた空隙量を反映した値と
なる。以上から、粒子内部の空隙は(0.7405・1
/D1)−(1/D2)で表すことができ、空隙体積占
有率はこれを粒子全体の体積(0.7405・1/D
1)で除したものとなる。1/0.7405≒1.35
とすると、上式は1−1.35×D1/D2となり、空
隙体積占有率(%)はこれに100をかけて、Vs=
(1−1.35×D1/D2)×100となる。
Therefore, the bulk density is a value that reflects the total amount of voids between particles and voids within the particles due to the closest packing. From the above, the void inside the particle is (0.7405 ・ 1
/ D1)-(1 / D2), and the void volume occupancy can be expressed as the volume of the whole particle (0.7405 · 1 / D).
It is the one divided by 1). 1 / 0.7405 ≈ 1.35
Then, the above equation becomes 1-1.35 × D1 / D2, and the void volume occupancy rate (%) is multiplied by 100 to obtain Vs =
It becomes (1-1.35 × D1 / D2) × 100.

【0021】複合体粒子の空隙体積占有率(Vs)が3
5%未満であると、充電時に複合体粒子が大きく膨張し
てしまう。すなわち、Liイオンの挿入(充電)に伴っ
て、リチウムと合金化可能な元素を含む材料が膨張する
際に、複合体粒子内にその膨張分を吸収する隙間が足り
ないため、複合体粒子が大きく膨張することが避けられ
ない。一方、Vsが70%を超えると、複合体粒子の作
製そのものが困難となり、また、複合体粒子中の隙間が
多くなりすぎて、リチウムと合金化可能な元素を含む材
料と導電性材料との電子伝導ネットワークが構築されに
くいため、充放電されにくくなる。なお、上記複合体粒
子の嵩密度は、所定量の複合体粒子を容器に入れ、嵩密
度測定装置を用いて、JIS法に準拠した嵩密度測定方
法(JIS R1628)から求める。また、真密度
は、ヘリウムガスを用いたガス置換式の密度計から求め
る。
The void volume occupation ratio (Vs) of the composite particles is 3
If it is less than 5%, the composite particles will largely expand during charging. That is, when a material containing an element capable of alloying with lithium expands due to the insertion (charging) of Li ions, there is not enough space in the composite particles to absorb the expansion, so that the composite particles are Large expansion is inevitable. On the other hand, when Vs exceeds 70%, it becomes difficult to produce the composite particles themselves, and there are too many gaps in the composite particles, so that a material containing an element capable of alloying with lithium and a conductive material are formed. Since it is difficult to build an electron conduction network, it becomes difficult to charge and discharge. The bulk density of the composite particles is obtained by placing a predetermined amount of the composite particles in a container and using a bulk density measuring device according to the bulk density measuring method (JIS R1628) based on the JIS method. The true density is obtained from a gas displacement type densitometer using helium gas.

【0022】また、リチウムと合金化可能な元素を含む
材料の含有率は、複合体粒子の全質量に対して30〜8
0質量%の範囲にある必要があり、特に45〜65質量
%の範囲が好ましい。30質量%未満の場合は、100
0mAh/g程度の高容量を実現させるときに、リチウ
ムと合金化可能な元素を含む材料の利用率が高くなりす
ぎて、複合体粒子の膨張が大きくなり、微粉化しやすく
なる。また、80質量%を越えると、導電性材料との接
触点が少なくなるため、電子伝導ネットワークの構築が
困難となる。なお、この含有率は、蛍光X線による定性
・定量分析から求めることができる。
The content of the material containing an element capable of alloying with lithium is 30 to 8 with respect to the total mass of the composite particles.
It must be in the range of 0% by mass, and particularly preferably in the range of 45 to 65% by mass. If less than 30% by mass, 100
When a high capacity of about 0 mAh / g is realized, the utilization rate of the material containing an element capable of alloying with lithium becomes too high, the expansion of the composite particles becomes large, and the fine particles are easily pulverized. On the other hand, if it exceeds 80% by mass, the number of contact points with the conductive material decreases, which makes it difficult to construct an electron conduction network. The content rate can be determined by qualitative / quantitative analysis using fluorescent X-rays.

【0023】上記複合体粒子に含まれるリチウムと合金
化可能な元素を含む材料は、化合物でも元素単体(金
属、半金属または半導体元素など)でもよく、また、結
晶、低結晶およびアモルファスのいずれの状態でもよ
い。例えば、化合物としては酸化物や窒化物などが挙げ
られ、金属としては他の金属との合金や固溶体などが挙
げられ、他に金属間化合物でもよい。また、Si、Ge
などの半導体元素にBやPをドープしてn型あるいはp
型の半導体となり電気抵抗が大きく低下したものを用い
てもよい。リチウムと合金化可能な元素を含む材料は、
体積膨張による内部応力の集中を避けるために球形が望
ましい。また、Liと合金化可能な元素としては、A
g、Au、Zn、Cd、Al、Ga、In、Tl、G
e、Pb、Si、Sn、Sb、Biなどの元素が好まし
く用いられる。この中で、Siが最もLiの吸蔵量が大
きく、かつ安価で環境面でも問題がないため特に好まし
い。
The material containing an element capable of alloying with lithium contained in the composite particles may be a compound or a simple substance of element (metal, semimetal, semiconductor element, etc.), and may be any of crystalline, low crystalline and amorphous. It may be in a state. For example, the compound may be an oxide or a nitride, the metal may be an alloy with another metal or a solid solution, and may be an intermetallic compound. In addition, Si, Ge
N or p by doping semiconductor elements such as B or P
A semiconductor that has become a semiconductor of a type and whose electric resistance is greatly reduced may be used. A material containing an element capable of alloying with lithium is
A spherical shape is desirable to avoid concentration of internal stress due to volume expansion. Further, as an element capable of alloying with Li, A
g, Au, Zn, Cd, Al, Ga, In, Tl, G
Elements such as e, Pb, Si, Sn, Sb and Bi are preferably used. Of these, Si is the most preferable because it has the largest storage amount of Li, is inexpensive, and has no environmental problems.

【0024】また、上記リチウムと合金化可能な元素を
含む材料は、平均粒径が2μm以下の粒子であることが
好ましい。複合体粒子が微粉化し難くなり、より効果的
にサイクル耐久性を向上できるからである。
The material containing an element capable of alloying with lithium is preferably particles having an average particle diameter of 2 μm or less. This is because the composite particles are less likely to be pulverized and the cycle durability can be improved more effectively.

【0025】本発明においては、複合体粒子が所定の空
隙体積占有率を有することにより、その空隙を有効に活
用し、充放電時のLiと合金化可能な元素を含む材料の
体積膨張を吸収し、複合体粒子自体の体積膨張を抑制す
ることができる。そのため、導電性材料としては、空隙
を形成し易い繊維状またはコイル状の炭素材料および繊
維状またはコイル状の銅などの金属材料から選ばれる少
なくとも一つであることが好ましい。特に、繊維状炭素
材料は、従来の粒子状のアセチレンブラックや人造黒鉛
と比較して、柔軟性のある細い糸状であるため、接合ま
たは隣接する上記リチウムと合金化可能な元素を含む材
料の膨張・収縮に効果的に追従することができ、加え
て、嵩密度が大きいために、上記Liと合金化可能な元
素を含む材料と多くの接合点を持つことができる。さら
に、膨張・収縮に効果的に追従させるために、繊維状炭
素材料は、塑性変形できるような弾性力を有するものが
より好ましい。
In the present invention, since the composite particles have a predetermined void volume occupancy rate, the voids are effectively utilized and the volume expansion of the material containing the element capable of alloying with Li during charge / discharge is absorbed. However, the volume expansion of the composite particles themselves can be suppressed. Therefore, the conductive material is preferably at least one selected from a fibrous or coiled carbon material and a fibrous or coiled metal material such as copper, which easily form voids. In particular, the fibrous carbon material is a thin thread having flexibility as compared with the conventional particulate acetylene black or artificial graphite, so that the expansion of the material containing the element that can be alloyed with the above-mentioned lithium that is bonded or adjacent to -It is possible to effectively follow shrinkage, and in addition, since it has a large bulk density, it can have many bonding points with a material containing the above-mentioned element that can be alloyed with Li. Furthermore, in order to effectively follow expansion and contraction, the fibrous carbon material preferably has an elastic force capable of being plastically deformed.

【0026】繊維状炭素材料としては、その繊維長と直
径は特に制限されないが、平均繊維長は1μm以上30
μm以下が好ましい。この範囲内であれば、複合体粒子
内の電気的な接合が良好となり、複合体粒子内に電子伝
導ネットワークを構築することができ、充放電特性が向
上する。また、繊維状炭素材料の直径は2μm以下が好
ましい。この範囲内であれば、繊維状炭素材料が十分な
弾性を有し、リチウムと合金化可能な元素を含む材料の
充放電サイクルに伴う膨張・収縮に効果的に追従でき
る。
The fibrous carbon material is not particularly limited in its fiber length and diameter, but has an average fiber length of 1 μm or more and 30 or more.
μm or less is preferable. Within this range, electrical bonding within the composite particles will be good, an electron conduction network can be constructed within the composite particles, and charge / discharge characteristics will be improved. The diameter of the fibrous carbon material is preferably 2 μm or less. Within this range, the fibrous carbon material has sufficient elasticity and can effectively follow the expansion / contraction associated with the charge / discharge cycle of the material containing the element capable of alloying with lithium.

【0027】この繊維状炭素材料は強い混練や分散処理
によって粉砕されやすく、繊維状の形態をとれなくなる
可能性がある。よって、複合化の際には繊維状炭素材料
が粉砕されにくい条件で行うのが好ましい。
This fibrous carbon material is likely to be crushed by strong kneading or dispersion treatment and may not be able to take a fibrous form. Therefore, it is preferable that the fibrous carbon material is not crushed when the composite is formed.

【0028】繊維状炭素材料としては、ポリアクリロニ
トリル(PAN)系炭素繊維、ピッチ系炭素繊維、気相
成長炭素繊維などを用いることができる。繊維状炭素材
料以外の導電性材料としては、高い電気伝導性と高い保
液性を有し、リチウムと合金化可能な元素を含む材料が
収縮しても接触を保つことができる機能を有するアセチ
レンブラック、ケッチェンブラックなどのカーボンブラ
ック、人造黒鉛、易黒鉛化炭素、難黒鉛化炭素などが好
適に使用できる。
As the fibrous carbon material, polyacrylonitrile (PAN) type carbon fiber, pitch type carbon fiber, vapor grown carbon fiber, etc. can be used. As a conductive material other than the fibrous carbon material, acetylene having high electrical conductivity and high liquid retention, and having a function of maintaining contact even when a material containing an element capable of alloying with lithium contracts. Carbon black such as black and Ketjen black, artificial graphite, easily graphitizable carbon, non-graphitizable carbon and the like can be preferably used.

【0029】また、上記複合体粒子は、さらに炭素を含
む材料によって被覆されていることが好ましい。複合体
粒子の膨張を効果的に抑制し、さらに複合体粒子間の電
気的接触抵抗を下げるためである。図3に炭素を含む材
料によって被覆された複合体粒子の放電時と充電時の模
式断面図を示す。Liと合金化可能な元素を含む材料で
ある例えばSi粒子と、導電性材料である例えばCとを
所定の空隙とともに外殻(被覆層)で覆うことにより、
複合体粒子の膨張を抑制できる。
Further, it is preferable that the composite particles are further coated with a material containing carbon. This is for effectively suppressing the expansion of the composite particles and further reducing the electrical contact resistance between the composite particles. FIG. 3 shows schematic cross-sectional views of the composite particles coated with the carbon-containing material during discharging and charging. By covering, for example, Si particles, which is a material containing an element capable of alloying with Li, and C, which is a conductive material, with a predetermined void by an outer shell (coating layer),
Expansion of the composite particles can be suppressed.

【0030】特に、トルエンなどの炭素と水素を含む化
合物からなるガス(炭化水素系ガス)を気相中で熱分解
して得られる炭素、または炭素前駆体を焼成して得られ
る難黒鉛化炭素(ハードカーボン)系の炭素で被覆する
ことが好ましい。これらの炭素は電子伝導性に優れてい
るからである。また、上記2種類の炭素を組み合わせて
被覆するとより効果的である。
In particular, carbon obtained by thermally decomposing a gas (hydrocarbon-based gas) composed of a compound containing carbon and hydrogen such as toluene in a gas phase, or non-graphitizable carbon obtained by firing a carbon precursor. It is preferable to coat with (hard carbon) type carbon. This is because these carbons have excellent electron conductivity. Further, it is more effective to coat the above two kinds of carbon in combination.

【0031】炭素前駆体としては石油系、石炭系のもの
が使用でき、例えば、合成ピッチ、タール類、フェノー
ル樹脂、フラン樹脂、ポリアクリロニトリル、ポリ(α
−ハロゲン化アクリロニトリル)などのアクリル樹脂、
ポリアミドイミド樹脂、ポリアミド樹脂、ポリイミド樹
脂などが使用できる。複合体粒子との混合に際して、こ
れらの炭素前駆体を溶解する溶媒を用いてもよい。溶媒
としては、例えば、テトラヒドロフラン、アセトンなど
のケトン類、メタノール、エタノールなどの各種アルコ
ール類、ジメチルホルムアミド、ジメチルアセトアミド
などのアミド類、トルエン、キシレン、ベンゼンなどの
炭化水素類などが挙げられる。混合の際に溶媒を用いた
場合には、焼成前に50〜150℃の温度で、好ましく
は減圧下で混合物を加熱することにより、溶媒を除去す
る。
As the carbon precursor, petroleum-based or coal-based ones can be used, and examples thereof include synthetic pitch, tars, phenol resins, furan resins, polyacrylonitrile, poly (α).
-Acrylic resin such as halogenated acrylonitrile),
Polyamideimide resin, polyamide resin, polyimide resin, etc. can be used. Upon mixing with the composite particles, a solvent that dissolves these carbon precursors may be used. Examples of the solvent include ketones such as tetrahydrofuran and acetone, various alcohols such as methanol and ethanol, amides such as dimethylformamide and dimethylacetamide, and hydrocarbons such as toluene, xylene and benzene. When a solvent is used for mixing, the solvent is removed by heating the mixture at a temperature of 50 to 150 ° C., preferably under reduced pressure, before firing.

【0032】また、上記熱分解や焼成は700℃以上で
行うのが好ましく、800℃以上で行うのがより好まし
い。処理温度が高い方が不純物の残存が少なく、かつ導
電性の高い良質な炭素が得られるからである。以上の観
点から、複合体粒子を炭素で被覆する場合には、リチウ
ムと合金化可能な元素を含む材料の融点は700℃以上
であることが好ましい。
The thermal decomposition and firing are preferably carried out at 700 ° C. or higher, more preferably 800 ° C. or higher. This is because the higher the treatment temperature is, the less impurities remain and the high-quality carbon having high conductivity can be obtained. From the above viewpoint, when the composite particles are coated with carbon, the melting point of the material containing the element capable of alloying with lithium is preferably 700 ° C. or higher.

【0033】次に、本発明の電極材料の製造方法の実施
の形態について説明する。本発明の複合体粒子の製造方
法の一形態は、リチウムと合金化可能な元素を含む材料
と導電性材料とを造粒することにより複合体粒子を作製
するものである。その後、樹脂などの炭素前駆体と混合
し、炭素前駆体を炭素化するか、あるいはCVD法(C
hemical Vapor Deposition
Method)により炭素被覆するなどの方法によっ
て、複合体粒子を炭素で被覆することもできる。造粒方
法としては、転動造粒、圧縮造粒、焼結造粒、振動造
粒、混合造粒、解砕造粒、転動流動造粒、スプレードラ
イ法による造粒などが好適に用いられる。
Next, an embodiment of the method for producing an electrode material of the present invention will be described. One embodiment of the method for producing composite particles of the present invention is to produce composite particles by granulating a material containing an element capable of alloying with lithium and a conductive material. Then, it is mixed with a carbon precursor such as a resin to carbonize the carbon precursor, or the CVD method (C
chemical Vapor Deposition
The composite particles can also be coated with carbon by a method such as carbon coating with Method). As the granulation method, rolling granulation, compression granulation, sintering granulation, vibrating granulation, mixed granulation, crushing granulation, rolling fluidized granulation, granulation by spray drying method, etc. are preferably used. To be

【0034】スプレードライ法による造粒は、材料と溶
媒とを混合したスラリーを噴霧して乾燥することにより
造粒する方法である。材料粒子を2μm以下に粉砕、分
散するには溶媒中で行う方が効率的であるため、スプレ
ードライ法による造粒は2μm以下の微粒子を複合化さ
せるのに適している。また、スプレードライ法は粒径の
制御も容易であり、造粒された粒子の形状も球形であ
り、さらに強混練や強分散処理を行わないため、繊維状
の導電性材料を用いても、繊維形状が粉砕されるおそれ
が少ないため、造粒方法としては特に好ましい。スプレ
ードライ法に用いる溶媒としては、非水系溶媒(水を含
まない溶媒)を用いるのが好ましい。水系溶媒(水を含
む溶媒)を用いると、リチウムと合金化可能な元素を含
む材料の表面が酸化される可能性が高いからである。非
水系溶媒としては、特にアルコール類が取扱性や乾燥の
容易性の観点から好ましい。また、スラリーの分散には
ビーズミルやボールミル、湿式のジェットミルなどが好
適に使用できる。分散剤を兼ねた造粒時のバインダに
は、ポリビニルピロリドン(PVP)やポリビニルアル
コール(PVA)などが好適に使用できる。造粒後に残
存した分散剤やバインダは、加熱処理により炭化するこ
とができる。また、スプレードライ法による造粒の後
に、その粒子をさらに他の導電性材料とともに転動造粒
や転動流動造粒などを行って2段階で造粒すると、効率
的に空隙が導入でき、さらに電子伝導ネットワークも効
率的に構築できるため特に好ましい。
The granulation by the spray drying method is a method in which a slurry obtained by mixing a material and a solvent is sprayed and dried to granulate. Since it is more efficient to grind and disperse material particles to 2 μm or less in a solvent, granulation by the spray dry method is suitable for compounding fine particles of 2 μm or less. Further, the spray drying method is easy to control the particle size, and the shape of the granulated particles is spherical, and since strong kneading or strong dispersion treatment is not performed, even if a fibrous conductive material is used, Since the fiber shape is less likely to be crushed, it is particularly preferable as a granulation method. As the solvent used in the spray dry method, it is preferable to use a non-aqueous solvent (a solvent containing no water). This is because when an aqueous solvent (a solvent containing water) is used, the surface of the material containing an element capable of alloying with lithium is likely to be oxidized. As the non-aqueous solvent, alcohols are particularly preferable from the viewpoint of handleability and ease of drying. Further, a bead mill, a ball mill, a wet jet mill, or the like can be suitably used for dispersing the slurry. Polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), and the like can be suitably used as the binder at the time of granulation that also serves as a dispersant. The dispersant and binder remaining after granulation can be carbonized by heat treatment. In addition, after granulation by the spray drying method, the particles can be efficiently granulated in two steps by rolling granulation or rolling fluidized granulation together with other conductive material to efficiently introduce voids, Furthermore, an electron conduction network can be efficiently constructed, which is particularly preferable.

【0035】複合体粒子中の空隙体積占有率は、混合材
料の種類、平均粒径、混合割合、造粒条件などを制御す
ることで、35〜70%を達成できる。特に、1つの複
合体粒子に含まれるリチウムと合金化可能な元素を含む
材料の全表面積Ssと、導電性材料の全表面積Scの比
Sc/Ssが0.5以上50以下であると35%以上の
空隙体積占有率を得ることが容易となる。また、ポリエ
チレン(PE)やポリスチレン(PS)などの樹脂を造
粒前の材料に含ませて造粒し、その後に加熱して樹脂を
燃焼または昇華させて除去することにより、より効果的
に複合体粒子の空隙のサイズや量をコントロールでき
る。
The void volume occupation rate in the composite particles can be 35 to 70% by controlling the kind of the mixed material, the average particle size, the mixing ratio, the granulation conditions and the like. In particular, 35% when the ratio Sc / Ss of the total surface area Ss of the material containing the element capable of alloying with lithium contained in one composite particle and the total surface area Sc of the conductive material is 0.5 or more and 50 or less. It becomes easy to obtain the above void volume occupancy. In addition, a resin such as polyethylene (PE) or polystyrene (PS) is included in the material before granulation and granulated, and then heated to burn or sublimate the resin to remove the resin, thereby making the composite more effective. The size and amount of voids in body particles can be controlled.

【0036】次に、本発明の非水二次電池用負極および
非水二次電池の実施の形態について説明する。本発明の
非水二次電池用負極の一形態は、上記で説明した本発明
の電極材料を含む負極である。
Next, embodiments of the negative electrode for a non-aqueous secondary battery and the non-aqueous secondary battery of the present invention will be described. One form of the negative electrode for a non-aqueous secondary battery of the present invention is a negative electrode containing the electrode material of the present invention described above.

【0037】また、上記本発明の電極材料を含む非水二
次電池用負極は、非水二次電池用負極の充電開始の電位
をリチウム金属に対して1.5Vとし、この充電開始時
の複合体粒子の体積をV1、複合体粒子1g当たり10
00mAhの電気量の充電を行った後の複合体粒子の体
積をV2、さらにその充電状態から複合体粒子をリチウ
ム金属に対して1.5Vの電位まで放電させた後の複合
体粒子の体積をV3とした場合に、(V2−V1)/V
1×100で求められる充電時の体積膨張率(%)を6
8%以下に、かつ、(V2−V3)/(V2−V1)×
100で求められる放電時の体積収縮率(%)を85%
以上にすることができる。
Further, in the negative electrode for a non-aqueous secondary battery containing the above-mentioned electrode material of the present invention, the charging start potential of the negative electrode for a non-aqueous secondary battery is set to 1.5 V with respect to lithium metal. Volume of the composite particles is V1, 10 per 1g of the composite particles
The volume of the composite particles after charging with an electric quantity of 00 mAh is V2, and the volume of the composite particles after discharging the composite particles from the charged state to a potential of 1.5 V against lithium metal. When V3 is set, (V2-V1) / V
The volume expansion rate (%) at the time of charging calculated by 1 × 100 is 6
8% or less, and (V2-V3) / (V2-V1) x
The volume contraction rate (%) at the time of discharge required at 100 is 85%
The above can be done.

【0038】これにより、高容量でかつサイクル特性に
優れた非水二次電池を構成することができる。すなわ
ち、充電時の体積膨張率が68%を超えた場合は、負極
の厚さ方向の膨張が大きくなりすぎて、負極に歪みなど
が発生したり集電体である金属箔が断裂するなどして電
池構造および構成材料に対して悪影響が生じやすくな
る。また、充放電サイクルに伴って、複合体粒子内部あ
るいは複合体粒子間の電子伝導ネットワークが断絶する
可能性が高くなる。一方、放電時の体積収縮率が85%
未満の場合、すなわち、充電により膨張した複合体粒子
が放電時に収縮せず、充放電における粒子の膨張および
収縮の可逆性に劣る場合は、リチウムと合金化可能な元
素を含む材料と導電性材料との電気的接触が不十分であ
ることが推定され、充放電サイクル特性などに問題が生
じる。
As a result, a non-aqueous secondary battery having a high capacity and excellent cycle characteristics can be constructed. That is, when the volume expansion coefficient during charging exceeds 68%, the expansion of the negative electrode in the thickness direction becomes too large, so that the negative electrode may be distorted or the metal foil as the current collector may be broken. As a result, the battery structure and constituent materials are likely to be adversely affected. In addition, there is a high possibility that the electron conduction network inside the composite particles or between the composite particles will be disconnected with the charge / discharge cycle. On the other hand, the volume contraction rate during discharge is 85%
In the case of less than, i.e., the composite particles expanded by charging does not shrink during discharge, and the reversibility of expansion and contraction of particles during charge and discharge is poor, a material containing an element capable of alloying with lithium and a conductive material It is presumed that electrical contact with is insufficient, causing problems in charge / discharge cycle characteristics and the like.

【0039】また、上記非水二次電池用負極に用いる複
合体粒子は、その比表面積が50m 2/g未満であるこ
とが好ましい。この範囲であれば、負極に含有されるバ
インダが複合体粒子の表面層に埋没しないため、複合体
粒子と集電体との接着性が悪化せず、不可逆容量が増加
する可能性が低い。
In addition, the composite used for the negative electrode for the non-aqueous secondary battery described above.
The coalesced particles have a specific surface area of 50 m. 2Less than / g
And are preferred. Within this range, the bar contained in the negative electrode
Since the inda is not buried in the surface layer of the composite particles, the composite
Adhesion between particles and current collector does not deteriorate and irreversible capacity increases
Unlikely to.

【0040】また、本発明の非水二次電池の一形態は、
上記で説明した本発明の非水二次電池用負極と、正極
と、非水電解質とを備えた非水二次電池である。
Further, one mode of the non-aqueous secondary battery of the present invention is:
The non-aqueous secondary battery comprises the negative electrode for a non-aqueous secondary battery of the present invention described above, a positive electrode, and a non-aqueous electrolyte.

【0041】上記非水二次電池の充電方法は特に限定は
されないが、定電流、または定電流と定電圧を組み合わ
せた方法で行うことが好ましい。例えば、設定電圧
(E)に達するまでは、充電を一定の電流値(I)で充
電する定電流充電領域と、設定電圧(E)に達した後、
設定電圧(E)で定電圧充電する定電圧充電領域とを組
み合わせて充電を行う方法が好ましい。これにより、効
率的な充電が可能となり、最短の時間で設定した容量を
引き出すことができるからである。なお、充電電流値は
特に限定はされないが、10mA/cm2以下の電流密
度で行うのが好ましい。これを超えると十分な容量が得
られなくなる可能性があるからである。
The method of charging the non-aqueous secondary battery is not particularly limited, but it is preferably a constant current or a combination of a constant current and a constant voltage. For example, until the set voltage (E) is reached, a constant current charging region where charging is performed at a constant current value (I), and after reaching the set voltage (E),
A method of charging in combination with a constant voltage charging region for constant voltage charging at the set voltage (E) is preferable. This is because efficient charging is possible and the set capacity can be drawn out in the shortest time. The charging current value is not particularly limited, but it is preferably performed at a current density of 10 mA / cm 2 or less. This is because if it exceeds this, sufficient capacity may not be obtained.

【0042】また、リチウムと合金化可能な元素を含む
材料に吸蔵されるLi量を制限することによって非水二
次電池のサイクル特性が向上する場合がある。例えば、
Siは充電されてLiとの合金(LixSi)を形成す
るが、x≦2.625の範囲であるのが好ましく、x=
2.625を越える場合(Li21Si8)には膨張率が
大きくなり、サイクル特性が低下するという結果が得ら
れている。
Further, the cycle characteristics of the non-aqueous secondary battery may be improved by limiting the amount of Li stored in the material containing an element capable of alloying with lithium. For example,
Si is charged to form an alloy with Li (Li x Si), preferably in the range of x ≦ 2.625, and x =
When it exceeds 2.625 (Li 21 Si 8 ), the expansion coefficient is increased and the cycle characteristics are deteriorated.

【0043】本発明の複合体粒子は単体でバインダと混
合して負極用合剤(負極構成材の混合物)とすることが
できるが、さらに負極用の導電材料を導入してもよい。
負極用合剤を作製する際の負極用導電材料は、構成され
た非水二次電池において化学変化を起こさない電子伝導
性材料であれば特に制限はないが、通常、天然黒鉛(鱗
状黒鉛、鱗片状黒鉛、土状黒鉛など)、人造黒鉛、アセ
チレンブラック、ケッチェンブラックなどのカーボンブ
ラック、炭素繊維や、金属粉(銅、ニッケル、アルミニ
ウム、銀などの粉末)、金属繊維あるいはポリフェニレ
ン誘導体などの導電性高分子材料を1種、またはこれら
を混合して用いることができる。
The composite particles of the present invention can be mixed as a single substance with a binder to form a negative electrode mixture (a mixture of negative electrode constituent materials), but a negative electrode conductive material may be further introduced.
The conductive material for the negative electrode when producing the negative electrode mixture is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in the constituted non-aqueous secondary battery, but usually, natural graphite (scaly graphite, Flake graphite, earth graphite, etc.), artificial graphite, carbon black such as acetylene black, Ketjen black, carbon fiber, metal powder (powder of copper, nickel, aluminum, silver, etc.), metal fiber or polyphenylene derivative, etc. It is possible to use one kind of conductive polymer material or a mixture thereof.

【0044】上記負極に用いるバインダとしては、例え
ば、でんぷん、ポリビニルアルコール、カルボキシメチ
ルセルロース、ヒドロキシプロピルセルロース、再生セ
ルロース、ジアセチルセルロース、ポリビニルクロリ
ド、ポリビニルピロリドン、ポリテトラフルオロエチレ
ン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピ
レン、エチレン−プロピレン−ジエンターポリマー(E
PDM)、スルホン化EPDM、スチレンブタジエンゴ
ム、ブタジエンゴム、ポリブタジエン、フッ素ゴム、ポ
リエチレンオキシドなどの多糖類、熱可塑性樹脂、ゴム
弾性を有するポリマーなどやこれらの変成体などの1
種、または2種以上を混合して用いることができる。
Examples of the binder used for the negative electrode include starch, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose, polyvinyl chloride, polyvinylpyrrolidone, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, Ethylene-propylene-diene terpolymer (E
PDM), sulfonated EPDM, styrene-butadiene rubber, butadiene rubber, polybutadiene, fluororubber, polysaccharides such as polyethylene oxide, thermoplastic resins, polymers having rubber elasticity, etc.
It is possible to use one kind or a mixture of two or more kinds.

【0045】上記正極には、正極材料、導電材料、バイ
ンダなどが含まれる。この正極材料としては特に限定さ
れることなく各種のものを使用することができるが、特
にLixCoO2、LixNiO2、LixMnO2、Lix
CoyNi1-y2、LixCoy1-yz、LixNi1-y
yz、LixMn24、LixMn2-yy4(Mは、
Mg、Mn、Fe、Co、Ni、Cu、Zn、Al、C
rのうち少なくとも1種、0≦x≦1.1、 0<y<
1.0、 2.0≦z≦2.2)などのLi含有遷移金
属酸化物が好適に用いられる。
The positive electrode contains a positive electrode material, a conductive material, a binder and the like. Various materials can be used as the positive electrode material without any particular limitation. In particular, Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x
Co y Ni 1-y O 2 , Li x Co y M 1-y O z , Li x Ni 1-y
M y O z , Li x Mn 2 O 4 , Li x Mn 2-y M y O 4 (M is
Mg, Mn, Fe, Co, Ni, Cu, Zn, Al, C
at least one of r, 0 ≦ x ≦ 1.1, 0 <y <
1.0, 2.0 ≦ z ≦ 2.2) and other Li-containing transition metal oxides are preferably used.

【0046】正極用の導電材料としては、用いる正極材
料の充放電電位において化学変化を起こさない電子伝導
性材料であれば特にその種類は制限されない。例えば、
天然黒鉛、人造黒鉛などのグラファイト類、またはアセ
チレンブラック、ケッチェンブラック、チャンネルブラ
ック、ファーネスブラック、ランプブラック、サーマル
ブラックなどのカーボンブラック類、または炭素繊維、
金属繊維などの導電性繊維類などを単独、またはこれら
を混合して使用できる。これらの導電材料の中で、人造
黒鉛、アセチレンブラック、ケッチェンブラックが特に
好ましい。
The conductive material for the positive electrode is not particularly limited as long as it is an electron conductive material that does not chemically change at the charge / discharge potential of the positive electrode material used. For example,
Graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black and thermal black, or carbon fiber,
Conductive fibers such as metal fibers may be used alone or in combination. Among these conductive materials, artificial graphite, acetylene black and Ketjen black are particularly preferable.

【0047】正極用のバインダとしては、例えば、ポリ
エチレン、ポリプロピレン、ポリテトラフルオロエチレ
ン(PTFE)、ポリフッ化ビニリデン(PVDF)、
スチレンブタジエンゴム、テトラフルオロエチレン−ヘ
キサフルオロエチレン共重合体、テトラフルオロエチレ
ン−ヘキサフルオロプロピレン共重合体、テトラフルオ
ロエチレン−パーフルオロアルキルビニルエーテル共重
合体、フッ化ビニリデン−ヘキサフルオロプロピレン共
重合体、フッ化ビニリデン−クロロトリフルオロエチレ
ン共重合体、エチレン−テトラフルオロエチレン共重合
体などを使用でき、これらの材料を単独、または混合し
て用いることができる。また、これらの材料の中でより
好ましい材料は、PVDFとPTFEである。
As the binder for the positive electrode, for example, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF),
Styrene butadiene rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, vinylidene fluoride-hexafluoropropylene copolymer, fluorine Vinylidene chloride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer and the like can be used, and these materials can be used alone or in combination. Further, PVDF and PTFE are more preferable among these materials.

【0048】本発明の非水二次電池に用いるリチウムイ
オン伝導性の非水電解質としては、一般に電解液と呼ば
れる液状電解質、またはゲル状ポリマー電解質、または
固体電解質のいずれも用いることができるが、液状電解
質やゲル状ポリマー電解質などが好ましい。
As the lithium ion conductive non-aqueous electrolyte used in the non-aqueous secondary battery of the present invention, a liquid electrolyte generally called an electrolytic solution, a gel polymer electrolyte, or a solid electrolyte can be used. Liquid electrolytes and gel polymer electrolytes are preferred.

【0049】液状電解質は、有機溶媒と、その有機溶媒
に溶解するLi塩とから構成されている。有機溶媒とし
ては、プロピレンカーボネート、エチレンカーボネー
ト、ブチレンカーボネート、ジメチルカーボネート、ジ
エチルカーボネート、メチルエチルカーボネート、γ−
ブチロラクトン、1,2−ジメトキシエタン、テトラヒ
ドロフラン、2−メチルテトラヒドロフラン、ジメチル
スルフォキシド、1,3−ジオキソラン、ホルムアミ
ド、ジメチルホルムアミド、ジオキソラン、アセトニト
リル、ニトロメタン、蟻酸メチル、酢酸メチル、燐酸ト
リエステル、トリメトキシメタン、ジオキソラン誘導
体、スルホラン、3−メチル−2−オキサゾリジノン、
プロピレンカーボネート誘導体、テトラヒドロフラン誘
導体、ジエチルエーテル、1,3−プロパンスルトンな
どの非プロトン性有機溶媒の少なくとも1種以上を混合
した溶媒を用いることができる。また、その有機溶媒に
溶解させるLi塩としては、例えば、LiClO4、L
iBF6、LiPF6、LiCF3SO3、LiCF3
2、LiAsF6、LiSbF6、LiB10Cl10、低
級脂肪族カルボン酸Li、LiAlCl4、LiCl、
LiBr、LiI、クロロボランLi、四フェニルホウ
酸Liなどの1種以上を使用できる。中でも、エチレン
カーボネートまたはプロピレンカーボネートと、1,2
−ジメトキシエタン、ジエチルカーボネート、メチルエ
チルカーボネートなどとの混合溶媒に、LiClO4
LiBF6、LiPF6、LiCF3SO3などを含有させ
た液状電解質が好ましい。これら液状電解質を電池内に
注入する量は特に限定されないが、活物質の量や電池の
サイズによって必要量用いることができる。この液状電
解質におけるLi塩の濃度は特に限定されないが、液状
電解質1リットル当たり0.2〜3.0モルが好まし
い。
The liquid electrolyte is composed of an organic solvent and a Li salt dissolved in the organic solvent. As the organic solvent, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-
Butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy. Methane, dioxolane derivative, sulfolane, 3-methyl-2-oxazolidinone,
A solvent prepared by mixing at least one aprotic organic solvent such as a propylene carbonate derivative, a tetrahydrofuran derivative, diethyl ether, or 1,3-propane sultone can be used. Examples of the Li salt to be dissolved in the organic solvent include LiClO 4 , L
iBF 6 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 C
O 2 , LiAsF 6 , LiSbF 6 , LiB 10 Cl 10 , lower aliphatic carboxylic acid Li, LiAlCl 4 , LiCl,
One or more of LiBr, LiI, chloroborane Li, Li tetraphenylborate and the like can be used. Among them, ethylene carbonate or propylene carbonate, 1,2
-In a mixed solvent of dimethoxyethane, diethyl carbonate, methyl ethyl carbonate, etc., LiClO 4 ,
A liquid electrolyte containing LiBF 6 , LiPF 6 , LiCF 3 SO 3 or the like is preferable. The amount of these liquid electrolytes injected into the battery is not particularly limited, but a necessary amount can be used depending on the amount of the active material and the size of the battery. The concentration of Li salt in the liquid electrolyte is not particularly limited, but is preferably 0.2 to 3.0 mol per liter of the liquid electrolyte.

【0050】また、ゲル状ポリマー電解質は、上記液状
電解質をゲル化剤でゲル化したものに相当する。そのゲ
ル化剤としては、例えば、ポリエチレンオキシド、ポリ
アクリルニトリルなどの直鎖状ポリマーまたはそれらの
コポリマー、あるいは紫外線や電子線などの活性光線の
照射によりポリマー化する多官能モノマー、例えば、ペ
ンタエリスリトールテトラアクリレート、ジトリメチロ
ールプロパンテトラアクリレート、エトキシ化ペンタエ
リスリトールテトラアクリレート、ジペンタエリスリト
ールヒドロキシペンタアクリレート、ジペンタエリスリ
トールヘキサアクリレートなどの四官能以上のアクリレ
ートおよび上記アクリレートと同様の四官能以上のメタ
クリレートなどが用いられる。ただし、上記モノマーを
使用する場合でも、モノマー自体がそのままでゲル化剤
になるのではなく、それらをポリマー化したポリマーが
ゲル化剤として作用する。
The gel-like polymer electrolyte corresponds to the above liquid electrolyte gelled with a gelling agent. Examples of the gelling agent include linear polymers such as polyethylene oxide and polyacrylonitrile, or copolymers thereof, or polyfunctional monomers that are polymerized by irradiation with actinic rays such as ultraviolet rays and electron beams, such as pentaerythritol tetral. Tetrafunctional or higher functional acrylates such as acrylate, ditrimethylolpropane tetraacrylate, ethoxylated pentaerythritol tetraacrylate, dipentaerythritol hydroxypentaacrylate, dipentaerythritol hexaacrylate and the same tetrafunctional or higher functional methacrylates as the above acrylates are used. However, even when the above-mentioned monomers are used, the monomers themselves do not act as gelling agents, but the polymers obtained by polymerizing them act as gelling agents.

【0051】上記のように多官能モノマーを用いて液状
電解質をゲル化させる場合、必要であれば重合開始剤と
して、例えば、ベンゾイル類、ベンゾインアルキルエー
テル類、ベンゾフェノン類、ベンゾイルフェニルフォス
フィンオキシド類、アセトフェノン類、チオキサントン
類、アントラキノン類などを使用することができ、さら
に重合開始剤の増感剤としてアルキルアミン類、アミノ
エステルなども使用することができる。
When the liquid electrolyte is gelled using the polyfunctional monomer as described above, if necessary, for example, benzoyls, benzoin alkyl ethers, benzophenones, benzoylphenylphosphine oxides, as a polymerization initiator, Acetophenones, thioxanthones, anthraquinones and the like can be used, and further alkylamines, aminoesters and the like can be used as a sensitizer for the polymerization initiator.

【0052】本発明の非水二次電池の形状としては、コ
イン型、ボタン型、シート型、積層型、円筒型、偏平
型、角型などのほか、電気自動車などに用いる大型のも
のなどいずれであってもよい。
The shape of the non-aqueous secondary battery of the present invention may be coin type, button type, sheet type, laminated type, cylindrical type, flat type, square type, etc., or may be a large type used in an electric vehicle or the like. May be

【0053】[0053]

【実施例】以下、実施例により本発明をさらに詳しく説
明する。ただし、本発明はこれらの実施例に限定される
ものではない。
The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

【0054】(実施例1)平均粒径1μmのSi粉末
と、平均繊維長5μmで直径0.2μmの繊維状炭素
(CF:カーボンファイバー)と、平均粒径2μmの黒
鉛とを、質量比でSi:CF:黒鉛=60:30:10
の配合比で混合し、これらを撹拌式の転動造粒機を用い
て造粒した。その結果、平均粒径10μmの複合体粒子
が得られた。その複合体粒子の真密度(D2)は2.2
0g/cm3、嵩密度(D1)は0.8g/cm3であっ
た。従って、この複合体粒子の空隙体積占有率Vsは、
Vs=(1−1.35×D1/D2)×100の式から
51%と求まった。
(Example 1) Si powder having an average particle diameter of 1 μm, fibrous carbon (CF: carbon fiber) having an average fiber length of 5 μm and a diameter of 0.2 μm, and graphite having an average particle diameter of 2 μm in a mass ratio. Si: CF: graphite = 60: 30: 10
Were mixed in a mixing ratio of, and these were granulated using a stirring type rolling granulator. As a result, composite particles having an average particle size of 10 μm were obtained. The true density (D2) of the composite particles is 2.2.
The bulk density (D1) was 0 g / cm 3 and 0.8 g / cm 3 . Therefore, the void volume occupancy Vs of this composite particle is
It was found to be 51% from the formula of Vs = (1-1.35 × D1 / D2) × 100.

【0055】次に、得られた複合体粒子90質量部に対
し、負極用導電材料として炭素粉末5質量部と、バイン
ダとしてPVDF5質量部とを混合し、これらを脱水N
−メチルピロリドンに分散させてスラリーを作製し、銅
箔からなる負極集電体上に塗布して、乾燥し、圧延した
後、直径16mmの円板状に切り取って、これを真空で
24時間乾燥させて負極とした。
Next, to 90 parts by mass of the obtained composite particles, 5 parts by mass of carbon powder as a conductive material for the negative electrode and 5 parts by mass of PVDF as a binder were mixed and dehydrated N
-Dispersion in methylpyrrolidone to prepare a slurry, which is applied onto a negative electrode current collector made of copper foil, dried, rolled, and then cut into a disk shape with a diameter of 16 mm, which is dried in vacuum for 24 hours. To give a negative electrode.

【0056】上記で得られた複合体粒子について、非水
二次電池用負極の電極材料としての特性を下記の方法に
より試験した。
The characteristics of the composite particles obtained above as an electrode material for a negative electrode for a non-aqueous secondary battery were tested by the following methods.

【0057】上記負極と、対極の金属Liとを組み合わ
せてコイン型モデル電池を作製した。電解液には、プロ
ピレンカーボネートとジメチルカーボネートとの混合溶
媒(混合体積比1:1)に六フッ化リン酸リチウムを1
mol/L溶解したものを用いた。負極の電位がリチウ
ム金属基準で1.5Vになるまで放電した後に、一部の
モデル電池を分解し、後述の方法により充電開始時の複
合体粒子の体積V1を求めた。次いで、残った電池を、
負極の複合体粒子を1g当たり1000mAhの電気量
で充電し、この中の一部の電池から同様の方法により複
合体粒子の体積V2を求めた。さらに、残りの電池を、
負極の電位がリチウム金属基準で1.5Vになるまで放
電させ、放電終了後に同様の方法により複合体粒子の体
積V3を求めた。この結果から、充電時の体積膨張率
〔(V2−V1)/V1×100〕と放電時の体積収縮
率〔(V2−V3)/(V2−V1)×100〕を求め
た。その結果、充電時の体積膨張率は65%であり、放
電時の体積収縮率は85%であった。
A coin-type model battery was produced by combining the above negative electrode and counter electrode metal Li. For the electrolytic solution, 1 part of lithium hexafluorophosphate was added to a mixed solvent of propylene carbonate and dimethyl carbonate (mixing volume ratio 1: 1).
What was melted / mol was used. After discharging until the potential of the negative electrode became 1.5 V based on lithium metal, some model batteries were disassembled, and the volume V1 of the composite particles at the start of charging was determined by the method described below. Then, the remaining battery
The composite particles of the negative electrode were charged with an electric quantity of 1000 mAh per gram, and the volume V2 of the composite particles was obtained from some of the batteries in the same manner by the same method. In addition, the remaining battery,
It was discharged until the potential of the negative electrode became 1.5 V based on lithium metal, and the volume V3 of the composite particles was determined by the same method after the end of discharge. From these results, the volume expansion rate [(V2-V1) / V1 × 100] during charging and the volume contraction rate [(V2-V3) / (V2-V1) × 100] during discharging were obtained. As a result, the volumetric expansion rate during charging was 65%, and the volumetric contraction rate during discharging was 85%.

【0058】上記複合体粒子の体積は下記の方法で求め
た。測定する負極をアルゴン雰囲気下でジメチルカーボ
ネートにより洗浄した後、大気に触れることなく気密状
態で走査型電子顕微鏡(SEM)まで搬送し、SEM写
真から任意の粒子100個の粒径を求め、複合体粒子の
形状を球状と仮定して体積を求めた。そして、100個
の平均粒子体積を、求める複合体粒子の体積とした。
The volume of the composite particles was determined by the following method. After cleaning the negative electrode to be measured with dimethyl carbonate under an argon atmosphere, the negative electrode was conveyed to a scanning electron microscope (SEM) in an airtight state without contact with the air, and the particle size of 100 arbitrary particles was obtained from the SEM photograph to obtain a composite. The volume was calculated assuming that the shape of the particles was spherical. Then, the average particle volume of 100 particles was taken as the volume of the composite particles to be obtained.

【0059】一方、上記複合体粒子を用いたコイン型モ
デル電池のサイクル特性を調べた。電池の充放電方法は
以下のように行った。充電は電流密度を0.5mA/c
2とし、定電流で充電を行い、充電電圧が120mV
に達した後、1/10の電流密度になるまで定電圧で充
電を行った。放電は電流密度0.5mA/cm2の定電
流で行い、放電終止電圧は1.5Vとした。
On the other hand, the cycle characteristics of the coin type model battery using the above composite particles were examined. The charging / discharging method of the battery was performed as follows. Charging has a current density of 0.5 mA / c
and m 2, was charged at a constant current, the charging voltage is 120mV
After reaching 1, the battery was charged with a constant voltage until the current density became 1/10. The discharge was performed at a constant current with a current density of 0.5 mA / cm 2 , and the discharge end voltage was 1.5V.

【0060】その結果、2サイクル目の放電容量は複合
体粒子1g当たり1100mAhであり、50サイクル
目の容量保持率〔(50サイクル目の放電容量/2サイ
クル目の放電容量)×100〕は70%であった。
As a result, the discharge capacity at the second cycle was 1100 mAh per 1 g of the composite particles, and the capacity retention ratio at the 50th cycle [(discharge capacity at the 50th cycle / discharge capacity at the second cycle) × 100] was 70. %Met.

【0061】(実施例2)平均粒径1μmのSi粉末
と、平均繊維長5μmで直径0.2μmのCFと、平均
粒径2μmの黒鉛とを、質量比でSi:CF:黒鉛=6
0:30:10の配合比で混合し、これらを撹拌式の転
動造粒機を用いて造粒した。その結果、平均粒径10μ
mの複合体粒子が得られた。このようにして作製した複
合体粒子のSEM写真を図1に示す。
Example 2 Si powder having an average particle size of 1 μm, CF having an average fiber length of 5 μm and a diameter of 0.2 μm, and graphite having an average particle size of 2 μm were used in a mass ratio of Si: CF: graphite = 6.
The mixture was mixed at a compounding ratio of 0:30:10, and these were granulated using a stirring type rolling granulator. As a result, the average particle size is 10μ
m composite particles were obtained. A SEM photograph of the composite particles thus produced is shown in FIG.

【0062】続いて、ベンゼンをカーボン源として、C
VD法により1000℃で複合体粒子を炭素で被覆し
た。被覆した炭素量は被覆前後の複合体粒子の質量変化
から求めた。その複合体粒子の組成は、質量比でSi:
CF:黒鉛:CVD炭素=56:28:9:7であっ
た。得られた複合体粒子の真密度は2.20g/c
3、嵩密度は0.85g/cm3であった。従って、こ
の複合体粒子の空隙体積占有率Vsは、前述の計算式か
ら48%と求まった。次に、実施例1と同様にして負極
を作製したところ、実施例1と同様にして測定した充電
時の体積膨張率は50%であり、放電時の体積収縮率は
92%であった。
Then, using benzene as a carbon source, C
The composite particles were coated with carbon by the VD method at 1000 ° C. The amount of carbon coated was determined from the change in mass of the composite particles before and after coating. The composition of the composite particles is such that the mass ratio of Si:
CF: graphite: CVD carbon = 56: 28: 9: 7. The true density of the obtained composite particles is 2.20 g / c.
m 3 , and the bulk density was 0.85 g / cm 3 . Therefore, the void volume occupancy Vs of this composite particle was found to be 48% from the above calculation formula. Next, when a negative electrode was produced in the same manner as in Example 1, the volume expansion coefficient upon charging was 50% and the volume contraction rate upon discharging, which was measured in the same manner as in Example 1, was 92%.

【0063】また、実施例1と同様にしてサイクル試験
を行った結果、2サイクル目の放電容量は複合体粒子1
g当たり1000mAhであり、50サイクル目の容量
保持率は85%であった。
A cycle test was conducted in the same manner as in Example 1, and as a result, the discharge capacity at the second cycle was composite particle 1
It was 1000 mAh per g, and the capacity retention rate at the 50th cycle was 85%.

【0064】(実施例3)平均粒径2μmのSi粒子
と、平均繊維長5μmで直径0.2μmのCFと、平均
粒径2μmの黒鉛とを、質量比でSi:CF:黒鉛=6
0:30:10の配合比で用いた以外は、実施例2と同
様にして複合体粒子を作製した。得られた複合体粒子の
Si含有率は、複合体粒子の全質量に対して56質量%
であり、また、その複合体粒子の真密度は2.20g/
cm3、嵩密度は0.98g/cm3であった。従って、
この複合体粒子の空隙体積占有率は40%と求まった。
また、実施例1と同様にして測定した充電時の体積膨張
率は62%であり、放電時の体積収縮率は88%であっ
た。
Example 3 Si particles having an average particle diameter of 2 μm, CF having an average fiber length of 5 μm and a diameter of 0.2 μm, and graphite having an average particle diameter of 2 μm were used in a mass ratio of Si: CF: graphite = 6.
Composite particles were produced in the same manner as in Example 2 except that the compounding ratio was 0:30:10. The Si content of the obtained composite particles was 56% by mass based on the total mass of the composite particles.
And the true density of the composite particles is 2.20 g /
cm 3 , and the bulk density was 0.98 g / cm 3 . Therefore,
The void volume occupancy of this composite particle was found to be 40%.
In addition, the volumetric expansion rate during charging was 62% and the volumetric contraction rate during discharging was 88%, which were measured in the same manner as in Example 1.

【0065】実施例1と同様にしてサイクル試験を行っ
た結果、2サイクル目の放電容量は複合体粒子1g当た
り950mAhであり、50サイクル目の容量保持率は
75%であった。
A cycle test was conducted in the same manner as in Example 1. As a result, the discharge capacity at the second cycle was 950 mAh per 1 g of the composite particles, and the capacity retention rate at the 50th cycle was 75%.

【0066】(実施例4)実施例1と同じ原料を用い
て、配合比を質量比でSi:CF:黒鉛=40:35:
25とした以外は、実施例2と同様にして複合体粒子を
作製した。得られた複合体粒子のSi含有率は、複合体
粒子の全質量に対して37質量%であり、また、その複
合体粒子の真密度は2.20g/cm3、嵩密度は0.
81g/cm3であった。従って、この複合体粒子の空
隙体積占有率は50%と求まった。また、実施例1と同
様にして測定した充電時の体積膨張率は50%であり、
放電時の体積収縮率は92%であった。
Example 4 Using the same raw material as in Example 1, the compounding ratio by mass ratio was Si: CF: graphite = 40: 35:
Composite particles were produced in the same manner as in Example 2 except that the number was 25. The Si content of the obtained composite particles was 37% by mass based on the total mass of the composite particles, the true density of the composite particles was 2.20 g / cm 3 , and the bulk density was 0.
It was 81 g / cm 3 . Therefore, the void volume occupancy of this composite particle was determined to be 50%. Further, the volume expansion coefficient at the time of charging, which was measured in the same manner as in Example 1, was 50%,
The volumetric shrinkage ratio during discharge was 92%.

【0067】実施例1と同様にしてサイクル試験を行っ
た結果、2サイクル目の放電容量は複合体粒子1g当た
り700mAhであり、50サイクル目の容量保持率は
95%であった。
A cycle test was conducted in the same manner as in Example 1. As a result, the discharge capacity at the second cycle was 700 mAh per 1 g of the composite particles, and the capacity retention rate at the 50th cycle was 95%.

【0068】(実施例5)実施例1と同じ原料を用い
て、配合比を質量比でSi:CF:黒鉛=75:15:
10とした以外は、実施例2と同様にして複合体粒子を
作製した。得られた複合体粒子のSi含有率は、複合体
粒子の全質量に対して70質量%であり、また、その複
合体粒子の真密度は2.25g/cm3、嵩密度は1.
0g/cm3であった。従って、この複合体粒子の空隙
体積占有率は40%と求まった。また、実施例1と同様
にして測定した充電時の体積膨張率は55%であり、放
電時の体積収縮率は85%であった。
Example 5 Using the same raw material as in Example 1, the compounding ratio by mass ratio was Si: CF: graphite = 75: 15:
Composite particles were produced in the same manner as in Example 2 except that the number was changed to 10. The Si content of the obtained composite particles was 70% by mass based on the total mass of the composite particles, the true density of the composite particles was 2.25 g / cm 3 , and the bulk density was 1.
It was 0 g / cm 3 . Therefore, the void volume occupancy of this composite particle was determined to be 40%. In addition, the volumetric expansion rate during charging was 55% and the volumetric contraction rate during discharging, which was measured in the same manner as in Example 1, was 85%.

【0069】実施例1と同様にしてサイクル試験を行っ
た結果、2サイクル目の放電容量は複合体粒子1g当た
り1250mAhであり、50サイクル目の容量保持率
は73%であった。
A cycle test was conducted in the same manner as in Example 1. As a result, the discharge capacity at the second cycle was 1250 mAh per 1 g of the composite particles, and the capacity retention rate at the 50th cycle was 73%.

【0070】(実施例6)平均粒径1μmのSi粒子
と、平均繊維長10μmで直径0.1μmのCFと、平
均粒径2μmの黒鉛とを、質量比でSi:CF:黒鉛=
60:30:10の配合比で用いた以外は、実施例2と
同様にして複合体粒子を作製した。得られた複合体粒子
のSi含有率は、複合体粒子の全質量に対しては56質
量%であり、また、その複合体粒子の真密度は2.20
g/cm3、嵩密度は0.73g/cm3であった。従っ
て、この複合体粒子の空隙体積占有率は55%と求まっ
た。また、実施例1と同様にして測定した充電時の体積
膨張率は45%であり、放電時の体積収縮率は92%で
あった。
Example 6 Si particles having an average particle size of 1 μm, CF having an average fiber length of 10 μm and a diameter of 0.1 μm, and graphite having an average particle size of 2 μm were used in a mass ratio of Si: CF: graphite =
Composite particles were produced in the same manner as in Example 2 except that the compounding ratio was 60:30:10. The Si content of the obtained composite particles was 56% by mass based on the total mass of the composite particles, and the true density of the composite particles was 2.20.
g / cm 3, a bulk density of 0.73 g / cm 3. Therefore, the void volume occupancy of this composite particle was found to be 55%. Further, the volumetric expansion coefficient during charging measured in the same manner as in Example 1 was 45%, and the volumetric contraction coefficient during discharging was 92%.

【0071】実施例1と同様にして行ったサイクル試験
の結果、2サイクル目の放電容量は複合体粒子1g当た
り1050mAhであり、50サイクル目の電極の容量
保持率は87%であった。
As a result of a cycle test conducted in the same manner as in Example 1, the discharge capacity at the second cycle was 1050 mAh per 1 g of the composite particles, and the capacity retention of the electrode at the 50th cycle was 87%.

【0072】(実施例7)平均粒径1μmのSi粒子
と、平均繊維長10μmで直径0.2μmのCFとを、
質量比でSi:CF=60:40の配合比で用いた以外
は、実施例2と同様にして複合体粒子を作製した。得ら
れた複合体粒子をコールタールピッチでコーティングし
た後、1300℃で焼成して複合体粒子の表面をハード
カーボンで被覆した。
(Example 7) Si particles having an average particle size of 1 μm and CF having an average fiber length of 10 μm and a diameter of 0.2 μm were prepared.
Composite particles were produced in the same manner as in Example 2 except that the compounding ratio was Si: CF = 60: 40 in terms of mass ratio. The obtained composite particles were coated with coal tar pitch and then baked at 1300 ° C. to coat the surface of the composite particles with hard carbon.

【0073】最終的に得られた複合体粒子のSi含有率
は、複合体粒子の全質量に対して52質量%であり、ま
た、その複合体粒子の真密度は2.10g/cm3、嵩
密度は0.86g/cm3であった。従って、この複合
体粒子の空隙体積占有率は45%と求まった。また、実
施例1と同様にして測定した充電時の体積膨張率は35
%であり、放電時の体積収縮率は95%であった。
The Si content of the finally obtained composite particles was 52% by mass with respect to the total mass of the composite particles, and the true density of the composite particles was 2.10 g / cm 3 , The bulk density was 0.86 g / cm 3 . Therefore, the void volume occupancy of this composite particle was determined to be 45%. Further, the volume expansion coefficient at the time of charging, which was measured in the same manner as in Example 1, was 35.
%, And the volumetric shrinkage ratio during discharge was 95%.

【0074】実施例1と同様にしてサイクル試験を行っ
た結果、2サイクル目の放電容量は複合体粒子1g当た
り950mAhであり、50サイクル目の電極の容量保
持率は88%であった。
A cycle test was conducted in the same manner as in Example 1. As a result, the discharge capacity at the second cycle was 950 mAh per 1 g of the composite particles, and the capacity retention of the electrode at the 50th cycle was 88%.

【0075】(実施例8)実施例1と同じ原料に、さら
に平均粒径0.2μmのポリスチレン粒子(PS)を加
え、質量比でSi:CF:黒鉛:PS=30:15:
5:50の配合比で用いた以外は、実施例2と同様にし
て複合体粒子を作製した。用いたPSはCVD処理時に
燃焼または昇華するため粒子内に新たな空隙が形成され
る。最終的に得られた複合体粒子のSi含有率は、複合
体粒子の全質量に対して56質量%であり、また、その
複合体粒子の真密度は2.20g/cm3、嵩密度は
0.73g/cm3であった。従って、この複合体粒子
の空隙体積占有率は55%と求まった。また、実施例1
と同様にして測定した充電時の体積膨張率は48%であ
り、放電時の体積収縮率は90%であった。
Example 8 Polystyrene particles (PS) having an average particle size of 0.2 μm were further added to the same raw material as in Example 1, and the mass ratio of Si: CF: graphite: PS = 30: 15:
Composite particles were produced in the same manner as in Example 2 except that the compounding ratio was 5:50. The PS used burns or sublimes during the CVD process, so that new voids are formed in the particles. The Si content of the finally obtained composite particles was 56% by mass with respect to the total mass of the composite particles, and the true density of the composite particles was 2.20 g / cm 3 , and the bulk density was It was 0.73 g / cm 3 . Therefore, the void volume occupancy of this composite particle was found to be 55%. In addition, Example 1
The volume expansion coefficient during charging was 48% and the volume contraction coefficient during discharging was 90%, which were measured in the same manner as in.

【0076】実施例1と同様にしてサイクル試験を行っ
た結果、2サイクル目の放電容量は複合体粒子1g当た
り920mAhであり、50サイクル目の容量保持率は
85%であった。
A cycle test was conducted in the same manner as in Example 1. As a result, the discharge capacity at the second cycle was 920 mAh per 1 g of the composite particles, and the capacity retention rate at the 50th cycle was 85%.

【0077】(実施例9)平均粒径0.2μmのSi粒
子と、平均繊維長5μmで直径0.2μmのCFと、平
均粒径0.05μmのケッチェンブラック(KB)と
を、質量比でSi:CF:KB=60:30:10の配
合比で用いた以外は、実施例2と同様にして複合体粒子
を作製した。得られた複合体粒子のSi含有率は、複合
体粒子の全質量に対して56質量%であり、また、その
複合体粒子の真密度は2.10g/cm3、嵩密度は
0.68g/cm3であった。従って、この複合体粒子
の空隙体積占有率は56%と求まった。また、実施例1
と同様にして測定した充電時の体積膨張率は50%であ
り、放電時の体積収縮率は95%であった。
(Example 9) Si particles having an average particle size of 0.2 μm, CF having an average fiber length of 5 μm and a diameter of 0.2 μm, and Ketjen black (KB) having an average particle size of 0.05 μm were used in a mass ratio. In the same manner as in Example 2 except that Si: CF: KB was used at a compounding ratio of 60:30:10, composite particles were produced. The Si content of the obtained composite particles was 56% by mass based on the total mass of the composite particles, the true density of the composite particles was 2.10 g / cm 3 , and the bulk density was 0.68 g. / Cm 3 . Therefore, the void volume occupancy of this composite particle was determined to be 56%. In addition, Example 1
The volume expansion coefficient during charging was 50%, and the volume contraction coefficient during discharging was 95%, which was measured in the same manner as in.

【0078】実施例1と同様にしてサイクル試験を行っ
た結果、2サイクル目の放電容量は複合体粒子1g当た
り1000mAhであり、50サイクル目の容量保持率
は87%であった。
A cycle test was conducted in the same manner as in Example 1. As a result, the discharge capacity at the second cycle was 1000 mAh per 1 g of the composite particles, and the capacity retention rate at the 50th cycle was 87%.

【0079】(実施例10)平均粒径0.2μmのSi
粉末と、平均繊維長5μmで直径0.2μmのCFと、
平均粒径0.05μmのKBと、分散剤としてのポリビ
ニルピロリドン(PVP)とを、質量比でSi:CF:
KB:PVP=60:30:10:4の配合比でエタノ
ール中にて混合した。この混合物を湿式のジェットミル
で分散混合し、その後得られたスラリーをスプレードラ
イ法にて造粒した。その結果、平均粒径10μmの造粒
体が得られた。続いて、トルエンをカーボン源として、
CVD法により1000℃で複合体粒子を炭素で被覆し
た。被覆した炭素量は被覆前後の複合体粒子の質量変化
から求めた。その複合体粒子の組成は、質量比でSi:
CF:KB:CVD炭素=50:25:8:17であっ
た。得られた複合体粒子の真密度は2.10g/c
3、嵩密度は0.68g/cm3であった。従って、空
隙体積占有率は58%と求まった。また、実施例1と同
様にして測定した充電時の体積膨張率は48%であり、
放電時の体積収縮率は95%であった。
Example 10 Si having an average particle size of 0.2 μm
Powder and CF having an average fiber length of 5 μm and a diameter of 0.2 μm,
KB having an average particle diameter of 0.05 μm and polyvinylpyrrolidone (PVP) as a dispersant are used in a mass ratio of Si: CF:
KB: PVP = 60: 30: 10: 4 were mixed in ethanol at a compounding ratio. This mixture was dispersed and mixed by a wet jet mill, and then the obtained slurry was granulated by a spray dry method. As a result, a granule having an average particle diameter of 10 μm was obtained. Then, using toluene as a carbon source,
The composite particles were coated with carbon at 1000 ° C. by the CVD method. The amount of carbon coated was determined from the change in mass of the composite particles before and after coating. The composition of the composite particles is such that the mass ratio of Si:
CF: KB: CVD carbon = 50: 25: 8: 17. The true density of the obtained composite particles is 2.10 g / c.
m 3 and bulk density were 0.68 g / cm 3 . Therefore, the void volume occupancy was determined to be 58%. In addition, the volume expansion coefficient during charging measured in the same manner as in Example 1 was 48%,
The volumetric shrinkage during discharge was 95%.

【0080】実施例1と同様にしてサイクル試験を行っ
た結果、2サイクル目の放電容量は複合体粒子1g当た
り1000mAhであり、50サイクル目の容量保持率
は90%であった。
A cycle test was conducted in the same manner as in Example 1. As a result, the discharge capacity at the second cycle was 1000 mAh per 1 g of the composite particles, and the capacity retention rate at the 50th cycle was 90%.

【0081】(実施例11)平均粒径0.2μmのSi
粉末と、平均粒径0.05μmのKBと、分散剤として
のPVPとを、質量比でSi:KB:PVP=70:3
0:3の配合比でエタノール中にて混合した。この混合
物を湿式のジェットミルで分散混合し、その後得られた
スラリーをスプレードライ法にて造粒した。その結果、
平均粒径3μmの造粒体が得られた。得られた造粒体
(Si/KB造粒体)と、平均繊維長5μmで直径0.
2μmのCFとを、質量比でSi/KB造粒体:CF=
85:15の配合比で混合し、その混合体を転動流動法
にて造粒した。その結果、平均粒径15μmの複合体粒
子が得られた。続いて、トルエンをカーボン源として、
CVD法により1000℃で複合体粒子を炭素で被覆し
た。被覆した炭素量は被覆前後の複合体粒子の質量変化
から求めた。その複合体粒子の組成は、質量比でSi:
CF:KB:CVD炭素=50:10:25:15であ
った。得られた複合体粒子の真密度は2.10g/cm
3、嵩密度は0.65g/cm3であった。従って、空隙
体積占有率は60%と求まった。また、実施例1と同様
にして測定した充電時の体積膨張率は47%であり、放
電時の体積収縮率は95%であった。
(Example 11) Si having an average particle size of 0.2 μm
The powder, KB having an average particle diameter of 0.05 μm, and PVP as a dispersant are contained in a mass ratio of Si: KB: PVP = 70: 3.
The mixture was mixed in ethanol at a compounding ratio of 0: 3. This mixture was dispersed and mixed by a wet jet mill, and then the obtained slurry was granulated by a spray dry method. as a result,
A granulated product having an average particle size of 3 μm was obtained. The obtained granules (Si / KB granules) had an average fiber length of 5 μm and a diameter of 0.
2 μm CF and the mass ratio of Si / KB granulated material: CF =
The mixture was mixed at a compounding ratio of 85:15, and the mixture was granulated by the tumbling flow method. As a result, composite particles having an average particle size of 15 μm were obtained. Then, using toluene as a carbon source,
The composite particles were coated with carbon at 1000 ° C. by the CVD method. The amount of carbon coated was determined from the change in mass of the composite particles before and after coating. The composition of the composite particles is such that the mass ratio of Si:
CF: KB: CVD carbon = 50: 10: 25: 15. The true density of the obtained composite particles is 2.10 g / cm.
3 , and the bulk density was 0.65 g / cm 3 . Therefore, the void volume occupancy was determined to be 60%. In addition, the volumetric expansion rate during charging was 47% and the volumetric contraction rate during discharging, which was measured in the same manner as in Example 1, was 95%.

【0082】実施例1と同様にしてサイクル試験を行っ
た結果、2サイクル目の放電容量は複合体粒子1g当た
り1000 mAhであり、50サイクル目の容量保持
率は92%であった。
A cycle test was conducted in the same manner as in Example 1. As a result, the discharge capacity at the second cycle was 1000 mAh per 1 g of the composite particles, and the capacity retention rate at the 50th cycle was 92%.

【0083】(実施例12)平均粒径1.0μmのSi
粉末と、平均粒径0.05μmのKBと、分散剤のPV
Pとを、質量比でSi:KB:PVP=70:30:3
の配合比でエタノール中にて混合した。この混合物を湿
式のジェットミルで分散混合し、その後得られたスラリ
ーをスプレードライ法にて造粒した。その結果、平均粒
径5μmの造粒体が得られた。続いて、トルエンをカー
ボン源として、CVD法により1000℃で造粒体を炭
素で被覆した。得られた複合体粒子をさらにコールター
ルピッチでコーティングした後、1300℃で焼成して
複合体粒子の表面をハードカーボンで被覆した。
(Example 12) Si having an average particle size of 1.0 μm
Powder, KB with an average particle size of 0.05 μm, and PV as a dispersant
P and P are in a mass ratio of Si: KB: PVP = 70: 30: 3.
The mixture was mixed in ethanol at a mixing ratio of. This mixture was dispersed and mixed by a wet jet mill, and then the obtained slurry was granulated by a spray dry method. As a result, a granulated product having an average particle size of 5 μm was obtained. Then, using toluene as a carbon source, the granules were coated with carbon at 1000 ° C. by the CVD method. The obtained composite particles were further coated with coal tar pitch and then baked at 1300 ° C. to coat the surface of the composite particles with hard carbon.

【0084】このようにして作製した複合体粒子のSE
M写真を図2に示す。最終的に得られた複合体粒子のS
i含有率は、複合体粒子の全質量に対して47質量%で
あり、また、その複合体粒子の真密度は2.10g/c
3、嵩密度は0.78g/cm3であった。従って、こ
の複合体粒子の空隙体積占有率は50%と求まった。ま
た、実施例1と同様にして測定した充電時の体積膨張率
は40%であり、放電時の体積収縮率は95%であっ
た。
SE of the composite particles thus produced
The M photograph is shown in FIG. S of the finally obtained composite particles
The i content is 47 mass% with respect to the total mass of the composite particles, and the true density of the composite particles is 2.10 g / c.
m 3 , and the bulk density was 0.78 g / cm 3 . Therefore, the void volume occupancy of this composite particle was determined to be 50%. In addition, the volumetric expansion coefficient during charging measured in the same manner as in Example 1 was 40%, and the volumetric contraction coefficient during discharging was 95%.

【0085】実施例1と同様にしてサイクル試験を行っ
た結果、2サイクル目の放電容量は複合体粒子1g当た
り920mAhであり、50サイクル目の容量保持率は
93%であった。
A cycle test was conducted in the same manner as in Example 1. As a result, the discharge capacity at the second cycle was 920 mAh per 1 g of the composite particles, and the capacity retention rate at the 50th cycle was 93%.

【0086】(実施例13)平均粒径1.0μmのSi
粉末と、平均粒径0.05μmのKBと、分散剤のPV
Pとを、質量比でSi:KB:PVP=60:40:4
の配合比でエタノール中にて混合した。この混合物を湿
式のジェットミルで分散混合し、その後得られたスラリ
ーをスプレードライ法にて造粒した。その結果、平均粒
径5μmの造粒体が得られた。続いて、カーボン源なし
に1000℃で造粒体を焼成した。最終的に得られた複
合体粒子のSi含有率は、複合体粒子の全質量に対して
56質量%であり、また、その複合体粒子の真密度は
2.10g/cm3、嵩密度は0.75g/cm3であっ
た。従って、この複合体粒子の空隙体積占有率は52%
と求まった。また、実施例1と同様にして測定した充電
時の体積膨張率は55%であり、放電時の体積収縮率は
85%であった。
(Example 13) Si having an average particle size of 1.0 μm
Powder, KB with an average particle size of 0.05 μm, and PV as a dispersant
P and Si in a mass ratio of Si: KB: PVP = 60: 40: 4.
The mixture was mixed in ethanol at a mixing ratio of. This mixture was dispersed and mixed by a wet jet mill, and then the obtained slurry was granulated by a spray dry method. As a result, a granulated product having an average particle size of 5 μm was obtained. Then, the granulated body was fired at 1000 ° C. without a carbon source. The Si content of the finally obtained composite particles is 56% by mass with respect to the total mass of the composite particles, and the true density of the composite particles is 2.10 g / cm 3 , and the bulk density is It was 0.75 g / cm 3 . Therefore, the void volume occupation ratio of this composite particle is 52%.
I asked. In addition, the volumetric expansion rate during charging was 55% and the volumetric contraction rate during discharging, which was measured in the same manner as in Example 1, was 85%.

【0087】実施例1と同様にしてサイクル試験を行っ
た結果、2サイクル目の放電容量は複合体粒子1g当た
り1050 mAhであり、50サイクル目の電極の容
量保持率は80%であった。
A cycle test was conducted in the same manner as in Example 1. As a result, the discharge capacity at the second cycle was 1050 mAh per 1 g of the composite particles, and the capacity retention of the electrode at the 50th cycle was 80%.

【0088】(実施例14)平均粒径1.0μmのSi
/Si2Ni複合体粉末と、平均粒径0.05μmのK
Bと、分散剤のPVPとを、質量比でSi:KB:PV
P=85:15:1の配合比でエタノール中にて混合し
た。この混合物を湿式のジェットミルで分散混合し、そ
の後得られたスラリーをスプレードライ法にて造粒し
た。その結果、平均粒径7μmの造粒体が得られた。続
いて、トルエンをカーボン源として、CVD法により8
50℃で造粒体を炭素で被覆した。最終的に得られた複
合体粒子のSi含有率は、複合体粒子の全質量に対して
40質量%であり、また、その複合体粒子の真密度は
3.10g/cm3、嵩密度は1.15g/cm3であっ
た。従って、この複合体粒子の空隙体積占有率は50%
と求まった。また、実施例1と同様にして測定した充電
時の体積膨張率は40%であり、放電時の体積収縮率は
93%であった。
(Example 14) Si having an average particle size of 1.0 μm
/ Si 2 Ni composite powder and K with an average particle size of 0.05 μm
B and PVP as a dispersant in a mass ratio of Si: KB: PV
It mixed in ethanol in the compounding ratio of P = 85: 15: 1. This mixture was dispersed and mixed by a wet jet mill, and then the obtained slurry was granulated by a spray dry method. As a result, a granule having an average particle size of 7 μm was obtained. Then, using toluene as a carbon source, the CVD method
The granulate was coated with carbon at 50 ° C. The Si content of the finally obtained composite particles is 40% by mass based on the total mass of the composite particles, and the true density of the composite particles is 3.10 g / cm 3 , and the bulk density is It was 1.15 g / cm 3 . Therefore, the void volume occupancy of this composite particle is 50%.
I asked. Further, the volumetric expansion coefficient during charging measured in the same manner as in Example 1 was 40%, and the volumetric contraction coefficient during discharging was 93%.

【0089】実施例1と同様にしてサイクル試験を行っ
た結果、2サイクル目の放電容量は複合体粒子1g当た
り800mAhであり、50サイクル目の容量保持率は
95%であった。
A cycle test was conducted in the same manner as in Example 1. As a result, the discharge capacity at the second cycle was 800 mAh per 1 g of the composite particles, and the capacity retention rate at the 50th cycle was 95%.

【0090】(比較例1)平均粒径1μmのSi粉末
と、平均粒径2μmの黒鉛とを、質量比でSi:黒鉛=
60:40の配合比で用いた以外は、実施例1と同様に
して複合体粒子を作製した。得られた複合体粒子のSi
含有率は、複合体粒子の全質量に対して56質量%であ
り、また、その複合体粒子の真密度は2.20g/cm
3、嵩密度は1.14g/cm3であった。従って、この
複合体粒子の空隙体積占有率は30%と求まった。ま
た、実施例1と同様にして測定した充電時の体積膨張率
は100%であり、放電時の体積収縮率は77%であっ
た。
(Comparative Example 1) Si powder having an average particle diameter of 1 μm and graphite having an average particle diameter of 2 μm were used in a mass ratio of Si: graphite =
Composite particles were produced in the same manner as in Example 1 except that the compounding ratio was 60:40. Si of the obtained composite particles
The content is 56% by mass with respect to the total mass of the composite particles, and the true density of the composite particles is 2.20 g / cm.
3 , and the bulk density was 1.14 g / cm 3 . Therefore, the void volume occupancy of this composite particle was determined to be 30%. In addition, the volumetric expansion coefficient during charging measured in the same manner as in Example 1 was 100%, and the volumetric contraction ratio during discharging was 77%.

【0091】実施例1と同様にしてサイクル試験を行っ
た結果、2サイクル目の放電容量は複合体粒子1g当た
り840mAhであったが、50サイクル目の容量保持
率は40%であり、大幅な容量低下が認められた。
As a result of performing a cycle test in the same manner as in Example 1, the discharge capacity at the 2nd cycle was 840 mAh per 1 g of the composite particles, but the capacity retention rate at the 50th cycle was 40%, which was a large amount. A decrease in capacity was observed.

【0092】(比較例2)平均粒径1μmのSi粉末
と、平均粒径2μmの黒鉛とを、質量比でSi:黒鉛=
90:10の配合比で用いた以外は実施例1と同様にし
て複合体粒子を作製した。得られた複合体粒子のSi含
有率は、複合体粒子の全質量に対して84質量%であ
り、また、その複合体粒子の真密度は2.20g/cm
3、嵩密度は1.10g/cm3であった。従って、この
複合体粒子の空隙体積占有率は32%と求まった。ま
た、実施例1と同様にして測定した充電時の体積膨張率
は110%であり、放電時の体積収縮率は70%であっ
た。
(Comparative Example 2) Si powder having an average particle size of 1 μm and graphite having an average particle size of 2 μm were used in a mass ratio of Si: graphite =
Composite particles were produced in the same manner as in Example 1 except that the compounding ratio was 90:10. The Si content of the obtained composite particles was 84% by mass based on the total mass of the composite particles, and the true density of the composite particles was 2.20 g / cm.
3 , and the bulk density was 1.10 g / cm 3 . Therefore, the void volume occupancy of this composite particle was found to be 32%. In addition, the volumetric expansion rate during charging was 110% and the volumetric contraction rate during discharging, which was measured in the same manner as in Example 1, was 70%.

【0093】実施例1と同様にしてサイクル試験を行っ
た結果、2サイクル目の放電容量は複合体粒子1g当た
り1400mAhであり、50サイクル目の容量保持率
は10%であった。
A cycle test was conducted in the same manner as in Example 1. As a result, the discharge capacity at the second cycle was 1400 mAh per 1 g of the composite particles, and the capacity retention rate at the 50th cycle was 10%.

【0094】(比較例3)平均粒径1μmのSi粉末
と、平均粒径2μmの黒鉛とを、質量比でSi:黒鉛=
25:75の配合比で用いた以外は、実施例1と同様に
して複合体粒子を作製した。得られた複合体粒子のSi
含有率は、複合体粒子の全質量に対して20質量%であ
り、また、その複合体粒子の真密度は2.20g/cm
3、嵩密度は1.17g/cm3であった。従って、この
複合体粒子の空隙体積占有率は28%と求まった。ま
た、実施例1と同様にして測定した充電時の体積膨張率
は75%であり、放電時の体積収縮率は83%と求まっ
た。
(Comparative Example 3) Si powder having an average particle diameter of 1 μm and graphite having an average particle diameter of 2 μm were used in a mass ratio of Si: graphite =
Composite particles were produced in the same manner as in Example 1 except that the compounding ratio was 25:75. Si of the obtained composite particles
The content is 20% by mass based on the total mass of the composite particles, and the true density of the composite particles is 2.20 g / cm.
3 , and the bulk density was 1.17 g / cm 3 . Therefore, the void volume occupancy of this composite particle was found to be 28%. Further, the volumetric expansion coefficient during charging measured in the same manner as in Example 1 was 75%, and the volumetric contraction coefficient during discharging was found to be 83%.

【0095】実施例1と同様にしてサイクル試験を行っ
た結果、2サイクル目の放電容量は複合体粒子1g当た
り500mAhであり、50サイクル目の容量保持率は
50%であった。
A cycle test was conducted in the same manner as in Example 1. As a result, the discharge capacity at the second cycle was 500 mAh per 1 g of the composite particles, and the capacity retention rate at the 50th cycle was 50%.

【0096】(参考例1)コールタールピッチのテトラ
ヒドロフラン(THF)溶液にテトラメトキシシラン
(TMOS)を溶解した。この溶液に平均粒径5μmの
黒鉛を添加して、還流しながら攪拌・混合した。それぞ
れの配合比は質量比でTHF:コールタールピッチ:T
MOS:黒鉛=10:1:1:3である。次いで、TH
Fを真空乾燥して除去した。得られた粉末を窒素気流
中、1000℃でコールタールピッチおよびTMOSを
分解・炭素化して、珪素を含有する黒鉛および非晶質炭
素からなる複合体粒子を得た。この複合体粒子のSi含
有率は、複合体粒子の全質量に対して6質量%であり、
その複合体粒子の空隙体積占有率は12%であった。ま
た、実施例1と同様にして測定した充電時の体積膨張率
は30%であり、放電時の体積収縮率は80%であっ
た。
Reference Example 1 Tetramethoxysilane (TMOS) was dissolved in a tetrahydrofuran (THF) solution of coal tar pitch. Graphite having an average particle size of 5 μm was added to this solution, and the mixture was stirred and mixed under reflux. The respective compounding ratios are mass ratios: THF: coal tar pitch: T
MOS: graphite = 10: 1: 1: 3. Then TH
F was removed by vacuum drying. The obtained powder was decomposed and carbonized into coal tar pitch and TMOS at 1000 ° C. in a nitrogen stream to obtain composite particles composed of silicon-containing graphite and amorphous carbon. The Si content of the composite particles is 6 mass% with respect to the total mass of the composite particles,
The void volume occupation ratio of the composite particles was 12%. In addition, the volumetric expansion coefficient during charging measured in the same manner as in Example 1 was 30%, and the volumetric shrinkage ratio during discharging was 80%.

【0097】実施例1と同様にしてサイクル試験を行っ
た結果、2サイクル目の放電容量は複合体粒子1g当た
り400mAhであり、50サイクル目の容量保持率は
70%であった。
A cycle test was conducted in the same manner as in Example 1. As a result, the discharge capacity at the second cycle was 400 mAh per 1 g of the composite particles, and the capacity retention rate at the 50th cycle was 70%.

【0098】(参考例2)平均粒径2μmのSi粒子
と、平均繊維長5μmで直径0.2μmのCFとを、質
量比でSi:CF=60:40の配合比で乳鉢により混
合して、電極材料とした。この電極材料は、SiとCF
とが単に混合されているのみで、複合体は形成されなか
った。この電極材料を用いて実施例1と同様にして負極
を作製した。
Reference Example 2 Si particles having an average particle diameter of 2 μm and CF having an average fiber length of 5 μm and a diameter of 0.2 μm are mixed in a mass ratio of Si: CF = 60: 40 in a mortar. , And the electrode material. This electrode material is Si and CF
No complex was formed, with and being only mixed. Using this electrode material, a negative electrode was prepared in the same manner as in Example 1.

【0099】また、実施例1と同様にしてサイクル試験
を行った結果、2サイクル目の放電容量は複合体粒子1
g当たり650mAhであり、50サイクル目の放電容
量はほとんど0mAh/gであった。
A cycle test was conducted in the same manner as in Example 1, and as a result, the discharge capacity at the second cycle was 1
It was 650 mAh / g, and the discharge capacity at the 50th cycle was almost 0 mAh / g.

【0100】以上の結果を表1に示した。The above results are shown in Table 1.

【0101】[0101]

【表1】 [Table 1]

【0102】表1から明らかなように、実施例1〜14
の複合体粒子は、充電時における粒子の膨張が少なく、
かつ放電時において可逆的に収縮できることが分かる。
また、大きな放電容量を示し、充放電サイクルを繰り返
しても容量低下が少なくサイクル特性にも優れていた。
一方、空隙体積占有率が小さい比較例1〜3は、充電時
の膨張が大きく、可逆性に劣り、充放電サイクル後の容
量保持率も著しく低くなった。
As is clear from Table 1, Examples 1 to 14
The composite particles of, the expansion of the particles during charging is small,
In addition, it can be seen that it can reversibly contract during discharge.
Further, it showed a large discharge capacity, and the capacity did not decrease even after repeated charge and discharge cycles, and the cycle characteristics were excellent.
On the other hand, Comparative Examples 1 to 3 having a small void volume occupancy had a large expansion during charging, were inferior in reversibility, and had a significantly low capacity retention rate after a charge / discharge cycle.

【0103】なお、参考例1は特許文献2を参考にした
例であり、参考例2は複合体粒子を形成させていない例
である。
Reference Example 1 is an example with reference to Patent Document 2, and Reference Example 2 is an example in which composite particles are not formed.

【0104】[0104]

【発明の効果】以上説明したように本発明は、電極材料
の膨張を抑えることにより、高容量でかつサイクル特性
に優れた非水二次電池を構成することができる。
As described above, according to the present invention, by suppressing the expansion of the electrode material, a non-aqueous secondary battery having a high capacity and excellent cycle characteristics can be constructed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例2における複合体粒子のSE
M写真である。
FIG. 1 SE of composite particles in Example 2 of the present invention
It is an M photograph.

【図2】 本発明の実施例12における複合体粒子のS
EM写真である。
FIG. 2 S of composite particles in Example 12 of the present invention
It is an EM photograph.

【図3】 炭素を含む材料によって被覆された複合体粒
子の放電時と充電時の模式断面図である。
FIG. 3 is a schematic cross-sectional view of a composite particle coated with a carbon-containing material during discharging and charging.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 夏 永姚 大阪府茨木市丑寅1丁目1番88号 日立マ クセル株式会社内 (72)発明者 上田 篤司 大阪府茨木市丑寅1丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 5H029 AJ03 AJ05 AL06 AL11 AL18 AM03 AM05 AM07 BJ03 CJ02 CJ08 CJ22 CJ24 DJ15 DJ16 HJ01 HJ05 HJ07 HJ08 5H050 AA07 AA08 BA17 CB07 CB11 DA09 EA08 FA16 FA17 FA18 GA02 GA06 GA10 GA22 GA24 GA28 HA01 HA05 HA07 HA08   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Natsu Eiji             Hitachi Ma, 1-88, Torora, Ibaraki City, Osaka Prefecture             Within Kucsel Co., Ltd. (72) Inventor Atsushi Ueda             Hitachi Ma, 1-88, Torora, Ibaraki City, Osaka Prefecture             Within Kucsel Co., Ltd. F term (reference) 5H029 AJ03 AJ05 AL06 AL11 AL18                       AM03 AM05 AM07 BJ03 CJ02                       CJ08 CJ22 CJ24 DJ15 DJ16                       HJ01 HJ05 HJ07 HJ08                 5H050 AA07 AA08 BA17 CB07 CB11                       DA09 EA08 FA16 FA17 FA18                       GA02 GA06 GA10 GA22 GA24                       GA28 HA01 HA05 HA07 HA08

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 リチウムと合金化可能な元素を含む材料
と、導電性材料とを含む複合体粒子からなる電極材料で
あって、 前記リチウムと合金化可能な元素を含む材料の割合が、
前記複合体粒子の全質量に対して30質量%以上80質
量%以下であり、 前記複合体粒子が、内部に空隙を有し、 前記複合体粒子の嵩密度をD1(g/cm3)、前記複
合体粒子の真密度をD2(g/cm3)、前記複合体粒
子の空隙体積占有率(%)をVs=(1−1.35×D
1/D2)×100とした場合、Vsが35%以上70
%以下であることを特徴とする電極材料。
1. An electrode material comprising composite particles including a material containing an element capable of alloying with lithium and a conductive material, wherein the ratio of the material containing the element capable of alloying with lithium is:
30 mass% or more and 80 mass% or less with respect to the total mass of the composite particles, the composite particles have voids inside, and the bulk density of the composite particles is D1 (g / cm 3 ), The true density of the composite particles is D2 (g / cm 3 ), and the void volume occupation ratio (%) of the composite particles is Vs = (1-1.35 × D).
1 / D2) × 100, Vs is 35% or more 70
% Or less, the electrode material.
【請求項2】 前記リチウムと合金化可能な元素が、ケ
イ素である請求項1に記載の電極材料。
2. The electrode material according to claim 1, wherein the element capable of alloying with lithium is silicon.
【請求項3】 前記リチウムと合金化可能な元素を含む
材料が、平均粒径が2μm以下の粒子である請求項1ま
たは2に記載の電極材料。
3. The electrode material according to claim 1, wherein the material containing an element capable of alloying with lithium is particles having an average particle diameter of 2 μm or less.
【請求項4】 前記導電性材料が、繊維状またはコイル
状の炭素材料および繊維状またはコイル状の金属材料か
ら選ばれる少なくとも一つである請求項1〜3のいずれ
かに記載の電極材料。
4. The electrode material according to claim 1, wherein the conductive material is at least one selected from a fibrous or coiled carbon material and a fibrous or coiled metal material.
【請求項5】 前記複合体粒子が、炭素を含む材料によ
って被覆されている請求項1〜4のいずれかに記載の電
極材料。
5. The electrode material according to claim 1, wherein the composite particles are covered with a material containing carbon.
【請求項6】 前記炭素を含む材料が、炭化水素系ガス
を気相中で熱分解して得られる炭素および炭素前駆体を
焼成して得られる炭素から選ばれる少なくとも一つを含
む請求項5に記載の電極材料。
6. The carbon-containing material contains at least one selected from carbon obtained by thermally decomposing a hydrocarbon-based gas in a gas phase and carbon obtained by firing a carbon precursor. The electrode material according to.
【請求項7】 請求項1〜6のいずれかに記載の電極材
料の製造方法であって、 前記リチウムと合金化可能な元素を含む材料と、前記導
電性材料と、樹脂とを混合して造粒することにより複合
体粒子を形成する工程と、 前記複合体粒子を加熱して前記樹脂を燃焼または昇華さ
せて除去することにより、前記複合体粒子内に空隙を形
成する工程とを含む電極材料の製造方法。
7. The method of manufacturing an electrode material according to claim 1, wherein a material containing an element capable of alloying with lithium, the conductive material, and a resin are mixed. An electrode including a step of forming composite particles by granulating, and a step of forming voids in the composite particles by heating the composite particles to burn or sublimate the resin to remove the resin. Material manufacturing method.
【請求項8】 請求項1〜6のいずれかに記載の電極材
料の製造方法であって、 前記リチウムと合金化可能な元素を含む材料と、前記導
電性材料とを溶媒中で分散させて混合物とし、前記混合
物を噴霧して乾燥するスプレードライ法により造粒する
ことにより複合体粒子を形成する工程を含む電極材料の
製造方法。
8. The method for manufacturing an electrode material according to claim 1, wherein a material containing an element capable of alloying with lithium and the conductive material are dispersed in a solvent. A method for producing an electrode material, which comprises a step of forming a composite particle by forming a mixture and granulating the mixture by a spray drying method of spraying and drying the mixture.
【請求項9】 請求項7または8に記載の製造方法を実
施した後に、前記複合体粒子と、前記導電性材料とは異
なる導電性材料とを混合してさらに造粒することにより
複合体粒子を形成する工程を含む電極材料の製造方法。
9. The composite particle is obtained by carrying out the production method according to claim 7 or 8, and further mixing the composite particle and a conductive material different from the conductive material and granulating the mixture. A method for manufacturing an electrode material, the method including the step of forming.
【請求項10】 請求項7〜9のいずれかに記載の製造
方法を実施した後に、前記複合体粒子を、炭素を含む材
料により被覆する工程を含む電極材料の製造方法。
10. A method for producing an electrode material, which comprises the step of coating the composite particles with a material containing carbon after carrying out the production method according to any one of claims 7 to 9.
【請求項11】 請求項1〜6のいずれかに記載の電極
材料を含む非水二次電池用負極。
11. A negative electrode for a non-aqueous secondary battery, which contains the electrode material according to claim 1.
【請求項12】 前記非水二次電池用負極の充電開始の
電位をリチウム金属に対して1.5Vとし、この充電開
始時の前記複合体粒子の体積をV1、前記複合体粒子1
g当たり1000mAhの電気量の充電を行った後の前
記複合体粒子の体積をV2、さらにその充電状態から前
記複合体粒子をリチウム金属に対して1.5Vの電位ま
で放電させた後の前記複合体粒子の体積をV3とした場
合に、(V2−V1)/V1×100で求められる充電
時の体積膨張率(%)が68%以下であり、かつ、(V
2−V3)/(V2−V1)×100で求められる放電
時の体積収縮率(%)が85%以上である請求項11に
記載の非水二次電池用負極。
12. The charge start potential of the negative electrode for a non-aqueous secondary battery is set to 1.5 V with respect to lithium metal, the volume of the composite particles at the start of charge is V1, and the composite particles 1
The volume of the composite particles after charging with an electric quantity of 1000 mAh per g is V2, and the composite particles are discharged from the charged state to a potential of 1.5 V with respect to lithium metal. When the volume of the body particles is V3, the volume expansion coefficient (%) at the time of charging, which is calculated by (V2-V1) / V1 × 100, is 68% or less, and (V
The negative electrode for a non-aqueous secondary battery according to claim 11, which has a volumetric shrinkage rate (%) at the time of discharge of 85% or more, which is determined by (2-V3) / (V2-V1) × 100.
【請求項13】 請求項11または12に記載の非水二
次電池用負極と、正極と、非水電解質とを備えた非水二
次電池。
13. A non-aqueous secondary battery comprising the negative electrode for a non-aqueous secondary battery according to claim 11 or 12, a positive electrode, and a non-aqueous electrolyte.
JP2003030081A 2002-02-07 2003-02-06 Electrode material, method for producing the same, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery Expired - Fee Related JP3897709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003030081A JP3897709B2 (en) 2002-02-07 2003-02-06 Electrode material, method for producing the same, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002031102 2002-02-07
JP2002-31102 2002-02-07
JP2003030081A JP3897709B2 (en) 2002-02-07 2003-02-06 Electrode material, method for producing the same, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004374141A Division JP3987853B2 (en) 2002-02-07 2004-12-24 Electrode material and method for producing the same, non-aqueous secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003303588A true JP2003303588A (en) 2003-10-24
JP3897709B2 JP3897709B2 (en) 2007-03-28

Family

ID=29404943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003030081A Expired - Fee Related JP3897709B2 (en) 2002-02-07 2003-02-06 Electrode material, method for producing the same, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP3897709B2 (en)

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051770A1 (en) * 2002-12-05 2004-06-17 Tdk Corporation Coating liquid for electrode formation, electrode, electrochemical element and process for producing these
JP2004178922A (en) * 2002-11-26 2004-06-24 Showa Denko Kk Negative electrode material and secondary battery using the same
JP2004228030A (en) * 2003-01-27 2004-08-12 Matsushita Electric Ind Co Ltd Electrode for lithium ion secondary battery, and lithium ion secondary battery using it
WO2005031898A1 (en) * 2003-09-26 2005-04-07 Jfe Chemical Corporation Composite particle and, utilizing the same, negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP2005123175A (en) * 2003-09-26 2005-05-12 Jfe Chemical Corp Composite particle, manufacturing method of the same, negative electrode material and negative electrode for lithium-ion secondary battery, and the lithium-ion secondary battery
JP2005149946A (en) * 2003-11-17 2005-06-09 Mitsui Mining Co Ltd Negative electrode material for lithium secondary battery, its manufacturing method, and lithium secondary battery
JP2005235589A (en) * 2004-02-19 2005-09-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005243508A (en) * 2004-02-27 2005-09-08 Jfe Chemical Corp Composite graphite particles for rechargeable lithium-ion battery cathode material, negative pole and rechargeable lithium-ion battery
JP2005310760A (en) * 2004-03-22 2005-11-04 Jfe Chemical Corp Anode material for lithium ion secondary battery, manufacturing method of the same, anode of lithium ion secondary battery, and lithium ion secondary battery
JP2006092969A (en) * 2004-09-24 2006-04-06 Toshiba Corp Anode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2006138893A (en) * 2004-11-10 2006-06-01 Konica Minolta Opto Inc Antireflection film, polarizer and display device
JP2006178276A (en) * 2004-12-24 2006-07-06 Toppan Printing Co Ltd Antireflection layered film
JP2006175782A (en) * 2004-12-24 2006-07-06 Toppan Printing Co Ltd Antireflection laminated film
WO2006075552A1 (en) * 2005-01-11 2006-07-20 Matsushita Electric Industrial Co., Ltd. Material of negative electrode for lithium secondary battery, negative electrode utilizing the material, lithium secondary battery utilizing the negative electrode, and process for producing the material of negative electrode
JP2006269110A (en) * 2005-03-22 2006-10-05 Jfe Chemical Corp Metal-graphite composite particle, cathode material for lithium ion secondary battery, cathode, and the lithium ion secondary battery
WO2006115272A1 (en) * 2005-04-26 2006-11-02 Zeon Corporation Composite particles for electrochemical element electrode
JP2006310628A (en) * 2005-04-28 2006-11-09 Nippon Zeon Co Ltd Composite particle for electrode of electrochemical device
JP2007042579A (en) * 2005-06-29 2007-02-15 Matsushita Electric Ind Co Ltd Composite particle for lithium secondary battery, manufacturing method of the same, and lithium secondary battery using the same
JP2007534118A (en) * 2004-04-01 2007-11-22 デグサ ゲーエムベーハー Nanoscale silicon particles in negative electrode materials for use in lithium ion batteries
JP2008186732A (en) * 2007-01-30 2008-08-14 Nippon Carbon Co Ltd Negative electrode active material for lithium secondary battery, negative electrode using the same, and manufacturing method
JP2008277231A (en) * 2007-04-06 2008-11-13 Hitachi Chem Co Ltd Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
CN100459245C (en) * 2004-03-26 2009-02-04 信越化学工业株式会社 Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP2009026760A (en) * 2007-07-19 2009-02-05 Samsung Sdi Co Ltd Composite negative electrode active material, and negative electrode and lithium battery adopting the same
JP2010003675A (en) * 2008-06-20 2010-01-07 Toyota Motor Engineering & Manufacturing North America Inc Material having core shell structure
JP2010501970A (en) * 2006-08-22 2010-01-21 ビーティーアール・ニュー・エナジー・マテリアルズ・インク Silicon / carbon composite cathode material for lithium ion battery and method for producing the same
US7682741B2 (en) 2005-06-29 2010-03-23 Panasonic Corporation Composite particle for lithium rechargeable battery, manufacturing method of the same, and lithium rechargeable battery using the same
JP2011057541A (en) * 2009-08-11 2011-03-24 Sekisui Chem Co Ltd Carbon material, electrode material, and negative-electrode material for lithium-ion secondary battery
JP2011527982A (en) * 2008-07-15 2011-11-10 ユニバーシテート デュースブルク−エッセン Insertion of silicon and / or tin into porous carbon substrate
JP2011238586A (en) * 2010-05-06 2011-11-24 Samsung Sdi Co Ltd Cathode active material for lithium secondary battery and lithium secondary battery having the same
JP2011249302A (en) * 2010-04-28 2011-12-08 Hitachi Chem Co Ltd Composite particle, manufacturing method of composite particle, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2012501951A (en) * 2008-09-12 2012-01-26 コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ Process for preparing a silicon / carbon composite material, the material thus prepared and an electrode comprising this material, in particular a negative electrode
JP2012059635A (en) * 2010-09-10 2012-03-22 Hitachi Chem Co Ltd Composite particle, method for producing composite particle, negative electrode for lithium ion secondary battery, method for manufacturing negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2012094463A (en) * 2010-10-29 2012-05-17 Hitachi Ltd Negative electrode active material for nonaqueous secondary battery and nonaqueous secondary battery
WO2013123131A1 (en) * 2012-02-14 2013-08-22 Sion Power Corporation Electrode structure for electrochemical cell
JP2013545228A (en) * 2010-10-22 2013-12-19 アンプリウス、インコーポレイテッド Composite structure containing high volume porous active material confined in shell
US20140050975A1 (en) * 2012-08-20 2014-02-20 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and negative electrode and rechargeable lithium battery including same
WO2014054792A1 (en) * 2012-10-05 2014-04-10 ソニー株式会社 Active material, process for manufacturing active material, electrode, and secondary battery
JP2014067713A (en) * 2012-09-24 2014-04-17 Samsung Electronics Co Ltd Composite anode active material, anode and lithium battery each including the same, and method of preparing the same
JP2014175261A (en) * 2013-03-12 2014-09-22 Keio Gijuku Sintered body and method for producing the same
US8936870B2 (en) 2011-10-13 2015-01-20 Sion Power Corporation Electrode structure and method for making the same
US8940192B2 (en) 2008-12-26 2015-01-27 Sekisui Chemical Co., Ltd. Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery
US9005809B2 (en) 2009-08-28 2015-04-14 Sion Power Corporation Electrochemical cells comprising porous structures comprising sulfur
JP2015513180A (en) * 2012-02-28 2015-04-30 ネクソン リミテッドNexeon Limited Structured silicon particles
US9034421B2 (en) 2008-01-08 2015-05-19 Sion Power Corporation Method of forming electrodes comprising sulfur and porous material comprising carbon
JP2015519719A (en) * 2012-06-18 2015-07-09 シラ ナノテクノロジーズ インク Multi-shell structure for battery active material with expansion characteristics
JP2015523699A (en) * 2012-10-26 2015-08-13 華為技術有限公司Huawei Technologies Co.,Ltd. Lithium ion battery negative electrode additive and production method thereof, lithium ion battery negative electrode sheet and lithium ion battery
JP2017010802A (en) * 2015-06-23 2017-01-12 住友電気工業株式会社 Sodium ion secondary battery
US9548492B2 (en) 2011-06-17 2017-01-17 Sion Power Corporation Plating technique for electrode
US9577267B2 (en) 2012-12-19 2017-02-21 Sion Power Corporation Electrode structure and method for making same
JP2017063047A (en) * 2011-02-07 2017-03-30 シラ ナノテクノロジーズ インク Stabilization of lithium ion battery negative electrode
US9923201B2 (en) 2014-05-12 2018-03-20 Amprius, Inc. Structurally controlled deposition of silicon onto nanowires
JP2018125313A (en) * 2013-03-27 2018-08-09 三菱ケミカル株式会社 Nonaqueous electrolyte solution, and nonaqueous electrolyte battery using the same
US10319988B2 (en) 2014-05-01 2019-06-11 Sion Power Corporation Electrode fabrication methods and associated systems and articles
CN110088949A (en) * 2017-02-07 2019-08-02 瓦克化学股份公司 Core-shell structure copolymer composite particles for lithium ion battery
JP2020506152A (en) * 2017-02-07 2020-02-27 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Core-shell composite particles for anode material of lithium ion battery
WO2020054863A1 (en) 2018-09-14 2020-03-19 旭化成株式会社 Nonaqueous electrolytic solution and nonaqueous secondary battery
WO2020054866A1 (en) 2018-09-14 2020-03-19 旭化成株式会社 Nonaqueous secondary battery
US10629947B2 (en) 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
JP2020514231A (en) * 2017-03-09 2020-05-21 グループ14・テクノロジーズ・インコーポレイテッドGroup14 Technologies, Inc. Decomposition of silicon-containing precursors on porous scaffold materials
CN111403740A (en) * 2020-03-24 2020-07-10 洛阳联创锂能科技有限公司 Preparation method of silica ink composite material
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
JP2022123654A (en) * 2021-02-12 2022-08-24 プライムプラネットエナジー&ソリューションズ株式会社 Manufacturing method for electrode sheet
US11437621B2 (en) 2015-08-28 2022-09-06 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US11495793B2 (en) 2013-03-14 2022-11-08 Group14 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
US11492262B2 (en) 2020-08-18 2022-11-08 Group14Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11611073B2 (en) 2015-08-14 2023-03-21 Group14 Technologies, Inc. Composites of porous nano-featured silicon materials and carbon materials
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials
US11661517B2 (en) 2014-03-14 2023-05-30 Group14 Technologies, Inc. Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
US11707728B2 (en) 2013-11-05 2023-07-25 Group14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
US11718701B2 (en) 2012-02-09 2023-08-08 Group14 Technologies, Inc. Preparation of polymeric resins and carbon materials
WO2024053111A1 (en) * 2022-09-09 2024-03-14 株式会社レゾナック Electrode material, electrode for energy storage devices, and energy storage device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI668901B (en) 2014-01-09 2019-08-11 日商昭和電工股份有限公司 Method of producing negative electrode active material for lithium ion secondary battery
KR102591512B1 (en) 2016-09-30 2023-10-23 삼성전자주식회사 Negative active material, lithium secondary battery including the material, and method for manufacturing the material
US10779362B2 (en) 2016-12-08 2020-09-15 Samsung Electronics Co., Ltd. Heating element, manufacturing method thereof, composition for forming heating element, and heating apparatus
KR20230016213A (en) 2020-05-28 2023-02-01 쇼와 덴코 가부시키가이샤 Composite carbon particles and their uses

Cited By (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004178922A (en) * 2002-11-26 2004-06-24 Showa Denko Kk Negative electrode material and secondary battery using the same
WO2004051770A1 (en) * 2002-12-05 2004-06-17 Tdk Corporation Coating liquid for electrode formation, electrode, electrochemical element and process for producing these
JP2004186089A (en) * 2002-12-05 2004-07-02 Tdk Corp Coating liquid for electrode formation, electrode and electrochemical element, and manufacturing method of coating liquid for electrode formation, manufacturing method of electrode and manufacturing method of electrochemical element
JP2004228030A (en) * 2003-01-27 2004-08-12 Matsushita Electric Ind Co Ltd Electrode for lithium ion secondary battery, and lithium ion secondary battery using it
WO2005031898A1 (en) * 2003-09-26 2005-04-07 Jfe Chemical Corporation Composite particle and, utilizing the same, negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP2005123175A (en) * 2003-09-26 2005-05-12 Jfe Chemical Corp Composite particle, manufacturing method of the same, negative electrode material and negative electrode for lithium-ion secondary battery, and the lithium-ion secondary battery
JP2005149946A (en) * 2003-11-17 2005-06-09 Mitsui Mining Co Ltd Negative electrode material for lithium secondary battery, its manufacturing method, and lithium secondary battery
JP4530647B2 (en) * 2003-11-17 2010-08-25 日本コークス工業株式会社 Negative electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2005235589A (en) * 2004-02-19 2005-09-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005243508A (en) * 2004-02-27 2005-09-08 Jfe Chemical Corp Composite graphite particles for rechargeable lithium-ion battery cathode material, negative pole and rechargeable lithium-ion battery
JP2005310760A (en) * 2004-03-22 2005-11-04 Jfe Chemical Corp Anode material for lithium ion secondary battery, manufacturing method of the same, anode of lithium ion secondary battery, and lithium ion secondary battery
CN100459245C (en) * 2004-03-26 2009-02-04 信越化学工业株式会社 Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP2007534118A (en) * 2004-04-01 2007-11-22 デグサ ゲーエムベーハー Nanoscale silicon particles in negative electrode materials for use in lithium ion batteries
KR101265340B1 (en) * 2004-04-01 2013-05-20 에보니크 데구사 게엠베하 Nanoscalar silicon particles in negative electrode materials for use in lithium-ion batteries
JP2006092969A (en) * 2004-09-24 2006-04-06 Toshiba Corp Anode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP4519592B2 (en) * 2004-09-24 2010-08-04 株式会社東芝 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2006138893A (en) * 2004-11-10 2006-06-01 Konica Minolta Opto Inc Antireflection film, polarizer and display device
JP2006178276A (en) * 2004-12-24 2006-07-06 Toppan Printing Co Ltd Antireflection layered film
JP2006175782A (en) * 2004-12-24 2006-07-06 Toppan Printing Co Ltd Antireflection laminated film
WO2006075552A1 (en) * 2005-01-11 2006-07-20 Matsushita Electric Industrial Co., Ltd. Material of negative electrode for lithium secondary battery, negative electrode utilizing the material, lithium secondary battery utilizing the negative electrode, and process for producing the material of negative electrode
JP2006269110A (en) * 2005-03-22 2006-10-05 Jfe Chemical Corp Metal-graphite composite particle, cathode material for lithium ion secondary battery, cathode, and the lithium ion secondary battery
US8377150B2 (en) 2005-04-26 2013-02-19 Zeon Corporation Composite particles for electrochemical element electrode
JPWO2006115272A1 (en) * 2005-04-26 2008-12-18 日本ゼオン株式会社 Composite particles for electrochemical device electrodes
US8182944B2 (en) 2005-04-26 2012-05-22 Zeon Corporation Composite particles for electrochemical element electrode
KR101296983B1 (en) 2005-04-26 2013-08-14 니폰 제온 가부시키가이샤 Composite particles for electrochemical element electrode
WO2006115272A1 (en) * 2005-04-26 2006-11-02 Zeon Corporation Composite particles for electrochemical element electrode
JP4840357B2 (en) * 2005-04-26 2011-12-21 日本ゼオン株式会社 Composite particles for electrochemical device electrodes
JP2006310628A (en) * 2005-04-28 2006-11-09 Nippon Zeon Co Ltd Composite particle for electrode of electrochemical device
JP2007042579A (en) * 2005-06-29 2007-02-15 Matsushita Electric Ind Co Ltd Composite particle for lithium secondary battery, manufacturing method of the same, and lithium secondary battery using the same
US7682741B2 (en) 2005-06-29 2010-03-23 Panasonic Corporation Composite particle for lithium rechargeable battery, manufacturing method of the same, and lithium rechargeable battery using the same
JP2010501970A (en) * 2006-08-22 2010-01-21 ビーティーアール・ニュー・エナジー・マテリアルズ・インク Silicon / carbon composite cathode material for lithium ion battery and method for producing the same
JP2008186732A (en) * 2007-01-30 2008-08-14 Nippon Carbon Co Ltd Negative electrode active material for lithium secondary battery, negative electrode using the same, and manufacturing method
JP2008277231A (en) * 2007-04-06 2008-11-13 Hitachi Chem Co Ltd Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
US8906554B2 (en) 2007-07-19 2014-12-09 Samsung Sdi Co., Ltd. Composite anode active material, anode including the same and lithium battery using the anode
KR101386163B1 (en) * 2007-07-19 2014-04-17 삼성에스디아이 주식회사 Composite anode material, and anode and lithium battery using the same
JP2009026760A (en) * 2007-07-19 2009-02-05 Samsung Sdi Co Ltd Composite negative electrode active material, and negative electrode and lithium battery adopting the same
US9034421B2 (en) 2008-01-08 2015-05-19 Sion Power Corporation Method of forming electrodes comprising sulfur and porous material comprising carbon
JP2010003675A (en) * 2008-06-20 2010-01-07 Toyota Motor Engineering & Manufacturing North America Inc Material having core shell structure
JP2011527982A (en) * 2008-07-15 2011-11-10 ユニバーシテート デュースブルク−エッセン Insertion of silicon and / or tin into porous carbon substrate
US10629947B2 (en) 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
JP2012501951A (en) * 2008-09-12 2012-01-26 コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ Process for preparing a silicon / carbon composite material, the material thus prepared and an electrode comprising this material, in particular a negative electrode
US8940192B2 (en) 2008-12-26 2015-01-27 Sekisui Chemical Co., Ltd. Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery
JP2011057541A (en) * 2009-08-11 2011-03-24 Sekisui Chem Co Ltd Carbon material, electrode material, and negative-electrode material for lithium-ion secondary battery
US9419274B2 (en) 2009-08-28 2016-08-16 Sion Power Corporation Electrochemical cells comprising porous structures comprising sulfur
US9005809B2 (en) 2009-08-28 2015-04-14 Sion Power Corporation Electrochemical cells comprising porous structures comprising sulfur
JP2011249302A (en) * 2010-04-28 2011-12-08 Hitachi Chem Co Ltd Composite particle, manufacturing method of composite particle, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2011238586A (en) * 2010-05-06 2011-11-24 Samsung Sdi Co Ltd Cathode active material for lithium secondary battery and lithium secondary battery having the same
US9853320B2 (en) 2010-05-06 2017-12-26 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and rechargeable lithium battery including same
JP2012059635A (en) * 2010-09-10 2012-03-22 Hitachi Chem Co Ltd Composite particle, method for producing composite particle, negative electrode for lithium ion secondary battery, method for manufacturing negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101858282B1 (en) * 2010-10-22 2018-05-15 암프리우스, 인코포레이티드 Composite structures containing high capacity porous active materials constrained in shells
KR20180054889A (en) * 2010-10-22 2018-05-24 암프리우스, 인코포레이티드 Composite structures containing high capacity porous active materials constrained in shells
US9209456B2 (en) 2010-10-22 2015-12-08 Amprius, Inc. Composite structures containing high capacity porous active materials constrained in shells
KR102096193B1 (en) * 2010-10-22 2020-04-02 암프리우스, 인코포레이티드 Composite structures containing high capacity porous active materials constrained in shells
US9698410B2 (en) 2010-10-22 2017-07-04 Amprius, Inc. Composite structures containing high capacity porous active materials constrained in shells
JP2013545228A (en) * 2010-10-22 2013-12-19 アンプリウス、インコーポレイテッド Composite structure containing high volume porous active material confined in shell
JP2018026342A (en) * 2010-10-22 2018-02-15 アンプリウス、インコーポレイテッド Electrode material composite structure, electrode, lithium ion battery, and electrode manufacturing method
JP2012094463A (en) * 2010-10-29 2012-05-17 Hitachi Ltd Negative electrode active material for nonaqueous secondary battery and nonaqueous secondary battery
US10411290B2 (en) 2011-02-07 2019-09-10 Sila Nanotechnologies, Inc. Stabilization of li-ion battery anodes
JP2017063047A (en) * 2011-02-07 2017-03-30 シラ ナノテクノロジーズ インク Stabilization of lithium ion battery negative electrode
US11456459B2 (en) 2011-06-17 2022-09-27 Sion Power Corporation Plating technique for electrode
US9548492B2 (en) 2011-06-17 2017-01-17 Sion Power Corporation Plating technique for electrode
US9040197B2 (en) 2011-10-13 2015-05-26 Sion Power Corporation Electrode structure and method for making the same
US8936870B2 (en) 2011-10-13 2015-01-20 Sion Power Corporation Electrode structure and method for making the same
US11718701B2 (en) 2012-02-09 2023-08-08 Group14 Technologies, Inc. Preparation of polymeric resins and carbon materials
US11725074B2 (en) 2012-02-09 2023-08-15 Group 14 Technologies, Inc. Preparation of polymeric resins and carbon materials
US11732079B2 (en) 2012-02-09 2023-08-22 Group14 Technologies, Inc. Preparation of polymeric resins and carbon materials
US9077041B2 (en) 2012-02-14 2015-07-07 Sion Power Corporation Electrode structure for electrochemical cell
WO2013123131A1 (en) * 2012-02-14 2013-08-22 Sion Power Corporation Electrode structure for electrochemical cell
JP2015513180A (en) * 2012-02-28 2015-04-30 ネクソン リミテッドNexeon Limited Structured silicon particles
JP2015519719A (en) * 2012-06-18 2015-07-09 シラ ナノテクノロジーズ インク Multi-shell structure for battery active material with expansion characteristics
US20140050975A1 (en) * 2012-08-20 2014-02-20 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and negative electrode and rechargeable lithium battery including same
JP2014067713A (en) * 2012-09-24 2014-04-17 Samsung Electronics Co Ltd Composite anode active material, anode and lithium battery each including the same, and method of preparing the same
JPWO2014054792A1 (en) * 2012-10-05 2016-08-25 ソニー株式会社 Active material, method for producing active material, electrode and secondary battery
US10665855B2 (en) 2012-10-05 2020-05-26 Murata Manufacturing Co., Ltd. Active material, method of manufacturing active material, electrode, and secondary battery
WO2014054792A1 (en) * 2012-10-05 2014-04-10 ソニー株式会社 Active material, process for manufacturing active material, electrode, and secondary battery
JP2015523699A (en) * 2012-10-26 2015-08-13 華為技術有限公司Huawei Technologies Co.,Ltd. Lithium ion battery negative electrode additive and production method thereof, lithium ion battery negative electrode sheet and lithium ion battery
US10084189B2 (en) 2012-10-26 2018-09-25 Huawei Technologies Co., Ltd. Lithium ion battery cathode additive, fabrication method thereof, lithium ion battery cathode sheet and lithium ion battery
US9577267B2 (en) 2012-12-19 2017-02-21 Sion Power Corporation Electrode structure and method for making same
JP2014175261A (en) * 2013-03-12 2014-09-22 Keio Gijuku Sintered body and method for producing the same
US11495793B2 (en) 2013-03-14 2022-11-08 Group14 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
JP2020009784A (en) * 2013-03-27 2020-01-16 三菱ケミカル株式会社 Nonaqueous electrolyte solution, and nonaqueous electrolyte battery using the same
JP2018125313A (en) * 2013-03-27 2018-08-09 三菱ケミカル株式会社 Nonaqueous electrolyte solution, and nonaqueous electrolyte battery using the same
US11707728B2 (en) 2013-11-05 2023-07-25 Group14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
US11661517B2 (en) 2014-03-14 2023-05-30 Group14 Technologies, Inc. Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
US10319988B2 (en) 2014-05-01 2019-06-11 Sion Power Corporation Electrode fabrication methods and associated systems and articles
US11855279B2 (en) 2014-05-12 2023-12-26 Amprius Technologies, Inc. Structurally controlled deposition of silicon onto nanowires
US10707484B2 (en) 2014-05-12 2020-07-07 Amprius, Inc. Structurally controlled deposition of silicon onto nanowires
US9923201B2 (en) 2014-05-12 2018-03-20 Amprius, Inc. Structurally controlled deposition of silicon onto nanowires
US11289701B2 (en) 2014-05-12 2022-03-29 Amprius, Inc. Structurally controlled deposition of silicon onto nanowires
JP2017010802A (en) * 2015-06-23 2017-01-12 住友電気工業株式会社 Sodium ion secondary battery
US11611073B2 (en) 2015-08-14 2023-03-21 Group14 Technologies, Inc. Composites of porous nano-featured silicon materials and carbon materials
US11495798B1 (en) 2015-08-28 2022-11-08 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US11646419B2 (en) 2015-08-28 2023-05-09 Group 14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US11437621B2 (en) 2015-08-28 2022-09-06 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
JP2020505753A (en) * 2017-02-07 2020-02-20 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Core-shell composite particles for lithium ion batteries
JP7129998B2 (en) 2017-02-07 2022-09-02 ワッカー ケミー アクチエンゲゼルシャフト Core-shell composite particles for lithium-ion batteries
JP7027436B2 (en) 2017-02-07 2022-03-01 ワッカー ケミー アクチエンゲゼルシャフト Core-shell composite particles for anode materials in lithium-ion batteries
JP2020506152A (en) * 2017-02-07 2020-02-27 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Core-shell composite particles for anode material of lithium ion battery
CN110088949A (en) * 2017-02-07 2019-08-02 瓦克化学股份公司 Core-shell structure copolymer composite particles for lithium ion battery
JP7376360B2 (en) 2017-03-09 2023-11-08 グループ14・テクノロジーズ・インコーポレイテッド Degradation of silicon-containing precursors on porous scaffold materials
JP2020514231A (en) * 2017-03-09 2020-05-21 グループ14・テクノロジーズ・インコーポレイテッドGroup14 Technologies, Inc. Decomposition of silicon-containing precursors on porous scaffold materials
US11611071B2 (en) 2017-03-09 2023-03-21 Group14 Technologies, Inc. Decomposition of silicon-containing precursors on porous scaffold materials
WO2020054866A1 (en) 2018-09-14 2020-03-19 旭化成株式会社 Nonaqueous secondary battery
KR20210011428A (en) 2018-09-14 2021-02-01 아사히 가세이 가부시키가이샤 Non-aqueous electrolyte and non-aqueous secondary battery
WO2020054863A1 (en) 2018-09-14 2020-03-19 旭化成株式会社 Nonaqueous electrolytic solution and nonaqueous secondary battery
KR20210011427A (en) 2018-09-14 2021-02-01 아사히 가세이 가부시키가이샤 Non-aqueous secondary battery
CN111403740A (en) * 2020-03-24 2020-07-10 洛阳联创锂能科技有限公司 Preparation method of silica ink composite material
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
US11492262B2 (en) 2020-08-18 2022-11-08 Group14Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11498838B2 (en) 2020-08-18 2022-11-15 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low z
US11804591B2 (en) 2020-08-18 2023-10-31 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composite materials comprising ultra low Z
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials
US11611070B2 (en) 2020-08-18 2023-03-21 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low Z
JP2022123654A (en) * 2021-02-12 2022-08-24 プライムプラネットエナジー&ソリューションズ株式会社 Manufacturing method for electrode sheet
JP7219294B2 (en) 2021-02-12 2023-02-07 プライムプラネットエナジー&ソリューションズ株式会社 Electrode sheet manufacturing method
WO2024053111A1 (en) * 2022-09-09 2024-03-14 株式会社レゾナック Electrode material, electrode for energy storage devices, and energy storage device

Also Published As

Publication number Publication date
JP3897709B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
JP3897709B2 (en) Electrode material, method for producing the same, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP3987853B2 (en) Electrode material and method for producing the same, non-aqueous secondary battery and method for producing the same
JP6207143B2 (en) Negative electrode active material and lithium battery employing the material
CN107925067B (en) Method of preparing negative active material for lithium secondary battery and lithium secondary battery using the same
JP5094013B2 (en) ELECTRODE STRUCTURE FOR LITHIUM SECONDARY BATTERY AND SECONDARY BATTERY HAVING THE ELECTRODE STRUCTURE
JP6236197B2 (en) Positive electrode for lithium battery and lithium battery
JP5165258B2 (en) Nonaqueous electrolyte secondary battery
JP4854289B2 (en) Non-aqueous electrolyte secondary battery
KR20140104067A (en) Negative active material, and negative electrode and lithium battery containing the material
CN111183538B (en) Negative active material for lithium secondary battery and lithium secondary battery including the same
JP7370378B2 (en) Negative electrode active material for lithium secondary batteries and lithium secondary batteries containing the same
KR20210000983A (en) Composite Anode, and the lithium secondary battery comprising the same
JP2014132529A (en) Nonaqueous electrolytic secondary battery
JPWO2020111201A1 (en) Positive composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
CN111226329A (en) Silicon-carbon composite and lithium secondary battery comprising the same
JP3992529B2 (en) Nonaqueous electrolyte secondary battery
JP4077294B2 (en) Nonaqueous electrolyte secondary battery
JP2005025991A (en) Nonaqueous electrolyte secondary battery
US20220216461A1 (en) Negative electrode and secondary battery including the negative electrode
JP2003242972A (en) Negative active material and non-aqueous electrolyte secondary battery and their manufacturing method
CN117832500A (en) Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same
JP7282145B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery including the same
JP4267885B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode using the negative electrode material, and lithium ion secondary battery
JP5318921B2 (en) Graphite particles for lithium ion secondary batteries
CN115632113A (en) Negative electrode active material, method for producing same, negative electrode comprising same, and secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3897709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees