JP2004264451A - 測光測距用固体撮像装置 - Google Patents

測光測距用固体撮像装置 Download PDF

Info

Publication number
JP2004264451A
JP2004264451A JP2003053468A JP2003053468A JP2004264451A JP 2004264451 A JP2004264451 A JP 2004264451A JP 2003053468 A JP2003053468 A JP 2003053468A JP 2003053468 A JP2003053468 A JP 2003053468A JP 2004264451 A JP2004264451 A JP 2004264451A
Authority
JP
Japan
Prior art keywords
circuit
signal
sensor
imaging device
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003053468A
Other languages
English (en)
Other versions
JP4072450B2 (ja
Inventor
Hidekazu Takahashi
秀和 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003053468A priority Critical patent/JP4072450B2/ja
Publication of JP2004264451A publication Critical patent/JP2004264451A/ja
Application granted granted Critical
Publication of JP4072450B2 publication Critical patent/JP4072450B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Studio Devices (AREA)
  • Exposure Control For Cameras (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】ADコンバータ(ADC)内蔵のマイコンに適したスポット測光機能を搭載し、測光精度と動作速度を向上させ、チップサイズが小さく、かつ、低コストのスポット測光機能を搭載した測距用固体撮像装置を実現する。
【解決手段】測光測距用固体撮像装置は、測距を行うためのフォトダイオード列とこれに蓄積された電荷量に応じたAF信号をマルチプレクサ(MPX)104を介してマイコン109のADコンバータ112に出力する駆動回路、検出回路、シフトレジスタを有するAF回路ブロック101と、測光を行うためのフォトダイオードを含みこれで光電変換されたAE信号をMPX104を介してマイコン109のADC112に出力するAE回路ブロック102とが同一半導体基板100上に形成され、AF回路ブロック101のモニタ信号(最大値信号)をスポットAE信号としてMPX104を介してマイコン109のADC112に出力する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、測光測距用固体撮像装置に係り、とくに測光機能を有したオートフォーカス用固体撮像装置において、コンパクトカメラに用いられる外測方式のオートフォーカスセンサに関する。
【0002】
【従来の技術】
従来、測光機能(AE:Auto Exposure)を搭載した測距(AF:Auto Focus)センサとして、撮像装置用自動測光装置(例えば、特許文献1参照)が知られている。この装置の回路構成図を図14に示す。
【0003】
図14において、30はAE回路、31は基準部CCD、32は参照部CCD、33は光電変換回路、34は積分時間制御回路、35と36は比較回路、37はAFカウンタ回路、38はAEカウンタ回路、42と43は出力選択回路、44と45はアンプ、46は相関演算回路、47はADコンバータ、48は主制御回路、49はマイコンである。
【0004】
この装置において、1つの半導体チップ上に所定距離を隔てて配置され、AFを行うのに適した一対のリニアセンサ(基準部CCD31、参照部CCD32)と、該一対のリニアセンサに蓄積された電荷量を検出し、光入射による電荷蓄積を制御するための積分制御信号を発生するための積分時間制御手段(積分時間制御回路34)と、積分制御手段から入射光の強度を算出する第1の露出量検出手段(AFカウンタ回路37、主制御回路48、マイコン49)と、同じ半導体チップ上に配置された光電変換素子を含み、入射光量検出を行うための第2の露出量検出手段(光電変換回路33、比較回路36、AEカウンタ回路38、主制御回路48、マイコン49)を用いて露出量を決定することを特徴としている。
【0005】
上記装置によれば、一対のリニアセンサ(基準部CCD31、参照部CCD32)でAFを行うと共に、主要被写体に対する露出データを得、同一半導体チップに形成された光電変換素子(光電変換回路33)を用いて背景を含む視野全体に対する露出データを得ることができる。その両露出データを用いることにより、きめの細かい露出情報が得られる。例えば、主要被写体に対する露出データと、視野全体に対する露出データを合わせて用いることにより、日中シンクロやスローシンクロを可能とすると共に、逆光時の主要被写体に対しても適正な露出量を選択可能となる。
【0006】
【特許文献1】
特開平5−158107号公報
【特許文献2】
特開2000−180706号公報
【0007】
【発明が解決しようとする課題】
最近、マイコンの高性能化、多機能化、低価格化により、ADコンバータ内蔵のマイコンがコンパクトカメラにおいても主流となっている。そのため、AFセンサとAEセンサにオンチップされたADコンバータがあると、チップサイズが小型にできない、コストが下げられない等の不具合が発生する。
【0008】
しかしながら上記従来例は、以前のADコンバータが内蔵されていないマイコンに適した測光測距用センサであり、最近のADコンバータ内蔵のマイコンには適さなくなっている。また、カウンタ回路37、38や相関演算回路46も必要とするため、チップサイズを縮小できないという大きな欠点も有していた。
【0009】
さらに上記従来例では、積分時間制御手段からの積分制御信号を用いるため、被写体の輝度により露出制御時間が異なることになる。そのため、光量が非常に微弱な場合には、積分制御手段のコンパレータが反転するのに時間がかかってしまうため、露出が決まるまでの時間が非常に長くなってしまう欠点を有していた。これはカメラのレスポンスを著しく悪化させるため、結果としては撮影者にとって非常に使い勝手の悪いカメラになってしまっていた。
【0010】
その他にも、測距用のリニアセンサとしてCCDを用いているため、CMOSディジタル回路との整合性が良くないため、製造プロセスが複雑となり、製造コストが高くなるという欠点も有していた。
【0011】
本発明は、以上の問題を考慮してなされたもので、ADコンバータ内蔵のマイコンに適したスポット測光機能を搭載した測距用固体撮像装置を実現することを第1の目的とする。
【0012】
また本発明は、測光測距用固体撮像装置における測光精度と動作速度を向上させることを第2の目的とする。
【0013】
さらに本発明は、チップサイズが小さく、かつ、低コストのスポット測光機能を搭載した測距用固体撮像装置を実現することを第3の目的とする。
【0014】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る測光測距用固体撮像装置は、測距を行うための測距用光電変換素子列と、前記測距用光電変換素子列に蓄積された電荷量に応じた電圧信号を出力する電圧モニタ手段と、測光を行うための測光用光電変換素子を含み且つ該測光用光電変換素子にて光電変換された信号を第1の露出量検出用信号として出力する第1の露出量検出手段とが同一半導体基板上に形成されており、前記測距用光電変換素子列のモニタ信号を第2の露出量検出用信号として出力する第2の露出量検出手段を備えたことを特徴とする。
【0015】
好ましくは、前記測距用光電変換素子列、前記電圧モニタ手段、および前記第2の露出量検出手段は、測距のためのAFセンサに搭載され、前記測光用光電変換素子及び前記第1の露出量検出手段は、撮影領域のほぼ全域の測光を行うためのAEセンサ(以下、必要に応じ「ワイドAEセンサ」と呼ぶ)に搭載される。この場合、前記第2の露出量検出用信号は、AFセンサのAGC(オートゲインコントロール)出力を兼用するスポットAE信号(主要被写体に対する露出量検出用信号)であり、前記第1の露出量検出用信号は、ワイドAEセンサのワイドAE信号(主要被写体を含む視野全体に対する露出量検出用信号)であることが好適である。この構成においては、例えば以下の態様が可能である。
【0016】
第1の態様は、測距のためのAFセンサと、撮影領域のほぼ全域の測光を行うための専用のワイドAEセンサとを同一の半導体基板上に設け、AFセンサの蓄積期間中におけるフォトダイオードの電圧モニタ信号をスポット測光用のAE信号として、マイコンのADコンバータへの出力を可能とすることを特徴とする。これによれば、ADコンバータ内蔵のマイコンに適したスポット測光が行える測光測距用固体撮像装置が実現できる。また、従来において一般的であった専用のスポット測光センサを別チップで必要としないため、システムとしての小型化と低消費電力化も実現できる。
【0017】
第2の態様は、非破壊読み出しが可能である増幅型光電変換素子をAFセンサとして用いることにより、リアルタイムAGCとスポットAEが同時に行えることが可能なことを特徴とする。これによれば、蓄積時間制御とスポットAE出力動作が同時に行えるため、高速駆動に対応した測光測距用固体撮像装置が可能となる。
【0018】
第3の態様は、ワイド測光用のAEセンサとスポット測光を行うためのAFセンサの分光感度特性が同じであることを特徴とする。ここで「同じ」というのは、AEセンサからの露出値とAFセンサからの露出値の差が、0.3EV(Exposure Value:露出指標)以内となることを意味する。これによれば、スポット測光とワイド測光の色温度依存性を低減できるため、露出精度の向上が可能となる。
【0019】
第4の態様は、全体測光用のAEセンサは光電流の対数圧縮出力、スポット測光用のAGC信号は線形出力であることを特徴とする。これによれば、光電流の対数圧縮によるダイナミックレンジの拡大により、測光範囲を拡大した測光測距用固体撮像装置が可能となる。
【0020】
第5の態様は、CMOSプロセスで製造可能なAFセンサとAEセンサであることを特徴とする。これによれば、CMOSプロセスによるマスク枚数の削減と製造工程の簡略化により、低コストの測光測距用固体撮像装置が可能となる。
【0021】
【発明の実施の形態】
以下、本発明に係る測光測距用固体撮像装置の実施の形態について図面を用いて詳細に説明する。
【0022】
[第1実施形態]
図1は、本実施形態の測光測距用固体撮像装置の概略回路ブロック図で、本発明の特徴を最もよく表す図面である。また図2は、本装置を成す後述のAFセンサブロック、AEセンサブロック、アナログ系回路、及びディジタルブロックの各配置を説明する概略平面レイアウト図である。
【0023】
図1及び図2において、100はSi半導体基板、101は半導体基板100上に形成されるAFセンサブロック(本発明の測距用光電変換素子列、電圧モニタ手段、および第2の露出量検出手段の要部を成す)、102は同一半導体基板100上に形成されるAEセンサブロック(本発明の測光用光電変換素子を含む第1の露出量検出手段の要部を成す)である。
【0024】
また、104はマルチプレクサ(MPX)、107はロジック回路であり、両者が半導体基板100上に形成されるディジタルブロックを成す。さらに、103は温度計回路、105はオートゲインコントロール(AGC)回路、106は電源回路、108は信号増幅回路であり、これら各回路が半導体基板100上に形成されるアナログ系回路を成す。
【0025】
また、109はADコンバータ(ADC)内蔵のマイコン(112はADC)で、Si半導体基板100上のロジック回路107との間で各種制御信号等のディジタル信号を双方向にやり取りすると共に、Si半導体基板100上のMPX104を介して送られてくる後述のAF信号、AE信号(本発明の第1の露出量検出用信号に相当するワイドAE信号:主要被写体を含む視野全体に対する露出量検出用信号)、最大値信号(本発明の第2の露出量用検出信号(本例のスポットAE信号:主要被写体に対するスポット露出量検出用信号)として用いる電圧モニタ信号)等のアナログ信号をADC112にてデジタル信号に変換して入力可能となっている。
【0026】
以下、AFセンサブロック101(以下、必要に応じて「AFセンサ」と呼ぶ)、AEセンサブロック102(以下、必要に応じて「AEセンサ」又は「ワイドAEセンサ」と呼ぶ)、アナログ系回路、ディジタルブロックの順にその内部構成を説明する。
(AFセンサブロック)
AFセンサブロック101には、三角測距による外測式のオートフォーカスを行うために、図1に示すように、位相差検出型AFセンサ回路110を成すリニアセンサ回路のペア、すなわち一対の基準部AF回路110Aと参照部AF回路110Bとが半導体基板100上で所定の距離隔てて配置される。一対の基準部AF回路110Aと参照部AF回路110Bには、本発明の測距用光電変換子列を成すフォトダイオードと、本発明の電圧モニタ手段及び第2の露出量検出手段を兼用する駆動回路、検出回路、及びシフトレジスタとが含まれる。図1及び図2の例では、このリニアセンサ回路のペアは、それぞれ3列配置されている(図2の例では、基準部AF回路の列1A、2A、3A(図中の左側)と、参照部AF回路の列1B、2B、2C(図中の右側)とがそれぞれペアを成す)。
【0027】
各リニアセンサ回路(基準部AF回路110A、参照部AF回路110B)のフォトダイオード上には、AF用結像レンズ(後述の図13参照)が設けられ、被写体像は、それぞれのAF用結像レンズを介して各リニアセンサ回路のフォトダイオード上に結像される。その各リニアセンサ回路のフォトダイオード上の結像位置と結像レンズの焦点距離と結像レンズの間隔(基線長)により被写体までの距離が算出される。
【0028】
図3は、上記リニアセンサ回路110A、110Bの一例を示す。本例は、以前に本出願人により提案したCMOSリニア型のAFセンサ(例えば、特許文献2等参照)の回路を適用したものである。
【0029】
図3において、1は光電変換を行うpn接合フォトダイオード、2はそのフォトダイオード1の電位を基準電位(VRES)にリセットするリセット用MOSトランジスタ(φRESはリセット用制御信号)、3は差動増幅器(センサアンプ)であり、1〜3によって増幅型光電変換素子を構成する。この増幅型光電変換素子の差動増幅器3の出力側には、最小値検出回路と最大値検出回路が並列に接続される。
【0030】
上記最小値検出回路と最大値検出回路において、4はクランプ容量、5はクランプ電位(VGR)を入力するためのMOSスイッチ(φGRはオンオフ制御信号)であり、4と5でクランプ回路(フィードバック型のノイズ除去回路)を構成している。また、6〜9はスイッチ用MOSトランジスタ(φGR、φS1、φN1、φN2、φS2はオンオフ制御信号)、10は最小値検出用差動増幅器、11は最大値検出用差動増幅器であり、それぞれの差動増幅器10、11は電圧フォロワ回路を構成している。12は最小値出力用MOSスイッチ(φBTMはオンオフ制御信号)、13は最大値出力用MOSスイッチ(φPEAKはオンオフ制御信号)である。上記1〜13で構成されるAFセンサユニットがフォトダイオード1毎に複数配置される。
【0031】
また、14はOR回路、15は走査回路、16、17は定電流用MOSトランジスタ(φREF1、φREF2はオンオフ制御信号)である。最小値検出回路用には、最終段がNMOSのソースフォロワ回路、最大値検出回路用には、最終段がPMOSのソースフォロワ回路となっている。18は画素からの信号が出力される共通出力線である。
【0032】
本回路構成において、最大値検出回路と最小値検出回路の前段にフィードバック型のノイズクランプ回路(ノイズ除去回路)を設けることにより、フォトダイオードで発生するリセットノイズと、センサアンプ、最大値検出回路、最小値検出回路で発生するFPN(Fixed Pattern Noise)の除去が可能となっている。
【0033】
また、最終出力段がソースフォロワ形式である電圧フォロワ回路を画素毎に構成し、最小値出力時には、各電圧フォロワ回路の出力段の定電流源をオフにして、定電流源に接続された出力線に共通接続することにより、映像信号の最大値を得ることができる。さらに、映像信号出力時には、各電圧フォロワ回路の出力段の定電流源をオンにして、各電圧フォロワ回路を順次、出力線に接続させることにより、シリアルな映像信号を得ることができる。この動作により、最大値検出回路と信号出力回路が兼用となるため、チップの小型化が可能となる。
【0034】
上記最大値検出回路で兼用される信号出力回路にて得られたAF信号は、信号増幅回路108にて増幅され、MPX104を介してマイコン109のADC112に出力される。また最大値検出回路で検出された最大値信号は、AGC用の電圧モニタ信号として、AGC回路105に出力されると共に、測光時のスポットAE信号として、MPX104を介してマイコン109のADC112に出力される。
(AE回路ブロック)
AE回路ブロック102は、図1に示すように、AE回路121(本発明の測光用光電変換素子を成すPN接合フォトダイオードと、本発明の第1の露出量検出手段の要部を成す対数圧縮型電流電圧変換回路)、I補償回路122、及び信号増幅回路123から成る。このうち、図4にAE回路122におけるをPN接合フォトダイオードと対数圧縮型電流電圧変換回路を示す回路図を示す。
【0035】
図4において、20はCMOS差動増幅器、21はPN接合フォトダイオード(PD)、22はPN接合ダイオード、23は出力用MOSスイッチ(φHAEはオンオフ用制御信号)である。図4に示すように、PN接合フォトダイオード21両端の電位は基準電位(Vc)になるため、両端間の電位はゼロバイアス状態となる。従って、空乏層の広がりが抑えられるため、空乏層からの暗電流の発生が抑えられる。フォトダイオード21で発生した光電流がPN接合ダイオード22を流れることにより、電流電圧変換される。このとき、ダイオードの電流電圧特性により、次式に従う対数変換出力(Vout)が行われる。
【0036】
【数1】
Figure 2004264451
ここで、kはボルツマン定数、Tは絶対温度、qは素電荷量、Iは光電流、Iはダイオードの逆方向飽和電流である。この式により、IがばらつくとAE特性もばらつくことが理解できる。従って、AE特性のばらつきを抑えるためには、I補償回路122が必須となる。
【0037】
上記AE回路121の出力(Vout)は、出力用MOSスイッチ23を介して所定タイミングで出力され、I補償回路122にてそのIが補償され、信号増幅回路123にて増幅され、AE信号(ワイドAE信号)として、MPX104を介して外部のマイコン109のADC112に送られる。
(アナログ系回路)
アナログ系回路は、AF回路ブロック101のAFセンサ回路110(基準部AF回路110A、参照部AF回路110B)の蓄積時間を制御するためのオートゲインコントロール(AGC)回路105と、基準電位を発生するためのバンドギャップ回路、センサ回路に必要な中間電位(基準電位VRES、Vc、クランプ電位VGR等)を発生するための電源回路106と、AF回路ブロック101からのAF信号を増幅して外部に出力するための信号増幅回路108と、半導体基板100の温度を監視するための温度計回路103とから成る。
【0038】
ここで、図5(a)にAGC回路105の回路図、図5(b)にその動作説明図をそれぞれ示す。図5(a)において、25はバッファアンプ、26はコンパレータである。
【0039】
AGC回路105の動作を説明する。まず、前述したようにAFセンサ回路110のフォトダイオードに光が照射されると、フォトダイオードに電子が蓄積される。従って、AGC回路105のバッファアンプ25に入力される信号として、出力電圧が小さい方がPEAK信号(モニタ信号)となる。このPEAK信号が時間経過に従いコンパレータ26のコンパレート電位(VREF)より小さくなると、図5(b)に示すように、ロジック回路107へのコンパレータ出力である蓄積判定信号が論理LowレベルからHighレベルに反転し、この時点でAFセンサ回路110の蓄積動作が終了する。この一連の蓄積動作に関する制御は、ロジック回路107からAFセンサ回路110へ出力される蓄積制御パルス(φCH)により行われる。
(ディジタルブロック)
ディジタルブロックは、AF回路ブロック102(AFセンサ回路110)、AE回路ブロック102、デジタルブロック、アナログ系回路を所定タイミングで駆動するための駆動パルス(図1中のシフトレジスタ駆動パルスφHs、φH、蓄積制御パルスφCH等)を発生するタイミング発生回路(T/G)と、外部マイコン109との通信を行うための通信回路(I/O)とからなるロジック回路107と、各信号を選択してマイコン109に内蔵されたADコンバータ112へ出力するためのマルチプレクサ(MPX)104とから成る。
【0040】
上記構成によれば、ロジック回路107からの制御信号に基づいて、MPX104により、複数のアナログ信号、すなわちAF回路ブロック102からのAGC用の電圧モニタ信号であるスポット測光(AE)信号(最大値信号)、AE回路ブロック102からの全体測光信号(ワイドAE信号)、AF回路ブロック102からのAF信号、温度計回路103からの温度信号を一線出力で読み出すことが可能となる。
【0041】
次に、図6の動作フローチャートを用いて、本実施形態の測光測距用固体撮像装置の動作を説明する。本動作は、マイコン109からの動作制御に関する制御信号(ディジタル信号)に基づいて、ロジック回路107の処理により制御される。
【0042】
図6において、電源を投入して各回路の初期化を行った後(ステップSt1、St2)、AFセンサ(AF回路ブロック101)による光電荷の蓄積を開始する(ステップSt3)。このAFセンサによる光電荷の蓄積開始と同時にワイドAEセンサ(AE回路ブロック102)の動作(ワイドAE信号読み出し)を開始する(ステップSt4)。
【0043】
AFセンサの蓄積期間中は、そのフォトダイオードの最大電位をリアルタイムでモニタする。所定の蓄積時間が経過後、各AFセンサのAGC用のモニタ信号である最大値信号をスポットAE信号として、MPX104により順次、マイコン109のADコンバータ112へ出力させる(ステップSt5)。ここで、所定の蓄積時間とは、高輝度(EV18程度)の明るさでAFセンサが飽和しない値で設定されていることが望ましい。
【0044】
上記スポットAE信号の読み出し後も、AFセンサ回路110によるリアルタイムモニタリングは継続される。これは、本実施形態において非破壊読み出しが可能であるCMOS型増幅センサをAFセンサに用いたことにより可能となったものである。蓄積動作は、先に説明したAFセンサ回路110の最大値モニタ信号がAGC回路105のリファレンス電位を越す(図5のコンパレータ26からのコンパレート信号(蓄積判定信号)が反転する。)までか、システムで設定された最大蓄積時間に到達するまで続けられる(ステップSt6、St7)。
【0045】
そして、蓄積動作終了後、従来と同様にAF信号の読み出しを行う(ステップSt8、9)。AFセンサの読み出しが終了した後は、消費電力低減のためにAFセンサのバイアスを切断して回路を非動作状態にすることが好ましい。
【0046】
その後、AE回路ブロック102(ワイドAEセンサ)からの対数圧縮信号(ワイドAE信号)の出力を行う。そして最後にAFセンサ信号の暗電流ばらつき補正とAEセンサ信号のゲイン補正のための温度信号出力を行う(ステップSt10)。
【0047】
以上の測光、測距、温度検出の一連の動作(ステップSt1〜St10)を行った後、電源をオフにしてセンサ動作を終了させる(ステップSt11)。ここで温度信号は必ずしも毎回読み出す必要がないため、任意のタイミングで読み出してもよい。また、温度信号はAF信号の出力の前に読み出しても良い。
【0048】
本実施形態の回路形式と動作シーケンスにより、多分割AEセンサを必要とせずに、スポット測光とワイド測光を行うことが可能となった。すなわち、本実施形態によれば、CMOS型AFセンサの非破壊読み出しを利用したAGC動作を行い、そのAGC出力をスポットAE信号として兼用すると共に、ワイド測光用の対数圧縮AEセンサを同一基板上に設け、そのワイドAE信号とスポットAE信号との比較で逆光探知を行うため、多分割AEを必要とせずに逆光検知可能なAE搭載AFセンサを実現することが可能になった。
【0049】
また、AFセンサのAGC用のモニタ信号をスポットAE信号として兼用することにより、従来例において問題となった回路規模の増大と動作速度の低下を防ぐことが可能となった。すなわち、上記効果に加え、レスポンスが良く、高ダイナミックレンジである測光機能も同時に実現させることが可能となった。
【0050】
図7に本実施形態における測光測距用固体撮像装置の概略的な断面構造図を示す。図7において、71はN型Si基板、72はN型エピタキシャル(Epi)層、73はPWL(Pウェル)、74はNWL(Nウェル)、75はN型不純物層(N拡散層)であり、PWL73とN型不純物層75でPN接合フォトダイオードを形成する。
【0051】
また、76はゲート酸化膜、77は素子分離領域である厚い酸化膜(LOCOS)、78はMOSトランジスタのゲートを兼ねるPOL配線、79は層間絶縁膜(層間膜)、80はAL配線、82は遮光膜であるAL膜(遮光層)、83は表面保護膜であるSiON膜(表面保護層)である。
【0052】
ここでPWL73の不純物濃度は1×1016〜1017cm−3、その接合深さは1〜2μmであり、N型不純物層75の不純物濃度は1×1018〜1020cm−3、その接合深さは0.2〜0.3μmである。
【0053】
本実施形態のようにAEセンサとAFセンサのフォトダイオードを同じ構造にすることにより、露出値の差が0.3EV以内になるような分光感度特性にすることが可能となる。
【0054】
本実施形態におけるセンサの分光感度特性はPWLの接合深さでほぼ決まるため、AEセンサのフォトダイオードのPWL電位とAFセンサのフォトダイオードのPWL電位は必ずしも同じにする必要はなく、回路の動作点を最適にするために別電位としても良い。例えば、本実施形態の固体撮像装置において、AFセンサのPWL電位はGNDレベル、AEセンサのPWL電位は基準電位Vcと設定している。これはオペアンプの入力電位をGNDでなくVcとすることで、オペアンプの良好な動作領域で動作させる上で有効なことである。
【0055】
図8に本実施形態におけるAFセンサとAEセンサの分光感度特性を示す。両センサは、ウェル電位を異ならせているため、若干の分光感度の差はあるが、露出誤差0.3EVに対しては十分実現できる特性となっている。このようにAEセンサとAFセンサを同一の分光感度特性とすることで露出誤差を低減することが可能になった。
【0056】
本実施形態において、それぞれのAEセンサとAFセンサはCMOS回路のみの構成であるため、各種のCMOS回路(アナログ、ディジタル)のオンチップ化との整合性も良く、各種周辺回路オンチップによるインテリジェント化も同時に可能である。また、マスク枚数と製造工数も少ないため、低コスト化に対しても有利である。
【0057】
以上説明したように、本実施形態によれば、高速、高性能、低コストとなる測光測距用固体撮像装置が実現できた。なお、本発明はCMOSセンサのみならず、例えばCCD、BASIS(Base Stored Image Sensor)、SIT(Static Induced Transistor)、CMD(Charge Modulation Device)、AMI(Amplified MOS Intelligent Imager)等にも応用可能である。
【0058】
[第2実施形態]
図9に、本実施形態の測光測距用固体撮像装置の動作を説明するフローチャートを示す。第1実施形態においては、図6に示すように、スポットAE信号出力後にAF信号を読み出していた(図6中のステップSt5、St9参照)。これに対し、本実施形態では、図9に示すように、AF信号出力後にスポットAE信号を読み出していることを特徴とする(図9中のステップSt5、St9参照)。その他の各ステップSt1〜St11の処理手順及びその処理内容は、第1実施形態(図6)と同様であるので、その説明を省略する。
【0059】
本実施形態によれば、全ての測距点のスポットAE信号を読み出すのではなく、先に出力されたAF信号をもとに合焦した測距点のみのスポットAE信号を読み出すことができるため、更なる動作の簡略化と高速化が可能となる。
【0060】
[第3実施形態]
図10に本実施形態の測光測距用固体撮像装置の概略回路ブロック図を示す。図10に示す測光測距用固体撮像装置は、上記実施形態(図1参照)と同様の構成、すなわちSi半導体基板100上に形成されたAFセンサブロック101(位相差検出型AFセンサ回路110を成す一対の基準部AF回路110A及び参照部AF回路110B)、AEセンサブロック102(AE回路121、Is補償回路122、信号増幅回路123)、アナログ系の回路(温度計回路103、AGC回路105、電源回路106、信号増幅回路108)、及びディジタルブロック(MPX104、ロジック回路107)を備え、ADC112内蔵のマイコン109に接続されている。
【0061】
上記第1及び第2実施形態において、スポットAE信号としてAFセンサブロック101のフォトダイオードの最大値信号を用いているが、本実施形態では、最大値信号以外に、図10に示すように、最小値信号も用いることを特徴とする。これによれば、最大値信号と最小値信号の両方を用いることで、更にきめ細かい露出制御が可能となる。
【0062】
[第4実施形態]
図11に本実施形態の測光測距用固体撮像装置の概略回路ブロック図、図12にその概略平面レイアウト図をそれぞれ示す。
【0063】
図11及び図12に示す測光測距用固体撮像装置は、上記実施形態(図1参照)と同様の構成、すなわちSi半導体基板100上に形成されたAFセンサブロック101(位相差検出型AFセンサ回路110を成す一対の基準部AF回路110A及び参照部AF回路110B)、AEセンサブロック102(AE回路121、Is補償回路122、信号増幅回路123)、アナログ系の回路(温度計回路103、AGC回路105、電源回路106、信号増幅回路108)、及びディジタルブロック(MPX104、ロジック回路107)を備え、ADC112内蔵のマイコン109に接続されている。
【0064】
図12において、91は広角系フォトダイオード、92は望遠系フォトダイオードである。このように2分割されたフォトダイオード領域に対応して、AE回路ブロック102には、図11に示すように、2分割されたAE回路121、121が設けられる。
【0065】
すなわち、本実施形態は、ワイドAEセンサを成すAE回路ブロック102のAE回路121(フォトダイオード領域)を複数に分割したことを特徴とする。このようにAEセンサのフォトダイオード領域を広角系フォトダイオード91と望遠系フォトダイオード92の2つに分割することにより、使用するズームレンズの領域に応じたAEセンサを用いることが可能となり、その結果、より正確な測光が可能となる。例えば、広角ズーム領域においては全てのAEセンサを用い、望遠ズーム領域においては中心のAEセンサのみを用いればよい。また、2分割以上の複数に分割しても同様の効果が得ることができる。
【0066】
[第5実施形態]
本実施形態は、上記第1〜第4実施形態のAF回路ブロック及びAE回路ブロックを有する測光測距用固体撮像装置を用いた撮像装置(カメラ)に関する。
【0067】
図13は、上記測光測距用固体撮像装置をレンズシャッタディジタルコンパクトカメラ(撮像装置)に用いた場合の一実施形態を示す概略ブロック図である。図13において、201はレンズのプロテクトとメインスイッチを兼ねるバリア、202は被写体の光学像を固体撮像素子204に結像するレンズ、203はレンズ202を通った光量を可変するための絞り、204はレンズ202で結像された被写体を画像信号として取り込むための固体撮像素子である。
【0068】
また、205は上記第1〜第4実施形態で説明した測光測距用固体撮像装置である。ここでは、例えば、上記第1実施形態(図1等参照)と同様のものを用いる。220は、測光測距用固体撮像装置205を搭載したAEAF光学モジュールである。221は、AEAF光学モジュール220に搭載される一対のAF用結像レンズであり、測光測距用固体撮像装置205のAF回路ブロックの一対のリニアセンサ回路(基準部AF回路、参照部AF回路)のそれぞれのフォトダイオード上に入射光を集光させる。222は、AEAF光学モジュール220に搭載されるAE用集光レンズであり、測光測距用固体撮像装置205のAE回路ブロックのフォトダイオード上に入射光を集光させる。
【0069】
また、206は固体撮像素子204や固体撮像装置205から出力される画像信号、測光信号、測距信号をアナログ−ディジタル変換するA/D変換器、208はA/D変換器207より出力された画像データに各種の補正やデータを圧縮する信号処理部、209は固体撮像素子204、撮像信号処理回路206、A/D変換器207、信号処理部208等に各種タイミング信号を出力するタイミング発生部、210は各種演算とカメラ全体を制御する全体制御・演算部、211は画像データを一時的に記憶するためのメモリ部である。
【0070】
さらに、212は記録媒体に記録または読み出しを行うためのインターフェース部、213は画像データの記録または読み出しを行うための半導体メモリ等の着脱可能な記録媒体、214は外部コンピュータ等と通信するためのインターフェース部である。
【0071】
次に、このようなレンズシャッタディジタルコンパクトカメラの撮影時の動作について説明する。バリア201がオープンされるとメイン電源がオンされ、次にコントロール系の電源がオンし、更にA/D変換器207等の撮像系回路の電源がオンされる。
【0072】
固体撮像装置205のAF回路ブロックから出力された信号(AF信号)をもとに三角測距法により被写体までの距離の演算を全体制御・演算部210で行う。その後、レンズ202の繰り出し量を算出し、レンズ202を所定の位置まで駆動して合焦させる。
【0073】
次いで、露光量を制御するために、固体撮像装置205のAE回路ブロックから出力された信号(ワイドAE信号)をA/D変換器207で変換した後、信号処理部208に入力する。このとき、逆光検知等、必要に応じて、前述したAF回路ブロックから出力されたスポットAE信号としてのモニタ信号(最大値信号のみ、又は最大値信号と最小値信号)をA/D変換器207で変換した後、信号処理部208に入力する。これらのデータを基に露出の演算を全体制御・演算部210で行う。この測光を行った結果により明るさを判断し、その結果に応じて全体制御・演算部210は絞り203とシャッタスピードを調節する。
【0074】
その後、露光条件が整った後に固体撮像素子204での本露光が始まる。露光が終了すると、固体撮像素子204から出力された画像信号はA/D変換器207でA−D変換され、信号処理部208を通り全体制御・演算部210によりメモリ部211に書き込まれる。その後、メモリ部211に蓄積されたデータは全体制御・演算部210の制御により記録媒体制御I/F部212を通り着脱可能な記録媒体213に記録される。また、外部I/F部214を通り直接コンピュータ等に入力してもよい。
【0075】
なお、本実施形態の測光測距用固体撮像装置は、ディジタルコンパクトカメラだけでなく、銀塩カメラ等にも使用できる。また、一眼レフカメラに用いても同様の効果が得られる。
【0076】
以上本発明の各実施形態について説明したが、本発明の好適な実施の態様を以下のとおり列挙する。
[実施態様1] 測距を行うための測距用光電変換素子列と、前記測距用光電変換素子列に蓄積された電荷量に応じた電圧信号を出力する電圧モニタ手段と、測光を行うための測光用光電変換素子を含み且つ該測光用光電変換素子にて光電変換された信号を第1の露出量検出用信号として出力する第1の露出量検出手段とが同一半導体基板上に形成されており、前記測距用光電変換素子列のモニタ信号を第2の露出量検出用信号として出力する第2の露出量検出手段を備えたことを特徴とする測光測距用固体撮像装置。
[実施態様2] 前記測距用光電変換素子列は複数であり、それぞれが所定の距離を隔てて配置されていることを特徴とする実施態様1に記載の測光測距用固体撮像装置。
[実施態様3] 前記モニタ信号は、非破壊読み出しによりリアルタイムで出力されることを特徴とする実施態様1に記載の測光測距用固体撮像装置。
[実施態様4] 前記測距用光電変換素子からの光電荷の増幅読み出しを行う電荷増幅手段をさらに備えたことを特徴とする実施態様1に記載の測光測距用固体撮像装置。
[実施態様5] 前記電圧モニタ手段は、前記測距用光電変換素子列の最大値信号をリアルタイムモニタ信号として出力し、前記第2の露出量検出手段は、前記最大値信号を前記第2の露出量検出用信号として出力することを特徴とする実施態様1に記載の測光測距用固体撮像装置。
[実施態様6] 前記電圧モニタ手段は、前記測距用光電変換素子列の最大値信号と最小値信号の2つをリアルタイムモニタ信号として出力し、前記第2の露出量検出手段は、前記最大値信号と前記最小値信号を前記第2の露出量検出用信号として出力することを特徴とする実施態様1に記載の測光測距用固体撮像装置。
[実施態様7] 前記測距用光電変換素子と前記測光用光電変換素子がPN接合フォトダイオードであり、該フォトダイオードを成すP型不純物層とそのN型不純物層が同一の不純物濃度と接合深さであることを特徴とする実施態様1に記載の測光測距用固体撮像装置。
[実施態様8] 前記測距用光電変換素子と前記測光用光電変換素子は、分光感度特性が露出指標で0.3EV以内の露出量になることを特徴とする実施態様7に記載の測光測距用固体撮像装置。
[実施態様9] 多点測距を行うための複数の測距用光電変換素子列と、広い視野の測光を行うための測光用光電変換素子とを同一半導体基板上に形成した固体撮像装置において、前記測光用光電変換素子にて光電変換された信号を第1の露出量検出用信号として出力する第1の露出量検出手段と、選択された測距点に対応した前記測距用光電変換素子列からのモニタ信号のみを選択して第2の露出量検出用信号として出力する第2の露出量検出手段とを備えたことを特徴とする測光測距用固体撮像装置。
[実施態様10] 複数の前記各信号を順次出力させるためのタイミング発生回路とマルチプレクサ回路が同一半導体基板上に形成されていることを特徴とする実施態様1乃至9のいずれか1項に記載の測光測距用固体撮像装置。
[実施態様11] 実施態様1乃至10のいずれか1項に記載の測光測距用固体撮像装置と、該測光測距用固体撮像装置により出力される前記第1の露出量検出用信号及び前記第2の露出量検出用信号を元に露光条件を制御する制御手段とを有することを特徴とするカメラ。
【0077】
【発明の効果】
以上説明したように、本発明によれば、ADコンバータ内蔵のマイコンに適したスポット測光機能を搭載し、測光精度と動作速度を向上させ、チップサイズが小さく、かつ、低コストのスポット測光機能を搭載した測距用固体撮像装置を実現できる。すなわち、高性能な測光性能と測距性能を有する固体撮像装置が1チップで実現可能となる。このため、本発明を用いたレンズシャッタコンパクトカメラにおいて、カメラの小型化、高性能化、低価格化を実現できる。同様の効果は、コンパクトアナログ(銀塩)カメラのみならず、コンパクトディジタルカメラ等の撮像装置でも期待できる。
【図面の簡単な説明】
【図1】本発明の第1実施形態の測光測距用固体撮像装置を示す概略の回路ブロック図である。
【図2】本発明の第1実施形態の測光測距用固体撮像装置を示す概略の平面レイアウト図である。
【図3】本発明の第1実施形態のAF回路を示す回路図である。
【図4】本発明の第1実施形態のAE回路を示す回路図である。
【図5】本発明の第1実施形態のAGC回路を示す回路図である。
【図6】本発明の第1実施形態の測光測距用固体撮像装置の動作を説明するフローチャートである。
【図7】本発明の第1実施形態の測光測距用固体撮像装置を示す断面構造図である。
【図8】本発明の第1実施形態のAFセンサとAEセンサの分光感度特性を示すグラフである。
【図9】本発明の第2実施形態の測光測距用固体撮像装置の動作を説明するフローチャートである。
【図10】本発明の第3実施形態の測光測距用固体撮像装置を示す概略の回路ブロック図である。
【図11】
本発明の第4実施形態の測光測距用固体撮像装置を示す概略の回路ブロック図である。
【図12】本発明の第4実施形態の測光測距用固体撮像装置を示す概略の平面レイアウト図である。
【図13】本発明の第5実施形態の測光測距用固体撮像装置を用いたカメラシステムを示す概略ブロック図である。
【図14】従来例の撮像装置用自動測光装置を示す回路ブロック図である。
【符号の説明】
1、21 pnフォトダイオード
2 リセットMOSトランジスタ
3、20 CMOS差動増幅器
4 クランプ容量
5〜9 MOSスイッチ
10 最小値検出用差動増幅器
11 最大値検出用差動増幅器
12、13 MOSスイッチ
14 OR回路
15 走査回路
16、17 定電流MOSトランジスタ
18 共通出力線
22 pnダイオード
25 バッファアンプ
26 コンパレータ
30 AE回路
31、32 CCDアレイ
33 光電変換回路
34 積分回路
35、36 比較回路
37 AF用カウンタ回路
38 AE用カウンタ回路
42、43 出力選択回路
44、45 バッファ
46 相関演算回路
47 ADコンバータ
48 主制御回路
49 ADなしマイコン
71、100 N型Si基板
72 N型エピタキシャル層
73 PWL
74 NWL
75 N不純物層
76 薄い酸化膜
77 LOCOS
78 POL配線
79 層間絶縁膜
80 AL配線
82 遮光膜
83 保護膜
91 広角系フォトダイオード
92 望遠系フォトダイオード
101 AF回路ブロック
102 AE回路ブロック
103 温度計回路
104 マルチプレクサ
105 AGC回路
106 電源回路
107 ロジック回路
108 信号増幅回路
109 AD内蔵マイコン
110 位相差検出型AFセンサ回路
110A 基準部AF回路
110B 参照部AF回路
112 ADC(ADコンバータ)
121 AE回路
122 Is補償回路
123 信号増幅回路

Claims (1)

  1. 測距を行うための測距用光電変換素子列と、前記測距用光電変換素子列に蓄積された電荷量に応じた電圧信号を出力する電圧モニタ手段と、測光を行うための測光用光電変換素子を含み且つ該測光用光電変換素子にて光電変換された信号を第1の露出量検出用信号として出力する第1の露出量検出手段とが同一半導体基板上に形成されており、前記測距用光電変換素子列のモニタ信号を第2の露出量検出用信号として出力する第2の露出量検出手段を備えたことを特徴とする測光測距用固体撮像装置。
JP2003053468A 2003-02-28 2003-02-28 Aeaf用固体撮像装置 Expired - Fee Related JP4072450B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003053468A JP4072450B2 (ja) 2003-02-28 2003-02-28 Aeaf用固体撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003053468A JP4072450B2 (ja) 2003-02-28 2003-02-28 Aeaf用固体撮像装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007332284A Division JP4500849B2 (ja) 2007-12-25 2007-12-25 Aeaf用固体撮像装置

Publications (2)

Publication Number Publication Date
JP2004264451A true JP2004264451A (ja) 2004-09-24
JP4072450B2 JP4072450B2 (ja) 2008-04-09

Family

ID=33118059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003053468A Expired - Fee Related JP4072450B2 (ja) 2003-02-28 2003-02-28 Aeaf用固体撮像装置

Country Status (1)

Country Link
JP (1) JP4072450B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008527360A (ja) * 2005-01-14 2008-07-24 ライカ ジオシステムズ アクチェンゲゼルシャフト 少なくとも1つの標的の測量方法及びその測地装置
US9485408B2 (en) 2012-11-20 2016-11-01 Fujifilm Corporation Imaging apparatus and exposure determining method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110849589B (zh) * 2019-09-29 2021-02-26 深圳市火乐科技发展有限公司 使用adc检测光耦方法、智能投影仪及相关产品

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008527360A (ja) * 2005-01-14 2008-07-24 ライカ ジオシステムズ アクチェンゲゼルシャフト 少なくとも1つの標的の測量方法及びその測地装置
US8331624B2 (en) 2005-01-14 2012-12-11 Leica Geosystems Ag Method and geodetic device for surveying at least one target
US9933512B2 (en) 2005-01-14 2018-04-03 Leica Geosystems Ag Method and geodetic device for surveying at least one target
US9485408B2 (en) 2012-11-20 2016-11-01 Fujifilm Corporation Imaging apparatus and exposure determining method

Also Published As

Publication number Publication date
JP4072450B2 (ja) 2008-04-09

Similar Documents

Publication Publication Date Title
US6750437B2 (en) Image pickup apparatus that suitably adjusts a focus
EP1085751B1 (en) Image pickup apparatus
KR101867609B1 (ko) 고체 촬상 장치 및 전자 기기
JP2003318381A (ja) 固体撮像装置およびカメラ
US20100309340A1 (en) Image sensor having global and rolling shutter processes for respective sets of pixels of a pixel array
JP2004309701A (ja) 測距測光用センサ及びカメラ
US6973265B2 (en) Solid state image pick-up device and image pick-up apparatus using such device
US7041950B2 (en) Image sensing element for sensing an image formed by an image sensing lens
US7675559B2 (en) Image sensing apparatus having a two step transfer operation and method of controlling same
JPWO2010095374A1 (ja) 撮像素子及びそれを備えた撮像装置
JP2018182481A (ja) 撮像装置及び撮像装置の駆動方法
US20120147231A1 (en) Photoelectric conversion device and camera system
JP2006064956A (ja) オートフォーカス用固体撮像装置とそれを用いたオートフォーカスカメラ
JP2001024948A (ja) 固体撮像装置及びそれを用いた撮像システム
JP4280446B2 (ja) 固体撮像装置及びそれを用いた撮像装置
JP2005109370A (ja) 固体撮像装置
JP3977342B2 (ja) 固体撮像装置の設計方法及び撮像システム
JP4072450B2 (ja) Aeaf用固体撮像装置
JP4500849B2 (ja) Aeaf用固体撮像装置
JP2005198001A (ja) 固体撮像装置
JP2003107340A (ja) 測光測距用固体撮像装置及びそれを用いた撮像装置
JP4040312B2 (ja) 固体撮像素子及び撮像装置
JP7361514B2 (ja) 撮像素子および撮像装置
JP4006363B2 (ja) Aeaf用センサ及びそれを用いたカメラ
JP5032750B2 (ja) Afセンサ及びそれを用いたカメラ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees