JP2004256631A - Adhesive composition and adhesive film - Google Patents

Adhesive composition and adhesive film Download PDF

Info

Publication number
JP2004256631A
JP2004256631A JP2003047381A JP2003047381A JP2004256631A JP 2004256631 A JP2004256631 A JP 2004256631A JP 2003047381 A JP2003047381 A JP 2003047381A JP 2003047381 A JP2003047381 A JP 2003047381A JP 2004256631 A JP2004256631 A JP 2004256631A
Authority
JP
Japan
Prior art keywords
adhesive
adhesive film
component
parts
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003047381A
Other languages
Japanese (ja)
Inventor
Yoshitsugu Matsuura
佳嗣 松浦
Kazuhito Obata
和仁 小畑
Kenichi Nagao
賢一 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2003047381A priority Critical patent/JP2004256631A/en
Publication of JP2004256631A publication Critical patent/JP2004256631A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-flow, highly heat-resistant adhesive film which can be used as an adhesive material for an electronic component or a semiconductor component, enables thermal pressure bonding and hardening at a lower temperature under lower pressure compared to conventional materials, is excellent in processibility (blanking or cutting) in a semi-hardened state, shows a good workability with few resin flow even at pressure bonding, and is excellent in heat resistance and heat dissipation at hardening. <P>SOLUTION: This adhesive composition comprises, against 100 pts.wt. epoxy resin and a hardener component, 160-240 pts.wt. siloxane-modified polyamide-imide component, 40-80 pts.wt. rubber component with a weight average molecular weight of ≥50,000, 40-80 pts.vol. inorganic filler and 0.4-4.0 pts.wt. hardening accelerator. The adhesive film in a semi-hardened state is obtained by heat-treating the composition to achieve a hardening rate of 60-80%. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品、半導体部品等の接着材料として用いられる熱硬化性の接着フィルムに関し、特に、従来より低温低圧で熱圧着、硬化でき、半硬化時の加工性(打ち抜き、切断)に優れ、圧着時には樹脂流れが少なく作業性が良好であり、更に硬化時においては優れた耐熱性及び放熱性を示す、接着剤組成物及び接着フィルムに関する。
【0002】
【従来の技術】
従来、電子部品、半導体部品分野の接着材料としてはガラスエポキシプリプレグ、エポキシ樹脂に各種ゴム成分や無機粒子を添加した接着シートが用いられている。
ガラスエポキシプリプレグを用いる場合は、接着層の薄膜化や吸湿後の密着性の確保が困難であり、樹脂の染み出しが殆どないため、回路加工等が施された平滑でない面への接着では回路の段差を埋め込むことができずにボイドが発生し、はんだ付け等の高温処理時にふくれ、はがれ等が発生したり、加工時には切断粉が発生する等の問題があった。また熱伝導が十分でないため、発熱量の大きい基板には使用できない。
接着シート材料を用いる場合では、各種無機粒子の添加等により放熱性の向上が図られてはいるが、圧着時の圧力による接着シートの染み出し量(フロー量)が大きく、接着する部品の穴加工部や打ち抜き加工部に樹脂がはみ出して作業性が悪く、搭載する電子部品にも悪影響を及ぼす。また部品の高性能化による発熱量の増大に伴い、硬化後においても耐熱性が十分でない欠点がある。
そこで、例えば耐熱性を向上させるために、ポリイミド、ポリアミドイミド等の高Tg材を含む接着剤が提案されている(例えば特許文献1参照。)。
【0003】
【特許文献1】
特開2002−363284号公報
【0004】
【発明が解決しようとする課題】
しかし、その場合には、高温長時間高圧力での接着及び硬化が必要となり、接着及び硬化に用いる設備が限定され、加工に時間がかかり生産性が悪い。さらに近年では基板に搭載される部品の高容量化、ベース基板の多層化等による発熱量の増加に対する放熱対策の要求が高まり、ガラスエポキシプリプレグ、一般の接着シート材料を使用した場合には放熱が十分でなく、金属製放熱板等との併用が必要となり、基板の小型化が困難となる問題点が顕著となった。
本発明は、以上の状況に鑑みてなされるものであり、電子部品、半導体部品等の接着性材料として、従来の材料よりも低温低圧かつ短時間で接着硬化でき、半硬化時の加工性(打ち抜き、切断)に優れ、圧着時には樹脂流れが少なく作業性が良好であり、更に硬化時においては優れた耐熱性及び放熱性を示す、低フロー性かつ高耐熱性の接着フィルムを提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは上記目的を達成するために、鋭意研究を重ねた結果、エポキシ樹脂及びその硬化剤に対して、シロキサン変性ポリアミドイミド、分子量5万以上のゴム、無機充填剤及び硬化促進剤を特定の範囲で配合した組成物を半硬化状態に熱処理したフィルムが本発明の目的を達成しうることを見いだし本発明に到達した。
【0006】
即ち本発明の第一の特徴は、(A)エポキシ樹脂成分及び硬化剤成分100重量部に対し、(B)シロキサン変性ポリアミドイミド成分160〜240重量部、(C)重量平均分子量5万以上のゴム成分40〜80重量部、(D)無機充填剤40〜80体積部、(E)硬化促進剤0.4〜4.0重量部を含んで配合された接着剤組成物を要旨とする。
【0007】
特に、エポキシ樹脂成分がエポキシ当量500以上であり、かつ30℃以下の室温で固形であることが好ましい。
また、前記ゴム成分が末端基エポキシ変性アクリルニトリル−ブタジエンゴムであることが好ましい。
さらに、前記無機充填剤の形状が球形であることが好ましい。
本発明の第二の特徴は、上記いずれかの接着剤組成物からなり、硬化率60〜80%の半硬化状態である接着フィルムを要旨とする。
特に、少なくとも片面に剥離性フィルムを有することが好ましい。
【0008】
【発明の実施の形態】
本発明に用いられるエポキシ樹脂としては、特に制限するものではないが、好ましくはエポキシ当量500以上であり、30℃以下で固形の物が好ましく、エポキシ当量500以上のエポキシ樹脂を使用することにより、樹脂の染み出し量を抑えることができる。この様な市販品のエポキシ樹脂としては、例えばジャパンエポキシレジン株式会社製品名エピコート1001、同1003、大日本インキ化学工業株式会社製品名エピクロン900、同1050等が挙げられる。
【0009】
エポキシ成分の硬化剤としては、ノボラックフェノール樹脂、アミン化合物等が挙げられるが半硬化状態での加工性からノボラックフェノール樹脂が好ましく、例えば市販品では大日本インキ化学工業株式会社製品名LF−2882、日立化成工業株式会社製品名VP−6371等が挙げられる。
【0010】
本発明で用いられる(B)シロキサン変性ポリアミドイミドとしては特に限定はされないが、下記構造式で示されるものが好ましい。下記構造式において、m、n、kは整数であり、m:kは1:1である。
【化1】

Figure 2004256631
【0011】
シロキサン変性ポリアミドイミドの添加は、従来の材料よりも低温かつ短時間での接着硬化を可能とし、更に硬化物とした場合、耐熱性を向上することができる。上記構造式で示される市販品のシロキサン変性ポリアミドイミドは、例えば日立化成工業株式会社製品名PAI−28、同PAI−37、同PAI−55などが挙げられる。
【0012】
本発明において、(C)重量平均分子量5万以上のゴム成分の添加は、低温低圧での接着においても有効な密着力を保つことができる。この重量平均分子量が5万以上のゴムとしては、ブタジエンゴム、アクリロニトリルブタジエンゴム、スチレンブタジエンゴム、ポリイソブシレンゴム、イソブチレンイソプレンゴム、エチレンプロピレンゴム等の合成ゴム、SIS、SBS、SEBS等の熱可塑性エラストマ等が使用できるが、上記合成ゴムが好ましく、特にエポキシ基を含む末端基エポキシ変性アクリロニトリル‐ブタジエンゴムがエポキシ樹脂との相溶性の面から好ましい。
【0013】
(D)無機充填材の添加は熱伝導を向上させるためであり、絶縁性にすぐれたものであれば特に制限はなく、酸化アルミニウム、窒化アルミニウム、酸化マグネシウム、窒化ホウ素等が挙げられる。また添加する無機充填剤が針状、鱗状等の場合には接着剤樹脂中に均一に高密度に充填することが困難となり、その結果接着樹脂層内に空隙が発生し、絶縁特性が著しく低下するため、球形であることが好ましい。この様な市販の無機充填材としては昭和電工株式会社製品名AS−20、同AS−50などが挙げられる。
【0014】
更に(E)硬化促進剤としては、各種イミダゾール類を使用することが好ましい。イミダゾール類としては、2−メチルイミダゾール、2−エチル−4メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール等が挙げられ、市販品では2E4MZ、2PZ、2PZ−CN、2PZ−CNS(以上、四国化成工業社製品名)等が挙げられる。
【0015】
本発明で用いられる接着剤組成物は、(A)エポキシ樹脂及び硬化剤成分100重量部に対し、(B)シロキサン変性ポリアミドイミド成分160〜240重量部、(C)分子量5万以上のゴム成分40〜80重量部、(D)無機充填剤40〜80体積部、(E)硬化促進剤0.4〜4.0重量部を含む。
エポキシ樹脂とその硬化剤との混合割合は任意であり、通常、硬化剤はエポキシ樹脂に対して約40〜70重量%の範囲で用いられる。
【0016】
上記接着剤組成物において、上記混合物100重量部に対して、シロキサン変性ポリアミドイミド成分の添加量が160重量部未満では十分な耐熱性向上の効果が得られない、また240重量部を超えると、接着に要する温度圧力が上昇し、低温低圧短時間での接着硬化が困難となる。また分子量5万以上のゴム成分が40重量部未満では、半硬化時に基材フィルムから本発明の接着フィルムを剥離する時、割れの現象が発生する。また80重量部を超えると樹脂の染み出し量が急激に増加する。
【0017】
無機充填材の添加量は(A)エポキシ樹脂及び硬化剤成分を100体積部として、40体積部未満の場合では熱抵抗が悪化する。80体積部を超える場合、ワニス粘度が上昇し塗布工程での作業性が悪化する。また乾燥後のフィルムに柔軟性がなくなりクラックや割れ等が発生しやすくなる。
更に硬化促進剤が0.4重量部未満では所定の硬化率とすることができず、接着剤が粘着性を持ち作業性が著しく悪化する。また、4.0重量部を超えると前乾燥時に硬化が促進し、接着フィルムの割れが発生する。
【0018】
本発明で用いられる接着剤組成物は、上記(A)〜(E)成分を配合して得ることができ、また、上記(A)〜(E)成分以外に、必要に応じて各種成分を更に配合することもできる。それら各種成分としては、シランカップリング剤、レベリング剤、消泡剤、滑剤等が挙げられる。シランカップリング剤は接着フィルムの密着性を向上させる機能を有する。シランカップリング剤としては日本ユニカー株式会社製品名A−187、同A−189、同A−1100、同A−1160等を使用することができる。
【0019】
上記接着剤組成物は、各成分を均一に分散混合できるのであれば、如何なる手法を用いても調製できる。上記接着剤組成物は、上記(A)〜(E)成分、更に必要に応じて配合することができる各種成分を上記配合割合で混合して調製する以外に、トルエン、メチルエチルケトン、ジメチルホルムアミド、ジメチルホルムアミド等の有機溶媒の存在下にて混合調製してワニス状にすることもできる。
有機溶媒の配合量は接着剤組成物の粘度、塗布厚などに応じて適宜選択される。
【0020】
本発明の接着フィルムは、半硬化状態の上記接着剤組成物からなるフィルムである。本発明の接着フィルムを得るには、前記接着剤組成物をフィルム形状に成形し、次いで熱処理することが有効である。さらに、フィルム形状に成形するには、基材フィルムに該接着剤組成物を塗布して塗布膜とするのが好ましい。基材フィルムに塗布する場合、上述したように、接着剤組成物を有機溶媒に溶解・分散したワニスを用いるのが作業性の点で好ましい。
基材フィルムとしては、熱処理温度に耐え得るものであれば特に限定されるものではないが、ポリエチレンテレフタレートフィルム、ポリイミドフィルム、銅箔等が好ましい。使用時に基材フィルムを接着フィルムから剥離する場合は、基材フィルムとして離型性フィルムを用いるのが好ましく、接着に用いるまで接着フィルムを保護するため、接着フィルムの少なくとも片面を剥離性フィルムで被覆するのが好ましい。
また、耐熱性の基材フィルムの両面に接着剤組成物を塗布した接着フィルムは、そのまま接着に使用できる。
基材フィルムに接着剤組成物を塗布するにはバーコート、ロールコート等の一般の塗布方法が使用できる。
【0021】
上記半硬化状態としては、熱硬化性接着フィルムの硬化率が60〜80%になるようにすることが好ましい。硬化率が60%未満であると、接着フィルムが柔らかく接着時の圧力により、樹脂が流れてしまい染み出し量の制御が困難となる。また、硬化率を80%より高くすると、例えば圧着条件が190℃以上、かつ圧力条件が3MPa以上のような高温高圧を要し、低温低圧での接着が困難になる。
なお、本発明における硬化率は以下の通り測定された発熱量から、以下の計算式(1)で求められた値であると定義する。
硬化率 =[(A−B)/A]×100 (1)
但し、Aは熱処理前の接着剤組成物のDSC発熱量(J/g)を、Bは熱処理して半硬化させた接着フィルムのDSC発熱量(J/g)をそれぞれ示す。
熱処理は一般に熱処理温度120℃以上で行うのが好ましいとされるが、60〜80%の硬化率を達成するために、接着剤組成物の組成、接着剤組成物の厚み等に応じて、前記処理温度、処理時間等の熱処理条件は適宜調整される。
このようにして半硬化状態にされてなる本発明の接着フィルムは、通常10〜150μmの膜厚を有するのが好ましい。
【0022】
これにより、硬化率60〜80%に設定された接着フィルムは、例えば圧着温度:180℃、圧着圧力:2MPa、硬化温度:180℃(60分)のような低温低圧で短時間圧着が可能であり、回路加工等を施した平滑でない面に対する接着性が硬化時、半硬化時ともに優れ、更に硬化時において優れた放熱性及び耐熱性を併せ持つ高耐熱高放熱の接着フィルムを得ることができる。この接着フィルムは、電子部品、半導体部品分野の接着材料として好適に用いられる。
【0023】
【実施例】
以下、本発明を、実施例に基きさらに具体的に説明する。
(実施例1)
エポキシ樹脂(ジャパンエポキシレジン株式会社製品名 エピコート1001)を60重量部、硬化剤(大日本インキ化学工業株式会社製品名 LF−2882)を40重量部、シロキサン変性ポリアミドイミド(日立化成工業株式会社製品名 PAI−55)を160重量部、ゴム成分(ナガセケムテック株式会社製品名 HTR860P3)を80重量部、無機充填材(昭和電工株式会社製品名AS−50)を、前記エポキシ樹脂及び硬化剤の体積を100体積部として40体積部、硬化促進剤(四国化成工業社製品名 2PZ−CN)を0.8重量部、シランカップリング剤(日本ユニカー株式会社製品名 A−187)を12重量部混合し、混練機を用い1時間混合したあと、厚み50μmの離型処理を施したPETフィルム上に塗布し、180℃で15分乾燥し膜厚75μm、硬化率60%の接着フィルムを作製した。作製した接着フィルムについて切断時の切断粉の発生有無、切断時の端部分の状態を目視観察して、その結果を表1に示した。
表1から明らかなように本実施例に係る接着フィルムは切断粉の発生がなく、切断時の端部の状態も良好であることがわかった。
【0024】
更に上記で作製した接着フィルムをアルミニウム板(昭和電工株式会社製品名A−1100、34H、2mm厚)と18μmの電解銅箔(日本電解株式会社製品名 SLP−18)のマット面との間に挟み、180℃の温度、2MPaの圧力で1時間圧着、硬化し試験片を作製した。作製した試験片および接着フィルムについて、接着時の密着性、熱抵抗、300℃のはんだ耐熱性、ガラス転移温度(Tg)、銅箔エッジ部からの樹脂染み出し量を調べ、それらの結果を表1に示した。
【0025】
(実施例2)
シロキサン変性ポリアミドイミドと無機充填材とゴム成分の配合量を表1に示す様に変更するとともに硬化率70%とした以外は実施例1と同様にして接着フィルムを作製した。得られた接着フィルムに関して実施例1と同様に評価し、それらの結果を表1に示した。
【0026】
(実施例3)
シロキサン変性ポリアミドイミドと無機充填材とゴム成分の配合量を表1に示す様に変更するとともに硬化率80%とした以外は実施例1と同様にして接着フィルムを作製した。得られた接着フィルムに関して実施例1と同様に評価し、それらの結果を表1に示した。
【0027】
(実施例4)
シロキサン変性ポリアミドイミドと無機充填材とゴム成分の配合量を表1に示す様に変更する以外は実施例1と同様にして接着フィルムを作製した。得られた接着フィルムに関して実施例1と同様に評価し、それらの結果を表1に示した。
【0028】
(実施例5)
シロキサン変性ポリアミドイミドと無機充填材とゴム成分の配合量を表1に示す様に変更するとともに硬化率80%とした以外は実施例1と同様にして接着フィルムを作製した。得られた接着フィルムに関して実施例1と同様に評価し、それらの結果を表1に示した。
【0029】
なお、表1及び後記の表2における試験片および接着フィルムの特性評価基準は以下の通りである。
(1)接着時の密着性
10mm幅にエッチング加工した銅箔を90度方向にばねばかりを用いて引き剥がし測定した。
〇:全面が密着、△:部分的につかない部分がある、×:全く着かない。
(2)熱抵抗
試験片の銅箔面にパワートランジスタをはんだ付けし、冷却したアルミブロックに放熱シリコンを用いて貼り付けた。50W×1分通電後のトランジスタの温度上昇ΔTを測定し、下式より算出した。
熱抵抗=ΔT/50
(3)はんだ耐熱性
30mm角に切断した試験片を300℃に加熱したはんだ槽に浮かべて、膨れの発生するまでの時間を測定した。
(4)ガラス転移温度(Tg)
圧着前の接着フィルムを用い、TMAを用いて300℃まで加熱し、測定チャートから切片法による交点からTgを読み取った。
(5)銅箔エッジ部からの樹脂染み出し量
試験片の銅箔エッジ部の接着層のはみ出し量を3次元寸法測定機を用いて測定した。
【0030】
【表1】
Figure 2004256631
【0031】
表1から明らかなように、実施例に係る接着フィルムは、いずれも切断粉がなく、切断時の端部の状態も良好であり、その接着品も密着性、放熱性ともに良好で樹脂の染み出し量も少なく、低フローかつ高耐熱の接着フィルムとして問題なく実用できることがわかった。
【0032】
(比較例1)
シロキサン変性ポリアミドイミドと無機充填材とゴム成分の配合量を表2に示す様に変更するとともに硬化率80%とした以外は実施例1と同様にして接着フィルムを作製した。得られた接着フィルムに関して実施例1と同様に評価し、それらの結果を表2に示した。
【0033】
(比較例2)
シロキサン変性ポリアミドイミドと無機充填材とゴム成分の配合量を表2に示す様に変更するとともに硬化率70%とした以外は実施例1と同様にして接着フィルムを作製した。得られた接着フィルムに関して実施例1と同様に評価し、それらの結果を表2に示した。
【0034】
(比較例3)
シロキサン変性ポリアミドイミドと無機充填材とゴム成分の配合量を表2に示す様に変更するとともに硬化率80%とした以外は実施例1と同様にして接着フィルムを作製した。得られた接着フィルムに関して実施例1と同様に評価し、それらの結果を表2に示した。
【0035】
(比較例4)
シロキサン変性ポリアミドイミドと無機充填材とゴム成分の配合量を表2に示す様に変更するとともに硬化率70%とした以外は実施例1と同様にして接着フィルムを作製した。得られた接着フィルムに関して実施例1と同様に評価し、それらの結果を表2に示した。
【0036】
(比較例5)
乾燥温度を170℃とし、硬化率50%とした以外は実施例1と同様にして接着フィルムを作製した。得られた接着フィルムに関して実施例1と同様に評価し、それらの結果を表2に示した。
【0037】
(比較例6)
乾燥温度を190℃とし、硬化率90%とした以外は実施例1と同様にして接着フィルムを作製した。得られた接着フィルムに関して実施例1と同様に評価し、それらの結果を表2に示した。
【0038】
【表2】
Figure 2004256631
【0039】
表2から明らかな様に、比較例1に係る接着フィルムは切断時に端部の浮き剥離が発生し作業性が悪く、比較例2に係る接着フィルムは染み出し量が大きくなり、比較例3に係る接着フィルムの接着品は熱抵抗が悪化し、有効な放熱性が得られず、比較例4に係る接着フィルムは切断時に端部の浮き剥離が発生し作業性が悪く、またその接着品は180℃、2MPaでは部分的に接着しない部分があり、比較例5に係る接着フィルムは圧着時に接着フィルムが潰れて染み出し量が非常に大きくなり、比較例6に係る接着フィルムは切断時に端部の浮き剥離が発生し作業性が悪く、またその接着品は180℃、2MPaでは部分的に接着しない部分があり、いずれも低フローかつ高耐熱の接着フィルムとして実用性がないことがわかった。
【0040】
【発明の効果】
本発明により、電子部品、半導体部品接着材料として、熱ロールラミネート、熱プレス等により、従来より低温低圧で熱圧着、硬化でき、半硬化時の加工性(打ち抜き、切断)に優れ、かつ圧着時においても樹脂流れが少なく作業性が良好であり、更に硬化時においては優れた耐熱性及び放熱性を示す、低フローかつ高耐熱の接着フィルムの提供が可能となった。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermosetting adhesive film used as an adhesive material for electronic components, semiconductor components, and the like, and in particular, can be thermocompression-bonded and cured at a low temperature and low pressure, and has excellent workability (punching and cutting) during semi-curing. In addition, the present invention relates to an adhesive composition and an adhesive film which exhibit low resin flow during pressure bonding and good workability, and exhibit excellent heat resistance and heat dissipation during curing.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as an adhesive material in the field of electronic components and semiconductor components, an adhesive sheet in which various rubber components and inorganic particles are added to an epoxy resin is used.
When using a glass epoxy prepreg, it is difficult to reduce the thickness of the adhesive layer or secure adhesion after moisture absorption, and there is almost no exudation of resin. There was a problem that voids were generated because the steps could not be buried, blistering and peeling occurred during high-temperature processing such as soldering, and cutting powder was generated during processing. In addition, because of insufficient heat conduction, it cannot be used for a substrate that generates a large amount of heat.
In the case of using an adhesive sheet material, although the heat radiation property is improved by adding various inorganic particles, etc., the amount of the adhesive sheet exuding (flow amount) due to the pressure at the time of pressure bonding is large, and the hole of the component to be bonded is large. The resin protrudes into the processed part and the punched part, resulting in poor workability and adversely affecting the mounted electronic components. Further, there is a disadvantage that heat resistance is not sufficient even after curing with an increase in the amount of heat generated due to high performance of components.
Then, for example, in order to improve heat resistance, an adhesive containing a high Tg material such as polyimide or polyamide imide has been proposed (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-2002-363284
[Problems to be solved by the invention]
However, in this case, it is necessary to bond and cure at a high temperature for a long time under a high pressure, the equipment used for the bonding and curing is limited, processing takes a long time, and productivity is poor. In recent years, there has been an increasing demand for measures to dissipate heat to increase the amount of heat generated by increasing the capacity of components mounted on the board and increasing the number of layers of the base board, and when using a glass epoxy prepreg or a general adhesive sheet material, the heat dissipation is increased. This is not sufficient, and it has to be used in combination with a metal radiator plate or the like.
The present invention has been made in view of the above circumstances, and as an adhesive material for electronic parts, semiconductor parts, and the like, can be adhesively cured at a lower temperature and a lower pressure and in a shorter time than conventional materials, and has a workability during semi-curing ( (Punching and cutting), low flow of resin at the time of pressure bonding, good workability, and excellent heat resistance and heat dissipation during curing. Aim.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, with respect to the epoxy resin and its curing agent, siloxane-modified polyamideimide, rubber having a molecular weight of 50,000 or more, an inorganic filler and a curing accelerator. The inventors have found that a film obtained by heat-treating a composition blended in a specific range to a semi-cured state can achieve the object of the present invention, and reached the present invention.
[0006]
That is, the first feature of the present invention is that (B) 160 to 240 parts by weight of a siloxane-modified polyamideimide component and (C) a weight average molecular weight of 50,000 or more based on 100 parts by weight of an epoxy resin component and a curing agent component. The gist is an adhesive composition containing 40 to 80 parts by weight of a rubber component, 40 to 80 parts by volume of (D) an inorganic filler, and 0.4 to 4.0 parts by weight of (E) a curing accelerator.
[0007]
In particular, it is preferable that the epoxy resin component has an epoxy equivalent of 500 or more and is solid at room temperature of 30 ° C. or less.
Further, it is preferable that the rubber component is a terminal group epoxy-modified acrylonitrile-butadiene rubber.
Further, the shape of the inorganic filler is preferably spherical.
A second feature of the present invention is to provide an adhesive film which is made of any one of the above adhesive compositions and is in a semi-cured state with a curing rate of 60 to 80%.
In particular, it is preferable to have a peelable film on at least one side.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The epoxy resin used in the present invention is not particularly limited, but preferably has an epoxy equivalent of 500 or more, is preferably a solid at 30 ° C or less, and uses an epoxy resin having an epoxy equivalent of 500 or more. The amount of resin exuding can be suppressed. Such commercially available epoxy resins include, for example, Epicoat 1001 and 1003, product names of Japan Epoxy Resin Co., Ltd., and Epicron 900 and 1050, product names of Dainippon Ink and Chemicals, Inc.
[0009]
As a curing agent for the epoxy component, a novolak phenol resin, an amine compound and the like can be mentioned, but a novolak phenol resin is preferable in view of workability in a semi-cured state. For example, in the case of a commercial product, Dainippon Ink and Chemicals Co., Ltd. Hitachi Chemical Co., Ltd. product name VP-6371 and the like.
[0010]
The (B) siloxane-modified polyamideimide used in the present invention is not particularly limited, but is preferably one represented by the following structural formula. In the following structural formula, m, n, and k are integers, and m: k is 1: 1.
Embedded image
Figure 2004256631
[0011]
The addition of the siloxane-modified polyamideimide enables the adhesive to be cured at a lower temperature and in a shorter time than conventional materials, and when a cured product is used, the heat resistance can be improved. Examples of the commercially available siloxane-modified polyamideimide represented by the above structural formula include PAI-28, PAI-37, and PAI-55, product names of Hitachi Chemical Co., Ltd.
[0012]
In the present invention, the addition of the rubber component (C) having a weight average molecular weight of 50,000 or more can maintain an effective adhesive force even at low temperature and low pressure. Examples of the rubber having a weight average molecular weight of 50,000 or more include synthetic rubbers such as butadiene rubber, acrylonitrile butadiene rubber, styrene butadiene rubber, polyisobutylene rubber, isobutylene isoprene rubber, and ethylene propylene rubber; Although a plastic elastomer or the like can be used, the above-mentioned synthetic rubber is preferable, and an epoxy group-containing terminal-modified epoxy-acrylonitrile-butadiene rubber is particularly preferable in terms of compatibility with the epoxy resin.
[0013]
(D) The addition of the inorganic filler is for improving heat conduction, and is not particularly limited as long as it has excellent insulating properties, and examples thereof include aluminum oxide, aluminum nitride, magnesium oxide, and boron nitride. In addition, when the inorganic filler to be added is needle-like or scale-like, it is difficult to uniformly and densely fill the adhesive resin, and as a result, voids are generated in the adhesive resin layer and insulation properties are significantly reduced. Therefore, it is preferable that the shape is spherical. Examples of such commercially available inorganic fillers include Showa Denko KK product names AS-20 and AS-50.
[0014]
Further, it is preferable to use various imidazoles as (E) a curing accelerator. Examples of the imidazoles include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole and the like, and commercially available products are 2E4MZ, 2PZ, 2PZ-CN, 2PZ-CNS (these are Shikoku Chemicals). Industrial company product name).
[0015]
The adhesive composition used in the present invention comprises (B) 160 to 240 parts by weight of a siloxane-modified polyamideimide component and (C) a rubber component having a molecular weight of 50,000 or more based on 100 parts by weight of an epoxy resin and a curing agent component. 40 to 80 parts by weight, (D) 40 to 80 parts by volume of an inorganic filler, and (E) 0.4 to 4.0 parts by weight of a curing accelerator.
The mixing ratio between the epoxy resin and the curing agent is arbitrary, and usually, the curing agent is used in a range of about 40 to 70% by weight based on the epoxy resin.
[0016]
In the adhesive composition, with respect to 100 parts by weight of the mixture, if the amount of the siloxane-modified polyamideimide component is less than 160 parts by weight, a sufficient effect of improving heat resistance cannot be obtained.If the amount exceeds 240 parts by weight, The temperature and pressure required for bonding rise, making it difficult to cure the adhesive at low temperature and low pressure for a short time. If the rubber component having a molecular weight of 50,000 or more is less than 40 parts by weight, a cracking phenomenon occurs when the adhesive film of the present invention is peeled from the base film at the time of semi-curing. On the other hand, if it exceeds 80 parts by weight, the amount of exuded resin increases sharply.
[0017]
When the amount of the inorganic filler added is less than 40 parts by volume with respect to (A) the epoxy resin and the curing agent component as 100 parts by volume, the thermal resistance deteriorates. If it exceeds 80 parts by volume, the varnish viscosity will increase and the workability in the coating process will deteriorate. In addition, the film after drying loses flexibility, and cracks, cracks, and the like tend to occur.
Further, when the curing accelerator is less than 0.4 parts by weight, a predetermined curing rate cannot be obtained, and the adhesive has tackiness and workability is remarkably deteriorated. If it exceeds 4.0 parts by weight, curing is accelerated during pre-drying, and the adhesive film is cracked.
[0018]
The adhesive composition used in the present invention can be obtained by blending the above components (A) to (E). In addition to the above components (A) to (E), various components may be added as necessary. Furthermore, it can be blended. These various components include a silane coupling agent, a leveling agent, an antifoaming agent, a lubricant and the like. The silane coupling agent has a function of improving the adhesiveness of the adhesive film. As the silane coupling agent, Nippon Unicar Co., Ltd. product names A-187, A-189, A-1100, A-1160 and the like can be used.
[0019]
The adhesive composition can be prepared by any method as long as the components can be uniformly dispersed and mixed. The above-mentioned adhesive composition is prepared by mixing the above components (A) to (E), and various components that can be further blended as required, in the above blending ratio, and also prepares toluene, methyl ethyl ketone, dimethylformamide, dimethyl It can also be mixed and prepared in the presence of an organic solvent such as formamide to form a varnish.
The blending amount of the organic solvent is appropriately selected according to the viscosity of the adhesive composition, the coating thickness and the like.
[0020]
The adhesive film of the present invention is a film comprising the above-mentioned adhesive composition in a semi-cured state. In order to obtain the adhesive film of the present invention, it is effective to form the adhesive composition into a film shape and then heat-treat it. Further, in order to form a film, it is preferable to apply the adhesive composition to a base film to form a coating film. When applied to a substrate film, as described above, it is preferable to use a varnish in which the adhesive composition is dissolved and dispersed in an organic solvent in terms of workability.
The substrate film is not particularly limited as long as it can withstand the heat treatment temperature, but is preferably a polyethylene terephthalate film, a polyimide film, a copper foil, or the like. When peeling the base film from the adhesive film at the time of use, it is preferable to use a release film as the base film, and to protect the adhesive film until used for bonding, at least one side of the adhesive film is covered with a release film. Is preferred.
Further, an adhesive film obtained by applying an adhesive composition to both sides of a heat-resistant base film can be used for adhesion as it is.
In order to apply the adhesive composition to the substrate film, a general application method such as bar coating and roll coating can be used.
[0021]
As the semi-cured state, it is preferable that the curing rate of the thermosetting adhesive film be 60 to 80%. If the curing rate is less than 60%, the adhesive film is soft and the resin flows due to the pressure at the time of bonding, and it is difficult to control the amount of oozing. On the other hand, when the curing rate is higher than 80%, for example, high pressure and high pressure conditions such as a pressure bonding condition of 190 ° C. or more and a pressure condition of 3 MPa or more are required, and it becomes difficult to bond at low temperature and low pressure.
In addition, the cure rate in the present invention is defined as a value obtained by the following calculation formula (1) from the calorific value measured as follows.
Curing rate = [(AB) / A] × 100 (1)
Here, A indicates the DSC calorific value (J / g) of the adhesive composition before the heat treatment, and B indicates the DSC calorific value (J / g) of the adhesive film that has been semi-cured by the heat treatment.
In general, it is preferable that the heat treatment is performed at a heat treatment temperature of 120 ° C. or higher. However, in order to achieve a curing rate of 60 to 80%, depending on the composition of the adhesive composition, the thickness of the adhesive composition, and the like, Heat treatment conditions such as a treatment temperature and a treatment time are appropriately adjusted.
It is preferable that the adhesive film of the present invention, which is in a semi-cured state in this way, has a thickness of usually 10 to 150 μm.
[0022]
Thus, the adhesive film set at a curing rate of 60 to 80% can be pressed in a short time at a low temperature and a low pressure such as a pressing temperature of 180 ° C., a pressing pressure of 2 MPa, and a curing temperature of 180 ° C. (60 minutes). In addition, it is possible to obtain an adhesive film having high heat resistance and high heat radiation, which has excellent adhesiveness to a non-smooth surface which has been subjected to circuit processing and the like at the time of curing and semi-curing, and has both excellent heat radiation and heat resistance at the time of curing. This adhesive film is suitably used as an adhesive material in the field of electronic components and semiconductor components.
[0023]
【Example】
Hereinafter, the present invention will be described more specifically based on examples.
(Example 1)
60 parts by weight of epoxy resin (Japan Epoxy Resin Co., Ltd. product name Epicoat 1001), 40 parts by weight of curing agent (Dainippon Ink & Chemicals, Inc. product name LF-2882), siloxane-modified polyamideimide (Hitachi Chemical Co., Ltd. product) 160 parts by weight of PAI-55), 80 parts by weight of a rubber component (product name: HTR860P3, manufactured by Nagase Chemtech Co., Ltd.), and an inorganic filler (product name: AS-50, manufactured by Showa Denko Co., Ltd.) 40 parts by volume, 100 parts by volume, 0.8 parts by weight of a curing accelerator (Shikoku Chemicals Co., Ltd. product name 2PZ-CN), 12 parts by weight of a silane coupling agent (Nihon Unicar Co., Ltd. product name A-187) After mixing and mixing using a kneader for 1 hour, the mixture was coated on a 50 μm-thick PET film that had been subjected to a release treatment. 0 ℃ 15 minutes dry film thickness of 75 [mu] m, to prepare an adhesive film cured 60%. With respect to the produced adhesive film, the presence or absence of cutting powder at the time of cutting and the state of the end portion at the time of cutting were visually observed. The results are shown in Table 1.
As is clear from Table 1, it was found that the adhesive film according to the present example did not generate cutting powder, and the edge state at the time of cutting was good.
[0024]
Further, the adhesive film prepared above was placed between an aluminum plate (product name: A-1100, 34H, Showa Denko KK, 34H, 2 mm thick) and a matte surface of 18 μm electrolytic copper foil (product name: SLP-18, Nihon Denki KK). The test piece was sandwiched, pressed at a temperature of 180 ° C. and a pressure of 2 MPa for 1 hour, and cured to prepare a test piece. For the prepared test piece and adhesive film, the adhesion at the time of adhesion, heat resistance, solder heat resistance at 300 ° C., glass transition temperature (Tg), and amount of resin exuding from the edge of the copper foil were examined. 1 is shown.
[0025]
(Example 2)
An adhesive film was produced in the same manner as in Example 1 except that the amounts of the siloxane-modified polyamideimide, the inorganic filler, and the rubber component were changed as shown in Table 1 and the curing rate was 70%. The obtained adhesive film was evaluated in the same manner as in Example 1, and the results are shown in Table 1.
[0026]
(Example 3)
An adhesive film was produced in the same manner as in Example 1 except that the amounts of the siloxane-modified polyamideimide, the inorganic filler, and the rubber component were changed as shown in Table 1 and the curing rate was 80%. The obtained adhesive film was evaluated in the same manner as in Example 1, and the results are shown in Table 1.
[0027]
(Example 4)
An adhesive film was produced in the same manner as in Example 1 except that the amounts of the siloxane-modified polyamideimide, the inorganic filler, and the rubber component were changed as shown in Table 1. The obtained adhesive film was evaluated in the same manner as in Example 1, and the results are shown in Table 1.
[0028]
(Example 5)
An adhesive film was produced in the same manner as in Example 1 except that the amounts of the siloxane-modified polyamideimide, the inorganic filler, and the rubber component were changed as shown in Table 1 and the curing rate was 80%. The obtained adhesive film was evaluated in the same manner as in Example 1, and the results are shown in Table 1.
[0029]
In addition, the property evaluation criteria of the test piece and the adhesive film in Table 1 and Table 2 described below are as follows.
(1) Adhesion at the time of adhesion The copper foil etched to a width of 10 mm was peeled off in the direction of 90 ° using a spring scale and measured.
〇: The whole surface is in close contact, が あ る: There is a part that does not stick partially, ×: There is no adhesion.
(2) A power transistor was soldered to the copper foil surface of the thermal resistance test piece, and attached to a cooled aluminum block using heat-radiating silicon. The temperature rise ΔT of the transistor after 50 W × 1 minute energization was measured and calculated by the following equation.
Thermal resistance = ΔT / 50
(3) Solder Heat Resistance A test piece cut into a 30 mm square was floated on a solder bath heated to 300 ° C., and the time until blistering was measured.
(4) Glass transition temperature (Tg)
Using the adhesive film before pressure bonding, it was heated to 300 ° C. using TMA, and Tg was read from the measurement chart from the intersection by the intercept method.
(5) Amount of Resin Exuded from Copper Foil Edge The amount of the adhesive layer protruding from the copper foil edge of the test piece was measured using a three-dimensional dimension measuring machine.
[0030]
[Table 1]
Figure 2004256631
[0031]
As is clear from Table 1, all of the adhesive films according to the examples have no cutting powder, and the state of the end portion at the time of cutting is good. It was found that the film could be practically used as a low-flow and high-heat-resistant adhesive film without any problem.
[0032]
(Comparative Example 1)
An adhesive film was produced in the same manner as in Example 1 except that the amounts of the siloxane-modified polyamideimide, the inorganic filler, and the rubber component were changed as shown in Table 2 and the curing rate was 80%. The obtained adhesive film was evaluated in the same manner as in Example 1, and the results are shown in Table 2.
[0033]
(Comparative Example 2)
An adhesive film was produced in the same manner as in Example 1 except that the amounts of the siloxane-modified polyamideimide, the inorganic filler, and the rubber component were changed as shown in Table 2 and the curing rate was 70%. The obtained adhesive film was evaluated in the same manner as in Example 1, and the results are shown in Table 2.
[0034]
(Comparative Example 3)
An adhesive film was produced in the same manner as in Example 1 except that the amounts of the siloxane-modified polyamideimide, the inorganic filler, and the rubber component were changed as shown in Table 2 and the curing rate was 80%. The obtained adhesive film was evaluated in the same manner as in Example 1, and the results are shown in Table 2.
[0035]
(Comparative Example 4)
An adhesive film was produced in the same manner as in Example 1 except that the amounts of the siloxane-modified polyamideimide, the inorganic filler, and the rubber component were changed as shown in Table 2 and the curing rate was 70%. The obtained adhesive film was evaluated in the same manner as in Example 1, and the results are shown in Table 2.
[0036]
(Comparative Example 5)
An adhesive film was produced in the same manner as in Example 1 except that the drying temperature was 170 ° C. and the curing rate was 50%. The obtained adhesive film was evaluated in the same manner as in Example 1, and the results are shown in Table 2.
[0037]
(Comparative Example 6)
An adhesive film was produced in the same manner as in Example 1 except that the drying temperature was 190 ° C. and the curing rate was 90%. The obtained adhesive film was evaluated in the same manner as in Example 1, and the results are shown in Table 2.
[0038]
[Table 2]
Figure 2004256631
[0039]
As is evident from Table 2, the adhesive film according to Comparative Example 1 has poor workability due to the occurrence of floating separation of the end portion at the time of cutting, and the adhesive film according to Comparative Example 2 has a large amount of exudation. The adhesive product of such an adhesive film has deteriorated thermal resistance and cannot obtain effective heat dissipation, and the adhesive film according to Comparative Example 4 has poor workability due to floating separation of the end portion when cut, and the adhesive product is At 180 ° C. and 2 MPa, there is a portion that does not adhere partially, the adhesive film according to Comparative Example 5 is crushed during the press bonding and the amount of oozing is extremely large, and the adhesive film according to Comparative Example 6 has an edge portion at the time of cutting. And the workability was poor, and there were some parts of the adhesive product that did not partially adhere at 180 ° C. and 2 MPa, and it was found that none of them was practical as a low-flow and high heat-resistant adhesive film.
[0040]
【The invention's effect】
According to the present invention, as an adhesive material for electronic parts and semiconductor parts, it can be thermocompression bonded and cured at a lower temperature and lower pressure by a hot roll laminating, a hot press, etc., and has excellent workability (punching and cutting) at the time of semi-curing. Thus, it is possible to provide an adhesive film having low flow and high heat resistance, which has a low resin flow and good workability, and exhibits excellent heat resistance and heat dissipation during curing.

Claims (6)

(A)エポキシ樹脂成分及び硬化剤成分100重量部に対し、(B)シロキサン変性ポリアミドイミド成分160〜240重量部、(C)重量平均分子量5万以上のゴム成分40〜80重量部、(D)無機充填剤40〜80体積部、(E)硬化促進剤0.4〜4.0重量部を含む接着剤組成物。(B) 160 to 240 parts by weight of a siloxane-modified polyamideimide component, (C) 40 to 80 parts by weight of a rubber component having a weight average molecular weight of 50,000 or more, based on 100 parts by weight of the epoxy resin component and the curing agent component. ) An adhesive composition comprising 40 to 80 parts by volume of an inorganic filler and (E) 0.4 to 4.0 parts by weight of a curing accelerator. エポキシ樹脂成分がエポキシ当量500以上であり、かつ30℃以下の室温で固形である請求項1記載の接着剤組成物。The adhesive composition according to claim 1, wherein the epoxy resin component has an epoxy equivalent of 500 or more and is solid at room temperature of 30C or less. 前記(C)のゴム成分が末端基エポキシ変性アクリルニトリル−ブタジエンゴムである請求項1または2記載の接着剤組成物。3. The adhesive composition according to claim 1, wherein the rubber component (C) is an epoxy group-modified acrylonitrile-butadiene rubber having a terminal group. 前記(D)無機充填剤の形状が球形である請求項1〜3のいずれか記載の接着剤組成物。The adhesive composition according to any one of claims 1 to 3, wherein the shape of the inorganic filler (D) is spherical. 請求項1〜4のいずれか記載の接着剤組成物からなり、硬化率60〜80%の半硬化状態である接着フィルム。An adhesive film comprising the adhesive composition according to claim 1 and being in a semi-cured state with a curing rate of 60 to 80%. 少なくとも片面に剥離性フィルムを有する請求項5記載の接着フィルム。The adhesive film according to claim 5, which has a peelable film on at least one side.
JP2003047381A 2003-02-25 2003-02-25 Adhesive composition and adhesive film Pending JP2004256631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003047381A JP2004256631A (en) 2003-02-25 2003-02-25 Adhesive composition and adhesive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003047381A JP2004256631A (en) 2003-02-25 2003-02-25 Adhesive composition and adhesive film

Publications (1)

Publication Number Publication Date
JP2004256631A true JP2004256631A (en) 2004-09-16

Family

ID=33113653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003047381A Pending JP2004256631A (en) 2003-02-25 2003-02-25 Adhesive composition and adhesive film

Country Status (1)

Country Link
JP (1) JP2004256631A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051215A (en) * 2005-08-18 2007-03-01 Shin Etsu Chem Co Ltd Adhesive composition and adhesive film
JP2008001878A (en) * 2006-05-26 2008-01-10 Nippon Avionics Co Ltd Method for predicting curing rate of thermosetting resin
JP2011192818A (en) * 2010-03-15 2011-09-29 Sekisui Chem Co Ltd Adhesive film for semiconductor chip bonding
JP2013237846A (en) * 2007-04-25 2013-11-28 Hitachi Chemical Co Ltd Adhesive sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051215A (en) * 2005-08-18 2007-03-01 Shin Etsu Chem Co Ltd Adhesive composition and adhesive film
JP4658735B2 (en) * 2005-08-18 2011-03-23 信越化学工業株式会社 Adhesive composition and adhesive film
JP2008001878A (en) * 2006-05-26 2008-01-10 Nippon Avionics Co Ltd Method for predicting curing rate of thermosetting resin
JP2013237846A (en) * 2007-04-25 2013-11-28 Hitachi Chemical Co Ltd Adhesive sheet
JP2011192818A (en) * 2010-03-15 2011-09-29 Sekisui Chem Co Ltd Adhesive film for semiconductor chip bonding

Similar Documents

Publication Publication Date Title
TWI526311B (en) Multilayer resin sheet and method of producing the same, method of producing cured multilayer resin sheet, and high heat conducting resin sheet laminate and method of producing the same
JP3559137B2 (en) Heat conductive adhesive composition and heat conductive adhesive film using the composition
JP5342221B2 (en) Epoxy resin inorganic composite sheet for semiconductor encapsulation and molded product
JP4379387B2 (en) Epoxy resin inorganic composite sheet and molded product
JP3792327B2 (en) Thermally conductive adhesive composition and thermally conductive adhesive film using the composition
KR101766552B1 (en) Laminate for circuit boards, metal-based circuit board, and power module
JP2012092297A (en) Adhesive resin composition, its cured product and adhesive film
KR20090014173A (en) Resin composition, prepreg, laminate, and wiring board
JP2003286391A (en) Epoxy resin composition, varnish, film adhesive made by using epoxy resin composition, and its cured material
JP2007314782A (en) Resin composition, prepreg, laminated board and wiring board
JP2008297429A (en) Adhesive composition, adhesive sheet and copper foil with adhesive agent
JP2003138241A (en) Heat-resistant adhesive and laminate using the same adhesive-applied heatsink and adhesive-applied metallic foil
KR102401053B1 (en) Polyolefin based adhesive composition having excellent low dielectric feature, bonding sheet, printed circuit board and method for preparing the same
JP2004161828A (en) Resin composition for forming film, and film adhesive
JP2003193016A (en) Highly thermo resistant adhesive film with high heat dissipation
JP2000017240A (en) Adhesive sheet and semiconductor device using same
JP2003193021A (en) Adhesive film with high heat conductivity
JP2009235402A (en) Adhesive film
JP5144583B2 (en) Sheet material and printed wiring board
JP2004256631A (en) Adhesive composition and adhesive film
JP2000290613A (en) Thermosetting adhesive sheet
JP2008270697A (en) Printed circuit board
JP5828094B2 (en) Resin sheet, metal foil with resin, board material and component mounting board
TWI663195B (en) Insulating film and semiconductor device
KR101866561B1 (en) Epoxy resin composition having excellent formability and metal copper clad laminate having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A02 Decision of refusal

Effective date: 20100309

Free format text: JAPANESE INTERMEDIATE CODE: A02