JP2004280009A - Optical waveguide and its manufacturing method - Google Patents

Optical waveguide and its manufacturing method Download PDF

Info

Publication number
JP2004280009A
JP2004280009A JP2003075014A JP2003075014A JP2004280009A JP 2004280009 A JP2004280009 A JP 2004280009A JP 2003075014 A JP2003075014 A JP 2003075014A JP 2003075014 A JP2003075014 A JP 2003075014A JP 2004280009 A JP2004280009 A JP 2004280009A
Authority
JP
Japan
Prior art keywords
core
waveguide
mirror
width
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003075014A
Other languages
Japanese (ja)
Inventor
Mamoru Ishizaki
守 石崎
Atsushi Sasaki
淳 佐々木
Shinichi Inoue
真一 井上
Hatsune Hara
初音 原
Taketo Tsukamoto
健人 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2003075014A priority Critical patent/JP2004280009A/en
Publication of JP2004280009A publication Critical patent/JP2004280009A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure which is suitable for manufacture of a core connecting many arbitrary points. <P>SOLUTION: An optical waveguide has a plurality of cores held by a clad, and the extension direction of two linear waveguides included in a 1st core are made to nearly match with the extension direction of linear waveguides included in the other core. At an intersection of linear waveguides, an in-surface mirror for connecting them is provided and at a waveguide end, an oblique mirror for connection with an external element is provided. Consequently, area needed for direction conversion can be made small. Directions of a linear waveguide group are limited to two kinds and then directions of the in-plane mirrors and oblique mirrors can be limited to four kinds to facilitate processing. The width of the in-plane mirror and the oblique mirror are made wide to reduce loss. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光インターコネクション等に使用する光導波路及びその製造方法に関する。
【0002】
【従来の技術】
近年、光通信技術の進展によって、光の優位性が実証されてきた。また、LSI等の信号の高速化に伴い、電気信号を光信号に置き換える技術の研究開発が進められている。その伝送媒体として、光導波路が期待されている。
【0003】
近年開発が進められている高分子光導波路は、大面積に形成することが可能であり、1cm〜1mのオーダーの光インターコネクションへの適用が図られている。即ち、信号伝達方式として電気配線の代わりに光配線を用いることが試みられており、光配線として光導波路が用いられている。
【0004】
従来の光導波路では、直線導波路、曲線導波路、導波路端の斜めミラーが用いられてきた(例えば非特許文献1参照)。基本的には直線導波路が用いられ、光配線の位置や向きを変える目的で曲線導波路が、面状光素子または受光素子(併せて外部素子という)との接続のために斜めミラーが用いられている。
【0005】
しかし、コア(光配線)の数が増え、回路が複雑になると、多くの光配線を任意の位置に設けることが必要になるが、そのためには、直線導波路と曲線導波路の組み合わせでは限界がある。なぜなら、曲線導波路の曲率半径が小さいほど損失が大きくなるので、曲率半径はあまり小さくできない。そして、一定の曲率半径以上で方向を変えるには大面積が必要になり、実装密度を上げられないからである。
【0006】
【非特許文献1】
電子情報通信学会誌Vol.84 No.9 pp.656−662 2001年9月(p.661、図8)
【0007】
【発明が解決しようとする課題】
本発明は、係る従来技術の状況に鑑みてなされたもので、多数かつ任意の点を結ぶコアを作製するのに適した構造を提供することを課題とする。
【0008】
【課題を解決するための手段】
上記の課題を達成するために、まず請求項1の発明は、複数のコアがクラッドで狭持された光導波路であって、第1のコアは少なくとも2方向に延長され、かつ、交差部に設けられた面内ミラーで接続される複数の直線導波路を含み、他のコアは前記第1のコアに含まれる直線導波路の少なくとも1の延長方向と略一致する直線導波路を含むことを特徴とする光導波路である。
請求項2の発明は、上記面内ミラーのコアを入射側直線導波路に直交する面に投影した幅が、入射側直線導波路のコアの幅よりも大きいことを特徴とする請求項1に記載の光導波路である。
請求項3の発明は、上記面内ミラーのコアを入射側直線導波路に直交する面に投影した幅が、入射側直線導波路のコアの幅よりも大きく、面内ミラーのコアを出射側直線導波路に直交する面に投影した幅が、出射側直線導波路のコアの幅以下であることを特徴とする請求項1〜2の何れかに記載の光導波路である。
請求項4の発明は、上記直線導波路の端部に外部素子と接続する斜めミラーが設けられていることを特徴とする請求項1記載の光導波路である。
請求項5の発明は、上記斜めミラーのコアの幅が、直線導波路のコアの幅よりも大きいことを特徴とする請求項4に記載の光導波路である。
請求項6の発明は、上記斜めミラーのうち、光出射ミラーのコアの幅が、直線導波路のコアの幅よりも大きいことを特徴とする請求項4〜5の何れかに記載の光導波路である。
請求項7の発明は、複数の直線導波路のパターンと、直線導波路を接続する面内ミラーのパターンを有するフォトマスクを用い、コアのパターンを形成することを特徴とする光導波路の製造方法である。
【0009】
【発明の実施の形態】
本発明の実施の形態について、以下詳細に説明する。
本発明の一つは、図1のように、第1のコアAに含まれる少なくとも2の直線導波路7の延長方向と、他のコアBに含まれる直線導波路の延長方向の少なくとも1が略一致することである。ここで、延長方向が略一致するとは、方向の差異が10°以内に収まることをいう。また、第1のコアの2の直線導波路の交差部にはそれらを接続する面内ミラー5が設けられ、好ましくは、導波路端に外部素子と接続する斜めミラー5が設けられる。
【0010】
このような構造には、以下のメリットがある。第1に、面内ミラー5を用いることで、方向転換に必要な面積を小さくできる。第2に、直線導波路7の方向を例えば2種類に限定することで、面内ミラー5の向きを4種類に、変換角を2種類に限定できる。直線導波路7の延長方向をX方向とY方向とすれば(図2)、面内ミラー5は+X⇔+Y、+X⇔−Y、−X⇔+Y、−X⇔−Yの4種類である。変換角は、+X⇔+Yと−X⇔−Y、+X⇔−Yと−X⇔+Yで等しいので2種類になる。また、斜めミラー4も+X、−X、+Y、−Yの4種類に限定できる。
【0011】
X方向とY方向は必ずしも直交していなくてよいが、直交していれば(図3)面内ミラー5の変換角は1種類(90゜)になる。
【0012】
このような構造によって、面内ミラー相当面5’や斜めミラー相当面4’の加工が容易になる。例えばミラー相当面をレーザで一括加工する場合、面内ミラー相当面5’について4回、斜めミラー相当面4’について4回の計8回の加工で完了する。(面内ミラー相当面5’を他の方法で加工する場合、レーザ加工は4回で済む。)ミラー相当面をレーザで1か所ずつポイント加工する場合でも、試料のセッティングが8回(面内ミラー相当面5’を他の方法で加工する場合、セッティングは4回)で済む。パターンによってはそれ以下で済むことは言うまでもない。例えば図1では、面内ミラー4種類、斜めミラー3種類であるから、その原型を作製するためのレーザ加工あるいはセッティングは7回(面内ミラー相当面5’を他の方法で加工する場合、レーザ加工あるいはセッティングは3回)となる。
【0013】
一方、図11のような従来パターンでは、曲線導波路40を用いるので面積が大きくなり、斜めミラー4の向きもバラバラなのでレーザ加工回数あるいはセッティング回数が多くなってしまう。
【0014】
本発明の2点めは、面内ミラー5のコア幅に関するものである。第1クラッド2上にコア1を形成し、コア1の導波路端の斜めミラー4となる部分と、直線導波路の交差の面内ミラー5となる部分に反射膜6を形成後、第2クラッド3で覆うという導波路作製法の場合(図8)、ミラー形状が重要である。この時、図4のように、面内ミラー5のコアを入射側直線導波路7iに直交する面に投影した幅bを、入射側直線導波路7iのコアの幅aよりも大きくしておくと、面内ミラー5での損失を低減できる。さらに、図5のように、出射側直線導波路7oのコアの幅dを、面内ミラー5のコアを出射側直線導波路7oに直交する面に投影した幅c以上に大きくしてもよい。
【0015】
その原理を説明する。導波路では、光の大部分はコア内に入っているが、一部はクラッドにしみ出して導波している。面内ミラー5のコアを入射側直線導波路7iに直交する面に投影した幅bが、入射側直線導波路7iのコア幅aと等しい場合、クラッドにしみ出した分は光路変換されず、損失もしくはクロストークになってしまう。本発明のように、面内ミラー5のコアを入射側直線導波路7iに直交する面に投影した幅bが、入射側直線導波路7iのコアの幅aよりも大きい形状にしておくと、クラッドにしみ出して導波していた分も一時的にコアに入り、面内ミラー5で光路変換されるので損失が小さい。
【0016】
また、別の作用もある。コアのパターンをフォトリソグラフィー法に基づいて作製する場合、フォトマスク32の面内ミラーのパターン5”を入射側直線導波路に投影した幅b”が入射側直線導波路7i”の幅a”と等しいような設計であっても(図9(a))、原型30では、導波路折れ部に位置する面内ミラー相当面5’の投影幅b’は直線導波路幅a’よりも小さくなる傾向がある(図9(b))。そのため、コア1の面内ミラー面5の投影幅bも、直線導波路幅aより小さくなる(図9(c))。この現象は、露光ボケや、折れ部で現像が進みやすいことによる。フォトマスク32のコアのパターンを、面内ミラー5”のコアを入射側直線導波路7i”に直交する面に投影した幅b”が、入射側直線導波路7i”のコアの幅a”よりも大きい形状にしておけば(図4、5)、この効果をうち消すことができる。なお、フォトリソグラフィー法によるコアのパターンの形成には、複数の直線導波路のパターンと、直線導波路を接続する面内ミラーのパターンを有するフォトマスクを用いることが好ましい。
【0017】
本発明の3点めは、斜めミラー4のコア幅に関するものである。第1クラッド2上にコア1を形成し、コア1のミラー部分4、5に反射膜6を形成後、第2クラッド3で覆うという導波路作製法の場合(図8)、コア1のミラー形状が重要である。この時、図6のように、斜めミラー4のコアの幅fを、直線導波路7のコアの幅eよりも大きくしておくと、斜めミラー4での損失を低減できる。これは、図7のように、出射側ミラー4oのみに行うだけでもよい。
【0018】
その原理を説明する。導波路では、光の大部分はコア内に入っているが、一部はクラッドにしみ出して導波している。斜めミラー4のコアの幅fが、直線導波路7のコア幅eと等しい場合、クラッドにしみ出した分は光路変換されず、損失もしくはクロストークになってしまう。本発明のように、斜めミラー4のコアの幅fが、直線導波路7のコアの幅eよりも大きい形状にしておくと、クラッドにしみ出して導波していた分も一時的にコアに入り、斜めミラー4で光路変換されるので損失が小さい。
【0019】
また、別の作用もある。コアのパターンをフォトリソに基づいて作製する場合、フォトマスク32の斜めミラーのパターン4”の幅f”が直線導波路7”の幅e”と等しいような設計であっても(図10(a))、原型30では、導波路端に位置する斜めミラー相当面4’の投影幅f’は直線導波路幅e’よりも小さくなる傾向がある(図10(b)〜(c))。そのため、コア1の斜めミラー4の投影幅fも、直線導波路幅eより小さくなる(図10(d))。この現象は、露光ボケや、端部で現像が進みやすいことによる。フォトマスクのコアのパターンを、斜めミラー4”のコアの幅f”が、直線導波路7”のコアの幅e”よりも大きい形状にしておけば(図6、7)、この効果を打ち消すことができる。
【0020】
【実施例】
<実施例1>
[プロセス]
本発明の実施例について、図8を用いて説明する。なお、図8は、図1のような光導波路の1のコアを示すものである。まず、基板31(ガラス)上に40μm厚のドライフィルムレジストを貼り合わせ、複数の直線導波路のパターン(延長方向は直交する)と、直線導波路を接続する面内ミラーのパターンを有する(すべてのコアのパターンを有する)フォトマスクを用いて露光・現像することにより、感光性樹脂パターン33として直線導波路相当7’および面内ミラー相当面5’を有する凸パターンを形成した(図8(a))。
【0021】
次に、レーザ光を斜め照射することにより、斜めミラー相当面4’を作製し、原型30とした(図8(b))。
【0022】
そして、原型30に液状のシリコーン樹脂34を重ねて硬化させ、剥離することにより凹型10を作製した(図8(c))。
【0023】
次に、基板20(ガラス)を用意し、クラッド2として30μm厚のエポキシ樹脂層を形成した上に、上記シリコーン凹型10を用いてエポキシ樹脂のコア1を形成した(図8(d))。
【0024】
そして、ミラー4,5に反射膜6としてアルミニウムをマスク蒸着した(図8(e))。さらに第2クラッド3としてエポキシ樹脂層を形成し(図8(f))、基板から剥離することによって導波路7が完成した。
【0025】
<実施例2>
[導波路1]
実施例1のプロセスによって、図1の導波路を作製した。原型を作製する際、面内ミラー相当面5’はフォトリソによって形成し、斜めミラー相当面4’をレーザの斜め照射によって形成した。斜めミラーの向きが3種類のみなので、試料のセッティングは3回で済んだ。完成した導波路の斜めミラー4に近接させたシングルモードファイバから波長0.85μmの赤外光を入射し、他端の斜めミラー4から赤外光が出射することを確認した。
【0026】
<実施例3>
[面内ミラー1]
実施例1のプロセスによって、図4の面内ミラー5を作製した。aが40μm、bが50μmである。導波路端に近接させたシングルモードファイバから波長0.85μmの赤外光を入射し、他端からの光をハードポリマークラッドファイバで受光した。面内ミラー5を有する導波路の損失から、同じ長さの導波路の損失を差し引くことにより、面内ミラー5での損失は1dB程度と見積もられた。
【0027】
<実施例4>
[面内ミラー2]
実施例1のプロセスによって、図5の面内ミラー5を作製した。aが40μm、bが50μm、cが50μm、dが50μmである。導波路端に近接させたシングルモードファイバから波長0.85μmの赤外光を入射し、他端からの光をハードポリマークラッドファイバで受光した。面内ミラー5を有する導波路の損失から、同じ長さの導波路の損失を差し引くことにより、面内ミラー5での損失は1dB程度と見積もられた。
【0028】
<比較例1>
[面内ミラー3]
実施例1のプロセスによって、図9の面内ミラー5を作製した。aが40μm、bが35μmであった。導波路端に近接させたシングルモードファイバから波長0.85μmの赤外光を入射し、他端からの光をハードポリマークラッドファイバで受光した。面内ミラー5を有する導波路の損失から、同じ長さの導波路の損失を差し引くことにより、面内ミラー5での損失は2dB程度と見積もられた。
【0029】
<実施例5>
[斜めミラー1]
実施例1のプロセスによって、図6の斜めミラー4を作製した。aが40μm、bが50μmである。導波路端に近接させたシングルモードファイバから波長0.85μmの赤外光を入射し、他端の斜めミラー4からの光をハードポリマークラッドファイバで受光した。斜めミラー4を出射側として測定した損失から、同じ長さの導波路の損失を差し引くことにより、斜めミラー4での損失は1dB程度と見積もられた。
【0030】
<比較例2>
[斜めミラー2]
実施例1のプロセスによって、図10の斜めミラー4を作製した。aが40μm、bが35μmであった。導波路端に近接させたシングルモードファイバから波長0.85μmの赤外光を入射し、他端の斜めミラー4からの光をハードポリマークラッドファイバで受光した。斜めミラー4を出射側として測定した損失から、同じ長さの導波路の損失を差し引くことにより、面内ミラー4での損失は2dB程度と見積もられた。
【0031】
<実施例6>
[斜めミラー2]
実施例1のプロセスによって、図7の斜めミラー4を作製した。aが40μm、bが50μmである。斜めミラー4に近接させたシングルモードファイバから波長0.85μmの赤外光を入射し、他端の斜めミラー4からの光をハードポリマークラッドファイバで受光した。設計方向に光を通した場合の損失に比較して、逆方向の場合の損失は1dB程度大きくなった。
【0032】
【発明の効果】
以上の説明から理解できるように、本発明には、以下の効果がある。
第1に、面内ミラーを用いることで、方向転換に必要な面積を小さくできる。第2に、直線導波路群の方向を数種類に限定することで、面内ミラーおよび斜めミラーの向きを限定(方向を2とした場合、4つ)でき、加工が容易になる。第3に、面内ミラーや斜めミラーの幅を大きくすることにより、損失を低減できる。
【0033】
【図面の簡単な説明】
【図1】本発明の光導波路の一例を示す斜視図。
【図2】本発明の面内ミラーおよび斜めミラーの種類を示す説明図。
【図3】本発明の面内ミラーおよび斜めミラーの種類を示す説明図。
【図4】本発明の面内ミラー形状の一例を示す斜視図。
【図5】本発明の面内ミラー形状の他の例を示す斜視図。
【図6】本発明の斜めミラー形状の一例を示す斜視図。
【図7】本発明の斜めミラー形状の他の例を示す斜視図。
【図8】本発明の光導波路の製造方法の一例を示す説明図。
【図9】通常の面内ミラー形状の一例を示す斜視図。
【図10】通常の斜めミラー形状の一例を示す斜視図。
【図11】従来の光導波路の一例を示す斜視図。
【符号の説明】
1 … コア
2 … 第1クラッド
3 … 第2クラッド
4 … 斜めミラー
4i … 入射側斜めミラー
4o … 出射側斜めミラー
4’ … 斜めミラー相当面
4i’… 入射側斜めミラー相当面
4o’… 出射側斜めミラー相当面
4” … フォトマスクの斜めミラーのパターン
4i”… フォトマスクの入射側斜めミラーのパターン
4o”… フォトマスクの出射側斜めミラーのパターン
5 … 面内ミラー面
5’ … 面内ミラー相当面
5” … フォトマスクの面内ミラーのパターン
6 … 反射膜
7 … 直線導波路
7i … 入射側直線導波路
7o … 出射側直線導波路
7’ … 直線導波路相当部
7i”… フォトマスクの入射側直線導波路のパターン
7o”… フォトマスクの出射側直線導波路のパターン
8 … 光路
10 … 凹型
20 … 基板
30 … 凸型
31 … 基板
32 … フォトマスク
33 … 感光性樹脂パターン
34 … シリコーン樹脂
40 … 曲線導波路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical waveguide used for optical interconnection and the like, and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, the advance of optical communication technology has demonstrated the superiority of light. Also, with the speeding up of signals of LSIs and the like, research and development of technology for replacing electric signals with optical signals are being advanced. An optical waveguide is expected as the transmission medium.
[0003]
Polymer optical waveguides, which have been developed in recent years, can be formed in a large area, and are being applied to optical interconnections on the order of 1 cm to 1 m. That is, an attempt has been made to use an optical wiring instead of an electric wiring as a signal transmission method, and an optical waveguide is used as the optical wiring.
[0004]
In a conventional optical waveguide, a straight waveguide, a curved waveguide, and an oblique mirror at the end of the waveguide have been used (for example, see Non-Patent Document 1). Basically, a straight waveguide is used, a curved waveguide is used to change the position and direction of the optical wiring, and an oblique mirror is used to connect to a planar optical element or a light receiving element (also called an external element). Have been.
[0005]
However, when the number of cores (optical wiring) increases and the circuit becomes complicated, it is necessary to provide many optical wirings at arbitrary positions. For that purpose, the combination of a straight waveguide and a curved waveguide is limited. There is. This is because the smaller the radius of curvature of the curved waveguide, the greater the loss. This is because a large area is required to change the direction at a certain radius of curvature or more, and the mounting density cannot be increased.
[0006]
[Non-patent document 1]
IEICE Vol. 84 No. 9 pp. 656-662 September 2001 (p.661, FIG. 8)
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the situation of the related art, and has as its object to provide a structure suitable for manufacturing a core connecting a large number of arbitrary points.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 is an optical waveguide in which a plurality of cores are sandwiched by cladding, wherein the first core is extended in at least two directions, and is provided at an intersection. A plurality of linear waveguides connected by an in-plane mirror provided, and the other core includes a linear waveguide substantially coinciding with at least one extension direction of the linear waveguide included in the first core. The optical waveguide is a feature.
The invention according to claim 1 is characterized in that the width of the core of the in-plane mirror projected onto a plane orthogonal to the incident side linear waveguide is larger than the width of the core of the incident side linear waveguide. It is an optical waveguide described.
According to a third aspect of the present invention, the width of the core of the in-plane mirror projected onto a plane orthogonal to the incident-side linear waveguide is larger than the width of the core of the incident-side linear waveguide, and the core of the in-plane mirror is connected to the output side. 3. The optical waveguide according to claim 1, wherein a width projected on a plane orthogonal to the linear waveguide is equal to or smaller than a width of a core of the emission-side linear waveguide.
The invention according to claim 4 is the optical waveguide according to claim 1, wherein an oblique mirror connected to an external element is provided at an end of the linear waveguide.
The invention according to claim 5 is the optical waveguide according to claim 4, wherein the width of the core of the oblique mirror is larger than the width of the core of the linear waveguide.
The invention according to claim 6 is the optical waveguide according to any one of claims 4 to 5, wherein, of the oblique mirrors, the width of the core of the light emitting mirror is larger than the width of the core of the linear waveguide. It is.
According to a seventh aspect of the present invention, there is provided a method of manufacturing an optical waveguide, comprising forming a core pattern using a photomask having a plurality of linear waveguide patterns and an in-plane mirror pattern connecting the linear waveguides. It is.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described in detail below.
One of the aspects of the present invention is that, as shown in FIG. 1, at least one of the extension direction of at least two linear waveguides 7 included in the first core A and the extension direction of the linear waveguides included in the other core B is different. It is almost the same. Here, that the extension directions substantially match means that the difference between the directions falls within 10 °. Further, an in-plane mirror 5 for connecting the two linear waveguides of the first core is provided at an intersection thereof, and preferably, an oblique mirror 5 for connecting to an external element is provided at an end of the waveguide.
[0010]
Such a structure has the following advantages. First, by using the in-plane mirror 5, the area required for the direction change can be reduced. Second, by limiting the direction of the linear waveguide 7 to, for example, two types, the direction of the in-plane mirror 5 can be limited to four types and the conversion angle can be limited to two types. Assuming that the extending directions of the linear waveguide 7 are the X direction and the Y direction (FIG. 2), the in-plane mirror 5 has four types of + X⇔ + Y, + X⇔-Y, -X− + Y, and -X⇔-Y. . There are two types of conversion angles because + X⇔ + Y and -X⇔-Y are equal, and + X⇔-Y and -X⇔ + Y are equal. Further, the diagonal mirror 4 can also be limited to four types of + X, -X, + Y, and -Y.
[0011]
The X direction and the Y direction need not necessarily be orthogonal, but if they are orthogonal (FIG. 3), the conversion angle of the in-plane mirror 5 is one type (90 °).
[0012]
Such a structure facilitates processing of the in-plane mirror equivalent surface 5 'and the oblique mirror equivalent surface 4'. For example, in the case where the mirror-equivalent surface is collectively processed by laser, the processing is completed eight times, four times for the in-plane mirror-equivalent surface 5 'and four times for the oblique mirror-equivalent surface 4'. (If the in-plane mirror-equivalent surface 5 ′ is processed by another method, laser processing only needs to be performed four times.) Even when the mirror-equivalent surface is point-processed one by one with a laser, setting of the sample is performed eight times (surface processing). When the inner mirror equivalent surface 5 'is processed by another method, the setting only needs to be performed four times. It goes without saying that some patterns require less. For example, in FIG. 1, there are four types of in-plane mirrors and three types of oblique mirrors. Therefore, the laser processing or setting for producing the prototype is performed seven times (when the in-plane mirror equivalent surface 5 ′ is processed by another method, Laser processing or setting is three times).
[0013]
On the other hand, in the conventional pattern as shown in FIG. 11, since the curved waveguide 40 is used, the area becomes large, and the direction of the oblique mirror 4 is also scattered, so that the number of times of laser processing or setting is increased.
[0014]
The second aspect of the present invention relates to the core width of the in-plane mirror 5. After the core 1 is formed on the first clad 2, the reflection film 6 is formed on the portion of the core 1 which will be the oblique mirror 4 at the waveguide end and the portion which will be the in-plane mirror 5 at the intersection of the straight waveguide, and then the second In the case of a waveguide manufacturing method of covering with a clad 3 (FIG. 8), the mirror shape is important. At this time, as shown in FIG. 4, the width b of the core of the in-plane mirror 5 projected on a plane orthogonal to the linear waveguide 7i on the incident side is made larger than the width a of the core of the linear waveguide 7i on the incident side. Thus, the loss in the in-plane mirror 5 can be reduced. Further, as shown in FIG. 5, the width d of the core of the output-side linear waveguide 7o may be larger than the width c of the core of the in-plane mirror 5 projected on a plane orthogonal to the output-side linear waveguide 7o. .
[0015]
The principle will be described. In the waveguide, most of the light is in the core, but part of the light is exuded into the cladding and guided. When the width b of the core of the in-plane mirror 5 projected on a plane orthogonal to the incident-side linear waveguide 7i is equal to the core width a of the incident-side linear waveguide 7i, the portion that has leaked into the cladding is not converted into an optical path. Loss or crosstalk will result. As in the present invention, when the width b of the core of the in-plane mirror 5 projected on a plane orthogonal to the linear waveguide 7i on the incident side is larger than the width a of the core of the linear waveguide 7i on the incident side, The portion that has been guided through the cladding also enters the core temporarily, and the optical path is changed by the in-plane mirror 5, so that the loss is small.
[0016]
It also has another effect. When the core pattern is manufactured based on the photolithography method, the width b ″ of the in-plane mirror pattern 5 ″ of the photomask 32 projected onto the incident-side linear waveguide is equal to the width a ″ of the incident-side linear waveguide 7i ″. Even if the designs are the same (FIG. 9A), in the prototype 30, the projection width b 'of the in-plane mirror-equivalent surface 5' located at the waveguide break is smaller than the linear waveguide width a '. There is a tendency (FIG. 9B). Therefore, the projection width b of the in-plane mirror surface 5 of the core 1 is also smaller than the linear waveguide width a (FIG. 9C). This phenomenon is due to the fact that development is easy to proceed at the exposure blur or at the bent portion. The width b ″ of the pattern of the core of the photomask 32 projected on the plane orthogonal to the linear waveguide 7i ″ on the incident side with the core of the in-plane mirror 5 ″ is greater than the width a ″ of the core of the linear waveguide 7i ″ on the incident side. (FIGS. 4 and 5) This effect can be eliminated if the core pattern is formed by photolithography using a plurality of linear waveguide patterns and a linear waveguide. It is preferable to use a photomask having a pattern of an in-plane mirror to be connected.
[0017]
The third point of the present invention relates to the core width of the oblique mirror 4. In the case of a waveguide manufacturing method in which the core 1 is formed on the first clad 2, the reflection films 6 are formed on the mirror portions 4 and 5 of the core 1, and then the second clad 3 is covered (FIG. 8), Shape is important. At this time, as shown in FIG. 6, when the width f of the core of the oblique mirror 4 is made larger than the width e of the core of the straight waveguide 7, the loss in the oblique mirror 4 can be reduced. This may be performed only on the emission side mirror 4o as shown in FIG.
[0018]
The principle will be described. In the waveguide, most of the light is in the core, but part of the light is exuded into the cladding and guided. When the width f of the core of the oblique mirror 4 is equal to the core width e of the straight waveguide 7, the portion leaking into the clad is not converted into an optical path, resulting in loss or crosstalk. If the width f of the core of the oblique mirror 4 is made larger than the width e of the core of the linear waveguide 7 as in the present invention, the portion that has been guided out through the clad is temporarily reduced to the core. And the optical path is changed by the oblique mirror 4, so that the loss is small.
[0019]
It also has another effect. When the core pattern is manufactured based on photolithography, even if the design is such that the width f ″ of the diagonal mirror pattern 4 ″ of the photomask 32 is equal to the width e ″ of the linear waveguide 7 ″ (FIG. 10A )), In the prototype 30, the projection width f 'of the surface 4' corresponding to the oblique mirror located at the waveguide end tends to be smaller than the linear waveguide width e '(FIGS. 10B to 10C). Therefore, the projection width f of the oblique mirror 4 of the core 1 is also smaller than the linear waveguide width e (FIG. 10D). This phenomenon is due to the blurring of the exposure and the fact that the development easily proceeds at the end. If the pattern of the core of the photomask is formed so that the width f ″ of the core of the oblique mirror 4 ″ is larger than the width e ″ of the core of the linear waveguide 7 ″ (FIGS. 6 and 7), this effect is negated. be able to.
[0020]
【Example】
<Example 1>
[process]
An embodiment of the present invention will be described with reference to FIG. FIG. 8 shows one core of the optical waveguide as shown in FIG. First, a dry film resist having a thickness of 40 μm is laminated on the substrate 31 (glass), and has a pattern of a plurality of linear waveguides (extending directions are orthogonal) and a pattern of an in-plane mirror connecting the linear waveguides (all Exposure and development using a photomask (having a core pattern of FIG. 8) formed a convex pattern having a linear waveguide equivalent 7 ′ and an in-plane mirror equivalent surface 5 ′ as the photosensitive resin pattern 33 (FIG. 8 ( a)).
[0021]
Next, an oblique mirror-equivalent surface 4 ′ was produced by obliquely irradiating a laser beam to obtain a prototype 30 (FIG. 8B).
[0022]
Then, the liquid mold silicone resin 34 was overlaid on the master mold 30, cured, and peeled off to produce the concave mold 10 (FIG. 8C).
[0023]
Next, a substrate 20 (glass) was prepared, an epoxy resin layer having a thickness of 30 μm was formed as the clad 2, and an epoxy resin core 1 was formed using the silicone concave mold 10 (FIG. 8D).
[0024]
Then, aluminum was vapor-deposited as a reflective film 6 on the mirrors 4 and 5 (FIG. 8E). Further, an epoxy resin layer was formed as the second clad 3 (FIG. 8 (f)), and the waveguide 7 was completed by peeling off the substrate.
[0025]
<Example 2>
[Waveguide 1]
By the process of Example 1, the waveguide of FIG. 1 was manufactured. When fabricating the prototype, the in-plane mirror equivalent surface 5 'was formed by photolithography, and the oblique mirror equivalent surface 4' was formed by oblique laser irradiation. Since there were only three types of oblique mirror directions, the sample setting was completed three times. It was confirmed that infrared light having a wavelength of 0.85 μm was incident from a single mode fiber that was brought close to the oblique mirror 4 of the completed waveguide, and that infrared light was emitted from the oblique mirror 4 at the other end.
[0026]
<Example 3>
[In-plane mirror 1]
The in-plane mirror 5 of FIG. 4 was manufactured by the process of the first embodiment. a is 40 μm and b is 50 μm. Infrared light having a wavelength of 0.85 μm was incident from a single mode fiber close to the waveguide end, and light from the other end was received by a hard polymer clad fiber. By subtracting the loss of the waveguide of the same length from the loss of the waveguide having the in-plane mirror 5, the loss in the in-plane mirror 5 was estimated to be about 1 dB.
[0027]
<Example 4>
[In-plane mirror 2]
The in-plane mirror 5 of FIG. 5 was manufactured by the process of the first embodiment. a is 40 μm, b is 50 μm, c is 50 μm, and d is 50 μm. Infrared light having a wavelength of 0.85 μm was incident from a single mode fiber close to the waveguide end, and light from the other end was received by a hard polymer clad fiber. By subtracting the loss of the waveguide of the same length from the loss of the waveguide having the in-plane mirror 5, the loss in the in-plane mirror 5 was estimated to be about 1 dB.
[0028]
<Comparative Example 1>
[In-plane mirror 3]
The in-plane mirror 5 of FIG. 9 was manufactured by the process of the first embodiment. a was 40 μm and b was 35 μm. Infrared light having a wavelength of 0.85 μm was incident from a single mode fiber close to the waveguide end, and light from the other end was received by a hard polymer clad fiber. By subtracting the loss of the waveguide of the same length from the loss of the waveguide having the in-plane mirror 5, the loss in the in-plane mirror 5 was estimated to be about 2 dB.
[0029]
<Example 5>
[Diagonal mirror 1]
The oblique mirror 4 of FIG. 6 was manufactured by the process of the first embodiment. a is 40 μm and b is 50 μm. Infrared light having a wavelength of 0.85 μm was incident from the single mode fiber close to the waveguide end, and light from the oblique mirror 4 at the other end was received by the hard polymer clad fiber. The loss in the oblique mirror 4 was estimated to be about 1 dB by subtracting the loss in the waveguide of the same length from the loss measured with the oblique mirror 4 as the exit side.
[0030]
<Comparative Example 2>
[Diagonal mirror 2]
The oblique mirror 4 of FIG. 10 was manufactured by the process of the first embodiment. a was 40 μm and b was 35 μm. Infrared light having a wavelength of 0.85 μm was incident from the single mode fiber close to the waveguide end, and light from the oblique mirror 4 at the other end was received by the hard polymer clad fiber. The loss in the in-plane mirror 4 was estimated to be about 2 dB by subtracting the loss in the waveguide of the same length from the loss measured with the oblique mirror 4 as the exit side.
[0031]
<Example 6>
[Diagonal mirror 2]
The oblique mirror 4 of FIG. 7 was manufactured by the process of the first embodiment. a is 40 μm and b is 50 μm. Infrared light having a wavelength of 0.85 μm was incident from a single mode fiber brought close to the oblique mirror 4, and light from the other oblique mirror 4 was received by a hard polymer clad fiber. The loss in the reverse direction was about 1 dB larger than the loss in the case where light was transmitted in the design direction.
[0032]
【The invention's effect】
As can be understood from the above description, the present invention has the following effects.
First, by using an in-plane mirror, the area required for turning can be reduced. Second, by limiting the directions of the linear waveguide group to several types, the directions of the in-plane mirror and the oblique mirror can be limited (four when the direction is 2), and the processing becomes easy. Third, the loss can be reduced by increasing the width of the in-plane mirror or the oblique mirror.
[0033]
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of an optical waveguide of the present invention.
FIG. 2 is an explanatory diagram showing types of an in-plane mirror and an oblique mirror according to the present invention.
FIG. 3 is an explanatory view showing types of an in-plane mirror and an oblique mirror according to the present invention.
FIG. 4 is a perspective view showing an example of an in-plane mirror shape according to the present invention.
FIG. 5 is a perspective view showing another example of the in-plane mirror shape of the present invention.
FIG. 6 is a perspective view showing an example of an oblique mirror shape according to the present invention.
FIG. 7 is a perspective view showing another example of the oblique mirror shape of the present invention.
FIG. 8 is an explanatory view showing one example of a method for manufacturing an optical waveguide of the present invention.
FIG. 9 is a perspective view showing an example of a normal in-plane mirror shape.
FIG. 10 is a perspective view showing an example of a normal oblique mirror shape.
FIG. 11 is a perspective view showing an example of a conventional optical waveguide.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Core 2 ... 1st clad 3 ... 2nd clad 4 ... Oblique mirror 4i ... Incident-side oblique mirror 4o ... Emissive-side oblique mirror 4 '... Oblique mirror equivalent surface 4i' ... Incident-side oblique mirror equivalent surface 4o '... Emission side Oblique mirror equivalent surface 4 "... Photomask oblique mirror pattern 4i" ... Photomask incident-side oblique mirror pattern 4o "... Photomask outgoing-side oblique mirror pattern 5 ... In-plane mirror surface 5 '... In-plane mirror Corresponding surface 5 "... In-plane mirror pattern 6 of photomask 6 ... Reflective film 7 ... Linear waveguide 7i ... Incident side linear waveguide 7o ... Outgoing side linear waveguide 7 '... Linear waveguide equivalent portion 7i" ... Photomask Pattern 7o ″ of the linear waveguide on the incident side ... Pattern 8 of the linear waveguide on the exit side of the photomask 8 ... Optical path 10… Concave mold 20… Substrate 30 Mask 33 Photosensitive resin pattern 34 Silicone resin 40 Curved waveguide

Claims (7)

複数のコアがクラッドで狭持された光導波路であって、第1のコアは少なくとも2方向に延長され、かつ、交差部に設けられた面内ミラーで接続される複数の直線導波路を含み、他のコアは前記第1のコアに含まれる直線導波路の少なくとも1の延長方向と略一致する直線導波路を含むことを特徴とする光導波路。An optical waveguide having a plurality of cores sandwiched by claddings, wherein the first core includes a plurality of linear waveguides extending in at least two directions and connected by in-plane mirrors provided at intersections; An optical waveguide, wherein the other cores include a linear waveguide substantially coincident with at least one extension direction of the linear waveguide included in the first core. 上記面内ミラーのコアを入射側直線導波路に直交する面に投影した幅が、入射側直線導波路のコアの幅よりも大きいことを特徴とする請求項1に記載の光導波路。2. The optical waveguide according to claim 1, wherein a width of the core of the in-plane mirror projected onto a plane orthogonal to the incident-side linear waveguide is larger than a width of the core of the incident-side linear waveguide. 上記面内ミラーのコアを入射側直線導波路に直交する面に投影した幅が、入射側直線導波路のコアの幅よりも大きく、面内ミラーのコアを出射側直線導波路に直交する面に投影した幅が、出射側直線導波路のコアの幅以下であることを特徴とする請求項1〜2の何れかに記載の光導波路。The plane in which the core of the in-plane mirror is projected on a plane orthogonal to the incident-side linear waveguide is larger than the width of the core of the incident-side linear waveguide, and the core of the in-plane mirror is orthogonal to the exit-side linear waveguide. The optical waveguide according to any one of claims 1 to 2, wherein a width projected to the optical waveguide is equal to or smaller than a width of a core of the output-side linear waveguide. 上記直線導波路の端部に外部素子と接続する斜めミラーが設けられていることを特徴とする請求項1記載の光導波路。2. An optical waveguide according to claim 1, wherein an oblique mirror connected to an external element is provided at an end of said linear waveguide. 上記斜めミラーのコアの幅が、直線導波路のコアの幅よりも大きいことを特徴とする請求項4に記載の光導波路。The optical waveguide according to claim 4, wherein the width of the core of the oblique mirror is larger than the width of the core of the linear waveguide. 上記斜めミラーのうち、光出射ミラーのコアの幅が、直線導波路のコアの幅よりも大きいことを特徴とする請求項4〜5の何れかに記載の光導波路。The optical waveguide according to claim 4, wherein a width of a core of the light emitting mirror is larger than a width of a core of the linear waveguide among the oblique mirrors. 複数の直線導波路のパターンと、直線導波路を接続する面内ミラーのパターンを有するフォトマスクを用い、コアのパターンを形成することを特徴とする光導波路の製造方法。A method of manufacturing an optical waveguide, comprising forming a core pattern using a photomask having a plurality of linear waveguide patterns and an in-plane mirror pattern connecting the linear waveguides.
JP2003075014A 2003-03-19 2003-03-19 Optical waveguide and its manufacturing method Pending JP2004280009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003075014A JP2004280009A (en) 2003-03-19 2003-03-19 Optical waveguide and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003075014A JP2004280009A (en) 2003-03-19 2003-03-19 Optical waveguide and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004280009A true JP2004280009A (en) 2004-10-07

Family

ID=33290430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003075014A Pending JP2004280009A (en) 2003-03-19 2003-03-19 Optical waveguide and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004280009A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261956A (en) * 2007-04-10 2008-10-30 Omron Corp Optical transmission line, optical transmission module, and electronic equipment
JP2008293040A (en) * 2003-10-06 2008-12-04 Mitsui Chemicals Inc Optical waveguide having micromirror formed by laser beam machining
US10877219B1 (en) 2019-08-20 2020-12-29 Cisco Technology, Inc. Periscope optical assembly

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256903A (en) * 1985-09-06 1987-03-12 Omron Tateisi Electronics Co Reflection type branching optical waveguide
JPH01223403A (en) * 1988-03-03 1989-09-06 Oki Electric Ind Co Ltd Waveguide for bending light
JPH02221902A (en) * 1989-02-22 1990-09-04 Hitachi Cable Ltd Glass waveguide
JPH07261043A (en) * 1994-03-22 1995-10-13 Furukawa Electric Co Ltd:The Formation of corner waveguide element
JPH085850A (en) * 1994-06-20 1996-01-12 Furukawa Electric Co Ltd:The Quartz corner mirror waveguide and its production
JPH09143764A (en) * 1995-11-28 1997-06-03 Ricoh Opt Ind Co Ltd Metallic mask for dry etching, manufacture of metallic mask for dry etching and dry etching method for deep digging
JPH10142434A (en) * 1996-08-26 1998-05-29 Sharp Corp Optical multiplexing element
JP2000338347A (en) * 1999-05-25 2000-12-08 Nec Corp Optical module and production of optical waveguide
JP2001108853A (en) * 1999-10-12 2001-04-20 Toppan Printing Co Ltd Optical wiring layer, opto-electric wiring board, and packaging substrate
JP2001194540A (en) * 2000-01-11 2001-07-19 Nippon Telegr & Teleph Corp <Ntt> Optical path switching device and its manufacturing method
JP2001330746A (en) * 2000-03-13 2001-11-30 Matsushita Electric Ind Co Ltd Optical module and its manufacturing method, and optical circuit device
US6355198B1 (en) * 1996-03-15 2002-03-12 President And Fellows Of Harvard College Method of forming articles including waveguides via capillary micromolding and microtransfer molding
JP2002174745A (en) * 2000-12-07 2002-06-21 Kanagawa Acad Of Sci & Technol Optical integrated circuit and its manufacturing method
JP2003315578A (en) * 2002-04-23 2003-11-06 Mitsubishi Electric Corp Optical path converting device and manufacturing method thereof

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256903A (en) * 1985-09-06 1987-03-12 Omron Tateisi Electronics Co Reflection type branching optical waveguide
JPH01223403A (en) * 1988-03-03 1989-09-06 Oki Electric Ind Co Ltd Waveguide for bending light
JPH02221902A (en) * 1989-02-22 1990-09-04 Hitachi Cable Ltd Glass waveguide
JPH07261043A (en) * 1994-03-22 1995-10-13 Furukawa Electric Co Ltd:The Formation of corner waveguide element
JPH085850A (en) * 1994-06-20 1996-01-12 Furukawa Electric Co Ltd:The Quartz corner mirror waveguide and its production
JPH09143764A (en) * 1995-11-28 1997-06-03 Ricoh Opt Ind Co Ltd Metallic mask for dry etching, manufacture of metallic mask for dry etching and dry etching method for deep digging
US6355198B1 (en) * 1996-03-15 2002-03-12 President And Fellows Of Harvard College Method of forming articles including waveguides via capillary micromolding and microtransfer molding
JPH10142434A (en) * 1996-08-26 1998-05-29 Sharp Corp Optical multiplexing element
JP2000338347A (en) * 1999-05-25 2000-12-08 Nec Corp Optical module and production of optical waveguide
JP2001108853A (en) * 1999-10-12 2001-04-20 Toppan Printing Co Ltd Optical wiring layer, opto-electric wiring board, and packaging substrate
JP2001194540A (en) * 2000-01-11 2001-07-19 Nippon Telegr & Teleph Corp <Ntt> Optical path switching device and its manufacturing method
JP2001330746A (en) * 2000-03-13 2001-11-30 Matsushita Electric Ind Co Ltd Optical module and its manufacturing method, and optical circuit device
JP2002174745A (en) * 2000-12-07 2002-06-21 Kanagawa Acad Of Sci & Technol Optical integrated circuit and its manufacturing method
JP2003315578A (en) * 2002-04-23 2003-11-06 Mitsubishi Electric Corp Optical path converting device and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008293040A (en) * 2003-10-06 2008-12-04 Mitsui Chemicals Inc Optical waveguide having micromirror formed by laser beam machining
JP2008261956A (en) * 2007-04-10 2008-10-30 Omron Corp Optical transmission line, optical transmission module, and electronic equipment
US10877219B1 (en) 2019-08-20 2020-12-29 Cisco Technology, Inc. Periscope optical assembly
WO2021034876A1 (en) * 2019-08-20 2021-02-25 Cisco Technology, Inc. Periscope optical assembly

Similar Documents

Publication Publication Date Title
US7050691B2 (en) Optical waveguide and method of manufacturing the same
JP4468843B2 (en) Manufacturing method of optical waveguide
TWI269081B (en) Optical waveguide having a mirror plane formed by laser processing
KR100872244B1 (en) Process for producing filmy optical waveguide
KR101558584B1 (en) Optical waveguide module manufacturing method
JP2006337748A (en) Optical waveguide and its manufacturing method
JP2005208651A (en) Board type optical waveguide having fiber form and manufacturing method thereof
JP4659422B2 (en) Manufacturing method of optical waveguide
JP3903606B2 (en) Optical signal transmission system and manufacturing method thereof
JP2007183468A (en) Manufacturing method of optical waveguide with mirror
US11275208B2 (en) Fabrication of polymer waveguide interconnect between chips with a gap and/or step
JP2004280009A (en) Optical waveguide and its manufacturing method
JP2007183467A (en) Optical waveguide with mirror and its manufacturing method
JP2007093747A (en) Optical waveguide film and method for manufacturing optical waveguide film
JP2004163914A (en) Manufacturing method of optical circuit board
JP2001296438A (en) Photo-breaching waveguide
JP2004258076A (en) Optical fiber cable layer and its manufacturing method
JP2007041122A (en) Method of manufacturing polymer optical waveguide, polymer optical waveguide, and optical module using the same
JP2004279789A (en) Multilayered optical wiring substrate
JP2007094303A (en) Optical waveguide device and its manufacturing method
Yoshimura et al. Optical Waveguide Films With Two-Layer Skirt-Type Core Structures for Beam Leakage/Scattering Reduction at Tapered Mirrors
CN117572564A (en) Vertical coupling structure of double-layer polymer optical waveguide and array optical fiber
JP2010145938A (en) Method of manufacturing optical module
JP5633275B2 (en) Optical wiring printed circuit board manufacturing method
JP2007133036A (en) Optical multiplexing/demultiplexing element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091215