JPH02221902A - Glass waveguide - Google Patents

Glass waveguide

Info

Publication number
JPH02221902A
JPH02221902A JP4250789A JP4250789A JPH02221902A JP H02221902 A JPH02221902 A JP H02221902A JP 4250789 A JP4250789 A JP 4250789A JP 4250789 A JP4250789 A JP 4250789A JP H02221902 A JPH02221902 A JP H02221902A
Authority
JP
Japan
Prior art keywords
waveguide
glass
glass waveguide
core
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4250789A
Other languages
Japanese (ja)
Other versions
JP2721537B2 (en
Inventor
Masataka Nakazawa
正隆 中沢
Yasuro Kimura
康郎 木村
Katsuyuki Imoto
克之 井本
Naohito Uetsuka
上塚 尚人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Hitachi Cable Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Nippon Telegraph and Telephone Corp filed Critical Hitachi Cable Ltd
Priority to JP1042507A priority Critical patent/JP2721537B2/en
Publication of JPH02221902A publication Critical patent/JPH02221902A/en
Application granted granted Critical
Publication of JP2721537B2 publication Critical patent/JP2721537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0813Configuration of resonator

Abstract

PURPOSE:To easily mass-produce a waveguide laser and a waveguide for amplification at low cost by forming a core waveguide to which rare earth elements are added zigzag on a low-refractive-index layer provided on a substrate. CONSTITUTION:The low-refractive-index layer 2 which has a refractive index nb is provided on the substrate 1 and the rectangularly sectioned core waveguide 3 which has a refractive index nc (nc>nb) and rare earth elements (e.g. Er, Nd, Yb, etc.) added is formed zigzag thereupon. Then the top is covered entirely with a clad 4 which has a refractive index ncl (ncl>nc) and a laser mirror consists of mirrors 5-1 and 5-6. Exciting light shown by an arrow 6-1 is reflected repeatedly as shown by 6-2... 6-6, 7-1... 7-5, and 6-2... 6-6 for amplification or laser oscillation. Consequently, the glass waveguide can be mass-produced at low cost because of planar structure.

Description

【発明の詳細な説明】 【産業上の利用分野] 本発−明は希土類元素を添加したガラス導波路、特にガ
ラス導波路レーザーおよびガラス導波路増幅器用のガラ
ス導波路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a glass waveguide doped with a rare earth element, particularly a glass waveguide for a glass waveguide laser and a glass waveguide amplifier.

[従来技術] 近年、光ファイバのコアに希土類元素を添加した光フア
イバレーザーの研究が活発化し、各種レーザー光源用、
光増幅媒質用として注目されるようになってきた。
[Prior art] In recent years, research on optical fiber lasers in which rare earth elements are added to the optical fiber core has become active, and optical fiber lasers for various laser light sources,
It has started to attract attention as an optical amplification medium.

第6図は従来の光フアイバレーザーの構成例を示したも
のである(木材、中沢:光ファイバレーザーの発振特性
とその光通信への応用、レーザー学会研究会、PTM−
87−16,PP、31〜37.1988年1月)。こ
れは光ファイバのコアに希土類元素を添加した光ファイ
バの両端面をレーザーミラーに直に接触させるか、光フ
ァイバの両端面に誘電体多層膜を蒸着させて光共振器を
構成したものである。励起光源にはArイオンレーザ−
(波長514.5nm)、色素レーザー(波長6501
11)、半導体レーザー(波長830 nm)等を用い
て端面励起が行われる。また光増幅器の例として第7図
に示す構成が上記両氏により提案されている。すなわち
、希土類を添加した光フアイバ内に信号光を伝搬させ、
励起光は光フアイバカップラを用いて合成させ、また光
フアイバカップラで分離させる構成である。
Figure 6 shows an example of the configuration of a conventional optical fiber laser (Kiku, Nakazawa: Oscillation Characteristics of Optical Fiber Lasers and Their Application to Optical Communication, Laser Society Research Group, PTM-
87-16, PP, 31-37. January 1988). This is an optical resonator constructed by having both end faces of an optical fiber doped with a rare earth element added to the core of the optical fiber directly contact a laser mirror, or by depositing a dielectric multilayer film on both end faces of the optical fiber. . Ar ion laser is used as the excitation light source.
(wavelength 514.5 nm), dye laser (wavelength 6501 nm)
11), end face excitation is performed using a semiconductor laser (wavelength: 830 nm) or the like. Further, as an example of an optical amplifier, the configuration shown in FIG. 7 has been proposed by the above-mentioned authors. In other words, the signal light is propagated through an optical fiber doped with rare earth elements,
The excitation light is combined using an optical fiber coupler and separated using an optical fiber coupler.

[発明が解決しようとする課題] 前述した光フアイバレーザーおよび光フアイバ増幅器は
、 ■ 光ファイバのコア径が細径であるため励起パワー密
度が大きくなり、励起効率を上げられること ■ 相互作用長を長くとれること ■ 特に石英系ファイバの場合、低損失であること ■ 可撓性があること 等の特徴がある。しかしながら、他の光部品、例えば光
源、受光器、光変調器、光カブラ、光合分波器、光フィ
ルタ、光スィッチなどと組合せていわゆる多機能光集積
回路を実現しようとすると、実装が複雑になり、低コス
ト化が難しく、また小形化、高性能化も容易でないとい
った問題点かあった。
[Problems to be solved by the invention] The above-mentioned optical fiber laser and optical fiber amplifier have the following features: ■ The small core diameter of the optical fiber increases the pumping power density and increases the pumping efficiency. ■ The interaction length can be increased. Characteristics include being long, ■ low loss, especially in the case of silica-based fibers, and being flexible. However, when trying to realize a so-called multifunctional optical integrated circuit by combining it with other optical components such as a light source, optical receiver, optical modulator, optical coupler, optical multiplexer/demultiplexer, optical filter, optical switch, etc., the implementation becomes complicated. Therefore, there were problems in that it was difficult to reduce the cost, and it was also difficult to reduce the size and improve the performance.

本発明の目的は、前記した従来技術の問題点を解決する
ことにある。すなわち、量産化が容易で低コスト化が可
能であり、小形化、高性能化も可能なガラス導波路レー
ザー、ガラス導波路増幅器用ガラス導波路を提供するこ
とにある。
An object of the present invention is to solve the problems of the prior art described above. That is, the object of the present invention is to provide a glass waveguide laser and a glass waveguide for a glass waveguide amplifier, which can be easily mass-produced, can be manufactured at low cost, and can be made smaller and have higher performance.

[課題を解決するための手段] 上記目的を達成するため本発明では、基板上に低屈折率
層(屈折率ns)を設け、その層の上に希土類元素の添
加された略断面矩形状のコア導波路(屈折率nc 、 
 nc >ncl)を有し、該導波路表面を屈折率nc
l (ncl< nc )のクラツド膜で覆ったガラス
導波路からなり、上記コア導波路を基板内にジグザグ状
に形成させてコア導波路を長くしである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a low refractive index layer (refractive index ns) on a substrate, and a layer having a substantially rectangular cross section doped with a rare earth element on the layer. Core waveguide (refractive index nc,
nc > ncl), and the waveguide surface has a refractive index nc
The core waveguide is made of a glass waveguide covered with a cladding film of l (ncl<nc), and the core waveguide is formed in a zigzag shape within the substrate to make the core waveguide longer.

[作用] すなわち、従来の直線導波路の代わりに、ジグザグ状コ
ア導波路にして基板面積を有効に活用・させ、長い導波
路長を得るようにしたものであり、高い増幅度のガラス
導波路増幅器、あるいは発振波長の安定したガラス導波
路レーザーを実現させることができる。
[Function] In other words, instead of the conventional straight waveguide, a zigzag core waveguide is used to effectively utilize the substrate area and obtain a long waveguide length, making it a glass waveguide with high amplification. It is possible to realize an amplifier or a glass waveguide laser with a stable oscillation wavelength.

また、本発明のガラス導波路はブレーナ構造で、かつ半
導体プロセスを利用して製造することができるので、量
産化が容易であり、結果として低コスト化を達成するこ
とが可能である。なお、このようにコア導波路を長くさ
せる理由は、コア導波路への希土類元素(例えば、Er
、Nd、Yb。
Further, since the glass waveguide of the present invention has a brainer structure and can be manufactured using a semiconductor process, mass production is easy, and as a result, it is possible to achieve cost reduction. Note that the reason for making the core waveguide longer is that rare earth elements (for example, Er) are added to the core waveguide.
, Nd, Yb.

Tmなど)の添加量を多くとることが製造上、非常に難
しいからである。
This is because it is extremely difficult to add a large amount of Tm (Tm, etc.) in terms of manufacturing.

[実施例] 第1図に本発明の希土類元素を添加したガラス導波路を
用いたガラス導波路レーザーの実施例を示す。同図(a
)はガラス導波路の側面図、(b)は(a)のA−A−
断面図を示したものである。半導体、ガラス、強誘電体
、磁性体などよりなる基板1上に屈折率がnbの低屈折
率層2を設け、その上に屈折率がnc  (nc >n
b )で略断面矩形状のコア導波路3をジグザグ状に形
成し、そしてその上全体を屈折率がneJ (ncl>
nc )のクラッド4で覆った構造である。コア導波路
3には、例えば5102−Fi02系ガラスに、Er、
Ndなどの希土類元素を少なくとも一種添加したガラス
を用いる。クラッド4には、例えば5i02T i 0
2− B20:s系ガラスを用いる。また低屈折率層2
にもS i 02−T i 02−Bz 03系ガラス
を用いる。屈曲部に設けられた5−2,5−3,5−4
および5−5は反射率がほぼ1009gのミラーである
。5−1は反射率99%のミラー5−6は反射率98%
のミラーであり、この5−1と5−6でレーザーミラー
を構成させて発振波長の安定したレーザ発振用光共振器
を実現させる構成としである。すなわち、矢印6−1よ
り励起光源(例えば、波長514.5naのArイオン
レーザ−)を入射させると、その光信号はコア導波路内
を矢印6−2.6−3.6−4.6−5.6−6.7−
1.7−2.7−3.7−4.7−5゜6−2.・・・
、6−6のように光共振器間を反射を繰り返すことによ
り、増幅作用、あるいはレーザー発振を行わせるように
したものである。このように、コア導波路3をジグザグ
状にしてその共振器長りを長くすることによって、増幅
あるいはレーザー発振しやすくすることができる。実際
に本実施例のようにジグザグ状にすることによりて、直
線導波路の場合の3倍以上にすることができた。
[Example] FIG. 1 shows an example of a glass waveguide laser using a glass waveguide doped with a rare earth element according to the present invention. The same figure (a
) is a side view of the glass waveguide, (b) is a side view of the glass waveguide, and (b) is a side view of the glass waveguide.
It shows a cross-sectional view. A low refractive index layer 2 with a refractive index of nb is provided on a substrate 1 made of semiconductor, glass, ferroelectric material, magnetic material, etc., and a low refractive index layer 2 with a refractive index of nb (nc > n
In b), the core waveguide 3 with a substantially rectangular cross section is formed in a zigzag shape, and the entire top thereof has a refractive index of neJ (ncl>
It has a structure covered with cladding 4 of nc). The core waveguide 3 is made of, for example, 5102-Fi02 glass, Er,
Glass to which at least one rare earth element such as Nd is added is used. The cladding 4 has, for example, 5i02T i 0
2-B20: Use s-based glass. Also, the low refractive index layer 2
Also, S i 02-T i 02-Bz 03 glass is used. 5-2, 5-3, 5-4 provided at the bending part
and 5-5 is a mirror with a reflectance of approximately 1009 g. Mirror 5-1 has a reflectance of 99% and mirror 5-6 has a reflectance of 98%.
5-1 and 5-6 constitute a laser mirror to realize an optical resonator for laser oscillation with a stable oscillation wavelength. That is, when a pumping light source (for example, an Ar ion laser with a wavelength of 514.5 na) is inputted from the arrow 6-1, the optical signal travels inside the core waveguide along the arrows 6-2.6-3.6-4.6. -5.6-6.7-
1.7-2.7-3.7-4.7-5゜6-2. ...
, 6-6, the amplification effect or laser oscillation is performed by repeating reflection between optical resonators. In this way, by forming the core waveguide 3 in a zigzag shape and increasing the resonator length, amplification or laser oscillation can be facilitated. In fact, by creating a zigzag shape as in this example, the waveguide could be more than three times that of a straight waveguide.

ここで、ジグザグ状にすると、8−1〜8−4の屈曲部
分での放射損、ミラー5−2〜5−5の反射率の低下に
よる損失が問題になるが、θを大きくし、また非常に高
い反射率の膜を形成することによりて補うことができる
Here, if the zigzag shape is used, radiation loss at the bent portions of 8-1 to 8-4 and loss due to a decrease in the reflectance of mirrors 5-2 to 5-5 will become a problem, but if θ is increased, This can be compensated for by forming a film with very high reflectance.

第2図は本発明の希土類元素を添加したガラス導波路を
用いたガラス導波路レーザーの別の実施例を示したもの
である。9−1〜9−8は光信号を90@曲げさせる9
0′1コーナーであり、反応性イオンエツチング技術に
よりコア導波路側面を垂直性よくエツチングして形成す
ることができる。
FIG. 2 shows another embodiment of a glass waveguide laser using a glass waveguide doped with a rare earth element according to the present invention. 9-1 to 9-8 bend the optical signal 90@9
It is a 0'1 corner, and can be formed by etching the side surface of the core waveguide with good verticality using reactive ion etching technology.

また11は反射膜である。このコーナー9−1〜9−8
と反射膜11により、放射損失を第1図のものより小さ
くすることができ、レーザーミラー5−1と5−6間が
損失の小さい光共振器とじて構成される。
Further, 11 is a reflective film. This corner 9-1 to 9-8
and the reflective film 11, the radiation loss can be made smaller than that shown in FIG. 1, and the space between the laser mirrors 5-1 and 5-6 is configured as an optical resonator with low loss.

第3図は本発明のガラス導波路を用いて構成したガラス
導波路増幅器の実施例を示したものである。同図におい
て、9は誘電体多層蒸着膜であり、矢印6−8から入射
する励起光、例えば波長514.5nmのArイオンレ
ーザ−の光信号に対しては透過特性をもつが、矢印6−
1方向から入射する人力光、例えば波長1.535μm
の半導体レーザーの光信号に対してはこれを透過させず
反射させる特性をもったものである。なお、同図は第1
図における第1図(a)のA−A−断面図と同様の断面
図を示したものであり、第1図とと同一符号のものは同
一性能のものである。コア導波路3として、例えばE「
を添加した5i02T i 02系ガラスを用いると、
矢印6−7方向へは光強度の増幅された光信号がとりだ
される。
FIG. 3 shows an embodiment of a glass waveguide amplifier constructed using the glass waveguide of the present invention. In the same figure, 9 is a dielectric multilayer vapor deposited film, which has a transmission characteristic for excitation light incident from arrow 6-8, for example, an optical signal of an Ar ion laser with a wavelength of 514.5 nm,
Human-powered light incident from one direction, for example, wavelength 1.535 μm
It has the characteristic of not transmitting the optical signal of the semiconductor laser but reflecting it. Note that the same figure is the first
This figure shows a cross-sectional view similar to the A-A cross-sectional view of FIG. 1(a), and the same reference numerals as in FIG. As the core waveguide 3, for example, E"
When using 5i02T i02 series glass doped with
An optical signal with amplified optical intensity is taken out in the direction of arrows 6-7.

第4図も本発明のガラス導波路を用いて構成したガラス
導波路増幅器の実施例を示したものである。同図におい
て、誘電体多層蒸着膜9は低屈折率層2にスリットを形
成し、そのスリットに上記膜を埋め込んだものである。
FIG. 4 also shows an embodiment of a glass waveguide amplifier constructed using the glass waveguide of the present invention. In the figure, the dielectric multilayer vapor deposited film 9 is obtained by forming a slit in the low refractive index layer 2 and filling the slit with the above film.

10は矢印6−8方向に入射する励起光、例えば波長5
14.5nmのArイオンレーザ−の光信号を導波させ
る導波路であり入力光6−1はカットオフにより伝搬す
ることができないように、導波路幅が狭く設計されてい
る。
10 is excitation light incident in the direction of arrows 6-8, for example wavelength 5
The waveguide is designed to guide the optical signal of the 14.5 nm Ar ion laser, and the width of the waveguide is designed to be narrow so that the input light 6-1 cannot propagate due to a cutoff.

尚、本発明は上記実施例に限定されない。まず、コア導
波路3のジグザグ回数は何回でもよく、多ければ多い程
良い。コア導波路3、クラッド4、低屈折率層2の材質
は5iOzを主成分としたガラス以外に、種々の添加物
(Ti、P、Ge、B。
Note that the present invention is not limited to the above embodiments. First, the number of zigzags in the core waveguide 3 may be any number, and the larger the number, the better. The core waveguide 3, cladding 4, and low refractive index layer 2 are made of glass containing 5iOz as a main component, as well as various additives (Ti, P, Ge, B).

F、Na、に、Ba、Aρ、Sb、Mg、Ca。F, Na, Ba, Aρ, Sb, Mg, Ca.

Znなど)を少なくとも1tI添加したガラスを用いて
もよい。また導波路構造としては、第1〜第4図に示し
た埋込み型以外に、第5図に示したようなリッジ型を用
いてもよい。さらに、第5図に示したように、励起光用
光源として半導体レーザー12をガラス導波路端面に設
けてもよい。また受光素子、光ファイバなども同様にし
て実装できることも言うまでもないことである。
A glass to which at least 1 tI (Zn, etc.) is added may be used. Moreover, as the waveguide structure, in addition to the buried type shown in FIGS. 1 to 4, a ridge type as shown in FIG. 5 may be used. Furthermore, as shown in FIG. 5, a semiconductor laser 12 may be provided on the end face of the glass waveguide as a light source for excitation light. It goes without saying that light receiving elements, optical fibers, etc. can also be mounted in the same manner.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明のガラス導波路によれば、
ブレーナ構造で、小さな基板面積でコア導波路長を長く
とることができるので、傍かな希土類元素の添加で高利
得のガラス導波路の増幅器、あるいは安定な発振特性を
有するガラス導波路レーザーを構成させることができる
。ブレーナ構造であるので、半導体プロセスを利用して
容易に作ることができる。そのため、量産化が容易で低
コスト化が可能であり、また小形に作れるといった特徴
がある。
As described above, according to the glass waveguide of the present invention,
The brainer structure allows a long core waveguide length with a small substrate area, so by adding a small amount of rare earth elements, it is possible to construct a high-gain glass waveguide amplifier or a glass waveguide laser with stable oscillation characteristics. be able to. Since it has a brainer structure, it can be easily manufactured using a semiconductor process. Therefore, mass production is easy, costs can be reduced, and the device can be made compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の希土類元素を添加したガ
ラス導波路レーザーの実施例、第3図から第5図は本発
明のガラス導波路を用いたガラス導波路増幅器の実施例
、第6図は従来の光フアイバレーザーの構成例、第7図
は従来の光フアイバ増幅器の構成例をそれぞれ示したも
のである。 1;基板、 2:低屈折率層、 :コア導波路、 :クラッド、 = 1〜5−6  :  ミ ラ − −1〜9−8:90’ コーナー :誘電体多層蒸着膜、 1:反射膜、 2:半導体レーザー 冨 日 光7フイ/でし−サ゛−9a〜刊 第 圀 官 mP LIMP 光増幅X飢構へ發」
1 and 2 are examples of the glass waveguide laser doped with rare earth elements of the present invention, and FIGS. 3 to 5 are examples of the glass waveguide amplifier using the glass waveguide of the present invention. FIG. 6 shows an example of the configuration of a conventional optical fiber laser, and FIG. 7 shows an example of the configuration of a conventional optical fiber amplifier. 1: Substrate, 2: Low refractive index layer, : Core waveguide, : Clad, = 1~5-6: Mirror--1~9-8: 90' Corner: Dielectric multilayer vapor deposited film, 1: Reflective film , 2: Semiconductor Laser Tomi Nikko 7F/Deshi-Sai-9a ~ Published by the National Government Office mP LIMP Towards Light Amplification

Claims (1)

【特許請求の範囲】 1、基板上に低屈折率層(屈折率ns)を設け、その層
の上に希土類元素の添加された略断面矩形状のコア導波
路(屈折率nc、nc> ncs)を有し、そのコア導波路表面を屈折率nc1(
nc1<nc)のクラッド膜で覆ったガラス導波路から
なり、該コア導波路を基板内にジグザグ状に形成させた
ことを特徴とするガラス導波路。 2、第1項記載のガラス導波路において、ジグザグ状コ
ア導波路として、90°コーナーを用いて構成したこと
を特徴とするガラス導波路。 3、第1項記載のガラス導波路において、ジグザグ状コ
ア導波路として、基板両端面に設けた反射膜間をジグザ
グ状に形成させたことを特徴とするガラス導波路。 4、第1項記載のガラス導波路において、ジグザグ状コ
ア導波路の途中かせら、励起光は透過させるが、コア導
波路の入力端から入射した信号光は反射させる誘電体多
層蒸着膜を介して励起光を入射させる構成としたことを
特徴とするガラス導波路。 5、第1〜4項において、ガラス導波路として、埋込み
型、あるいはリッジ型構造を用いたことを特徴とするガ
ラス導波路。 6、第1〜3項において、コア導波路の入力端面と出力
端面に所望の反射率を有するミラーを設けたことを特徴
とするガラス導波路。 7、第6項において、コア導波路の入力端面より励起光
をミラーを通して入射させたことを特徴とするガラス導
波路。 8、第1〜7項において、ガラス導波路に半導体レーザ
、受光素子などの光素子を実装したことを特徴とするガ
ラス導波路。
[Claims] 1. A low refractive index layer (refractive index ns) is provided on a substrate, and a core waveguide doped with a rare earth element and having a substantially rectangular cross section (refractive index nc, nc > ncs) is formed on the layer. ), and its core waveguide surface has a refractive index nc1 (
1. A glass waveguide comprising a glass waveguide covered with a cladding film with nc1<nc, the core waveguide being formed in a zigzag shape within a substrate. 2. The glass waveguide according to item 1, characterized in that the zigzag core waveguide is constructed using a 90° corner. 3. The glass waveguide according to item 1, characterized in that the zigzag core waveguide is formed in a zigzag shape between the reflective films provided on both end faces of the substrate. 4. In the glass waveguide described in item 1, the excitation light is transmitted through the middle of the zigzag core waveguide, but the signal light incident from the input end of the core waveguide is reflected through the dielectric multilayer vapor deposited film. 1. A glass waveguide characterized by having a configuration in which excitation light is incident on the glass waveguide. 5. A glass waveguide according to items 1 to 4, characterized in that the glass waveguide has a buried type or ridge type structure. 6. A glass waveguide according to items 1 to 3, characterized in that a mirror having a desired reflectance is provided on the input end face and the output end face of the core waveguide. 7. The glass waveguide according to item 6, characterized in that the excitation light is incident from the input end face of the core waveguide through a mirror. 8. A glass waveguide according to items 1 to 7, characterized in that an optical element such as a semiconductor laser or a light receiving element is mounted on the glass waveguide.
JP1042507A 1989-02-22 1989-02-22 Glass waveguide Expired - Fee Related JP2721537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1042507A JP2721537B2 (en) 1989-02-22 1989-02-22 Glass waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1042507A JP2721537B2 (en) 1989-02-22 1989-02-22 Glass waveguide

Publications (2)

Publication Number Publication Date
JPH02221902A true JPH02221902A (en) 1990-09-04
JP2721537B2 JP2721537B2 (en) 1998-03-04

Family

ID=12637979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1042507A Expired - Fee Related JP2721537B2 (en) 1989-02-22 1989-02-22 Glass waveguide

Country Status (1)

Country Link
JP (1) JP2721537B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004280009A (en) * 2003-03-19 2004-10-07 Toppan Printing Co Ltd Optical waveguide and its manufacturing method
JP2005277370A (en) * 2003-09-05 2005-10-06 Sumitomo Electric Ind Ltd Optically amplifying waveguide, optical amplification module, and optical communication system
JP2007512698A (en) * 2003-11-28 2007-05-17 キネテイツク・リミテツド Optical fiber amplifier
JP2012195545A (en) * 2011-03-18 2012-10-11 Seiko Epson Corp Terahertz wave generating device, camera, imaging device and measuring device
JP2012222303A (en) * 2011-04-13 2012-11-12 Seiko Epson Corp Terahertz wave generator, camera, imaging apparatus, and measuring apparatus
JP2013104804A (en) * 2011-11-15 2013-05-30 Seiko Epson Corp Semiconductor short pulse generating device, terahertz-wave generating device, camera, imaging device, and measuring device
JP2020017563A (en) * 2018-07-23 2020-01-30 学校法人 中央大学 Laser device and power generation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59109022A (en) * 1982-12-14 1984-06-23 Nippon Sheet Glass Co Ltd Optical wave guide circuit
JPS62246005A (en) * 1986-04-18 1987-10-27 Matsushita Electric Ind Co Ltd Production of optical waveguide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59109022A (en) * 1982-12-14 1984-06-23 Nippon Sheet Glass Co Ltd Optical wave guide circuit
JPS62246005A (en) * 1986-04-18 1987-10-27 Matsushita Electric Ind Co Ltd Production of optical waveguide

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004280009A (en) * 2003-03-19 2004-10-07 Toppan Printing Co Ltd Optical waveguide and its manufacturing method
JP2005277370A (en) * 2003-09-05 2005-10-06 Sumitomo Electric Ind Ltd Optically amplifying waveguide, optical amplification module, and optical communication system
JP4655553B2 (en) * 2003-09-05 2011-03-23 住友電気工業株式会社 Optical amplifying waveguide, optical amplifying module, and optical communication system
JP2007512698A (en) * 2003-11-28 2007-05-17 キネテイツク・リミテツド Optical fiber amplifier
JP2012195545A (en) * 2011-03-18 2012-10-11 Seiko Epson Corp Terahertz wave generating device, camera, imaging device and measuring device
US9341567B2 (en) 2011-03-18 2016-05-17 Seiko Epson Corporation Terahertz wave generation device, light source device, camera, imaging device, and measurement device
JP2012222303A (en) * 2011-04-13 2012-11-12 Seiko Epson Corp Terahertz wave generator, camera, imaging apparatus, and measuring apparatus
JP2013104804A (en) * 2011-11-15 2013-05-30 Seiko Epson Corp Semiconductor short pulse generating device, terahertz-wave generating device, camera, imaging device, and measuring device
JP2020017563A (en) * 2018-07-23 2020-01-30 学校法人 中央大学 Laser device and power generation device

Also Published As

Publication number Publication date
JP2721537B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
CA2040527C (en) Rare earth element-doped optical waveguide and process for producing the same
JP3214910B2 (en) Manufacturing method of planar waveguide optical amplifier
JPH01260405A (en) Optical fiber
JP2514392B2 (en) Optical resonant element
JP2675133B2 (en) Waveguide type optical star coupler
US5475777A (en) Optical device with a pig tail optical fiber and its production method
JPH10284777A (en) Optical fiber laser
WO1999043058A1 (en) Fiber optic lasers employing fiber optic amplifiers
JPH02221902A (en) Glass waveguide
JP3181663B2 (en) 1.3μm band optical amplifier
JP2656972B2 (en) Multi-wavelength glass waveguide laser array
JP3223930B2 (en) Optical device
JP3333666B2 (en) Waveguide for high gain optical amplifier
JP2730954B2 (en) Rare earth element doped optical coupling waveguide
JP3926139B2 (en) Optical amplification element
JP2842959B2 (en) Optically pumped waveguide loop laser
JP2730955B2 (en) Rare earth element-doped long glass waveguide and method of manufacturing the same
JPH04359230A (en) Rare earth added optical waveguide and production thereof
JP2003084324A (en) Multimode waveguide
JPH05283770A (en) Optical signal amplifier
JPH087647Y2 (en) Optical waveguide type laser device
JPH04102806A (en) Optical waveguide and optical amplifier
JPS63221692A (en) Semiconductor light amplifier
JP2859763B2 (en) Functional glass waveguide for single mode transmission
JP2788538B2 (en) Optical amplifier

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees