JP2004271367A - Canister inspecting method - Google Patents

Canister inspecting method Download PDF

Info

Publication number
JP2004271367A
JP2004271367A JP2003063346A JP2003063346A JP2004271367A JP 2004271367 A JP2004271367 A JP 2004271367A JP 2003063346 A JP2003063346 A JP 2003063346A JP 2003063346 A JP2003063346 A JP 2003063346A JP 2004271367 A JP2004271367 A JP 2004271367A
Authority
JP
Japan
Prior art keywords
canister
temperature
frequency melting
temperature distribution
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003063346A
Other languages
Japanese (ja)
Inventor
Toshiaki Kuno
俊明 久野
Yoshiyuki Kamei
良之 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2003063346A priority Critical patent/JP2004271367A/en
Publication of JP2004271367A publication Critical patent/JP2004271367A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect flaws present on the surface of a canister and even internal flaws impossible to observe visually on the canister with respect to flaws like a crack or the partial irregularity of electric resistance of the canister. <P>SOLUTION: The canister 2 for high frequency melting formed of conductive refractory is heated using an induction heating furnace 1 and taken out of the furnace on the way of the temperature rise of the canister. The outside surface of the canister is scanned by an infrared camera 4 as shown by Fig. 1 while rotating the canister on a rotary stand 3 and the temperature distribution thereof is measured by a thermograph to detect the flaw of the texture constituting the canister on the basis of a principle such that temperature irregularity is produced in a flaw region. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高周波溶融に用いる導電性キャニスタの欠陥を検出する検査方法の改良に関する。
【0002】
【従来の技術】
原子力発電所等における原子力プラントで発生する低レベルの放射性物質で汚染された金属性及び不燃性廃棄物の処理に当たり、それらを溶融、冷却した減容固化体として保管することが行われている。この場合、溶融対象物は加熱容器であるキャニスタに収容され、溶融、冷却して固化体とされ、このキャニスタとともにドラム缶に収め、放射性廃棄物貯蔵設備に安全に保管されるようになっている。
【0003】
高周波溶融に用いられるキャニスタは、導電性材料で形成される加熱容器であり、廃棄物の溶融温度に耐えるカーボンを含有したセラミックスによって外周壁と底部が形成され、必要によって表面に酸化防止材が塗布されているものである。このようなキャニスタは、溶融対象物を収容した状態で高周波溶融炉において、誘導電流によってそれ自体が抵抗加熱を受け高温度に加熱され、内部の対象物を溶融するのである。
【0004】
このような高周波溶融用キャニスタの場合、表面からは確認され難い外面の微細な亀裂や、表面からは目視されないような内部の亀裂であっても、加熱時の熱ストレスによって亀裂が大きく成長してキャニスタの破損にいたる可能性もあるので、厳重な外観検査が要求されるのであるが、外側からの目視検査では熟練検査員でも確実性にやや問題があった。
【0005】
また、高周波溶融用キャニスタの場合には、内部の部分的な電気抵抗の大きなバラツキも重大な欠陥とされる。それは、電気抵抗のバラツキは前記誘導加熱の際に誘導電流の偏りが生じその結果大きな温度ムラが発生するからである。このような温度ムラが生じると、局所的な異常発熱により、監視温度を超え、キャニスタの許容最高温度以上に至る恐れがあった。
【0006】
このような内部の電気抵抗のバラツキは、内部の部分的充填密度、含有カーボンの偏在あるいは配向のバラツキなどが原因と考えられるが、従来の外観検査等(特許文献1を参照のこと)では検出できないのはいうまでもなく、また、その他にも確実な検出方法は提案されていなかった。
【0007】
【特許文献1】
特開平8−54384号公報:〔請求項1〕の記載。
【0008】
この特許文献1には、通気性のある容器について、容器外部を発泡剤で濡らした状態で容器内部に圧縮空気を供給し、その外面からの発泡状態から亀裂や緻密性不足といった欠陥有無,程度を調べる検査方法が記載されている。この方法では、含有カーボンの偏在等の組織均一性、および電気抵抗等の物理特性の均一性を検出することができないため、別の方法による検査工程が必要であった。
【0009】
【発明が解決しようとする課題】
本発明は、上記の問題点を解決するためになされたものであり、キャニスタの亀裂や成分の偏りや密度ムラのような欠陥について表面に存在するものから目視できない内部欠陥まで検出することを可能とする高周波溶融用キャニスタの検査方法を提供する。
【0010】
【課題を解決するための手段】
上記の問題は、誘導加熱により高周波溶融用キャニスタを加熱し、その昇温時にキャニスタの表面の温度分布を計測し、キャニスタを構成する組織の不均一な箇所を検出することを特徴とする、本発明の高周波溶融用キャニスタの検査方法によって、解決することができる。
【0011】
また、本発明は、前記キャニスタの表面の温度分布を計測するに際して、キャニスタの表面を赤外線カメラで走査し、その温度分布をサーモグラフで計測する前記の高周波溶融用キャニスタの検査方法として具体化でき、この場合、前記昇温時の温度が50℃〜500℃の範囲であるのがより好ましい。
【0012】
さらに、誘導加熱炉を用いて高周波溶融用キャニスタを加熱し、その昇温時にキャニスタを炉外に取り出して、その外側表面の温度分布を計測するのもよく、また、キャニスタを炉内に配置した状態で昇温し、その内側表面の温度分布を計測するのもよい。
【0013】
キャニスタを構成する組織の不均一な箇所を検出するために、予め、それらの不均一な現象に対応するサーモグラフパターンを予め準備し、それを基準にしてそれぞれ不均一な箇所を検出するのが特に好ましい。
【0014】
本発明における、キャニスタを構成する組織の不均一とは、例えば、亀裂(クラック)、亀裂状傷、組織の微小隙間および密度ムラなど物理的不均一による欠陥、または電気抵抗の部分的バラツキの原因となるカーボンの偏在、化学組成のバラツキなど化学的不均一による欠陥(以下、単に欠陥という)を意味する。そしてそのようなキャニスタの欠陥を検出する原理は次の通りである。
【0015】
キャニスタを誘導加熱によって温度上昇する場合、キャニスタに前記した組織の不均一による欠陥があると、単に電気抵抗のバラツキによる発熱差が生じるだけでなく、内部に発生する加熱のための誘導電流は欠陥部位を迂回することになり、その周囲に電流集中が生じるため、局所的に異常発熱が起こる。その結果、欠陥部位では、欠陥のない部分の一様な温度分布と異なる、温度が異常に上下する温度分布として観察されるのである。そして、この異常な温度分布は、キャニスタ内部の温度ムラに起因するので、キャニスタの亀裂、成分の偏り、密度ムラのような欠陥、さらには内部の電気抵抗の部分的バラツキについて、表面に存在するものから目視できない内部欠陥まで検出することを可能とするのである。
【0016】
【発明の実施の形態】
次に、本発明の高周波溶融用キャニスタの検査方法に係る実施形態について、図1、2を参照しながら説明する。
(第1実施形態)
本発明の第1実施形態は、キャニスタ2の外側表面から不均一な箇所である欠陥を検出する具体的な方法であり、誘導加熱炉又は溶融炉実機1を用いて導電性材料で形成された高周波溶融用キャニスタ2を加熱し、その昇温途中でキャニスタを炉外に取りだし、回転台3上で回転させながら、図1(A)に示すように、その外側表面を赤外線カメラ4で走査し、その温度分布をサーモグラフで計測し、前記した原理によってキャニスタを構成する組織の欠陥を検出する高周波溶融用キャニスタの検査方法である。このとき、赤外線カメラをキャニスタの斜め上方に傾斜させて配置し、キャニスタの内側表面を計測するのもよい。
【0017】
また図1(B)に示すように、誘導加熱用コイルを高周波溶融用キャニスタ内部に配し、誘導加熱を行うことにより、昇温中の温度計測が可能となり、より精密な検査が可能である。
【0018】
本発明によれば、前記したように、欠陥に基づく温度分布の異常によって欠陥そのものを検出する方法であり、高周波溶融炉における加熱ストレスによる破壊現象の原因となる亀裂などの欠陥を検出できる利点がある。それら検出可能な欠陥は、表面上に肉眼で目視できる欠陥は勿論のこと、内在クラックなど表面に目視できないような内部欠陥の他、内部の電気抵抗の部分的バラツキという欠陥も検出できるという利点が得られるのである。
【0019】
なお、本発明では、このように赤外線カメラとサーモグラフを使用する形態に限定されるものではない。これらに替えて、輻射熱や発熱光を計測する輻射温度計、光温度計などと温度記録計を組み合わせにより、昇温時のキャニスタ2の表面の温度分布を計測するようにしてもよい。
【0020】
この第1実施形態では、前記昇温時の温度が50℃〜500℃の範囲であるよう設定するのがよい。これは、下限温度未満では温度レベルが低いので、欠陥部位の温度差が生じにくいからであり、また上限温度を超えると、欠陥部位の温度差が周辺温度に対して小さくなり、検出精度が低下するからである。
【0021】
また、昇温時の昇温速度も計測結果に影響を及ぼす。昇温速度が5℃/mim以下では、欠陥部位の温度差が熱伝導のため緩和され検出困難となり、また15℃/mim以上の場合は、前記欠陥以外のキャニスタの形状に起因する部分的昇温ムラが発生して対象とする欠陥の検出を困難にする。従って、昇温速度は、5〜15℃/mimとするのが好ましい。
【0022】
本発明では、以上説明したように、計測した温度分布をサーモグラフなどで表示し欠陥部位を検出するのであるが、この場合、サーモグラフは欠陥の形状や程度を直接的な尺度で表示する訳ではないから、キャニスタを構成する組織の前記欠陥につき多数の各種形態を準備し、予めそれらに対応するサーモグラフパターンを作成しそれを基準パターンとして用いて、試験対象のキャニスタから得られたサーモグラフパターンから欠陥を検出し、その種類や大きさ判定するようにすれるのが好ましい。
【0023】
(第2実施形態)
第2実施形態は、キャニスタの内側表面から欠陥を検出する具体的な方法であり、図2(A)に示すように、誘導加熱炉1を用いて高周波溶融用のキャニスタ2を加熱し、その昇温時にキャニスタ2の斜め上方に傾斜させて配置した赤外線カメラ4により直接に計測するものである。温度分布の計測以降の操作および付帯事項は、第1実施形態と同様である。
【0024】
また、図2(B)に示すように、赤外線カメラ4をテレスコープ41を介してキャニスタ内側表面の局所観察を行うことにより赤外線の散乱による影響を防ぐことが可能となり、前記図2(A)の場合に較べて精度が向上し、更に精密な検査が可能である。
【0025】
【発明の効果】
本発明の高周波溶融用キャニスタの検査方法は、以上説明したように構成されているので、キャニスタの亀裂や電気抵抗の部分的バラツキなど各種欠陥について表面に存在するものから目視できない内部欠陥まで検出することが可能となり、欠陥のあるキャニスタを確実に排除できるので、溶融固化処理の安全性が向上する。
【0026】
また、その結果、欠陥の無いキャニスタが提供されるので、キャニスタの均一加熱が可能となるから、溶融温度を高く設定でき、溶融効果を向上させることもできるという優れた効果がある。よって本発明は、従来の問題点を解消した高周波溶融用キャニスタの検査方法として、その技術的価値はきわめて大なるものがある。
【図面の簡単な説明】
【図1】本発明の第1実施形態を説明するための装置の概観図(A)(B)。
【図2】第2実施形態を説明するための装置の概観図(A)(B)。
【符号の説明】
1 誘導加熱炉、2 キャニスタ、3 回転台、4 赤外線カメラ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement in an inspection method for detecting a defect of a conductive canister used for high-frequency melting.
[0002]
[Prior art]
BACKGROUND ART In treating metallic and non-combustible waste contaminated with low-level radioactive materials generated in a nuclear power plant such as a nuclear power plant, they are melted and cooled and stored as a reduced volume solidified body. In this case, the object to be melted is accommodated in a canister, which is a heating vessel, melted and cooled to form a solidified body, stored in a drum together with the canister, and safely stored in a radioactive waste storage facility.
[0003]
The canister used for high-frequency melting is a heating vessel made of conductive material.The outer wall and bottom are made of carbon-containing ceramics that can withstand the melting temperature of waste, and an antioxidant is applied to the surface if necessary. Is what is being done. Such a canister receives resistance heating by an induced current and is heated to a high temperature in a high-frequency melting furnace in a state in which a melting target is accommodated, and melts the internal target.
[0004]
In the case of such a high-frequency melting canister, even if it is a fine crack on the outer surface that is hard to be confirmed from the surface, or an internal crack that is not visible from the surface, the crack grows greatly due to thermal stress at the time of heating. Strict appearance inspection is required because there is a possibility that the canister may be damaged, but even a skilled inspector has a certain problem in the visual inspection from the outside.
[0005]
Further, in the case of the canister for high frequency melting, a large variation in the internal electrical resistance is also regarded as a serious defect. This is because the variation in the electric resistance causes a bias in the induced current during the induction heating, and as a result, a large temperature unevenness occurs. When such temperature unevenness occurs, the monitoring temperature may be exceeded due to local abnormal heat generation, and the temperature may exceed the maximum allowable temperature of the canister.
[0006]
Such a variation in the internal electric resistance is considered to be caused by a partial packing density in the inside, uneven distribution of the carbon contained, or a variation in the orientation. However, it is detected by a conventional visual inspection or the like (see Patent Document 1). Needless to say, no other reliable detection method has been proposed.
[0007]
[Patent Document 1]
JP-A-8-54384: Description of [Claim 1].
[0008]
This patent document 1 discloses that, for a gas permeable container, compressed air is supplied to the inside of the container in a state where the outside of the container is wet with a foaming agent, and the presence or absence of defects such as cracks or insufficient density due to the foaming state from the outer surface. An inspection method for examining is described. In this method, it is not possible to detect the uniformity of the structure such as uneven distribution of the contained carbon and the uniformity of the physical characteristics such as the electric resistance, so that an inspection step by another method is required.
[0009]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-mentioned problems, and it is possible to detect from defects existing on the surface to internal defects that cannot be seen with respect to defects such as cracks of the canister, component bias and density unevenness. To provide an inspection method for a high-frequency melting canister.
[0010]
[Means for Solving the Problems]
The problem described above is characterized in that a high-frequency melting canister is heated by induction heating, a temperature distribution on the surface of the canister is measured when the temperature is raised, and an uneven portion of a tissue constituting the canister is detected. The problem can be solved by the method for inspecting a high-frequency melting canister according to the invention.
[0011]
Further, the present invention can be embodied as an inspection method of the high-frequency melting canister for measuring the temperature distribution on the surface of the canister by scanning the surface of the canister with an infrared camera and measuring the temperature distribution by a thermograph. In this case, the temperature at the time of the temperature rise is more preferably in the range of 50 ° C to 500 ° C.
[0012]
Further, the high-frequency melting canister is heated by using an induction heating furnace, and the canister is taken out of the furnace when the temperature is raised, and the temperature distribution on the outer surface thereof may be measured, and the canister is arranged in the furnace. It is also possible to raise the temperature in this state and measure the temperature distribution on the inner surface.
[0013]
In order to detect non-uniform portions of the tissue constituting the canister, it is necessary to prepare thermograph patterns corresponding to those non-uniform phenomena in advance, and to detect non-uniform portions based on the thermographic patterns. Particularly preferred.
[0014]
In the present invention, the non-uniformity of the structure of the canister is, for example, a cause of a defect due to physical non-uniformity such as a crack, a crack-like scratch, a fine gap in the structure and uneven density, or a partial variation in electric resistance. (Hereinafter simply referred to as "defect") due to chemical non-uniformity such as uneven distribution of carbon and variation in chemical composition. The principle of detecting such a canister defect is as follows.
[0015]
When the temperature of the canister is increased by induction heating, if the canister has a defect due to the non-uniform structure described above, not only a difference in heat generation due to variation in electric resistance occurs, but also the induction current for heating generated inside is defective. This detours around the site, and current concentration occurs around it, resulting in local abnormal heat generation. As a result, at the defective portion, a temperature distribution that is different from the uniform temperature distribution of the portion having no defect and is abnormally increased or decreased is observed. Since this abnormal temperature distribution is caused by temperature unevenness inside the canister, cracks in the canister, component bias, defects such as density unevenness, and partial variations in the internal electrical resistance are present on the surface. This makes it possible to detect even internal defects that cannot be seen from the object.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of a method for inspecting a high-frequency melting canister according to the present invention will be described with reference to FIGS.
(1st Embodiment)
The first embodiment of the present invention is a specific method for detecting a defect that is a non-uniform portion from the outer surface of a canister 2 and is formed of a conductive material using an induction heating furnace or a melting furnace 1. The high-frequency melting canister 2 is heated, the canister is taken out of the furnace in the middle of the temperature rise, and the outer surface thereof is scanned by the infrared camera 4 while rotating on the turntable 3 as shown in FIG. This is an inspection method for a high-frequency melting canister in which the temperature distribution is measured with a thermograph, and a defect of a tissue constituting the canister is detected based on the principle described above. At this time, the infrared camera may be arranged obliquely above the canister to measure the inner surface of the canister.
[0017]
Further, as shown in FIG. 1 (B), by arranging the induction heating coil inside the high-frequency melting canister and performing the induction heating, the temperature can be measured while the temperature is being increased, and more precise inspection is possible. .
[0018]
According to the present invention, as described above, a method for detecting a defect itself by an abnormality in a temperature distribution based on the defect, which has an advantage that a defect such as a crack that causes a destruction phenomenon due to heating stress in a high-frequency melting furnace can be detected. is there. These detectable defects have the advantage of being able to detect not only defects visible to the naked eye on the surface, but also internal defects such as internal cracks that cannot be seen on the surface, as well as defects such as partial variations in the internal electrical resistance. You get it.
[0019]
The present invention is not limited to the embodiment using the infrared camera and the thermograph. Instead of this, the temperature distribution on the surface of the canister 2 at the time of temperature rise may be measured by combining a thermometer, a radiation thermometer, an optical thermometer, or the like that measures radiant heat or heat.
[0020]
In the first embodiment, it is preferable that the temperature at the time of the temperature rise be set in the range of 50 ° C. to 500 ° C. This is because the temperature level is low at a temperature lower than the lower limit temperature, so that a temperature difference at the defective portion is unlikely to occur. Because you do.
[0021]
Further, the heating rate at the time of heating also affects the measurement result. If the temperature rise rate is 5 ° C./mim or less, the temperature difference at the defective portion is reduced due to heat conduction, making detection difficult. If the temperature rise rate is 15 ° C./mim or more, the partial rise due to the shape of the canister other than the defect is caused. Temperature unevenness makes detection of a target defect difficult. Therefore, it is preferable that the heating rate is 5 to 15 ° C./mim.
[0022]
According to the present invention, as described above, the measured temperature distribution is displayed on a thermograph or the like to detect a defective portion. In this case, the thermograph displays the shape and degree of the defect on a direct scale. Therefore, a large number of various forms are prepared for the defects of the tissue constituting the canister, thermograph patterns corresponding to them are created in advance, and the thermograph patterns obtained from the canisters to be tested are used as reference patterns. It is preferable to detect a defect from a pattern and determine its type and size.
[0023]
(2nd Embodiment)
The second embodiment is a specific method for detecting a defect from the inner surface of a canister. As shown in FIG. 2A, an induction heating furnace 1 is used to heat a canister 2 for high-frequency melting. The temperature is directly measured by the infrared camera 4 which is disposed obliquely above the canister 2 when the temperature is raised. Operations and incidental matters after the measurement of the temperature distribution are the same as those in the first embodiment.
[0024]
Further, as shown in FIG. 2 (B), by performing local observation of the inner surface of the canister with the infrared camera 4 via the telescope 41, it becomes possible to prevent the influence of the scattering of infrared rays. The accuracy is improved as compared with the case (1), and more precise inspection is possible.
[0025]
【The invention's effect】
Since the inspection method of the high-frequency melting canister of the present invention is configured as described above, various defects such as cracks of the canister and partial variations in electric resistance are detected from those present on the surface to internal defects that cannot be seen. This makes it possible to reliably eliminate defective canisters, thereby improving the safety of the melt-solidification treatment.
[0026]
Further, as a result, a canister having no defect is provided, so that the canister can be uniformly heated. Therefore, there is an excellent effect that the melting temperature can be set high and the melting effect can be improved. Therefore, the present invention has a very high technical value as a method for inspecting a high-frequency melting canister which has solved the conventional problems.
[Brief description of the drawings]
1A and 1B are schematic views of an apparatus for explaining a first embodiment of the present invention.
FIGS. 2A and 2B are schematic views of an apparatus for explaining a second embodiment.
[Explanation of symbols]
1. Induction heating furnace, 2 canister, 3 turntable, 4 infrared camera.

Claims (6)

誘導加熱炉を用いて高周波溶融設備用の導電性キャニスタを誘導加熱し、その昇温時または昇温後にキャニスタの表面の温度分布を計測し、キャニスタを構成する組織及び物理特性の不均一な箇所を検出することを特徴とする高周波溶融用キャニスタの検査方法。Induction heating of conductive canisters for high-frequency melting equipment using an induction heating furnace, and measuring the temperature distribution on the surface of the canister during or after its temperature rise, where the structure and physical characteristics of the canister are uneven A method for inspecting a canister for high-frequency melting, characterized by detecting the following. 前記キャニスタの表面の温度分布を計測するに際して、キャニスタの表面を赤外線カメラで走査し、その温度分布をサーモグラフで計測する請求項1に記載の高周波溶融用キャニスタの検査方法。The method for inspecting a canister for high-frequency melting according to claim 1, wherein when measuring the temperature distribution on the surface of the canister, the surface of the canister is scanned by an infrared camera and the temperature distribution is measured by a thermograph. 前記昇温時の温度が50℃〜500℃の範囲である請求項1または2に記載の高周波溶融用キャニスタの検査方法。The inspection method for a canister for high-frequency melting according to claim 1 or 2, wherein the temperature at the time of the temperature rise is in a range of 50C to 500C. 誘導加熱炉を用いて導電性キャニスタを加熱し、その昇温時にキャニスタを炉外に取り出して、その内側表面または外側表面の温度分布を計測する請求項2または3に記載の高周波溶融用キャニスタの検査方法。The high-frequency melting canister according to claim 2 or 3, wherein the conductive canister is heated by using an induction heating furnace, and the canister is taken out of the furnace when the temperature rises, and the temperature distribution on the inner surface or the outer surface is measured. Inspection methods. 誘導加熱炉を用いて導電性キャニスタを加熱し、その昇温時にキャニスタを炉内に配置した状態で、その内側表面または外側表面の温度分布を計測する請求項2または3に記載の高周波溶融用キャニスタの検査方法。4. The high-frequency melting apparatus according to claim 2, wherein the conductive canister is heated by using an induction heating furnace, and a temperature distribution on an inner surface or an outer surface thereof is measured in a state where the canister is arranged in the furnace when the temperature is raised. Canister inspection method. キャニスタを構成する組織の不均一に対応するサーモグラフパターンを予め準備し、それを基準にして、キャニスタを構成する組織の不均一な箇所を検出する請求項2から5に記載の高周波溶融用キャニスタの検査方法。The high-frequency melting canister according to claim 2, wherein a thermographic pattern corresponding to the non-uniformity of the tissue constituting the canister is prepared in advance, and the non-uniform portion of the tissue forming the canister is detected based on the prepared thermographic pattern. Inspection method.
JP2003063346A 2003-03-10 2003-03-10 Canister inspecting method Pending JP2004271367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003063346A JP2004271367A (en) 2003-03-10 2003-03-10 Canister inspecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003063346A JP2004271367A (en) 2003-03-10 2003-03-10 Canister inspecting method

Publications (1)

Publication Number Publication Date
JP2004271367A true JP2004271367A (en) 2004-09-30

Family

ID=33124948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003063346A Pending JP2004271367A (en) 2003-03-10 2003-03-10 Canister inspecting method

Country Status (1)

Country Link
JP (1) JP2004271367A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271184A (en) * 2006-03-31 2007-10-18 Chugoku Electric Power Co Inc:The Melting furnace structure preventing turning of combustion flame to canister outer periphery
JP2015504153A (en) * 2011-11-15 2015-02-05 プロセス メトリックス Apparatus, process and system for monitoring container integrity
JP2016004004A (en) * 2014-06-18 2016-01-12 一般財団法人電力中央研究所 Canister inspection method and inspection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271184A (en) * 2006-03-31 2007-10-18 Chugoku Electric Power Co Inc:The Melting furnace structure preventing turning of combustion flame to canister outer periphery
JP2015504153A (en) * 2011-11-15 2015-02-05 プロセス メトリックス Apparatus, process and system for monitoring container integrity
JP2016004004A (en) * 2014-06-18 2016-01-12 一般財団法人電力中央研究所 Canister inspection method and inspection device

Similar Documents

Publication Publication Date Title
JP5574261B2 (en) Flaw detection method and flaw detection apparatus
JP5831940B2 (en) Nondestructive inspection method and nondestructive inspection device for delamination in coating layer
JP2004271367A (en) Canister inspecting method
Kwon et al. Acoustic emission testing of repaired storage tank
US3629584A (en) Method and apparatus for the nondestructive testing of materials
JP2011108766A (en) Maintenance method for epitaxial growth apparatus, method of calibrating pyrometer, and susceptor for pyrometer calibration
JP4056534B2 (en) Furnace bottom temperature measuring method and apparatus, and melting furnace bottom monitoring method and apparatus
Kocaefe et al. Measurement of anode electrical resistivity for quality control in aluminium industry
JPS6298243A (en) Inspection method for external wall of building and the like
KR101063904B1 (en) Thermal shock resistance evaluation method and evaluation device
CN207577376U (en) A kind of ladle lining fireproof material deteriorates situation on-line measuring device
Basheer et al. A thermographic approach for surface crack depth evaluation through 3D finite element modeling
KR101430098B1 (en) Apparatus and method for evaluating characteristics of refractory
JP2008058119A (en) Method and apparatus for inspecting honeycomb structure
JPH1151887A (en) Inspection method for regular shape refractories
Calado et al. Porosity and delamination defect detection in ceramic materials by active infrared thermography and optical digital microscopy
CN107331634A (en) Epitaxial device chamber cover plate
US20220198649A1 (en) Experimental set-up for studying temperature gradient driven cracking
KR20020052051A (en) Method of examination for damaged brick in coke oven
RU2235303C1 (en) Method of checking turbomachine blade cooling channels
SU690274A1 (en) Method of checking heating pipe serviceability
JP3671157B2 (en) Non-contact visual inspection method and apparatus
Wibowo et al. Non-destructive test inspection of gas metal arc welding products with clamp and heat sink treatment on low carbon steel
KR20070109664A (en) Inspection apparatus of fpd pattern undergoing firing using emissivity of the pattern
Larsson et al. Monitoring of the wiredrawing process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080404