JP2004281234A - Slurry for electrode mixture layer, and electrode plate, and nonaqueous electrolyte solution battery - Google Patents

Slurry for electrode mixture layer, and electrode plate, and nonaqueous electrolyte solution battery Download PDF

Info

Publication number
JP2004281234A
JP2004281234A JP2003071142A JP2003071142A JP2004281234A JP 2004281234 A JP2004281234 A JP 2004281234A JP 2003071142 A JP2003071142 A JP 2003071142A JP 2003071142 A JP2003071142 A JP 2003071142A JP 2004281234 A JP2004281234 A JP 2004281234A
Authority
JP
Japan
Prior art keywords
mixture layer
negative electrode
slurry
positive electrode
rad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003071142A
Other languages
Japanese (ja)
Other versions
JP4357857B2 (en
Inventor
Toshihito Shimizu
利人 清水
Masato Fujita
正人 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2003071142A priority Critical patent/JP4357857B2/en
Publication of JP2004281234A publication Critical patent/JP2004281234A/en
Application granted granted Critical
Publication of JP4357857B2 publication Critical patent/JP4357857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide slurry for a mixture layer and an electrode plate with fine processing aptitude hardly drooping down in coating in a pattern, as well as a high-capacity nonaqueous electrolyte solution battery with an improved yield rate of manufacturing, of low cost, and having a stable charging and discharging property. <P>SOLUTION: The slurry for the electrode mixture layer has a storage modulus (G') curve for measurement of dynamic viscoelasticity by frequency dispersion passing within the range of 10 to 185 dyne/cm2 of storage viscoelasticity G' at a frequency of 10 rad/sec and within the range of 70 to 460 dyne/cm2 of storage viscoelasticity G7 at a frequency of 100 rad/sec. And/or, a loss tangent (tan δ) curve passes within the range of 1.5 to 4.0 of a loss tangent (tan δ) at a frequency of 10 rad/sec and within the range of 3.5 to 6.0 of a loss tangent (tan δ) at a frequency of 100 rad/sec. Further, a length of drooping at a terminal end of coating of the electrode mixture layer using the slurry is larger than 0 and not more than 0.5mm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電極活物質の電極合剤層用スラリに関し、さらに詳しくは、パターン状に塗布しても尾引きしにくい正極又は負極用合剤の電極合剤層用スラリ及び電極極板、並びに非水電解液電池に関するものである。
【0002】
【従来技術】
(技術の背景)近年、AV機器,パソコン等のコードレス化、ポータブル化に伴い、これらの駆動用電源である電池に対しても、小型化、軽量化、高エネルギー密度化が要求されている。このため、従来のアルカリ蓄電池に代わり、高エネルギー密度で高電圧を有する非水電解液二次電池、代表的にはリチウムイオン二次電池が提案されている。また、該リチウムイオン二次電池でも、機器の薄型化、スペースの有効利用の点から高容量化の要望が高まっている。
非水電解液二次電池は、正極極板と負極極板それぞれに電流を取り出すための端子を取り付け、両極板の間に短絡を防止するためのセパレータを挟んで巻き回し、非水電解液を満たした容器に密封されている。しかしながら、正極活物質量に対して負極活物質量が不足すると、充電反応時に正極から電解液中に離脱したリチウムイオンの全てを負極の炭素層間に挿入することができず、過剰になったリチウムイオンがリチウム金属となって負極極板上にデンドライト(柱状)析出するおそれがある。この析出物が成長すると、正極極板と負極極板の間にあるセパレータを突き破り、正極と負極を短絡させ、電池の性能を著しく損なうおそれがあり、発火、爆発に至る恐れもある。このために、負極極板は正極極板より長くして、正極極板を完全に覆っている。
しかしながら、正極極板では、該正極極板のパターン状の活物質合剤層に、塗工終端部で長い尾引きが発生していると、これを覆うためにより長い負極極板を要し、高容量化の妨げとなる。また、負極極板でも、該負極極板のパターン状の活物質合剤層に、塗工終端部で長い尾引きが発生していると、リード端子の取り付け部分が短くなるために、電極極板の長さをより長くせねばならず、高容量化の妨げとなる。さらに、尾引きは、製造工程での歩留りを低下させ、コスト高となる。
このために、電極合剤(合剤ともいう)組成物スラリ(塗工液、インキともいう)は尾引きせず、その結果、電極極板の製造時の歩留りがよく、コストが安価に製造でき、かつ、電池とした時には安定した充放電性を有し、高電池容量とすることができる電極極板が求められている。
【0003】
(先行技術)従来、高温での電池特性(特に繰り返し寿命特性)に優れ、安全信頼性の高い非水電解液二次電池は、負極及び正極の少なくともいずれかの活物質の結着剤がポリイミド樹脂であり、かつ、該ポリイミド樹脂の弾性率が500〜3,000MPaであることが知られている(例えば、特許文献1参照。)。しかしながら、結着剤がポリイミド樹脂に限定され、かつ、弾性率が数値限定され、塗布乾燥後の合剤層の高温での電池特性を向上させるもので、塗布時の加工適性については、記載されていない。
また、良好な充放電サイクル特性を発揮する電池を提供するための、柔軟性および化学的安定性を有する非水電解液電池用結着剤としては、フッ化ビニリデン30〜80モル%、テトラフルオロエチレン10〜50モル%、ビニルエーテル系モノマー3〜30モル%およびそれらと共重合し得る単量体0〜10モル%から構成され、室温における動的粘弾性測定による貯蔵弾性率(G’)が3.0dyne/cm以下である含フッ素共重合体からなる結着剤が知られている(例えば、特許文献2参照。)。しかしながら、結着剤の貯蔵弾性率(G’)が限定され、塗布乾燥後の合剤層の機能を向上させるもので、塗布時の加工適性については、記載されていない。
さらに、サイクル性と放電率性能を向上させる電極組成物として、カーボンブラックと、必要あれば規則性のより高い炭素材、好ましくはコークス及び/又はグラファイトをバインダー含有溶媒中で粉砕して均一で粘性のあるスラリを製造し、次いでスラリを基板、好ましくは金属フォイル基板に塗布し、溶媒の蒸発と高温乾燥する方法が知られている(例えば、特許文献3参照。)。しかしながら、「粘性のあるスラリ」との記載があり、配合と製造方法が開示されているのみで、粘性の具体的な記載がない。
上記のいずれの特許文献も、スラリの粘弾性を限定することで、塗布時の加工適性、特に尾引き減少については、記載も示唆もされていない。
【0004】
【特許文献1】特開2000−21412号公報
【特許文献2】特開2001−223011号公報
【特許文献2】特表平11−514491号公報
【0005】
【発明が解決しようとする課題】
そこで、本発明はこのような問題点を解消するためになされたものである。その目的は、合剤組成物スラリの粘弾性を限定することで、塗布の加工適性がよく、パターン状に塗布しても尾引きしにくい電極合剤層用スラリ及び電極極板、並びに製造の歩留りが向上し、低コストで、かつ、安定した充放電性を有する高容量の非水電解液電池を提供することである。
【0006】
【課題を解決するための手段】
上記の課題を解決するために、請求項1の発明に係わる電極極板は、集電体の少なくとも一方の面へ、電極合剤層用スラリを塗布し乾燥して、パターン状に電極合剤層を設けた電極極板において、該電極合剤層の塗布終端部の尾引き長さが0より大きく0.5mm以下であるように、また、請求項2の発明に係わる電極極板は、上記電極極板が、正極極板又は負極極板であるように、したものである。本発明によれば、該正極極板と負極極板を用いた非水電解液電池は、負極極板上にリチウム金属がデンドライト(柱状)析出しにくく、短絡のおそれが少ない電極極板が提供される。
、請求項3の発明に係わる正極又は負極合剤層用スラリは、ケース内部にリチウム塩を溶解した非水電解液と、正極集電体へ正極合剤層を設けた正極極板と、負極集電体へ負極合剤層を設けた負極極板とを、セパレーターを介して巻回した極板群を備えた非水電解液電池における、正極又は負極電極合剤層を形成するための正極又は負極合剤層用スラリにおいて、上記正極及び/又は負極合剤層用スラリの室温での周波数分散による動的粘弾性測定の貯蔵弾性率(G’)曲線が、周波数10rad/秒における貯蔵弾性率(G’)が10〜185dyne/cmの範囲、かつ、100rad/秒における貯蔵弾性率G’が70〜460dyne/cmの範囲を通過する曲線であるように、また、請求項4の発明に係わる正極又は負極合剤層用スラリは、上記動的粘弾性測定の貯蔵弾性率(G’)曲線が、周波数10rad/秒における貯蔵弾性率(G’)が10〜70dyne/cmの範囲、かつ、100rad/秒における貯蔵弾性率G’が70〜230dyne/cmの範囲を通過する曲線であるように、したものである。本発明によれば、塗布の加工適性がよく、パターン状に塗布しても尾引きしにくい正極及び/又は負極合剤層用スラリが提供される。
請求項5の発明に係わる正極又は負極合剤層用スラリは、ケース内部にリチウム塩を溶解した非水電解液と、正極集電体へ正極合剤層を設けた正極極板と、負極集電体へ負極合剤層を設けた負極極板とを、セパレーターを介して巻回した極板群を備えた非水電解液電池における、正極又は負極電極合剤層を形成するための正極又は負極合剤層用スラリにおいて、上記正極及び/又は負極合剤層用スラリの室温での周波数分散による動的粘弾性測定の損失正接(tanδ)曲線が、周波数10rad/秒における損失正接(tanδ)が1.5〜4.0の範囲、かつ、100rad/秒における損失正接(tanδ)が3.5〜6.0の範囲を通過する曲線であるように、また、請求項6の発明に係わる正極又は負極合剤層用スラリは、上記動的粘弾性測定の損失正接(tanδ)曲線が、周波数10rad/秒における損失正接(tanδ)が2.6〜3.7の範囲、かつ、100rad/秒における損失正接(tanδ)が3.9〜5.6の範囲を通過する曲線であるように、また、請求項7の発明に係わる正極又は負極合剤層用スラリは、上記正極及び/又は負極合剤層用スラリの室温での周波数分散による動的粘弾性測定の貯蔵弾性率(G’)曲線が、周波数10rad/秒における貯蔵弾性率(G’)が10〜185dyne/cmの範囲、かつ100rad/秒における貯蔵弾性率G’が70〜460dyne/cmの範囲を通過する曲線であり、かつまた、動的粘弾性測定の損失正接(tanδ)曲線が、周波数10rad/秒における損失正接(tanδ)が1.5〜4.0の範囲、かつ、100rad/秒における損失正接(tanδ)が3.5〜6.0の範囲を通過する曲線であることを特徴とする正極及び/又は負極合剤層用スラリ。ように、したものである。本発明によれば、塗布の加工適性がよく、パターン状に塗布しても尾引きしにくい正極及び/又は負極合剤層用スラリが提供される。
請求項8の発明に係わる正極及び/又は負極極板は、集電体の少なくとも一方の面へ、電極合剤層用スラリを塗布し乾燥して、パターン状に電極合剤層を設けた電極極板において、前記電極合剤層用スラリとして請求項3〜7のいずれかに記載の正極及び/又は負極合剤層用スラリを用いた正極及び/又は負極合剤層の塗布終端部の尾引き長さが0より大きく0.5mm以下であるように、したものである。本発明によれば、パターン状に塗布しても電極合剤が尾引きしにくく、製造の歩留りが向上し、低コストな正極及び/又は負極極板が提供される。
請求項9の発明に係わる非水電解液電池は、少なくとも請求項1〜2のいずれかに記載の正極及び負極極板とを、セパレーターを介して巻回した極板群を備えたように、また、請求項10の発明に係わる非水電解液電池は、少なくとも請求項8に記載の正極及び負極極板とを、セパレーターを介して巻回した極板群を備えたことを特徴とする非水電解液電池。ように、したものである。本発明によれば、安定した充放電性を有し、高容量の非水電解液電池が提供される。
【0007】
【発明の実施の形態】
本発明の実施態様について、図面を参照して、詳細に説明する。
図1は、本発明の1実施例を示す非水電解液電池の断面図である。
図2は、極板群の構成を示す断面図である。
(基本の構成)非水電解液電池1は、極板群21と電解液とが、ガスケット15を介して負極ケース11と正極ケース13に密閉されている。極板群21は正極極板31と負極極板41とが、セパレータ23を介して渦巻き状に巻き回されている。また、正極極板31と負極極板41は、それぞれが電気的に正極ケース13と負極ケース11に接続されて電池を形成している。なお、正極極板と負極極板とを含めて、電極極板と呼ぶ。
【0008】
(発明のポイント)
正極極板31は正極集電体33へ正極合剤層35が形成され、同様に、負極極板41は負極集電体43へ負極合剤層45が形成されている。極板群21状態では、正極合剤層35と負極合剤層45がセパレータ23を介して、対向し相対している。前述のように、負極極板には、充電反応時にリチウム金属が析出するおそれがあるが、これをなくすことは極めて困難である。特に、負極の集電体が剥き出しになっている負極極板上にはリチウム金属がより析出しやすい。該リチウム金属がデントライト(柱状)析出すると短絡しやすいので、特にデントライト(柱状)析出を抑制するために、負極極板は正極極板より長いものを用いて、正極極板を負極極板で完全に覆う必要がある。正極合剤層に尾引きがあると完全に覆うことができない。完全に覆うとすると、より長い負極極板を用いることになり、結果的に負極合剤量が増加して、電池容量が減少してしまう。
【0009】
図3は、正極及び負極の合剤層の尾引きを説明する平面図である。
尾引きの発生に関しては、正極も負極も同様であるので、正極についてのみ説明する。図3に示すように、塗布方向に従ってパターン状に塗布すると、正極合剤層35の始端部51は略直線になるが、終端部53では尾引き現象の発生が伴う。該尾引きの長さは、図3に示すような終端部53に現われた凹凸状の長さをいう。該尾引き現象は、他の公知の塗布法でも発生し、一般的に塗布速度が速い場合、スラリの弾性が高い場合、などで顕著に表れる。終端部53でスラリが途切れるが、集電材は進行するために、引きちぎれる際に発生する。
そこで、本発明者らは、鋭意研究の結果、塗布時の加工適性がよく、パターン状に塗布しても尾引きが発生しにくい合剤層用スラリの粘弾性が、ある限定範囲内で顕著に発現することを見出して、本発明に至った。
【0010】
(尾引長)尾引きは全くなくすことは事実上できないので、尾引きの長さとしては0より大きく、0.5mm以下とする。尾引きの長さが短いほど、電池へ入れられる電極合剤層の量が増えるために、電池容量が増加し高容量化できる。
正極極板のパターン状の活物質合剤層に、塗工終端部で長い尾引きが発生していると、これを覆うためにより長い負極極板を要し、高容量化の妨げとなる。本発明では、尾引きが少ないために、長い負極極板が不要で、高容量化できる。
また、負極極板でも、該負極極板のパターン状の活物質合剤層に、塗工終端部で長い尾引きが発生していると、リード端子の取り付け部分が短くなるために、電極極板の長さをより長くせねばならず、高容量化の妨げとなる。本発明では、尾引きが少ないために、長い負極極板が不要で、高容量化できる。
【0011】
尾引きが少ないので、電極極板の製造工程での歩留りが低下せず、低コストで製造できる。また、電池とした場合には、充電反応時にもリチウム金属が負極極板上にデンドライト(柱状)析出するおそれが減少する。このために、極板の間にあるセパレータを突き破り、正極と負極を短絡させにくく、電池の性能を著しく損なうおそれが少なくできる。
【0012】
このような合剤層用スラリの粘弾性の限定範囲とは、即ち、正極及び/又は負極合剤層用スラリでは、室温での周波数分散による動的粘弾性測定の貯蔵弾性率(G’)曲線が、周波数10rad/秒における貯蔵弾性率(G’)が10〜185dyne/cmの範囲、かつ、100rad/秒における貯蔵弾性率G’が70〜460dyne/cmの範囲を通過する曲線であり、好ましくは、動的粘弾性測定の貯蔵弾性率(G’)曲線が、周波数10rad/秒における貯蔵弾性率(G’)が10〜70dyne/cmの範囲、かつ、100rad/秒における貯蔵弾性率G’が70〜230dyne/cmの範囲を通過する曲線である。
また、正極及び/又は負極合剤層用スラリの室温での周波数分散による動的粘弾性測定の損失正接(tanδ)曲線が、周波数10rad/秒における損失正接(tanδ)が1.5〜4.0の範囲、かつ、100rad/秒における損失正接(tanδ)が3.5〜6.0の範囲を通過する曲線であり、好ましくは動的粘弾性測定の損失正接(tanδ)曲線が、周波数10rad/秒における損失正接(tanδ)が2.6〜3.7の範囲、かつ、100rad/秒における損失正接(tanδ)が3.9〜5.6の範囲を通過する曲線である
さらに、貯蔵弾性率(G’)曲線、及び損失正接(tanδ)曲線を、上記の数値範囲とすることで、より、尾引きを発生しにくくできる。具体的には、実施例のなかで詳細に開示する。
【0013】
スラリの動的粘弾性測定による、粘弾性のうち、貯蔵弾性率G’は弾性成分を表わし、損失弾性率G’’は粘性成分を表わし、損失正接は下記の式で表わされ、数値が大きいと粘性的で、小さいと弾性的である。
・損失正接tanδ=損失弾性率G’’/貯蔵弾性率G’
塗工するスラリの貯蔵弾性率G’又は損失正接の、少なくとも1つの性質を規定することにより,尾引き長さを限りなく0に近い値にすることができた。具体的には、スラリ組成物の配合比や分散条件などにて、所望の粘弾性となるように調整すればよい。
【0014】
正極及び/又は負極合剤層用スラリの、室温での周波数分散による動的粘弾性測定の貯蔵弾性率(G’)曲線を、上記の範囲内を通過する曲線にする。このように、貯蔵弾性率(G’)を低く保つことにより、塗工終端部の尾引き長さを限りなく0にすることができる。貯蔵弾性率を10〜185dyne/cm(周波数10rad/s)と70〜460dyne/cm(周波数100rad/s)の範囲に限定したのは、10dyne/cm(周波数10rad/s)と70dyne/cm(周波数100rad/s)未満では、スラリの不安定化によりポットライフ(可使用時間)が低下し、185dyne/cm(周波数10rad/s)と460dyne/cm(周波数100rad/s)を超えると、スラリの高弾性化により尾引き長さが長くなるからである。また、好ましい範囲にすると、上記作用効果がより顕著に発現する。
【0015】
また、正極及び/又は負極合剤層用スラリの、室温での周波数分散による動的粘弾性測定の損失正接(tanδ)曲線を、上記の範囲内を通過する曲線にする。このように、損失正接(tanδ)を高くすることにより、塗工終端部の尾引き長さを限りなく0にすることができる。損失正接(tanδ)が1.5〜4.0(周波数10rad/s)、3.5〜6.0(周波数100rad/s)の範囲に限定したのは、1.5(周波数10rad/s)、3.5(100rad/s)未満では,スラリの高弾性化により尾引き長さが長くなり、4.0(周波数10rad/s)、6.0(100rad/s)を超えると、スラリの不安定化によりポットライフは低下するからである。また、好ましい範囲にすると、上記作用効果がより顕著に発現する。
【0016】
表1は、後述する実施例1〜2及び比較例1〜2における、周波数10rad/s及び100rad/sでの貯蔵弾性率(G’)及び損失正接(tanδ)の数値である。
【表1】

Figure 2004281234
【0017】
表2は、後述する実施例1〜2及び比較例1〜2における、周波数分散による貯蔵弾性率(G’)及び損失正接(tanδ)の数値である。
【表2】
Figure 2004281234
【0018】
図4は、実施例及び比較例のスラリの周波数による貯蔵弾性率(G’)曲線である。
例えば、貯蔵弾性率(G’)の範囲は、図4に示すような、直線式(式A)と直線式(式B)で囲まれる部分である。
y=1.85x+55.09−−式A
y=0.64x+6.16−−−式B
【0019】
図5は、実施例及び比較例のスラリの周波数による損失正接(tanδ)曲線である。
例えば、損失正接(tanδ)の範囲は、図5に示すような、直線式(式C)と直線式(式D)で囲まれる部分である。
y=0.79Ln(x)+1.96−−−式C
y=0.70Ln(x)+0.50−−−式D
ここで、貯蔵弾性率(G’)及び/又は損失正接(tanδ)の曲線は、図4の直線式(式A)と直線式(式B)、図5の直線式(式C)と直線式(式D)から部分的にはずれる場合もあるが、周波数が10rad/s及び100rad/s)における数値が範囲内であれば、本発明の範囲内である。
【0020】
動的粘弾性の測定方法は、測定機はFLUIDS SPECTROMETER、Phesource Series RFS 2(特殊機化工業社製、商品名)を用い、Cone PlateはNormal Cone Angle;0.04rad、Actual Gap;0.051mm、Radius:25mmを用いた。測定試料としては、サンプリングしたスラリを測定前に、T.K.AUTO HOMO MIXER、MODEL;M、SPEC;A(レオメトリック・サイエンティフィック・エフ・イー社製、商品名)を用いて250rpm、5分間の再攪拌して供した。測定条件は、Dynamic Mechanical Analysis(Frequency Sweep)で、Strain;5%、Initial Frequency;0.1rad/s、Final Frequency;100rad/s、Temperature:Room Temperatureで粘弾性を測定した。10〜100rad/s(Frequency)における貯蔵弾性率G’、損失弾性率G”、tanδ(G”/G’)の数値を少数第1位まで読み取った。
【0021】
(リチウムイオン電池)リチウムイオン電池とは、液状、ゲル状および高分子ポリマー状の電解質を持ち、リチウムイオンの移動で電流を発生する電池であって、正極極板と負極極板それぞれに電流を取り出すための端子を取り付け、両極板の間に短絡を防止するためのセパレータを挟んで巻き取り、非水電解液を満たした容器に密封することにより組み立てられる。正極・負極活物質が高分子ポリマーからなるものを含むものである。リチウム2次電池の構成は、正極集電材、正極活性物質層、電解質層、負極活性物質層、負極集電材、及びそれらを包装する外装体からなる。
【0022】
(材料、製造方法)正極集電材としてはアルミニウム、ニッケルなどが適用できる。正極活性物質層としてはリチウム遷移金属複合酸化物、カルコゲン化合物、合金、カーボン、電解液、ポリアクリロニトリルなどの高分子正極材料、導電助剤、バインダなどからの構成が適用できる。電解質層としてはプロピレンカーボネート、エチレンカーボネート、炭酸ジメチル、エチレンメチルカーボネート等のカーボネート系電解液、リチウム塩からなる無機固体電解質、ゲル電解質などが適用できる。負極活物質層としては、金属リチウム、リチウム合金、金属酸化物、グラファイト、カーボンブラック、金属硫化物、電解液、ポリアクリロニトリルなどの高分子負極材料、バインダなどからの構成が適用できる。負極集電材としては銅、ニッケル、ステンレスなどが適用できる。リチウムイオン電池の用途としては、パソコン、携帯端末装置(携帯電話、PDA等)、ビデオカメラ、電気自動車、エネルギー貯蔵用蓄電池、ロボット、衛星等に用いられる。
【0023】
(電極)次に、電極について説明する。極板は集電体の少なくとも一方の面へ、パターン状に、正極又は負極活物質からなる電極合剤層を設けたもので、該電極は電気を取り出す露出部と正極又は負極合剤層からなっている。電極の基体である集電体としては、通常は金属箔が用いられ、正極極板用としてはアルミニウム箔、負極極板用としては銅箔が好ましく用いられる。これら金属箔の厚さは、通常、5〜30μm程度、好ましくは5〜20μmである。
【0024】
集電体へ、正極又は負極活物質とバインダとを少なくとも含有する合剤層用スラリを塗布し乾燥させて合剤層を形成する。本発明の正極又は負極合剤層は、前述した所定のパターン状に形成すればよい。また、1部に電気を取り出す露出部15を設け、該露出部15は、長手方向の端部や、長手方向に沿って設けてもよく、目的とする電池に合わせた位置やパタ−ン形状とすればよい。
【0025】
(合剤層)正極又は負極合剤層は、少なくとも、正極又は負極活物質とバインダとを含有する。活物質には、正極用活物質と負極用活物質がある。正極用活物質としては、例えばLiCoO、LiNiOもしくはLiMn等のリチウム遷移金属複合酸化物、またはTiS、MnO、MoOもしくはV等のカルコゲン化合物を例示することができる。これらの正極用活物質は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。負極用活物質としては、例えば、金属リチウムまたはリチウム合金等のようなリチウム含有金属、グラファイト、カーボンブラックまたはアセチレンブラックのような炭素質材料が好んで用いられる。特に、LiCoOを正極用活物質として用い、炭素質材料を負極用活物質として用いることにより、4ボルト程度の高い放電電圧を有するリチウム系2次電池が得られる。前記正極活物質および前記負極活物質は、これらの活物質を塗工層中に均一に分散させるために、平均粒径が約1〜100μmの粉体であるのが好ましい。
【0026】
(バインダ)バインダは、熱可塑性、熱硬化性又は電離放射線硬化性の、合成又は天然樹脂の1又は複数からなり、必要に応じて導電剤や増粘剤などを添加してもよい。熱可塑性樹脂としては、例えば、より具体的にはポリエステル樹脂、ポリアミド樹脂、ポリアクリル酸エステル樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、セルロース樹脂、ポリオレフィン樹脂、ポリビニル樹脂、フッ素系樹脂またはポリイミド樹脂等を使用することができる。この際、反応性官能基を導入したアクリレートモノマーまたはオリゴマーをバインダ中に混入させることも可能である。そのほかにも、ゴム系の樹脂や、アクリル樹脂、ウレタン樹脂等の熱硬化性樹脂、アクリレートモノマー、アクリレートオリゴマー或いはそれらの混合物からなる電離放射線硬化性樹脂、上記各種の樹脂の混合物を使用することもできる。好ましくは、カルボキシメチルセルロースなどのセルロース樹脂、スチレン−ブタジエンゴムなどのゴム系、フッ素系樹脂のバインダである。フッ素系樹脂はバインダとして好ましく用いられ、その中でもポリフッ化ビニリデンは特に好ましい。
【0027】
導電剤としては、例えば、グラファイト、カーボンブラックまたはアセチレンブラック、ケッチェンブラック等の炭素質材料などが必要に応じて用いられる。
【0028】
(合剤層用スラリ)活物質、バインダ、及び必要に応じてその他の成分を混合して合剤層用スラリを調製する。例えば、適宜選択した活物質などとバインダとを、トルエン、メチルエチルケトン、N−メチル−2−ピロリドン、水或いはこれらの混合物のような有機溶剤の中に投入し、さらに必要に応じて導電剤を加え、溶解又は分散して、スラリ(スラリ、インキともいう)を調製する。分散又は溶解する方法は、特に限定はなく、例えば混練又は分散機、例えば、プラネタリーミキサー、ホモジナイザー、ボールミル、サンドミル、ロールミル、アトライター、高速インペラー等の分散機、デスパー、高速ミキサー、リボンブレンダー、コニーダー、インテンシブミキサー、タンブラー、ブレンダー、デスパーザーおよび超音波分散機などが適用できる。この時の配合割合は、スラリ全体を100質量部とした時に活物質とバインダの合計量が約35〜90質量部となるようにするのが好ましい。また、活物質とバインダとの配合割合は従来と同様でよく、例えば、正極の場合は活物質:導電剤:バインダ=100:0〜50:1〜10(質量比)程度とするのが好ましく、負極の場合は活物質:導電剤:バインダ=100:0〜50:1〜10(質量比)程度とするのが好ましい。
【0029】
以上のような組成のスラリを、前述したように、室温での動的粘弾性測定による、10rad/秒及び100rad/秒における貯蔵弾性率(G’)及び/又は損失正接tanδの曲線が、所望の範囲を通過するように調整することで、パターン状に塗布しても塗布終端部に尾引きが少なく、塗布することができる。
【0030】
(塗工方法)このようにして調製されたスラリを、集電体上に塗布・乾燥して、合剤層を形成する。合剤層用スラリの塗工方法は、特に限定されないが、例えばスロットダイコート、スリットダイコート、スライドダイコート、コンマダイレクトコート、コンマリバースコート等のように、厚い塗工層を形成できる方法が適している。
【0031】
(パターン化法)合剤層を所定のパターン状に形成する方法は、塗工方法でコーターヘッドを機械的に制御しながら電極スラリを集電体上に塗工して塗工部と非塗工部のパターンを直接形成する方法や、集電体の全面に塗工膜を形成した後でヘラなどの機械的手段により塗工膜を部分的に剥離させて非塗工部を形成する方法がある。前者の方法による場合には、塗工部又は非塗工部のパターンに合わせてコーターヘッド及び/又は集電体を動かしながらコーターヘッドからの活物質スラリの吐出開始と吐出停止を繰り返したり、或いは、塗工作業が塗工部と非塗工部の境界に到達するたびに、コーターヘッド及び/又は集電体の移動停止とその再開、塗工面に対するコーターヘッドの離脱と再接近、電極スラリの吐出停止とその再開をそれぞれ同調させて繰り返すなどの作業を行なう。
【0032】
乾燥工程における熱源としては、熱風、赤外線、マイクロ波、高周波、或いはそれらを組み合わせて利用できる。乾燥工程において集電体をサポート又はプレスする金属ローラーや金属シートを加熱して放出させた熱によって乾燥してもよい。また、乾燥後、電子線または放射線を照射することにより、バインダを架橋反応させて合剤層を得ることもできる。塗布と乾燥は、複数回繰り返してもよい。合剤層の厚さは、乾燥時で通常10〜200μm、好ましくは50〜170μmの範囲にする。
【0033】
(プレス加工)得られた合剤層をプレス加工する。該プレス加工により、極板の均質性が向上し、また、薄膜化することによって電池内に巻き込める極板の面積をより大きくできる。二次電池の性能に大きく影響を及ぼす正極および負極の各極板をプレス加工することで、充放電サイクル寿命を延長させ、また、エネルギー密度を高度化できる。プレス加工は、例えば、金属ロール、弾性ロール、加熱ロールまたはシートプレス機等を用いて行なう。プレス圧力は、通常4903〜73550N/cm(500〜7500kgf/cm)、好ましくは29420〜49033N/cm(3000〜5000kgf/cm)である。4903N/cm(500kgf/cm)よりプレス圧力が小さいと合剤層の均質性が得られにくく、73550N/cm(7500kgf/cm)よりプレス圧力が大きいと集電体を含めて極板自体が破損してしまう場合がある。合剤層は、一回のプレスで所定の厚さにしてもよく、均質性を向上、及び/又は高密度化する目的で数回に分けてプレスしてもよい。
【0034】
ロールプレスの圧力を線圧で管理する場合、加圧ロールの直径に応じて調節するが、通常は線圧を4.9〜19614N/cm(0.5kgf/cm〜2tf/cm)とする。プレス後の極板の厚さを考慮して、数回に分けてのプレスや多段プレスしてもよい。また、合剤層の乾燥途中で、その表面にポリエチレンテレフタレートフィルム等の表面平滑なフィルムを軽く圧着して再び剥離することによって、合剤層の表面を平滑化してもよい。
【0035】
(スリット、切断)極板の形状は細長く、例えば、携帯電話用のリチウムイオン電池の正極材であれば、短辺幅は20〜70mm、長辺の長さは0.2〜1m程度である。また、コイン電池であれば、短辺幅は1〜100mm程度、長辺の長さは50〜1000mm程度である。このために、上記で説明してきた極板の製造工程は、幅及び長さともに複数個がとれることができる広幅で、長尺の巻取体で加工する。プレス加工が終わった段階で、所定の幅及び長さへ、また、コイン型の場合には所定の形状に、切断して極板とする。
【0036】
(電池の組立)上記のような方法により作製された極板を用いて二次電池を作製する際には、電池の組立工程に移る前に合剤層中の水分を除去するために、加熱処理や減圧処理等をあらかじめ行うことが好ましい。
この極板を用いて、例えばリチウム系二次電池を作製する場合には、溶質であるリチウム塩を有機溶媒に溶かした非水電解液が用いられる。リチウム塩としては、例えば、LiClO、LiBF、LiPF、LiAsF、LiCl、LiBr等の無機リチウム塩、または、LiB(C)4、LiN(SOCF、LiC(SOCF、LiOSOCF、LiOSO、LiOSO、LiOSO、LiOSO11、LiOSO13、LiOSO15等の有機リチウム塩等が用いられる。
【0037】
リチウム塩を溶解するための有機溶媒としては、環状エステル類、鎖状エステル類、環状エーテル類、鎖状エーテル類等を例示できる。より具体的には、環状エステル類としては、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、ビニレンカーボネート、2−メチル−γ−ブチロラクトン、アセチル−γ−ブチロラクトン、γ−バレロラクトン等を例示できる。
鎖状エステル類としては、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、メチルブチルカーボネート、メチルプロピルカーボネート、エチルブチルカーボネート、エチルプロピルカーボネート、ブチルプロピルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等を例示できる。
【0038】
環状エーテル類としては、テトラヒドロフラン、アルキルテトラヒドロフラン、ジアルキルテトラヒドロフラン、アルコキシテトラヒドロフラン、ジアルコキシテトラヒドロフラン、1,3−ジオキソラン、アルキル−1,3−ジオキソラン、1,4−ジオキソラン等を例示できる。
鎖状エーテル類としては、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチルエーテル、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングリコールジアルキルエーテル等を例示することができる。
【0039】
正極極板と負極極板それぞれに電流を取り出すための端子を取り付け、両極板の間に短絡を防止するためのセパレータを挟んで巻き回し、非水電解液を満たした電池ケースの容器に密封すれば、非水電解液二次電池となる。
【0040】
【実施例】
(実施例1)
正極活物質としてLiCoO粉末を100質量部と、正極用導電助剤としてアセチレンブラック2質量部と、正極用バインダー1.2質量部と、溶媒としてN−メチル−ピロリドンとを、プラネタリーミキサーを用いて混合攪拌し分散することにより、スラリを作製した。厚さ15μmのアルミ箔の両面に、ダイコーターを用いて、前記スラリを間歇塗工した。片面あたりの塗工量は約250g/m、パターン長及び塗工長などは任意に設定した。その塗工終端部の尾引き長さは、0.1mmであった。
スラリの貯蔵弾性率及び損失正接を「表1」に示した。また、コイン型リチウムイオン二次電池<3032サイズ>に置き換えたときの電池容量も「表1」に示した。
【0041】
(比較例1)
スラリを「表1」に示す配合とし、プラネタリーミキサーを用いて混合攪拌し分散することにより、スラリを作製し、実施例1と同様に塗工した。塗工終端部の尾引き長さは、1.5mmを示し、用いたスラリの動的粘弾性測定及び電池容量を「表1」に示した。
【0042】
(実施例2)
スラリの配合は比較例1と同一であるが、プラネタリーミキサーを用いて混合攪拌し分散した後に、デスパーを用いてさらに分散させることにより、スラリを作製し、実施例1と同様に塗工した。塗工終端部の尾引き長さは、0.3mmを示し、スラリの動的粘弾性測定及び電池容量を「表1」に示した。スラリの粘弾性挙動の変化により、比較例1より電池容量が1.56%向上した。
【0043】
(比較例2)
スラリを「表1」に示す配合とし、プラネタリーミキサーを用いて混合攪拌し分散し、スラリを作製する以外は、実施例1と同様に塗工した。塗工終端部の尾引き長さは、1.5mmを示し、用いたスラリの動的粘弾性測定及び電池容量を「表1」に示した。
【0044】
(比較例3)
スラリを「表1」に示す配合とし、実施例1と同様にスラリを作製したが、ポットライフが短く、動的粘弾性測定ができず、塗工もできなかった。
【0045】
なお、表中の貯蔵弾性率G’及び損失正接tanδの数値は、周波数10〜100rad/sにおけるものであり、電池容量は、コバルト酸リチウムの容量を140mAh/gとし、コイン型リチウム電池(3032サイズ)に置き換えた時の電池容量を示す。
【0046】
(実施例3、負極極板)
負極合剤として、リチウムをドープかつ脱ドープし得る黒鉛系材料を100質量部、バインダ2質量部を、溶剤(水)中へ溶解又は分散させて、貯蔵弾性率=80〜412dyne/cm、tanδ=1.9〜2.2になるように、プラネタリーミキサー法で調整して、負極合剤組成物塗工液(スラリー)を得た。該負極合剤組成物塗工液(スラリー)を、負極集電体43として厚さが10μmの銅箔面へ、乾燥後の塗工量120g/mになるようにダイコート法にて塗布し乾燥し、さらにもう一方の面にも同様に塗布し乾燥した。この時、塗布パターン(正極合剤層45のパターン)は任意に設定し、両面のパターン位置は始端部が同じとなるように、間歇式ダイコート法にて形成した。
【0047】
(評価)実施例1〜2、及び比較例1〜2の塗布終端部の尾引きを、JIS1級金尺で、20倍ルーペを用いて目視で測定し、結果を表1に記載した。実施例1は0.1mm、実施例2は0.3mm、実施例3は表示してないが0.4mmと、いずれも0.5mm以下であった。
比較例1〜2ではいずれも1.5mm以上と大きく尾引きしているか、比較例3では塗布自体が不能であった。
【0048】
(実施例4〜5、本発明の電池)
実施例1〜2の極板を、ロールプレス機で両面塗布部の厚みが170μmになるようにプレスした。所定の形状、寸法に切り抜いて、正極極板とした。実施例3の両面に負極合剤層45を設けた銅箔を、ロールプレス機で両面塗布部の厚みが170μmになるようにプレスした。所定の形状、寸法に切り抜いて、負極極板とした。
上記の正極及び負極極板へそれぞれタブ付けし、ポリプロピレン製のマイクロポーラスフィルムからなるセパレータ23を介して、積層し数回巻き回して、扁平な渦巻き状とした後に、平面形状が略四角形となった該電極群の角部を円弧にカットして極板群を得た。該電極のリード端子部分を電池容器の内底部、電池封止板の内天部にそれぞれスポット溶接して接続した。電池容器としては、円形半殻体の正極及び負極ケースを用い、非水溶媒としてエチレンカーボネート:ジメチルカーボネート=1:1(質量比)溶液にLiPFを1mol/1L溶解し有機電解液(非水電解液)とした。この有機電解液を電極を収納した電池容器に注入し、電池容器と封口板をポリプロピレン製パッキンを介してかしめて密閉してコイン型リチウムイオン二次電池を得た。
【0049】
(比較例4、従来の電池)
正極として比較例1〜2の極板を用い、負極として公知で既存の極板を用いる以外は、実施例4と同様にして、コイン型リチウムイオン二次電池を得た。
【0050】
電池容量は、実施例のいずれもが、比較例のいずれよりも高容量であった。
充放電試験として、500サイクルの充放電を行ったところ、実施例の極板を用いた電池では試験した10個について、すべて正常に充放電できたが、比較例の極板を用いた電池では試験した10個中、2個が不良であった。
【0051】
【発明の効果】
合剤組成物スラリの粘弾性を限定することで、塗布の加工適性がよく、パターン状に塗布しても尾引きしにくい。
該合剤組成物スラリを用いて製造した電極極板では、製造の歩留りが向上し、低コストで製造できる。
また、該電極極板を用いた非水電解液電池では、リチウム金属が負極極板上にデンドライト(柱状)析出しにくく、短絡のおそれが少ないので、電池の性能が損なわれず、安定した充放電性を有し、高容量とすることができる。
【図面の簡単な説明】
【図1】本発明の1実施例を示す非水電解液電池の断面図である。
【図2】極板群の構成を示す断面図である。
【図3】正極及び負極の合剤層の尾引きを説明する平面図である。
【図4】実施例及び比較例のスラリの周波数による貯蔵弾性率(G’)曲線である。
【図5】実施例及び比較例のスラリの周波数による損失正接(tanδ)曲線である。
【符号の説明】
1 非水電解液電池
11 負極ケース
13 正極ケース
15 ガスケット
21 極板群
23 セパレータ
31 正極極板
33 正極集電体
35 正極合剤層
41 負極極板
43 負極集電体
45 負極合剤層
51 塗布始端部
53 塗布終端部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a slurry for an electrode mixture layer of an electrode active material, and more particularly, a slurry and an electrode plate for an electrode mixture layer of a mixture for a positive electrode or a negative electrode, which are hard to be trailed even when applied in a pattern, and The present invention relates to a non-aqueous electrolyte battery.
[0002]
[Prior art]
(Background of Technology) In recent years, with the recent trend toward cordless and portable AV equipment and personal computers, there has been a demand for batteries that are power sources for these drives to be reduced in size, weight and energy density. For this reason, a non-aqueous electrolyte secondary battery having a high energy density and a high voltage, typically a lithium ion secondary battery, has been proposed instead of the conventional alkaline storage battery. Also, with regard to the lithium ion secondary battery, there is an increasing demand for higher capacity in terms of thinner devices and effective use of space.
Non-aqueous electrolyte secondary batteries were fitted with terminals for extracting current to each of the positive electrode plate and the negative electrode plate, and wound around a separator to prevent a short circuit between the two electrode plates, and filled with the non-aqueous electrolyte. Sealed in container. However, when the amount of the negative electrode active material is insufficient with respect to the amount of the positive electrode active material, all of the lithium ions released from the positive electrode into the electrolyte during the charging reaction cannot be inserted between the carbon layers of the negative electrode. The ions may become lithium metal and precipitate dendrite (columnar) on the negative electrode plate. When this precipitate grows, it breaks through the separator between the positive electrode plate and the negative electrode plate, causing a short circuit between the positive electrode and the negative electrode, which may significantly impair the performance of the battery and may cause ignition or explosion. To this end, the negative electrode plate is made longer than the positive electrode plate to completely cover the positive electrode plate.
However, in the positive electrode plate, if a long tail occurs at the end of coating on the patterned active material mixture layer of the positive electrode plate, a longer negative electrode plate is required to cover this, This hinders higher capacity. Also, in the negative electrode plate, if a long tailing occurs at the terminal end of the coating on the patterned active material mixture layer of the negative electrode plate, the mounting portion of the lead terminal becomes short, so that the electrode electrode The length of the plate must be longer, which hinders an increase in capacity. Furthermore, tailing lowers the yield in the manufacturing process and increases the cost.
For this reason, the electrode mixture (also referred to as a mixture) composition slurry (also referred to as a coating liquid or ink) does not trail, and as a result, the yield at the time of manufacturing the electrode plate is good and the cost is low. There is a need for an electrode plate that can be made and has a stable charge / discharge property when used as a battery and a high battery capacity.
[0003]
(Prior art) Conventionally, a non-aqueous electrolyte secondary battery having excellent battery characteristics (particularly, repeated life characteristics) at high temperatures and high safety and reliability has been known in which a binder of at least one of an active material of a negative electrode and a positive electrode is polyimide. It is known that the resin is a resin and the polyimide resin has an elastic modulus of 500 to 3,000 MPa (for example, see Patent Document 1). However, the binder is limited to polyimide resin, and the elastic modulus is numerically limited, which improves the battery characteristics of the mixture layer after coating and drying at high temperatures, and the processability during coating is described. Not.
As a binder for a non-aqueous electrolyte battery having flexibility and chemical stability for providing a battery exhibiting good charge / discharge cycle characteristics, vinylidene fluoride 30 to 80 mol%, tetrafluoro It is composed of 10 to 50 mol% of ethylene, 3 to 30 mol% of a vinyl ether monomer and 0 to 10 mol% of a monomer copolymerizable therewith, and has a storage elastic modulus (G ′) measured by dynamic viscoelasticity at room temperature. 3.0 dyne / cm 2 The following binders comprising a fluorine-containing copolymer are known (for example, see Patent Document 2). However, the storage elastic modulus (G ') of the binder is limited, and the function of the mixture layer after application and drying is improved, and the workability at the time of application is not described.
Further, as an electrode composition for improving cycleability and discharge rate performance, carbon black and, if necessary, a carbon material having higher regularity, preferably coke and / or graphite, are pulverized in a binder-containing solvent to obtain a uniform and viscous material. There is known a method of producing a slurry having a coating, and then applying the slurry to a substrate, preferably a metal foil substrate, and evaporating a solvent and drying at a high temperature (for example, see Patent Document 3). However, there is a description of "a viscous slurry" and only the formulation and the production method are disclosed, but there is no specific description of the viscosity.
None of the above-mentioned patent documents describes or suggests workability at the time of application, particularly reduction of tailing, by limiting the viscoelasticity of the slurry.
[0004]
[Patent Document 1] JP-A-2000-21412
[Patent Document 2] Japanese Patent Laid-Open No. 2001-223011
[Patent Document 2] Japanese Patent Publication No. Hei 11-514491
[0005]
[Problems to be solved by the invention]
Therefore, the present invention has been made to solve such a problem. Its purpose is to limit the viscoelasticity of the mixture composition slurry, so that the processability of application is good, and even when applied in a pattern, the slurry for the electrode mixture layer and the electrode plate are difficult to tail, and the production of An object of the present invention is to provide a high-capacity non-aqueous electrolyte battery having improved yield, low cost, and stable charge / discharge properties.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, an electrode plate according to the invention of claim 1 is characterized in that a slurry for an electrode mixture layer is applied to at least one surface of a current collector and dried to form a pattern of the electrode mixture. In the electrode plate provided with the layer, the trailing length of the application end portion of the electrode mixture layer is larger than 0 and 0.5 mm or less, and the electrode plate according to the invention of claim 2, The electrode plate is a positive electrode plate or a negative electrode plate. According to the present invention, in a nonaqueous electrolyte battery using the positive electrode plate and the negative electrode plate, an electrode plate is provided in which lithium metal is less likely to be dendrite (columnar) deposited on the negative electrode plate and is less likely to be short-circuited. Is done.
The slurry for a positive electrode or negative electrode mixture layer according to the invention of claim 3 includes a nonaqueous electrolyte in which a lithium salt is dissolved in a case, a positive electrode plate provided with a positive electrode mixture layer on a positive electrode current collector, and a negative electrode. A negative electrode having a negative electrode mixture layer provided on a current collector, and a positive electrode for forming a positive electrode or a negative electrode mixture layer in a non-aqueous electrolyte battery including an electrode group wound around a separator. Alternatively, in the slurry for the negative electrode mixture layer, the storage elastic modulus (G ′) curve of the dynamic viscoelasticity measurement by the frequency dispersion at room temperature of the slurry for the positive electrode and / or the negative electrode mixture layer has a storage elasticity at a frequency of 10 rad / sec. Rate (G ') is 10 to 185 dyne / cm 2 And the storage elastic modulus G ′ at 100 rad / sec is 70 to 460 dyne / cm. 2 In the slurry for a positive electrode or negative electrode mixture layer according to the invention of claim 4, the storage elastic modulus (G ') curve of the dynamic viscoelasticity measurement is such that the frequency is 10 rad /. Storage elastic modulus (G ') in seconds is 10 to 70 dyne / cm 2 And the storage elastic modulus G ′ at 100 rad / sec is 70 to 230 dyne / cm. 2 As a curve passing through the range. Advantageous Effects of Invention According to the present invention, there is provided a slurry for a positive electrode and / or a negative electrode material mixture layer which has good processability of application and is hard to be trailed even when applied in a pattern.
A slurry for a positive electrode or negative electrode mixture layer according to the invention of claim 5 includes a nonaqueous electrolyte in which a lithium salt is dissolved in a case, a positive electrode plate having a positive electrode current collector provided with a positive electrode mixture layer, and a negative electrode collector. A negative electrode plate provided with a negative electrode mixture layer on an electric conductor, in a nonaqueous electrolyte battery including an electrode group wound around a separator, a positive electrode or a negative electrode for forming a negative electrode mixture layer In the slurry for the negative electrode mixture layer, the loss tangent (tan δ) curve of dynamic viscoelasticity measurement due to frequency dispersion at room temperature of the slurry for the positive electrode and / or the negative electrode mixture layer shows a loss tangent (tan δ) at a frequency of 10 rad / sec. Is a curve passing through the range of 1.5 to 4.0 and the loss tangent (tan δ) at 100 rad / sec in the range of 3.5 to 6.0, and according to the invention of claim 6. The slurry for the positive or negative electrode mixture layer is The loss tangent (tan δ) curve of the elasticity measurement shows that the loss tangent (tan δ) at a frequency of 10 rad / sec is in the range of 2.6 to 3.7 and the loss tangent (tan δ) at 100 rad / sec is 3.9 to 5. 6, and the slurry for the positive electrode or negative electrode mixture layer according to the invention of claim 7 is characterized by the dynamics of the slurry for the positive electrode and / or negative electrode mixture layer due to frequency dispersion at room temperature. Elastic modulus (G ′) curve of dynamic viscoelasticity measurement shows that the storage elastic modulus (G ′) at a frequency of 10 rad / sec is 10 to 185 dyne / cm. 2 And the storage elastic modulus G ′ at 100 rad / sec is 70 to 460 dyne / cm. 2 And the loss tangent (tan δ) curve of the dynamic viscoelasticity measurement shows that the loss tangent (tan δ) at a frequency of 10 rad / sec is in the range of 1.5 to 4.0 and 100 rad. A slurry for a positive electrode layer and / or a negative electrode mixture layer, characterized in that the loss tangent (tan δ) at / sec is a curve passing through a range of 3.5 to 6.0. That's what it was. Advantageous Effects of Invention According to the present invention, there is provided a slurry for a positive electrode and / or a negative electrode material mixture layer which has good processability of application and is hard to be trailed even when applied in a pattern.
The positive electrode and / or the negative electrode according to the invention of claim 8, wherein the electrode mixture layer slurry is applied to at least one surface of the current collector and dried to provide a pattern-like electrode mixture layer. In the electrode plate, a tail of a coating end portion of a positive electrode and / or a negative electrode mixture layer using the positive electrode and / or the negative electrode mixture layer slurry according to any one of claims 3 to 7 as the electrode mixture layer slurry. The drawing length is larger than 0 and 0.5 mm or less. ADVANTAGE OF THE INVENTION According to this invention, even if it applies in a pattern form, it is hard to tail an electrode mixture, the manufacturing yield is improved, and a low-cost positive electrode and / or negative electrode plate is provided.
The non-aqueous electrolyte battery according to the ninth aspect of the present invention includes an electrode group in which at least the positive electrode and the negative electrode according to any one of the first to second aspects are wound with a separator interposed therebetween. A non-aqueous electrolyte battery according to a tenth aspect of the present invention includes an electrode group in which at least the positive electrode and the negative electrode of the eighth aspect are wound with a separator interposed therebetween. Water electrolyte battery. That's what it was. According to the present invention, a high-capacity nonaqueous electrolyte battery having stable charge / discharge properties is provided.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a sectional view of a non-aqueous electrolyte battery showing one embodiment of the present invention.
FIG. 2 is a cross-sectional view showing the configuration of the electrode group.
(Basic Configuration) In the non-aqueous electrolyte battery 1, the electrode group 21 and the electrolyte are sealed in the negative electrode case 11 and the positive electrode case 13 via the gasket 15. In the electrode group 21, a positive electrode plate 31 and a negative electrode plate 41 are spirally wound with a separator 23 interposed therebetween. The positive electrode plate 31 and the negative electrode plate 41 are electrically connected to the positive electrode case 13 and the negative electrode case 11, respectively, to form a battery. In addition, the positive electrode plate and the negative electrode plate are referred to as an electrode plate.
[0008]
(Points of the invention)
In the positive electrode plate 31, a positive electrode mixture layer 35 is formed on a positive electrode current collector 33, and similarly, in the negative electrode plate 41, a negative electrode mixture layer 45 is formed on a negative electrode current collector 43. In the state of the electrode plate group 21, the positive electrode mixture layer 35 and the negative electrode mixture layer 45 face each other with the separator 23 interposed therebetween. As described above, lithium metal may precipitate on the negative electrode plate during a charging reaction, but it is extremely difficult to eliminate this. In particular, lithium metal is more likely to deposit on the negative electrode plate where the current collector of the negative electrode is exposed. When the lithium metal precipitates in the form of dendrites (columns), it is easy to cause a short circuit. In order to suppress the precipitation of the dendrites (columns) in particular, use a negative electrode plate that is longer than the positive electrode plate. It is necessary to completely cover with. If the positive electrode mixture layer has a tail, it cannot be completely covered. If the battery is completely covered, a longer negative electrode plate will be used. As a result, the amount of the negative electrode mixture increases, and the battery capacity decreases.
[0009]
FIG. 3 is a plan view illustrating tailing of the mixture layers of the positive electrode and the negative electrode.
Regarding the occurrence of tailing, since the same applies to the positive electrode and the negative electrode, only the positive electrode will be described. As shown in FIG. 3, when applied in a pattern according to the application direction, the start end 51 of the positive electrode mixture layer 35 becomes substantially straight, but the tail end 53 is accompanied by a tailing phenomenon. The length of the tail refers to the length of the uneven shape appearing at the terminal end portion 53 as shown in FIG. The tailing phenomenon also occurs in other known coating methods, and generally appears remarkably when the coating speed is high, when the elasticity of the slurry is high, and the like. Although the slurry is interrupted at the end portion 53, the current collector is generated when the tearing occurs because the current collector advances.
Therefore, the present inventors have conducted intensive studies and found that the viscoelasticity of the slurry for the mixture layer is good within a certain limited range, as the workability at the time of application is good and the tailing does not easily occur even when applied in a pattern. Was found to be expressed in the present invention.
[0010]
(Tail length) Since it is practically impossible to eliminate tailing at all, the length of tailing is set to be larger than 0 and 0.5 mm or less. As the length of the tailing becomes shorter, the amount of the electrode mixture layer put into the battery increases, so that the battery capacity increases and the capacity can be increased.
If a long tailing occurs at the end of coating on the patterned active material mixture layer of the positive electrode plate, a longer negative electrode plate is required to cover this, which hinders an increase in capacity. In the present invention, since the tailing is small, a long negative electrode plate is unnecessary, and the capacity can be increased.
Also, in the negative electrode plate, if a long tailing occurs at the terminal end of the coating on the patterned active material mixture layer of the negative electrode plate, the mounting portion of the lead terminal becomes short, so that the electrode electrode The length of the plate must be longer, which hinders an increase in capacity. In the present invention, since the tailing is small, a long negative electrode plate is unnecessary, and the capacity can be increased.
[0011]
Since there is little tailing, the yield in the manufacturing process of the electrode plate does not decrease, and the electrode plate can be manufactured at low cost. Further, in the case of a battery, the possibility that lithium metal precipitates on the negative electrode plate in the form of dendrite (columnar) during the charging reaction is reduced. For this reason, it is difficult to break through the separator between the electrode plates and short-circuit the positive electrode and the negative electrode, and it is possible to reduce the possibility of significantly impairing the performance of the battery.
[0012]
The limited range of the viscoelasticity of such a slurry for a mixture layer means that, in the slurry for a positive electrode and / or a negative electrode mixture layer, the storage elastic modulus (G ′) of dynamic viscoelasticity measurement by frequency dispersion at room temperature. The curve shows that the storage elastic modulus (G ′) at a frequency of 10 rad / sec is 10 to 185 dyne / cm. 2 And the storage elastic modulus G ′ at 100 rad / sec is 70 to 460 dyne / cm. 2 Preferably, the storage elastic modulus (G ′) curve of the dynamic viscoelasticity measurement has a storage elastic modulus (G ′) at a frequency of 10 rad / sec of 10 to 70 dyne / cm. 2 And the storage elastic modulus G ′ at 100 rad / sec is 70 to 230 dyne / cm. 2 Is a curve passing through the range.
In addition, the loss tangent (tan δ) curve of dynamic viscoelasticity measurement due to frequency dispersion at room temperature of the slurry for the positive electrode and / or negative electrode mixture layer shows that the loss tangent (tan δ) at a frequency of 10 rad / sec is 1.5 to 4.0. 0, and a curve whose loss tangent (tan δ) at 100 rad / sec passes through the range of 3.5 to 6.0, and preferably, a loss tangent (tan δ) curve of dynamic viscoelasticity measurement has a frequency of 10 rad. It is a curve in which the loss tangent (tan δ) at / rad / sec ranges from 2.6 to 3.7, and the loss tangent (tan δ) at 100 rad / sec passes through the range of 3.9 to 5.6.
Further, by setting the storage elastic modulus (G ′) curve and the loss tangent (tan δ) curve within the above numerical ranges, tailing can be made more difficult to occur. Specifically, details will be disclosed in the examples.
[0013]
According to the dynamic viscoelasticity measurement of the slurry, of the viscoelasticity, the storage elastic modulus G ′ represents an elastic component, the loss elastic modulus G ″ represents a viscous component, and the loss tangent is represented by the following equation. Large is viscous, small is elastic.
Loss tangent tan δ = loss elastic modulus G ″ / storage elastic modulus G ′
By defining at least one property of the storage modulus G ′ or the loss tangent of the slurry to be coated, the tailing length could be made as close as possible to zero. Specifically, it may be adjusted so as to obtain a desired viscoelasticity by adjusting the mixing ratio of the slurry composition, the dispersion conditions, and the like.
[0014]
The storage elastic modulus (G ′) curve of the dynamic viscoelasticity measurement by frequency dispersion at room temperature of the slurry for the positive electrode and / or negative electrode mixture layer is set to a curve passing through the above range. By keeping the storage elastic modulus (G ') low in this way, the tailing length at the end of the coating can be made zero as much as possible. Storage elastic modulus of 10 to 185 dyne / cm 2 (Frequency 10 rad / s) and 70-460 dyne / cm 2 (Frequency 100 rad / s) is limited to 10 dyne / cm 2 (Frequency 10 rad / s) and 70 dyne / cm 2 When the frequency is less than 100 rad / s, the pot life (usable time) decreases due to the instability of the slurry, and 185 dyne / cm 2 (Frequency 10 rad / s) and 460 dyne / cm 2 If the frequency exceeds 100 rad / s, the tailing length becomes longer due to the higher elasticity of the slurry. Further, when the content is in the preferable range, the above-mentioned effects are more remarkably exhibited.
[0015]
Further, the loss tangent (tan δ) curve of the dynamic viscoelasticity measurement due to the frequency dispersion at room temperature of the slurry for the positive electrode and / or the negative electrode mixture layer is a curve passing through the above range. As described above, by increasing the loss tangent (tan δ), the tailing length of the coating end portion can be made zero as much as possible. The reason why the loss tangent (tan δ) is limited to the range of 1.5 to 4.0 (frequency 10 rad / s) and 3.5 to 6.0 (frequency 100 rad / s) is 1.5 (frequency 10 rad / s). At less than 3.5 (100 rad / s), the tailing length becomes longer due to the higher elasticity of the slurry, and at more than 4.0 (frequency 10 rad / s) and 6.0 (100 rad / s), the This is because the pot life decreases due to the instability. Further, when the content is in the preferable range, the above-mentioned effects are more remarkably exhibited.
[0016]
Table 1 shows numerical values of the storage elastic modulus (G ′) and the loss tangent (tan δ) at frequencies of 10 rad / s and 100 rad / s in Examples 1 and 2 and Comparative Examples 1 and 2 described below.
[Table 1]
Figure 2004281234
[0017]
Table 2 shows numerical values of storage elastic modulus (G ′) and loss tangent (tan δ) due to frequency dispersion in Examples 1 and 2 and Comparative Examples 1 and 2 described below.
[Table 2]
Figure 2004281234
[0018]
FIG. 4 is a graph showing storage elastic modulus (G ′) curves according to the frequency of the slurries of Examples and Comparative Examples.
For example, the range of the storage modulus (G ′) is a portion surrounded by a straight line formula (Formula A) and a straight line formula (Formula B) as shown in FIG.
y = 1.85x + 55.09 --- Formula A
y = 0.64x + 6.16 --- Equation B
[0019]
FIG. 5 is a loss tangent (tan δ) curve depending on the frequency of the slurry of the example and the comparative example.
For example, the range of the loss tangent (tan δ) is a portion surrounded by a linear expression (Expression C) and a linear expression (Expression D) as shown in FIG.
y = 0.79Ln (x) +1.96 --- Formula C
y = 0.70Ln (x) +0.50 --- Equation D
Here, the curves of the storage elastic modulus (G ′) and / or the loss tangent (tan δ) are represented by the linear equation (Equation A) and the linear equation (Equation B) in FIG. Although there may be a case where the frequency deviates partially from the equation (Equation D), the values within the frequency range of 10 rad / s and 100 rad / s are within the scope of the present invention.
[0020]
The measuring method of the dynamic viscoelasticity is as follows: FLUIDS SPECTROMETER, Resource Series RFS 2 (manufactured by Tokushu Kika Kogyo Co., Ltd., trade name), and Cone Plate: Normal Cone Angle; 0.04 rad, Actual Gap; 0.051 mm And Radius: 25 mm. As a measurement sample, the sampled slurry was subjected to T.P. K. M. SPEC; A (manufactured by Rheometric Scientific F.E., trade name) using AUTO HOMO MIXER, MODEL; M; SPEC; The measurement conditions were Dynamic Mechanical Analysis (Frequency Sweep), Strain: 5%, Initial Frequency; 0.1 rad / s, Final Frequency: 100 rad / s, and Temperature: Temperature: Temperature. Numerical values of storage modulus G ′, loss modulus G ″, and tan δ (G ″ / G ′) at 10 to 100 rad / s (Frequency) were read to the first decimal place.
[0021]
(Lithium-ion battery) A lithium-ion battery is a battery that has a liquid, gel-like, and high-polymer electrolyte and generates current by the movement of lithium ions. A terminal for taking out is attached, a separator for preventing a short circuit is sandwiched between the two electrode plates, and the film is wound up and sealed in a container filled with a non-aqueous electrolyte. The positive and negative electrode active materials include those composed of a high-molecular polymer. The configuration of the lithium secondary battery includes a positive electrode current collector, a positive electrode active material layer, an electrolyte layer, a negative electrode active material layer, a negative electrode current collector, and an outer package that packages them.
[0022]
(Material, manufacturing method) As the positive electrode current collector, aluminum, nickel, or the like can be used. As the positive electrode active material layer, a structure including a lithium transition metal composite oxide, a chalcogen compound, an alloy, carbon, an electrolytic solution, a polymer positive electrode material such as polyacrylonitrile, a conductive auxiliary, a binder, and the like can be applied. As the electrolyte layer, a carbonate-based electrolyte such as propylene carbonate, ethylene carbonate, dimethyl carbonate, and ethylene methyl carbonate, an inorganic solid electrolyte made of a lithium salt, a gel electrolyte, and the like can be used. As the negative electrode active material layer, a configuration including a metal negative electrode material such as metal lithium, a lithium alloy, a metal oxide, graphite, carbon black, a metal sulfide, an electrolytic solution, polyacrylonitrile, and a binder can be applied. Copper, nickel, stainless steel, or the like can be used as the negative electrode current collector. Lithium-ion batteries are used for personal computers, portable terminal devices (mobile phones, PDAs, etc.), video cameras, electric vehicles, storage batteries for energy storage, robots, satellites, and the like.
[0023]
(Electrode) Next, the electrode will be described. The electrode plate is provided on at least one surface of the current collector with an electrode mixture layer made of a positive electrode or a negative electrode active material in a pattern, and the electrodes are formed from an exposed portion for extracting electricity and the positive electrode or the negative electrode mixture layer. Has become. A metal foil is usually used as a current collector which is a base of the electrode, and an aluminum foil is preferably used for a positive electrode plate, and a copper foil is preferably used for a negative electrode plate. The thickness of these metal foils is usually about 5 to 30 μm, preferably 5 to 20 μm.
[0024]
A slurry for a mixture layer containing at least a positive electrode or negative electrode active material and a binder is applied to a current collector and dried to form a mixture layer. The positive electrode or negative electrode mixture layer of the present invention may be formed in the aforementioned predetermined pattern. An exposed portion 15 for extracting electricity is provided in one part, and the exposed portion 15 may be provided along the longitudinal end or along the longitudinal direction. And it is sufficient.
[0025]
(Mixture layer) The cathode or anode mixture layer contains at least a cathode or anode active material and a binder. The active material includes a positive electrode active material and a negative electrode active material. As the positive electrode active material, for example, LiCoO 2 , LiNiO 2 Or LiMn 2 O 4 Or a transition metal composite oxide such as TiS 2 , MnO 2 , MoO 3 Or V 2 O 5 And other chalcogen compounds. These positive electrode active materials may be used alone or in combination of two or more. As the negative electrode active material, for example, a lithium-containing metal such as lithium metal or a lithium alloy, or a carbonaceous material such as graphite, carbon black or acetylene black is preferably used. In particular, LiCoO 2 Is used as a positive electrode active material, and a carbonaceous material is used as a negative electrode active material, whereby a lithium secondary battery having a high discharge voltage of about 4 volts can be obtained. The positive electrode active material and the negative electrode active material are preferably powders having an average particle size of about 1 to 100 μm in order to uniformly disperse these active materials in a coating layer.
[0026]
(Binder) The binder is made of one or more of a thermoplastic, thermosetting or ionizing radiation-curable synthetic or natural resin, and a conductive agent or a thickener may be added as necessary. As the thermoplastic resin, for example, more specifically, polyester resin, polyamide resin, polyacrylate resin, polycarbonate resin, polyurethane resin, cellulose resin, polyolefin resin, polyvinyl resin, fluorine resin or polyimide resin is used. be able to. At this time, an acrylate monomer or oligomer having a reactive functional group introduced therein can be mixed into the binder. In addition, it is also possible to use a rubber-based resin, an acrylic resin, a thermosetting resin such as an urethane resin, an ionizing radiation-curable resin composed of an acrylate monomer, an acrylate oligomer or a mixture thereof, and a mixture of the above various resins. it can. Preferably, a binder of a cellulose resin such as carboxymethyl cellulose or a rubber-based or fluorine-based resin such as styrene-butadiene rubber is used. Fluorinated resins are preferably used as a binder, and among them, polyvinylidene fluoride is particularly preferred.
[0027]
As the conductive agent, for example, a carbonaceous material such as graphite, carbon black, acetylene black, and Ketjen black is used as necessary.
[0028]
(Slurry for mixture layer) A slurry for mixture layer is prepared by mixing an active material, a binder, and other components as necessary. For example, an appropriately selected active material and a binder are put into an organic solvent such as toluene, methyl ethyl ketone, N-methyl-2-pyrrolidone, water or a mixture thereof, and a conductive agent is added as necessary. To dissolve or disperse to prepare a slurry (also referred to as a slurry or ink). The method of dispersing or dissolving is not particularly limited, for example, a kneading or dispersing machine, for example, a dispersing machine such as a planetary mixer, a homogenizer, a ball mill, a sand mill, a roll mill, an attritor, a high-speed impeller, a disper, a high-speed mixer, a ribbon blender, A co-kneader, an intensive mixer, a tumbler, a blender, a disperser, an ultrasonic disperser, and the like can be applied. The mixing ratio at this time is preferably such that the total amount of the active material and the binder is about 35 to 90 parts by mass when the whole slurry is 100 parts by mass. The mixing ratio of the active material and the binder may be the same as the conventional one. For example, in the case of a positive electrode, the active material: conductive agent: binder is preferably about 100: 0 to 50: 1 to 10 (mass ratio). In the case of a negative electrode, it is preferable that active material: conductive agent: binder = about 100: 0 to 50: 1 to 10 (mass ratio).
[0029]
As described above, a curve of the storage elastic modulus (G ′) and / or the loss tangent tan δ at 10 rad / sec and 100 rad / sec obtained by measuring the dynamic viscoelasticity at room temperature of the slurry having the above composition is desired. By adjusting so as to pass through the range, even if the application is performed in a pattern, the application end portion can be applied with little tailing.
[0030]
(Coating method) The slurry thus prepared is applied on a current collector and dried to form a mixture layer. The method of applying the slurry for the mixture layer is not particularly limited, but a method capable of forming a thick coating layer, such as a slot die coat, a slit die coat, a slide die coat, a comma direct coat, or a comma reverse coat, is suitable. .
[0031]
(Patterning method) The method of forming the mixture layer in a predetermined pattern is to apply the electrode slurry on the current collector while mechanically controlling the coater head by a coating method, and to form a non-coating part with the coating part. A method of directly forming a pattern of a processed portion or a method of forming a coated film on the entire surface of a current collector and then partially peeling the coated film by a mechanical means such as a spatula to form an uncoated portion There is. In the case of the former method, the discharge start and the discharge stop of the active material slurry from the coater head are repeated while moving the coater head and / or the current collector in accordance with the pattern of the coating portion or the non-coating portion, or Each time the coating operation reaches the boundary between the coating part and the non-coating part, the movement of the coater head and / or the current collector is stopped and restarted, the coater head is separated from and re-approached to the coating surface, and the electrode slurry is removed. Operations such as stopping and restarting the ejection in synchronization with each other and repeating the operation are performed.
[0032]
As a heat source in the drying step, hot air, infrared light, microwave, high frequency, or a combination thereof can be used. In the drying step, a metal roller or a metal sheet for supporting or pressing the current collector may be dried by heating and releasing heat. After drying, the mixture layer can be obtained by irradiating an electron beam or radiation to cause a crosslinking reaction of the binder. The application and the drying may be repeated a plurality of times. The thickness of the mixture layer when dried is usually in the range of 10 to 200 μm, preferably 50 to 170 μm.
[0033]
(Pressing) The obtained mixture layer is pressed. By the pressing, the homogeneity of the electrode plate is improved, and the area of the electrode plate that can be wound into the battery can be increased by making the electrode thin. By pressing each of the positive and negative electrode plates that greatly affect the performance of the secondary battery, the charge / discharge cycle life can be extended and the energy density can be enhanced. The press working is performed using, for example, a metal roll, an elastic roll, a heating roll, a sheet press, or the like. Pressing pressure is usually 4903-73550 N / cm 2 (500-7500kgf / cm 2 ), Preferably 29420-49033 N / cm 2 (3000-5000kgf / cm 2 ). 4903N / cm 2 (500kgf / cm 2 If the pressing pressure is lower than the above, it is difficult to obtain uniformity of the mixture layer, and 73550 N / cm 2 (7500kgf / cm 2 If the pressing pressure is higher than that of ()), the electrode plate itself including the current collector may be damaged. The mixture layer may have a predetermined thickness by one press, or may be pressed several times for the purpose of improving homogeneity and / or increasing density.
[0034]
When controlling the pressure of the roll press by the linear pressure, the pressure is adjusted according to the diameter of the pressure roll, but usually the linear pressure is set to 4.9 to 19614 N / cm (0.5 kgf / cm to 2 tf / cm). In consideration of the thickness of the electrode plate after pressing, pressing may be performed several times or multi-stage pressing may be performed. Further, while the mixture layer is being dried, a surface smooth film such as a polyethylene terephthalate film may be lightly pressed on the surface and peeled off again to smooth the surface of the mixture layer.
[0035]
(Slit, cut) The shape of the electrode plate is elongated. For example, in the case of a positive electrode material of a lithium ion battery for a mobile phone, the width of the short side is about 20 to 70 mm and the length of the long side is about 0.2 to 1 m. . In the case of a coin battery, the width of the short side is about 1 to 100 mm, and the length of the long side is about 50 to 1000 mm. To this end, the electrode plate manufacturing process described above is performed using a wide and long winding body that can have a plurality of widths and lengths. At the stage when the press working is completed, the electrode plate is cut into a predetermined width and length, or into a predetermined shape in the case of a coin type, to form an electrode plate.
[0036]
(Assembly of Battery) When a secondary battery is manufactured using the electrode plate manufactured by the above-described method, heating is performed in order to remove moisture in the mixture layer before moving to a battery assembly process. It is preferable to perform a treatment, a decompression treatment, or the like in advance.
When, for example, a lithium secondary battery is manufactured using this electrode plate, a non-aqueous electrolyte obtained by dissolving a lithium salt as a solute in an organic solvent is used. As the lithium salt, for example, LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCl, LiBr and other inorganic lithium salts, or LiB (C 6 H 5 ) 4, LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , LiOSO 2 CF 3 , LiOSO 2 C 2 F 5 , LiOSO 2 C 3 F 7 , LiOSO 2 C 4 F 9 , LiOSO 2 C 5 F 11 , LiOSO 2 C 6 F Thirteen , LiOSO 2 C 7 F Fifteen And the like are used.
[0037]
Examples of the organic solvent for dissolving the lithium salt include cyclic esters, chain esters, cyclic ethers, and chain ethers. More specifically, examples of the cyclic esters include propylene carbonate, butylene carbonate, γ-butyrolactone, vinylene carbonate, 2-methyl-γ-butyrolactone, acetyl-γ-butyrolactone, and γ-valerolactone.
Examples of chain esters include ethylene carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, methyl butyl carbonate, methyl propyl carbonate, ethyl butyl carbonate, ethyl propyl carbonate, butyl propyl carbonate, and alkyl propionate. Examples thereof include esters, dialkyl malonates, alkyl acetates, and the like.
[0038]
Examples of the cyclic ethers include tetrahydrofuran, alkyltetrahydrofuran, dialkyltetrahydrofuran, alkoxytetrahydrofuran, dialkoxytetrahydrofuran, 1,3-dioxolan, alkyl-1,3-dioxolan, 1,4-dioxolan and the like.
Examples of the chain ether include 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, ethylene glycol dialkyl ether, diethylene glycol dialkyl ether, triethylene glycol dialkyl ether, and tetraethylene glycol dialkyl ether. Can be.
[0039]
If a terminal for taking out current is attached to each of the positive electrode plate and the negative electrode plate, a separator is inserted between the two electrode plates to prevent a short circuit, and then wound, and sealed in a battery case container filled with a non-aqueous electrolyte, It becomes a non-aqueous electrolyte secondary battery.
[0040]
【Example】
(Example 1)
LiCoO as positive electrode active material 2 100 parts by mass of the powder, 2 parts by mass of acetylene black as a conductive additive for the positive electrode, 1.2 parts by mass of a binder for the positive electrode, and N-methyl-pyrrolidone as a solvent were mixed and stirred using a planetary mixer and dispersed. By doing so, a slurry was prepared. The slurry was intermittently applied to both sides of a 15 μm-thick aluminum foil using a die coater. Coating amount per side is about 250g / m 2 , Pattern length, coating length, etc. were set arbitrarily. The tailing length at the end of the coating was 0.1 mm.
The storage elastic modulus and loss tangent of the slurry are shown in Table 1. Also, Table 1 shows the battery capacity when the coin type lithium ion secondary battery <3032 size> was replaced.
[0041]
(Comparative Example 1)
The slurry was formulated as shown in Table 1, and mixed and stirred and dispersed using a planetary mixer to prepare a slurry, which was coated in the same manner as in Example 1. The tailing length of the terminal end of the coating was 1.5 mm, and the dynamic viscoelasticity measurement and battery capacity of the used slurry are shown in Table 1.
[0042]
(Example 2)
The composition of the slurry was the same as in Comparative Example 1, but after mixing, stirring and dispersing using a planetary mixer, a slurry was prepared by further dispersing using a disper, and coated in the same manner as in Example 1. . The tailing length at the end of the coating was 0.3 mm, and the dynamic viscoelasticity measurement of the slurry and the battery capacity were shown in Table 1. Due to the change in the viscoelastic behavior of the slurry, the battery capacity was improved by 1.56% as compared with Comparative Example 1.
[0043]
(Comparative Example 2)
Coating was performed in the same manner as in Example 1 except that the slurry was blended as shown in Table 1 and mixed and stirred using a planetary mixer to disperse the slurry. The tailing length of the terminal end of the coating was 1.5 mm, and the dynamic viscoelasticity measurement and battery capacity of the used slurry are shown in Table 1.
[0044]
(Comparative Example 3)
Slurries were prepared according to the formulation shown in "Table 1", and a slurry was prepared in the same manner as in Example 1. However, the pot life was short, dynamic viscoelasticity could not be measured, and coating was not possible.
[0045]
The values of the storage elastic modulus G ′ and the loss tangent tan δ in the table are those at a frequency of 10 to 100 rad / s, and the battery capacity is 140 mAh / g of lithium cobalt oxide, and the coin-type lithium battery (3032 Size) when replaced by battery capacity.
[0046]
(Example 3, negative electrode plate)
As a negative electrode mixture, 100 parts by mass of a graphite material which can be doped and dedoped with lithium and 2 parts by mass of a binder are dissolved or dispersed in a solvent (water), and the storage elastic modulus is 80 to 412 dyne / cm. 2 , Tan δ = 1.9 to 2.2 to obtain a negative electrode mixture composition coating liquid (slurry) by a planetary mixer method. The negative electrode mixture composition coating liquid (slurry) was applied as a negative electrode current collector 43 onto a copper foil surface having a thickness of 10 μm and a coating amount after drying of 120 g / m 2. 2 Was applied by a die coating method and dried, and then applied and dried on the other surface in the same manner. At this time, the coating pattern (the pattern of the positive electrode mixture layer 45) was set arbitrarily, and the pattern positions on both surfaces were formed by an intermittent die coating method so that the starting portions were the same.
[0047]
(Evaluation) The tailing of the coating end portion in each of Examples 1 and 2 and Comparative Examples 1 and 2 was visually measured using a JIS first-grade gold scale and a 20-fold loupe, and the results are shown in Table 1. Example 1 was 0.1 mm, Example 2 was 0.3 mm, and Example 3 was not shown, but 0.4 mm, which was 0.5 mm or less.
In Comparative Examples 1 and 2, the tailing was as large as 1.5 mm or more, and in Comparative Example 3, coating itself was impossible.
[0048]
(Examples 4 and 5, battery of the present invention)
The electrode plates of Examples 1 and 2 were pressed by a roll press machine such that the thickness of the double-sided coated portion became 170 μm. A positive electrode plate was cut out into a predetermined shape and size. The copper foil provided with the negative electrode mixture layer 45 on both surfaces of Example 3 was pressed by a roll press machine so that the thickness of the coated portion on both surfaces was 170 μm. A negative electrode plate was cut out to a predetermined shape and dimensions.
Tabs are respectively attached to the above-mentioned positive electrode and negative electrode plates, laminated and wound several times through a separator 23 made of a microporous film made of polypropylene, and after a flat spiral shape, the planar shape becomes a substantially square shape. The electrode group was obtained by cutting the corners of the electrode group into arcs. The lead terminal portions of the electrodes were connected by spot welding to the inner bottom portion of the battery container and the inner top portion of the battery sealing plate, respectively. As the battery container, a circular half-shelled positive electrode and negative electrode case were used, and LiPF was added to a solution of ethylene carbonate: dimethyl carbonate = 1: 1 (mass ratio) as a non-aqueous solvent. 6 Was dissolved at 1 mol / 1 L to obtain an organic electrolyte (non-aqueous electrolyte). This organic electrolytic solution was poured into a battery container containing the electrodes, and the battery container and the sealing plate were caulked and closed via a polypropylene packing to obtain a coin-type lithium ion secondary battery.
[0049]
(Comparative example 4, conventional battery)
A coin-type lithium ion secondary battery was obtained in the same manner as in Example 4, except that the electrode plates of Comparative Examples 1 and 2 were used as the positive electrode, and a known and existing electrode plate was used as the negative electrode.
[0050]
The battery capacities of all of the examples were higher than those of the comparative examples.
As a charge / discharge test, when 500 cycles of charge / discharge were performed, all of the 10 batteries tested using the electrode plate of the example could be normally charged / discharged, but the battery using the electrode plate of the comparative example did not. Of the ten tested, two were defective.
[0051]
【The invention's effect】
By limiting the viscoelasticity of the mixture composition slurry, the processability of application is good, and even when applied in a pattern, tailing is difficult.
The electrode plate manufactured using the mixture composition slurry has an improved manufacturing yield and can be manufactured at low cost.
In addition, in a non-aqueous electrolyte battery using the electrode plate, lithium metal is unlikely to precipitate on the negative electrode plate in the form of dendrite (columnar shape), and there is little danger of short-circuiting. And high capacity.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a non-aqueous electrolyte battery showing one embodiment of the present invention.
FIG. 2 is a cross-sectional view illustrating a configuration of an electrode plate group.
FIG. 3 is a plan view illustrating tailing of a mixture layer of a positive electrode and a negative electrode.
FIG. 4 is a storage elastic modulus (G ′) curve with respect to the frequency of the slurries of Examples and Comparative Examples.
FIG. 5 is a loss tangent (tan δ) curve depending on the frequency of the slurry of the example and the comparative example.
[Explanation of symbols]
1 Non-aqueous electrolyte battery
11 Negative electrode case
13 Positive electrode case
15 Gasket
21 Electrode group
23 Separator
31 Positive electrode plate
33 positive electrode current collector
35 Positive electrode mixture layer
41 Negative electrode plate
43 Negative electrode current collector
45 Negative electrode mixture layer
51 Coating start end
53 Coating end

Claims (10)

集電体の少なくとも一方の面へ、電極合剤層用スラリを塗布し乾燥して、パターン状に電極合剤層を設けた電極極板において、該電極合剤層の塗布終端部の尾引き長さが0より大きく0.5mm以下であることを特徴とする電極極板。On at least one surface of the current collector, the slurry for the electrode mixture layer is applied and dried, and in the electrode electrode plate provided with the electrode mixture layer in a pattern, tailing of the terminal end of application of the electrode mixture layer is performed. An electrode plate having a length greater than 0 and 0.5 mm or less. 上記電極極板が、正極極板又は負極極板であることを特徴とする請求項1に記載の正極又は負極極板。The positive or negative electrode plate according to claim 1, wherein the electrode plate is a positive or negative electrode plate. ケース内部にリチウム塩を溶解した非水電解液と、正極集電体へ正極合剤層を設けた正極極板と、負極集電体へ負極合剤層を設けた負極極板とを、セパレーターを介して巻回した極板群を備えた非水電解液電池における、正極又は負極電極合剤層を形成するための正極又は負極合剤層用スラリにおいて、上記正極及び/又は負極合剤層用スラリの室温での周波数分散による動的粘弾性測定の貯蔵弾性率(G’)曲線が、周波数10rad/秒における貯蔵弾性率(G’)が10〜185dyne/cmの範囲、かつ、100rad/秒における貯蔵弾性率G’が70〜460dyne/cmの範囲を通過する曲線であることを特徴とする正極及び/又は負極合剤層用スラリ。A non-aqueous electrolyte in which a lithium salt is dissolved inside the case, a positive electrode plate provided with a positive electrode mixture layer on a positive electrode current collector, and a negative electrode plate provided with a negative electrode mixture layer on a negative electrode current collector are separated by a separator. In a slurry for a positive electrode or negative electrode mixture layer for forming a positive electrode or negative electrode electrode mixture layer in a nonaqueous electrolyte battery provided with an electrode group wound through a positive electrode and / or a negative electrode mixture layer, The storage elastic modulus (G ′) curve of the dynamic viscoelasticity measurement by frequency dispersion at room temperature of the slurry for use has a storage elastic modulus (G ′) at a frequency of 10 rad / sec in the range of 10 to 185 dyne / cm 2 and 100 rad. A slurry for a positive electrode and / or a negative electrode mixture layer, characterized in that the storage elastic modulus G ′ at a rate of / d is a curve passing through a range of 70 to 460 dyne / cm 2 . 上記動的粘弾性測定の貯蔵弾性率(G’)曲線が、周波数10rad/秒における貯蔵弾性率(G’)が10〜70dyne/cmの範囲、かつ、100rad/秒における貯蔵弾性率G’が70〜230dyne/cmの範囲を通過する曲線であることを特徴とする請求項3に記載の正極及び/又は負極合剤層用スラリ。The storage elastic modulus (G ′) curve of the above dynamic viscoelasticity measurement shows that the storage elastic modulus (G ′) at a frequency of 10 rad / sec is in the range of 10 to 70 dyne / cm 2 and the storage elastic modulus G ′ at 100 rad / sec. Is a curve passing through the range of 70 to 230 dyne / cm 2, the slurry for a positive electrode and / or negative electrode material mixture layer according to claim 3, wherein ケース内部にリチウム塩を溶解した非水電解液と、正極集電体へ正極合剤層を設けた正極極板と、負極集電体へ負極合剤層を設けた負極極板とを、セパレーターを介して巻回した極板群を備えた非水電解液電池における、正極又は負極電極合剤層を形成するための正極又は負極合剤層用スラリにおいて、上記正極及び/又は負極合剤層用スラリの室温での周波数分散による動的粘弾性測定の損失正接(tanδ)曲線が、周波数10rad/秒における損失正接(tanδ)が1.5〜4.0の範囲、かつ、100rad/秒における損失正接(tanδ)が3.5〜6.0の範囲を通過する曲線であることを特徴とする正極及び/又は負極合剤層用スラリ。A non-aqueous electrolyte in which a lithium salt is dissolved inside the case, a positive electrode plate provided with a positive electrode mixture layer on a positive electrode current collector, and a negative electrode plate provided with a negative electrode mixture layer on a negative electrode current collector are separated by a separator. In a slurry for a positive electrode or negative electrode mixture layer for forming a positive electrode or negative electrode electrode mixture layer in a nonaqueous electrolyte battery provided with an electrode group wound through a positive electrode and / or a negative electrode mixture layer, The loss tangent (tan δ) curve of dynamic viscoelasticity measurement by frequency dispersion at room temperature of the slurry for application shows that the loss tangent (tan δ) at a frequency of 10 rad / sec is in the range of 1.5 to 4.0 and at 100 rad / sec. A slurry for a positive electrode layer and / or a negative electrode mixture layer, wherein the loss tangent (tan δ) is a curve passing through a range of 3.5 to 6.0. 上記動的粘弾性測定の損失正接(tanδ)曲線が、周波数10rad/秒における損失正接(tanδ)が2.6〜3.7の範囲、かつ、100rad/秒における損失正接(tanδ)が3.9〜5.6の範囲を通過する曲線であることを特徴とする請求項5に記載の正極及び/又は負極合剤層用スラリ。The loss tangent (tan δ) curve of the dynamic viscoelasticity measurement shows that the loss tangent (tan δ) at a frequency of 10 rad / sec is in the range of 2.6 to 3.7, and the loss tangent (tan δ) at 100 rad / sec is 3. The slurry for a positive electrode and / or negative electrode material mixture layer according to claim 5, wherein the slurry passes a range of 9 to 5.6. 上記正極及び/又は負極合剤層用スラリの室温での周波数分散による動的粘弾性測定の貯蔵弾性率(G’)曲線が、周波数10rad/秒における貯蔵弾性率(G’)が10〜185dyne/cmの範囲、かつ100rad/秒における貯蔵弾性率G’が70〜460dyne/cmの範囲を通過する曲線であり、かつまた、動的粘弾性測定の損失正接(tanδ)曲線が、周波数10rad/秒における損失正接(tanδ)が1.5〜4.0の範囲、かつ、100rad/秒における損失正接(tanδ)が3.5〜6.0の範囲を通過する曲線であることを特徴とする正極及び/又は負極合剤層用スラリ。The storage elastic modulus (G ′) curve of the dynamic viscoelasticity measurement based on frequency dispersion at room temperature of the slurry for the positive electrode and / or negative electrode mixture layer shows that the storage elastic modulus (G ′) at a frequency of 10 rad / sec is 10 to 185 dyne. / Cm 2 , and the storage modulus G ′ at 100 rad / sec is a curve passing through a range of 70 to 460 dyne / cm 2 , and the loss tangent (tan δ) curve of the dynamic viscoelasticity measurement is represented by a frequency It is a curve in which the loss tangent (tan δ) at 10 rad / sec passes through the range of 1.5 to 4.0 and the loss tangent (tan δ) at 100 rad / sec passes through the range of 3.5 to 6.0. A slurry for a positive electrode and / or a negative electrode mixture layer. 集電体の少なくとも一方の面へ、電極合剤層用スラリを塗布し乾燥して、パターン状に電極合剤層を設けた電極極板において、前記電極合剤層用スラリとして請求項3〜7のいずれかに記載の正極及び/又は負極合剤層用スラリを用いた正極及び/又は負極合剤層の塗布終端部の尾引き長さが0より大きく0.5mm以下であることを特徴とする正極及び/又は負極極板。The slurry for the electrode mixture layer is applied to at least one surface of the current collector and dried to form a slurry for the electrode mixture layer on the electrode plate provided with the electrode mixture layer in a pattern. 7. The tailing length of the coating end portion of the positive electrode and / or the negative electrode mixture layer using the slurry for the positive electrode and / or the negative electrode mixture layer according to any of 7 above is larger than 0 and 0.5 mm or less. Positive and / or negative electrode plates. 少なくとも請求項1〜2のいずれかに記載の正極及び負極極板とを、セパレーターを介して巻回した極板群を備えたことを特徴とする非水電解液電池。A non-aqueous electrolyte battery comprising: an electrode group in which at least the positive electrode and the negative electrode according to claim 1 are wound with a separator interposed therebetween. 少なくとも請求項8に記載の正極及び負極極板とを、セパレーターを介して巻回した極板群を備えたことを特徴とする非水電解液電池。A non-aqueous electrolyte battery comprising: an electrode group in which at least the positive electrode and the negative electrode according to claim 8 are wound with a separator interposed therebetween.
JP2003071142A 2003-03-17 2003-03-17 Slurries for electrode mixture layers, electrode plates, and non-aqueous electrolyte batteries Expired - Fee Related JP4357857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003071142A JP4357857B2 (en) 2003-03-17 2003-03-17 Slurries for electrode mixture layers, electrode plates, and non-aqueous electrolyte batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071142A JP4357857B2 (en) 2003-03-17 2003-03-17 Slurries for electrode mixture layers, electrode plates, and non-aqueous electrolyte batteries

Publications (2)

Publication Number Publication Date
JP2004281234A true JP2004281234A (en) 2004-10-07
JP4357857B2 JP4357857B2 (en) 2009-11-04

Family

ID=33287650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071142A Expired - Fee Related JP4357857B2 (en) 2003-03-17 2003-03-17 Slurries for electrode mixture layers, electrode plates, and non-aqueous electrolyte batteries

Country Status (1)

Country Link
JP (1) JP4357857B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156102A (en) * 2004-11-29 2006-06-15 Dainippon Printing Co Ltd Coating composition for positive electrode active material layer, positive electrode plate formed from composition, and nonaqueous electrolytic solution secondary battery having this positive electrode plate
JP2018534731A (en) * 2015-12-10 2018-11-22 エルジー・ケム・リミテッド Conductive material dispersion and lithium secondary battery produced using the same
JP2019050108A (en) * 2017-09-08 2019-03-28 日産自動車株式会社 Electrode active material slurry
WO2019082587A1 (en) * 2017-10-23 2019-05-02 Necエナジーデバイス株式会社 Water-based electrode slurry, electrode for lithium ion battery, lithium ion battery, and manufacturing method of electrode for lithium ion battery
WO2019111616A1 (en) * 2017-12-06 2019-06-13 Necエナジーデバイス株式会社 Current collector electrode sheet, method of manufacturing same, battery, and method of manufacturing same
WO2020067504A1 (en) * 2018-09-28 2020-04-02 積水化学工業株式会社 Lithium-ion secondary battery electrode, method for manufacturing same, and lithium-ion secondary battery
CN111247667A (en) * 2017-10-19 2020-06-05 远景Aesc能源元器件有限公司 Method for manufacturing collector electrode sheet, and battery
WO2020116080A1 (en) * 2018-12-03 2020-06-11 株式会社エンビジョンAescエナジーデバイス Collector electrode sheet and battery
CN111312993A (en) * 2020-03-03 2020-06-19 宁德新能源科技有限公司 Electrochemical device and electronic device
CN113711393A (en) * 2019-08-29 2021-11-26 富士胶片和光纯药株式会社 Binder for electricity storage device for improving dispersibility of conductive auxiliary agent
EP4020622A4 (en) * 2020-03-03 2023-12-20 Ningde Amperex Technology Limited Electrochemical device and electronic device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156102A (en) * 2004-11-29 2006-06-15 Dainippon Printing Co Ltd Coating composition for positive electrode active material layer, positive electrode plate formed from composition, and nonaqueous electrolytic solution secondary battery having this positive electrode plate
US10727477B2 (en) 2015-12-10 2020-07-28 Lg Chem, Ltd. Conductive material dispersed liquid and lithium secondary battery manufactured using same
JP2018534731A (en) * 2015-12-10 2018-11-22 エルジー・ケム・リミテッド Conductive material dispersion and lithium secondary battery produced using the same
JP2019050108A (en) * 2017-09-08 2019-03-28 日産自動車株式会社 Electrode active material slurry
US11563207B2 (en) 2017-10-19 2023-01-24 Envision Aesc Japan Ltd. Method of manufacturing current collector electrode sheet, current collector electrode sheet, and battery
EP3699982A4 (en) * 2017-10-19 2021-07-28 NEC Energy Devices, Ltd. Method for manufacturing current collector electrode sheet, current collector electrode sheet, and battery
CN111247667A (en) * 2017-10-19 2020-06-05 远景Aesc能源元器件有限公司 Method for manufacturing collector electrode sheet, and battery
CN111247667B (en) * 2017-10-19 2023-08-29 株式会社Aesc日本 Method for manufacturing collector electrode sheet, and battery
WO2019082587A1 (en) * 2017-10-23 2019-05-02 Necエナジーデバイス株式会社 Water-based electrode slurry, electrode for lithium ion battery, lithium ion battery, and manufacturing method of electrode for lithium ion battery
JPWO2019082587A1 (en) * 2017-10-23 2020-11-12 株式会社エンビジョンAescエナジーデバイス Method for manufacturing water-based electrode slurry, electrode for lithium ion battery, electrode for lithium ion battery and electrode for lithium ion battery
JP7235669B2 (en) 2017-10-23 2023-03-08 株式会社エンビジョンAescジャパン Aqueous electrode slurry, lithium-ion battery electrode, lithium-ion battery, and method for producing lithium-ion battery electrode
CN111433944A (en) * 2017-12-06 2020-07-17 远景Aesc能源元器件有限公司 Collector electrode sheet and method for manufacturing same, and battery and method for manufacturing same
CN111433944B (en) * 2017-12-06 2023-05-26 远景Aesc日本有限公司 Collector electrode sheet and method for manufacturing same, battery and method for manufacturing same
JPWO2019111616A1 (en) * 2017-12-06 2020-11-19 株式会社エンビジョンAescエナジーデバイス Current collector electrode sheet, its manufacturing method, battery, and its manufacturing method
WO2019111616A1 (en) * 2017-12-06 2019-06-13 Necエナジーデバイス株式会社 Current collector electrode sheet, method of manufacturing same, battery, and method of manufacturing same
WO2020067504A1 (en) * 2018-09-28 2020-04-02 積水化学工業株式会社 Lithium-ion secondary battery electrode, method for manufacturing same, and lithium-ion secondary battery
JP7177210B2 (en) 2018-09-28 2022-11-22 積水化学工業株式会社 Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2021119568A (en) * 2018-09-28 2021-08-12 積水化学工業株式会社 Electrode for lithium-ion secondary battery, manufacturing method thereof, and lithium-ion secondary battery
JPWO2020067504A1 (en) * 2018-09-28 2021-02-15 積水化学工業株式会社 Electrodes for lithium-ion secondary batteries, their manufacturing methods, and lithium-ion secondary batteries
WO2020116080A1 (en) * 2018-12-03 2020-06-11 株式会社エンビジョンAescエナジーデバイス Collector electrode sheet and battery
CN113711393A (en) * 2019-08-29 2021-11-26 富士胶片和光纯药株式会社 Binder for electricity storage device for improving dispersibility of conductive auxiliary agent
CN111312993A (en) * 2020-03-03 2020-06-19 宁德新能源科技有限公司 Electrochemical device and electronic device
EP4020622A4 (en) * 2020-03-03 2023-12-20 Ningde Amperex Technology Limited Electrochemical device and electronic device

Also Published As

Publication number Publication date
JP4357857B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
KR100770518B1 (en) Lithium ion secondary battery
JP3652769B2 (en) Electrode plate for non-aqueous electrolyte secondary battery
US7854773B2 (en) Method of producing an electrode plate for a nonaqueous electrolyte secondary battery
KR101964068B1 (en) Method for preparing conductive material, conductive material prepared thereby and lithium secondary battery comprising the same
KR20090066031A (en) Anode active material for secondary battery and method for preparing the same
JP2004311282A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2012022858A (en) Method for manufacturing electrode
JP4848725B2 (en) Electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4357857B2 (en) Slurries for electrode mixture layers, electrode plates, and non-aqueous electrolyte batteries
JP4830434B2 (en) Electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4081833B2 (en) Sealed non-aqueous electrolyte secondary battery
JPH1125955A (en) Electrode sheet and non-aqueous electrolyte secondary battery using the same
JP4075109B2 (en) Non-aqueous secondary battery
JP5200329B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5114857B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2007134149A (en) Nonaqueous electrolyte battery
JP4834975B2 (en) Coating composition for active material layer, electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JPH1167277A (en) Lithium secondary battery
JP2010010093A (en) Manufacturing method of secondary battery electrode group and secondary battery
JP2019212464A (en) Manufacturing method of lithium ion battery
JP3646519B2 (en) Non-aqueous secondary battery electrode sheet and non-aqueous secondary battery using them
JP2004139800A (en) Nonaqueous electrolyte battery and its electrode plate
JP4527423B2 (en) Coating composition for active material layer, electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4774728B2 (en) Coating composition for positive electrode active material layer, positive electrode plate formed from the composition, and nonaqueous electrolyte secondary battery having the positive electrode plate
JPH09259890A (en) Electrode applying solution and electrode plate for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees