JPH0528393A - Radiation detecting signal transmitter - Google Patents

Radiation detecting signal transmitter

Info

Publication number
JPH0528393A
JPH0528393A JP3178541A JP17854191A JPH0528393A JP H0528393 A JPH0528393 A JP H0528393A JP 3178541 A JP3178541 A JP 3178541A JP 17854191 A JP17854191 A JP 17854191A JP H0528393 A JPH0528393 A JP H0528393A
Authority
JP
Japan
Prior art keywords
signal
pulse
radiation
pulse train
radiation detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3178541A
Other languages
Japanese (ja)
Inventor
Takeshi Sakamaki
剛 酒巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3178541A priority Critical patent/JPH0528393A/en
Publication of JPH0528393A publication Critical patent/JPH0528393A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Measurement Of Radiation (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To facilitate the maintenance work by analyzing the trouble cause at a radiation detecting signal transmitter based on prescribed first and second pulse column signals. CONSTITUTION:In a transmitter 31, a pulse column signal 27a becomes a radiation detecting signal 11 transmitted by a light transmission line 12. Then, by performing the pulse counting for the pulse column signal 27a, the dose of a radiation 3 can be measured. At the transmitter 31, when the pulse column signal 27a is outputted and a pulse signal 28a is annihilated, the trouble cause exists at either of the part of a reference signal output means 24 or a pulse width discriminating means 28 other then a transistor power supply 7. When the signal 28a is outputted and the signal 27a is annihilated, the trouble cause exists at either of the part of a radiation detecting signal generating means 5, the part where a radiation pulse column signal 4 is inputted to a transmitting part 26 or a pulse wave height discriminating means 27 except the power supply 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、放射線検出器を介して
得られる電気パルス列信号としての放射線検出信号の伝
送を、耐ノイズ性を向上させるために光信号に変換して
行う放射線検出信号伝送装置、特に、信号伝送路の布設
が容易でかつ該伝送装置の故障に対して迅速に故障対策
を講じることができる装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation detection signal transmission for transmitting a radiation detection signal as an electric pulse train signal obtained through a radiation detector by converting it into an optical signal in order to improve noise resistance. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device, in particular, a device in which a signal transmission path can be easily installed and a failure countermeasure can be promptly taken against a failure of the transmission device.

【0002】[0002]

【従来の技術】図3は従来の放射線検出信号伝送装置1
の構成図である。図において、2は入射する放射線3を
検出して検出した放射線3に対応した電気パルスである
放射線パルス4aのパルス列としての放射線パルス列信
号4を出力する放射線検出器、5は、パルス列信号4が
入力されるトランジスタ駆動回路6とこの駆動回路6の
出力電圧6aによって駆動されるトランジスタT1とト
ランジスタ電源7と直列抵抗8とからなり、回路6に信
号4が入力されることによってトランジスタT1から出
力される電流I1としての放射線検出信号を発生する放
射線検出信号発生手段で、ここに、電流I1は放射線パ
ルス列信号4を構成する放射線パルス4aに対応した電
気パルスである第1電気パルスとしての電流パルスI1
*のパルス列であり、また、電流パルスI1*は所定波
高値H1と所定時間幅W1とを有する矩形状波形のパル
スである。9は電流I1によって駆動される発光ダイオ
ード、10は信号発生手段5における故障の有無を監視
して故障を検知しない時は+12ボルトとなり故障を検
知すると零ボルトとなる故障検知信号10aを出力する
故障検知回路、11は信号発生手段5とダイオード9と
故障検知回路10とが設けられた送信部で、12はダイ
オード9が出射する光信号9aを伝送する光伝送路であ
る。そうして、13は電気信号10aを伝送する電気ケ
ーブル、14は光信号9aを伝送路12を介して受光す
るホトダイオード15と直列抵抗16と電圧増幅器17
とからなり、光信号9aに応じた電圧信号17aを増幅
器17の出力電圧として出力する光電変換手段、18は
故障検知信号10aが入力されかつ信号10aが零ボル
トになると警報信号18aを出力する警報信号発生回路
で、19は光電変換手段14と信号発生回路18とが設
けられた受信部である。そうして、前述した放射線検出
信号伝送装置1は上述の送信部11と光伝送路12とケ
ーブル13と受信部19とで構成されており、また光伝
送路12は光ファイバケーブル12aとこのケーブル1
2aを送信部11、受信部19のそれぞれに接続する光
コネクタ12b,12cとで構成されている。
2. Description of the Related Art FIG. 3 shows a conventional radiation detection signal transmission device 1
It is a block diagram of. In the figure, 2 is a radiation detector that outputs a radiation pulse train signal 4 as a pulse train of a radiation pulse 4a that is an electric pulse corresponding to the detected radiation 3 by detecting the incident radiation 3. And a transistor power supply 7 and a series resistor 8 which are driven by an output voltage 6a of the driving circuit 6, and a signal 4 is input to the circuit 6 to be output from the transistor T1. Radiation detection signal generating means for generating a radiation detection signal as the current I1, wherein the current I1 is an electric pulse corresponding to the radiation pulse 4a constituting the radiation pulse train signal 4, and the current pulse I1 as the first electric pulse.
The pulse train of *, and the current pulse I1 * is a pulse having a rectangular waveform having a predetermined peak value H1 and a predetermined time width W1. Reference numeral 9 is a light emitting diode driven by the current I1 and 10 is a failure detecting signal failure detection signal 10a which monitors the presence or absence of a failure in the signal generating means 5 and becomes +12 volts when a failure is not detected and becomes 0 volt when a failure is detected. A detection circuit 11 is a transmitter provided with the signal generating means 5, the diode 9 and the failure detection circuit 10, and 12 is an optical transmission line for transmitting the optical signal 9a emitted from the diode 9. Then, 13 is an electric cable for transmitting the electric signal 10a, and 14 is a photodiode 15 for receiving the optical signal 9a via the transmission line 12, a series resistor 16 and a voltage amplifier 17.
And a photoelectric conversion means 18 for outputting a voltage signal 17a corresponding to the optical signal 9a as an output voltage of the amplifier 17, and an alarm 18 for outputting an alarm signal 18a when the failure detection signal 10a is input and the signal 10a becomes zero volt. Reference numeral 19 denotes a signal generating circuit, which is a receiving unit provided with the photoelectric conversion means 14 and the signal generating circuit 18. Then, the radiation detection signal transmission device 1 described above is configured by the transmission unit 11, the optical transmission line 12, the cable 13, and the reception unit 19, and the optical transmission line 12 includes the optical fiber cable 12a and this cable. 1
It is composed of optical connectors 12b and 12c for connecting 2a to the transmitter 11 and the receiver 19, respectively.

【0003】信号伝送装置1は上述のように構成されて
いるので、電圧信号17aが電流I1に対応したパルス
列信号となり、この結果装置1が電流I1としての放射
線検出信号を伝送する装置であることが明らかであっ
て、また、この場合、信号17aによって放射線3の線
量を測定し得ることが明らかである。そうして、装置1
は上述のように構成されているので、この装置1には送
信部11,受信部19間の信号伝送に上記線量測定に影
響を及ぼすノイズが侵入し難い利点がある。なお、装置
1では故障検知回路10とケーブル13と警報信号発生
回路18とからなる故障監視機構20が、電圧信号17
aに異常が発生した場合の故障解析を容易にするために
設けられている。
Since the signal transmission device 1 is constructed as described above, the voltage signal 17a becomes a pulse train signal corresponding to the current I1, and as a result, the device 1 is a device for transmitting the radiation detection signal as the current I1. Is clear, and in this case it is clear that the dose of the radiation 3 can be measured by the signal 17a. Then, the device 1
Since the above is configured as described above, this device 1 has an advantage that noise affecting the dose measurement is unlikely to enter the signal transmission between the transmitter 11 and the receiver 19. In the device 1, the failure monitoring mechanism 20 including the failure detection circuit 10, the cable 13, and the alarm signal generation circuit 18 is provided with the voltage signal 17
It is provided to facilitate failure analysis when an abnormality occurs in a.

【0004】[0004]

【発明が解決しようとする課題】伝送装置1は上述のよ
うに構成されているが、この場合、放射線検出信号I1
を光ファイバケーブル12aで伝送しかつ故障検知信号
10aを電気ケーブル13で伝送するようにしていて、
送信部11,受信部19間に信号伝送路を二種類布設し
なければならないので、信号伝送路の布設が面倒である
という問題点がある。そうして、また、信号伝送装置1
では、故障監視機構20が設けられているが、信号発生
回路18が警報信号18aを出力しないのにパルス列電
圧信号17aが消滅した場合光電変換手段14、光伝送
路12、発光ダイオード9、放射線パルス列信号4が送
信部11に入力される部分のいずれに故障が発生したの
かを直ちに知ることはできないし、また信号発生回路1
8が警報信号18aを出力しているのに信号17aの出
力が継続している場合信号発生手段5,電気ケーブル1
3,故障検知回路10のいずれに故障が発生したのかを
直ちに知ることは不可能で、したがって、伝送装置1に
は機構20が設けられているものの該装置1に故障が発
生した場合故障発生場所の特定を迅速に行うことができ
ないので故障対策を素早く実行することができないとい
う問題点もある。本発明の目的は、送信部と受信部との
間の信号伝送路が一種類あればよいようにして該信号伝
送路の布設が容易になるようにし、また、受信部におい
て最終的に得られる信号にもとづいて放射線検出信号伝
送装置に発生した故障の発生場所を直ちに局限して特定
できるようにして該故障に対する対策が迅速に行えるよ
うにすることにある。なお、上述した伝送装置1の場
合、信号17aの出力が停止しかつ警報信号18aが出
力されている状態となった時伝送装置1のどの部分に故
障が発生したかを直ちに知ることが不可能であることは
明らかである。
The transmission device 1 is constructed as described above. In this case, the radiation detection signal I1 is used.
Is transmitted by the optical fiber cable 12a and the failure detection signal 10a is transmitted by the electric cable 13,
Since it is necessary to lay two types of signal transmission lines between the transmission unit 11 and the reception unit 19, there is a problem that the laying of the signal transmission lines is troublesome. Then, again, the signal transmission device 1
Although the failure monitoring mechanism 20 is provided, when the pulse train voltage signal 17a disappears even though the signal generation circuit 18 does not output the alarm signal 18a, the photoelectric conversion unit 14, the optical transmission line 12, the light emitting diode 9, and the radiation pulse train. It cannot be immediately known which of the parts where the signal 4 is input to the transmission part 11 has a failure, and the signal generation circuit 1
8 outputs the alarm signal 18a but continues to output the signal 17a. Signal generating means 5, electric cable 1
3. It is impossible to immediately know which one of the failure detection circuits 10 has a failure. Therefore, when the transmission apparatus 1 is provided with the mechanism 20 but a failure occurs in the apparatus 1, the failure occurrence location There is also a problem that the failure countermeasure cannot be swiftly executed because it is not possible to quickly identify the fault. An object of the present invention is to provide only one type of signal transmission line between the transmission unit and the reception unit to facilitate the installation of the signal transmission line, and to finally obtain the signal transmission line at the reception unit. An object of the present invention is to promptly take countermeasures against the failure by allowing the location of the failure occurring in the radiation detection signal transmission device to be immediately localized based on the signal. In the case of the transmission device 1 described above, when the output of the signal 17a is stopped and the alarm signal 18a is being output, it is impossible to immediately know which part of the transmission device 1 has failed. It is clear that

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明によれば、 1)放射線検出器が出力する放射線パルス列信号が入力
されかつこの放射線パルス列信号が入力されることによ
って該放射線パルス列信号を構成する放射線パルスに対
応した電気パルスである所定波高値H1と所定時間幅W
1とを有する矩形状波形の第1電気パルスのパルス列と
しての放射線検出信号を発生する放射線検出信号発生手
段と、前記波高値H1よりも低い所定波高値H2と前記
時間幅W1よりも長い所定時間幅W2とを有する矩形状
波形の第2電気パルスの所定周期を有する周期的パルス
列である基準信号を常時出力する基準信号出力手段とが
設けられ、前記放射線検出信号と前記基準信号とを重畳
して得た一次電気信号をこの一次電気信号と同じ経時的
光強度波形を有する重畳光信号に変換して出力する送信
部と、前記重畳光信号を伝送する光伝送路と、前記重畳
光信号を前記光伝送路を介して受信しかつ光電変換して
二次電気信号を出力する光電変換手段と、前記二次電気
信号に対してパルス波高弁別を行って前記放射線検出信
号に対応した第1パルス列信号を得るパルス波高弁別手
段と、前記二次電気信号に対してパルス幅弁別を行って
前記基準信号に対応した第2パルス列信号を得るパルス
幅弁別手段とが設けられた受信部とを備え、前記第1パ
ルス列信号を前記光伝送路によって伝送された前記放射
線検出信号とする放射線検出信号伝送装置であって、前
記第1及び第2パルス列信号にもとづき前記放射線検出
信号伝送装置における故障原因の解析を行うように放射
線検出信号伝送装置を構成し、また、 2)上記1)項に記載の伝送装置において、基準信号出
力手段を、送信部における電気回路の故障の有無を監視
して前記故障を検知すると基準信号の出力を停止する故
障検知機能付き基準信号出力手段として放射線検出信号
伝送装置を構成する。
To achieve the above object, according to the present invention, 1) a radiation pulse train signal output from a radiation detector is input, and the radiation pulse train signal is input to the radiation pulse train signal. A predetermined crest value H1 and a predetermined time width W, which are electric pulses corresponding to the radiation pulses forming the signal
Radiation detection signal generating means for generating a radiation detection signal as a pulse train of a first electric pulse having a rectangular waveform, and a predetermined peak value H2 lower than the peak value H1 and a predetermined time longer than the time width W1. A reference signal output means for constantly outputting a reference signal that is a periodic pulse train having a predetermined period of a second electric pulse having a rectangular waveform having a width W2, and superimposing the radiation detection signal and the reference signal on each other. The primary electrical signal obtained by converting the primary electrical signal into a superimposed optical signal having the same temporal light intensity waveform as that of the primary electrical signal and outputting the same, an optical transmission path for transmitting the superimposed optical signal, and the superimposed optical signal. A photoelectric conversion unit that receives through the optical transmission path and photoelectrically converts the secondary electric signal to output a secondary electric signal; and a first pulse corresponding to the radiation detection signal by performing pulse height discrimination on the secondary electric signal. And a pulse width discriminating means for obtaining a pulse train signal and a pulse width discriminating means for discriminating the pulse width of the secondary electric signal to obtain a second pulse train signal corresponding to the reference signal. A radiation detection signal transmission device comprising the first pulse train signal as the radiation detection signal transmitted through the optical transmission line, wherein the cause of failure in the radiation detection signal transmission device is based on the first and second pulse train signals. The radiation detection signal transmission device is configured to perform the analysis of 2), and 2) in the transmission device according to 1) above, the reference signal output means monitors the presence or absence of a failure of an electric circuit in the transmission part to A radiation detection signal transmission device is configured as a reference signal output unit with a failure detection function that stops outputting a reference signal when a failure is detected.

【0006】[0006]

【作用】上記のように構成すると、送信部と受信部との
間の信号伝送路が光伝送路だけでよいから該信号伝送路
の布設が従来の放射線検出信号伝送装置1の場合に比べ
て容易になることは明らかである。そうして、また、上
記のように構成すると、基準信号出力手段が故障検知機
能付きでない伝送装置の場合、第1パルス列信号の出力
が認められて第2パルス列信号の出力が認められない時
は基準信号出力手段かパルス幅弁別手段に故障原因が存
在し、第2パルス列信号の出力が認められて第1パルス
列信号の出力が認められない時は放射線パルス列信号が
送信部に入力される部分か放射線検出信号発生手段かま
たはパルス波高弁別手段に故障原因が存在することにな
り、また、基準信号出力手段が故障検知機能付きの伝送
装置の場合、第1パルス列信号の出力が認められて第2
パルス列信号の出力が認められない時は故障原因の存在
場所が前者の場合と同じになり、第2パルス列信号の出
力が認められて第1パルス列信号の出力が認められない
時は放射線パルス列信号が送信部に入力される部分かパ
ルス波高弁別手段に故障原因が存在することになって、
上述したいずれの放射線検出信号伝送装置の場合にも発
生した故障の原因の存在場所を第1及び第2パルス列信
号にもとづいて従来伝送装置1におけるよりも局限して
特定し得ることが明らかであることから、放射線検出信
号伝送装置を上述のように構成すると該装置に発生した
故障に対する対策を迅速に講じることができることにな
る。
With the above construction, the signal transmission path between the transmission section and the reception section need only be the optical transmission path, so that the installation of the signal transmission path is more difficult than the conventional radiation detection signal transmission apparatus 1. Obviously it will be easier. Then, with the above configuration, in the case where the reference signal output means is a transmission device without a failure detection function, when the output of the first pulse train signal is recognized and the output of the second pulse train signal is not recognized, When there is a cause of failure in the reference signal output means or the pulse width discrimination means and the output of the second pulse train signal is recognized but the output of the first pulse train signal is not recognized, is it a part where the radiation pulse train signal is input to the transmitter? If there is a cause of failure in the radiation detection signal generating means or the pulse height discriminating means, and if the reference signal output means is a transmission device with a failure detection function, the output of the first pulse train signal is recognized and the second
When the output of the pulse train signal is not recognized, the location of the cause of the failure is the same as in the former case, and when the output of the second pulse train signal is recognized and the output of the first pulse train signal is not recognized, the radiation pulse train signal is There is a cause of failure in the part input to the transmitter or the pulse height discrimination means,
It is apparent that the location of the cause of the failure that occurred in any of the radiation detection signal transmission devices described above can be specified more locally than in the conventional transmission device 1 based on the first and second pulse train signals. Therefore, if the radiation detection signal transmission device is configured as described above, it is possible to quickly take measures against a failure that has occurred in the device.

【0007】[0007]

【実施例】図1は本発明の一実施例の構成図で、図1に
おいては図3におけるものと同じものに図3の場合と同
じ符号がつけてある。図1において、21は所定周期P
を有する周期的パルス列信号21aを常時出力するパル
ス列信号発生回路、22は信号21aが入力されること
によってこの信号21aに応じた出力電圧22aでトラ
ンジスタT2を駆動するトランジスタ駆動回路、I2は
トランジスタ電源7と直列抵抗23との間に接続された
トランジスタT2が電圧22aで駆動されることによっ
てこのトランジスタT2が出力する基準信号としての出
力電流で、24は信号発生回路21と駆動回路22とト
ランジスタT2と電源7と抵抗23とからなる基準信号
出力手段である。信号出力手段24はこのように構成さ
れているので、基準信号I2が周期Pを有する周期的パ
ルス列信号となることは明らかで、この場合信号I2が
前述の波高値H1よりも低い所定波高値H2と前述の時
間幅W1よりも長い所定時間幅W2とを有する矩形状波
形の第2電気パルスとしての電流パルスI2*からなる
周期的パルス列信号となるように各部が構成されてい
る。図1においては前述の発光ダイオード9に対応した
発光ダイオード25が放射線検出信号I1と基準信号I
2とを重畳して得た一次電気信号としての和電流I3=
(I1+I2)で駆動されるようになっていることが図
から明らかであるから、図1ではダイオード25から光
伝送路12に入射させられる該ダイオード25の出射光
としての光信号25aが和電流I3と同じ経時的光強度
波形を呈することになる。26は放射線検出信号発生手
段5と基準信号出力手段24とダイオード25とが設け
られた送信部である。
1 is a block diagram of an embodiment of the present invention. In FIG. 1, the same parts as those in FIG. 3 are designated by the same reference numerals as those in FIG. In FIG. 1, 21 is a predetermined period P
A pulse train signal generation circuit that constantly outputs a periodic pulse train signal 21a having the following: 22 is a transistor drive circuit that drives the transistor T2 with an output voltage 22a corresponding to this signal 21a when the signal 21a is input; and I2 is a transistor power supply 7 The transistor T2 connected between the transistor T2 and the series resistor 23 is driven by the voltage 22a, and is an output current as a reference signal output from the transistor T2. Reference numeral 24 denotes the signal generation circuit 21, the drive circuit 22, the transistor T2, and It is a reference signal output means including a power supply 7 and a resistor 23. Since the signal output means 24 is constructed in this way, it is clear that the reference signal I2 is a periodic pulse train signal having a period P, in which case the signal I2 is a predetermined peak value H2 lower than the above-mentioned peak value H1. And each section is configured to be a periodic pulse train signal composed of a current pulse I2 * as a second electric pulse having a rectangular waveform having a predetermined time width W2 longer than the time width W1 described above. In FIG. 1, the light emitting diode 25 corresponding to the above-mentioned light emitting diode 9 has a radiation detection signal I1 and a reference signal I.
Sum current I3 as a primary electric signal obtained by superimposing 2 and
Since it is clear from the figure that the optical signal 25a is driven by (I1 + I2), the optical signal 25a as the emitted light of the diode 25 which is incident on the optical transmission line 12 from the diode 25 is the sum current I3. Will have the same temporal light intensity waveform as. Reference numeral 26 is a transmitter provided with the radiation detection signal generating means 5, the reference signal outputting means 24, and the diode 25.

【0008】図1においては送信部26が上述のように
構成されているので、二次電気信号としての増幅器出力
電圧17aが一次電気信号としての和電流I3と同じ経
時的波形となり、したがって、電圧17a中に電流I3
中の電流I1を構成するパルスI1*に対応した電圧パ
ルスV1*が現れることになり、また電圧17a中に電
流I3中の電流I2を構成するパルスI2*に対応した
電圧パルスV2*が現れることになって、電圧パルスV
1*は電流波高値H1に対応した電圧波高値V1と時間
幅W1とを有する矩形状波形となり、電圧パルスV2*
は電流波高値H2に対応した電圧波高値V2と時間幅W
2とを有する矩形状波形となる。そうして、ここに、V
1>V2である。そうして、図1において、27は、電
圧信号17aが入力され、かつV1>Vr>V2の条件
を満足する参照電圧Vrを内蔵しており、かつ信号17
aにおけるVr以上の波高値を有する電圧パルスが入力
されるごとに所定波高値V01、所定時間幅W01の電
圧パルスV01*を出力電圧27aとして出力するパル
ス波高弁別手段、28は、電圧信号17aが入力され、
かつW1<Wr<W2の条件を満足する参照時間幅Wr
を内蔵しており、かつ信号17aにおけるWr以上の時
間幅を有する電圧パルスが入力されるごとに所定波高値
V02、所定時間幅W02の電圧パルスV02*を出力
電圧28aとして出力するパルス幅弁別手段で、この場
合弁別手段27,28が上述のように構成されているの
で、出力電圧27aが放射線検出信号I1に対応したパ
ルス列信号となり、また出力電圧28aが基準信号I2
に対応した周期的パルス列信号となる。
In FIG. 1, since the transmitter 26 is configured as described above, the amplifier output voltage 17a as the secondary electric signal has the same temporal waveform as the sum current I3 as the primary electric signal, and therefore the voltage Current I3 in 17a
The voltage pulse V1 * corresponding to the pulse I1 * that constitutes the current I1 in the medium appears, and the voltage pulse V2 * that corresponds to the pulse I2 * that constitutes the current I2 in the current I3 appears in the voltage 17a. And the voltage pulse V
1 * is a rectangular waveform having a voltage peak value V1 corresponding to the current peak value H1 and a time width W1, and the voltage pulse V2 *
Is the voltage peak value V2 corresponding to the current peak value H2 and the time width W
2 and a rectangular waveform. Then, here, V
1> V2. Then, in FIG. 1, 27 is a voltage signal 17a is inputted, the reference voltage Vr satisfying the condition of V1>Vr> V2 is built in, and the signal 17
The pulse crest discriminating means 28, which outputs the voltage pulse V01 * having the predetermined crest value V01 and the predetermined time width W01 as the output voltage 27a every time the voltage pulse having the crest value Vr or more in a is inputted, the voltage signal 17a Entered,
And a reference time width Wr that satisfies the condition of W1 <Wr <W2
And a pulse width discriminating means for outputting a voltage pulse V02 * having a predetermined crest value V02 and a predetermined time width W02 as the output voltage 28a each time a voltage pulse having a time width of Wr or more in the signal 17a is input. In this case, since the discrimination means 27 and 28 are configured as described above, the output voltage 27a becomes a pulse train signal corresponding to the radiation detection signal I1, and the output voltage 28a becomes the reference signal I2.
Becomes a periodic pulse train signal corresponding to.

【0009】29は、周期的パルス列信号28aが入力
され、かつ信号28aを構成する電圧パルスV02*の
周期Pよりも長い所定設定時間Wsを内蔵しており、か
つ電圧パルスV02*が時間Ws以上を経過しても入力
されないと警報信号29aを出力するパルス入力時間監
視手段、30はこの監視手段29と両弁別手段27,2
8と光電変換手段14とが設けられた受信部で、31は
受信部30と光伝送路12と送信部26とを備えた放射
線検出信号伝送装置である。伝送装置31は上述のよう
に構成されているのでパルス列信号27aが光伝送路1
2によって伝送された放射線検出信号I1になっている
ことは明らかで、したがって、この場合、信号27aに
対してパルス計数を行うことによって放射線3の線量を
測定することができることになる。そうして、伝送装置
31では、信号27a,28aが共に消滅した場合装置
31のどの部分に故障が生じたかを直ちに知ることが不
可能であることは従来伝送装置1におけると同様である
が、信号27aが出力されていてかつ信号28aが消滅
した場合トランジスタ電源7を除く基準信号出力手段2
4の部分かパルス幅弁別手段28のいずれかに故障原因
が存在し、また信号28aが出力されていてかつ信号2
7aが消滅した場合上記電源7を除く放射線検出信号発
生手段5の部分か放射線パルス列信号4が送信部26に
入力される部分かパルス波高弁別手段27のいずれかに
故障原因が存在することが明らかで、したがって、伝送
装置31においては信号27a,28aが異常になった
時故障発生場所の特定を従来装置1におけるよりも局限
して行なえることがあきらかである。故に、伝送装置3
1によれば故障発生時に対策を迅速に講じることができ
ることになる。そうして、また、伝送装置31の場合前
述の電気ケーブル13が不要であるから従来装置1にお
けるよりも容易に信号伝送路を布設することができる。
The reference numeral 29 is supplied with the periodic pulse train signal 28a and has a built-in predetermined set time Ws longer than the period P of the voltage pulse V02 * constituting the signal 28a, and the voltage pulse V02 * is longer than the time Ws. Pulse input time monitoring means for outputting an alarm signal 29a if no input is made after 30 seconds, and 30 is the monitoring means 29 and both discriminating means 27, 2.
8 is a receiver provided with the photoelectric conversion means 14, and 31 is a radiation detection signal transmission device including a receiver 30, an optical transmission line 12, and a transmitter 26. Since the transmission device 31 is configured as described above, the pulse train signal 27a is transmitted to the optical transmission line 1
It is obvious that the radiation detection signal I1 is transmitted by 2 and therefore, in this case, the dose of the radiation 3 can be measured by performing pulse counting on the signal 27a. Then, it is the same as in the conventional transmission apparatus 1 that it is impossible for the transmission apparatus 31 to immediately know which part of the apparatus 31 has failed when the signals 27a and 28a disappear. Reference signal output means 2 excluding transistor power supply 7 when signal 27a is output and signal 28a disappears
4 or the pulse width discriminating means 28 has a cause of failure, and the signal 28a is output and the signal 2
When 7a disappears, it is clear that there is a cause of failure either in the portion of the radiation detection signal generating means 5 excluding the power source 7, the portion in which the radiation pulse train signal 4 is input to the transmitting portion 26, or the pulse height discriminating means 27. Therefore, it is apparent that the transmission device 31 can specify the failure occurrence place more locally than in the conventional device 1 when the signals 27a and 28a become abnormal. Therefore, the transmission device 3
According to No. 1, it is possible to take measures quickly when a failure occurs. In addition, in the case of the transmission device 31, since the above-mentioned electric cable 13 is unnecessary, the signal transmission path can be installed more easily than in the conventional device 1.

【0010】図2は上述の伝送装置31とは異なる本発
明実施例としての放射線検出信号伝送装置32の構成図
で、本図の図2と異なる所は、図3の故障検知回路10
に対応した故障検知回路33と、検知回路33が出力す
る二値信号33aと周期的パルス列信号21aとが入力
されかつ信号33aの値が「0」になると信号21aの
通過を阻止しかつ出力信号34aを図1における信号2
1aのかわりに駆動回路22に入力するゲート回路34
とが基準信号出力手段24に付加されて、この手段24
と回路33及び34とで故障検出機能付き基準信号出力
手段35が形成されていることで、この場合、故障検知
回路33は、信号出力手段35と放射線検出信号発生手
段5と発光ダイオード25とを備えた送信部36におけ
る該ダイオード25を除く電気回路の故障の有無を監視
して、該故障を検知すると二値信号33aの値を「0」
にするように構成されている。そうして、信号伝送装置
32は送信部36と光伝送路12と受信部30とを備え
た装置である。
FIG. 2 is a block diagram of a radiation detection signal transmission device 32 as an embodiment of the present invention, which is different from the transmission device 31 described above. The difference from FIG. 2 in this diagram is that the failure detection circuit 10 in FIG.
When the failure detection circuit 33 corresponding to the above, the binary signal 33a output from the detection circuit 33 and the periodic pulse train signal 21a are input and the value of the signal 33a becomes "0", the passage of the signal 21a is blocked and the output signal is output. 34a is the signal 2 in FIG.
Gate circuit 34 for inputting to drive circuit 22 instead of 1a
Are added to the reference signal output means 24, and this means 24
Since the reference signal output means 35 with a failure detection function is formed by the circuits 33 and 34, in this case, the failure detection circuit 33 includes the signal output means 35, the radiation detection signal generation means 5, and the light emitting diode 25. The presence or absence of a failure in the electric circuit except the diode 25 in the transmission unit 36 provided is monitored, and when the failure is detected, the value of the binary signal 33a is set to "0".
Is configured to. Then, the signal transmission device 32 is a device including the transmission unit 36, the optical transmission line 12, and the reception unit 30.

【0011】信号伝送装置32は上述のように構成され
ているので、この装置32が、図1の装置31と同様
に、信号伝送路の布設が容易な装置であり、また信号2
7a,28aが共に消滅した場合装置32のどの部分に
故障が生じたかを直ちに知ることができない装置であ
り、また信号27aが出力されていてかつ信号28aが
消滅たした場合電源7を除く基準信号出力手段35の部
分かパルス幅弁別手段28のいずれかに故障原因が存在
する装置であることが明らかであるが、さらに、伝送装
置32では信号28aが出力されていてかつ信号27a
が消滅した場合放射線パルス列信号4が送信部36に入
力される部分かパルス波高弁別手段27のいずれかに故
障原因が存在することが明らかである。故に伝送装置3
2においては信号27a,28aが異常になった時故障
発生場所の特定を伝送装置31におけるよりもさらに局
限して行えるので、装置32によれば装置31の場合よ
りも一層迅速に故障対策が実行できることになる。
Since the signal transmission device 32 is constructed as described above, this device 32 is a device in which a signal transmission path can be easily laid, like the device 31 of FIG.
When 7a and 28a both disappear, it is a device that cannot immediately know which part of the device 32 has failed, and when the signal 27a is output and the signal 28a disappears, the reference signal excluding the power supply 7 It is obvious that the cause of the failure exists in either the output means 35 portion or the pulse width discrimination means 28. Furthermore, the transmission device 32 outputs the signal 28a and the signal 27a.
When the radiation pulse train signal 4 disappears, it is clear that the cause of the failure exists in either the portion where the radiation pulse train signal 4 is input to the transmission unit 36 or the pulse height discrimination means 27. Therefore transmission device 3
In No. 2, when the signals 27a and 28a become abnormal, the failure occurrence location can be specified in a more localized manner than in the transmission apparatus 31, so that the apparatus 32 can take a failure countermeasure more quickly than the case of the apparatus 31. You can do it.

【0012】[0012]

【発明の効果】上述したように、本発明においては、 1)放射線検出器が出力する放射線パルス列信号が入力
されかつこの放射線パルス列信号が入力されることによ
って該放射線パルス列信号を構成する放射線パルスに対
応した電気パルスである所定波高値H1と所定時間幅W
1とを有する矩形状波形の第1電気パルスのパルス列と
しての放射線検出信号を発生する放射線検出信号発生手
段と、波高値H1よりも低い所定波高値H2と時間幅W
1よりも長い所定時間幅W2とを有する矩形状波形の第
2電気パルスの所定周期を有する周期的パルス列である
基準信号を常時出力する基準信号出力手段とが設けら
れ、放射線検出信号と基準信号とを重畳して得た一次電
気信号をこの一次電気信号と同じ経時的光強度波形を有
する重畳光信号に変換して出力する送信部と、重畳光信
号を伝送する光伝送路と、重畳光信号を光伝送路を介し
て受信しかつ光電変換して二次電気信号を出力する光電
変換手段と、二次電気信号に対してパルス波高弁別を行
って放射線検出信号に対応した第1パルス列信号を得る
パルス波高弁別手段と、二次電気信号に対してパルス幅
弁別を行って基準信号に対応した第2パルス列信号を得
るパルス幅弁別手段とが設けられた受信部とを備え、第
1パルス列信号を光伝送路によって伝送された放射線検
出信号とする放射線検出信号伝送装置であって、第1及
び第2パルス列信号にもとづき放射線検出信号伝送装置
における故障原因の解析を行うように放射線検出信号伝
送装置を構成し、また、 2)上記1)項に記載の伝送装置において、基準信号出
力手段を、送信部における電気回路の故障の有無を監視
して前記故障を検知すると基準信号の出力を停止する故
障検知機能付き基準信号出力手段として放射線検出信号
伝送装置を構成した。
As described above, in the present invention, 1) the radiation pulse train signal output from the radiation detector is input, and the radiation pulse train signal is input to the radiation pulse forming the radiation pulse train signal. A predetermined peak value H1 and a predetermined time width W that are corresponding electric pulses
Radiation detection signal generating means for generating a radiation detection signal as a pulse train of the first electric pulse having a rectangular waveform, and a predetermined crest value H2 lower than the crest value H1 and a time width W.
Reference signal output means for constantly outputting a reference signal, which is a periodic pulse train having a predetermined period of the second electric pulse having a rectangular waveform having a predetermined time width W2 longer than 1, is provided, and the radiation detection signal and the reference signal are provided. And a primary electrical signal obtained by superimposing the primary electrical signal to a superimposed optical signal having the same temporal light intensity waveform as the primary electrical signal and outputting the same, an optical transmission line that transmits the superimposed optical signal, and a superimposed optical signal. A photoelectric conversion means for receiving a signal through an optical transmission line and photoelectrically converting it to output a secondary electric signal, and a first pulse train signal corresponding to a radiation detection signal by performing pulse height discrimination on the secondary electric signal. A pulse width discriminating means for obtaining a pulse width discrimination means for obtaining a second pulse train signal corresponding to the reference signal by performing pulse width discrimination on the secondary electric signal, and a first pulse train Light signal A radiation detection signal transmission device, which is a radiation detection signal transmitted by a transmission path, wherein the radiation detection signal transmission device is configured to analyze the cause of failure in the radiation detection signal transmission device based on the first and second pulse train signals. 2) In the transmission device described in 1) above, the reference signal output unit monitors the presence or absence of a failure in the electric circuit in the transmission unit, and when the failure is detected, output of the reference signal is stopped. The radiation detection signal transmission device is configured as a reference signal output means with a function.

【0013】このため、上記のように構成すると、送信
部と受信部との間の信号伝送路が光伝送路だけでよいか
ら該信号伝送路の布設が従来の放射線検出信号伝送装置
1の場合に比べて容易になることは明らかである。そう
して、また、上記のように構成すると、基準信号出力手
段が故障検知機能付きでない伝送装置の場合、第1パル
ス列信号の出力が認められて第2パルス列信号の出力が
認められない時は基準信号出力手段かパルス幅弁別手段
に故障原因が存在し、第2パルス列信号の出力が認めら
れて第1パルス列信号の出力が認められない時は放射線
パルス列信号が送信部に入力される部分か放射線検出信
号発生手段かまたはパルス波高弁別手段に故障原因が存
在することになり、また、基準信号出力手段が故障検知
機能付きの伝送装置の場合、第1パルス列信号の出力が
認められて第2パルス列信号の出力が認められない時は
故障原因の存在場所が前者の場合と同じになり、第2パ
ルス列信号の出力が認められて第1パルス列信号の出力
が認められない時は放射線パルス列信号が送信部に入力
される部分かパルス波高弁別手段に故障原因が存在する
ことになって、上述したいずれの放射線検出信号伝送装
置の場合にも発生した故障の原因の存在場所を第1及び
第2パルス列信号にもとづいて従来伝送装置1における
よりも局限して特定し得ることが明らかであることか
ら、放射線検出信号伝送装置を上述のように構成すると
該装置に発生した故障に対する対策を迅速に講じること
ができることになる。したがって、本発明には、信号伝
送路を少なくすることができかつ故障対策を迅速に講じ
ることができるので、保守作業が容易になる効果があ
る。
Therefore, with the above-mentioned configuration, the signal transmission path between the transmission section and the reception section need only be an optical transmission path, and therefore, when the signal transmission path is laid by the conventional radiation detection signal transmission apparatus 1. Obviously, it will be easier than. Then, with the above configuration, in the case where the reference signal output means is a transmission device without a failure detection function, when the output of the first pulse train signal is recognized and the output of the second pulse train signal is not recognized, When there is a cause of failure in the reference signal output means or the pulse width discrimination means and the output of the second pulse train signal is recognized but the output of the first pulse train signal is not recognized, is it a part where the radiation pulse train signal is input to the transmitter? If there is a cause of failure in the radiation detection signal generating means or the pulse height discriminating means, and if the reference signal output means is a transmission device with a failure detection function, the output of the first pulse train signal is recognized and the second When the output of the pulse train signal is not recognized, the location of the cause of the failure is the same as in the former case, the output of the second pulse train signal is recognized, and the output of the first pulse train signal is not recognized. In some cases, there is a cause of failure in the part where the radiation pulse train signal is input to the transmitter or in the pulse height discriminating means, and the location of the cause of the failure that occurred in any of the radiation detection signal transmission devices described above. Since it is clear that the radiation detection signal transmission device can be localized based on the first and second pulse train signals rather than in the conventional transmission device 1, when the radiation detection signal transmission device is configured as described above, a failure occurs in the device. It will be possible to quickly take measures against. Therefore, the present invention can reduce the number of signal transmission lines and can quickly take countermeasures against failure, so that maintenance work can be facilitated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成図FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】図1に実施例を示した本発明とは別の本発明の
一実施例の構成図
FIG. 2 is a configuration diagram of an embodiment of the present invention different from the embodiment shown in FIG.

【図3】従来の放射線検出信号装置の構成図FIG. 3 is a configuration diagram of a conventional radiation detection signal device.

【符号の説明】[Explanation of symbols]

2 放射線検出器 4 放射線パルス列信号 4a 放射線パルス 5 放射線検出信号発生手段 12 光伝送路 14 光電変換手段 17a 電圧信号(二次電気信号) 24 基準信号出力手段 25a 光信号(重畳光信号) 26 送信部 27 パルス波高弁別手段 27a 出力電圧(第1パルス列信号) 28 パルス幅弁別手段 28a 出力電圧(第2パルス列信号) 30 受信部 31 放射線検出信号伝送装置 32 放射線検出信号伝送装置 35 故障検知機能付き基準信号出力手段 36 送信部 I1 出力電流(放射線検出信号) I1* 電流パルス(第1電気パルス) I2 出力電流(基準信号) I2* 電流パルス(第2電気パルス) I3 和電流(一次電気信号) 2 Radiation detector 4 Radiation pulse train signal 4a Radiation pulse 5 Radiation detection signal generation means 12 Optical transmission line 14 Photoelectric conversion means 17a Voltage signal (secondary electric signal) 24 Reference signal output means 25a Optical signal (superimposed optical signal) 26 Transmitter 27 Pulse wave height discrimination means 27a Output voltage (first pulse train signal) 28 Pulse width discrimination means 28a Output voltage (second pulse train signal) 30 Receiver 31 Radiation detection signal transmission device 32 Radiation detection signal transmission device 35 Reference signal output means with failure detection function 36 Transmitter I1 output current (radiation detection signal) I1 * current pulse (first electric pulse) I2 output current (reference signal) I2 * current pulse (second electric pulse) I3 sum current (primary electric signal)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】放射線検出器が出力する放射線パルス列信
号が入力されかつこの放射線パルス列信号が入力される
ことによって該放射線パルス列信号を構成する放射線パ
ルスに対応した電気パルスである所定波高値H1と所定
時間幅W1とを有する矩形状波形の第1電気パルスのパ
ルス列としての放射線検出信号を発生する放射線検出信
号発生手段と、前記波高値H1よりも低い所定波高値H
2と前記時間幅W1よりも長い所定時間幅W2とを有す
る矩形状波形の第2電気パルスの所定周期を有する周期
的パルス列である基準信号を常時出力する基準信号出力
手段とが設けられ、前記放射線検出信号と前記基準信号
とを重畳して得た一次電気信号をこの一次電気信号と同
じ経時的光強度波形を有する重畳光信号に変換して出力
する送信部と、 前記重畳光信号を伝送する光伝送路と、 前記重畳光信号を前記光伝送路を介して受信しかつ光電
変換して二次電気信号を出力する光電変換手段と、前記
二次電気信号に対してパルス波高弁別を行って前記放射
線検出信号に対応した第1パルス列信号を得るパルス波
高弁別手段と、前記二次電気信号に対してパルス幅弁別
を行って前記基準信号に対応した第2パルス列信号を得
るパルス幅弁別手段とが設けられた受信部とを備え、前
記第1パルス列信号を前記光伝送路によって伝送された
前記放射線検出信号とする放射線検出信号伝送装置であ
って、前記第1及び第2パルス列信号にもとづき前記放
射線検出信号伝送装置における故障原因の解析を行うこ
とを特徴とする放射線検出信号伝送装置。
1. A radiation pulse train signal output from a radiation detector is input, and a predetermined crest value H1 which is an electric pulse corresponding to a radiation pulse forming the radiation pulse train signal by inputting the radiation pulse train signal. Radiation detection signal generating means for generating a radiation detection signal as a pulse train of a first electric pulse having a rectangular waveform having a time width W1, and a predetermined crest value H lower than the crest value H1.
2 and a reference signal output means for constantly outputting a reference signal which is a periodic pulse train having a predetermined period of a second electric pulse having a rectangular waveform having a predetermined time width W2 longer than the time width W1. A transmitter that converts a primary electric signal obtained by superimposing a radiation detection signal and the reference signal into a superimposed optical signal having the same temporal light intensity waveform as the primary electric signal and outputs the superimposed optical signal, and transmits the superimposed optical signal. An optical transmission line, photoelectric conversion means for receiving the superimposed optical signal via the optical transmission line, and performing photoelectric conversion to output a secondary electrical signal, and performing pulse height discrimination on the secondary electrical signal. Pulse height discrimination means for obtaining a first pulse train signal corresponding to the radiation detection signal, and pulse width discrimination for performing a pulse width discrimination for the secondary electric signal to obtain a second pulse train signal corresponding to the reference signal. A radiation detection signal transmission device, comprising: a receiving unit provided with a step, wherein the first pulse train signal is the radiation detection signal transmitted by the optical transmission line, wherein the first and second pulse train signals are A radiation detection signal transmission device, wherein the cause of a failure in the radiation detection signal transmission device is analyzed.
【請求項2】請求項1に記載の伝送装置において、基準
信号出力手段を、送信部における電気回路の故障の有無
を監視して前記故障を検知すると基準信号の出力を停止
する故障検知機能付き基準信号出力手段としたことを特
徴とする放射線検出信号伝送装置。
2. The transmission device according to claim 1, wherein the reference signal output means has a failure detection function of monitoring the presence or absence of a failure of an electric circuit in the transmission section and stopping the output of the reference signal when the failure is detected. A radiation detection signal transmission device characterized in that it is a reference signal output means.
JP3178541A 1991-07-19 1991-07-19 Radiation detecting signal transmitter Pending JPH0528393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3178541A JPH0528393A (en) 1991-07-19 1991-07-19 Radiation detecting signal transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3178541A JPH0528393A (en) 1991-07-19 1991-07-19 Radiation detecting signal transmitter

Publications (1)

Publication Number Publication Date
JPH0528393A true JPH0528393A (en) 1993-02-05

Family

ID=16050285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3178541A Pending JPH0528393A (en) 1991-07-19 1991-07-19 Radiation detecting signal transmitter

Country Status (1)

Country Link
JP (1) JPH0528393A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239783A (en) * 2003-02-06 2004-08-26 Mitsubishi Electric Corp Radiation monitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239783A (en) * 2003-02-06 2004-08-26 Mitsubishi Electric Corp Radiation monitor

Similar Documents

Publication Publication Date Title
US5822094A (en) Self-stimulation signal detection in an optical transmission system
JPH06307896A (en) Distributed waveguide sensor
JPH0528393A (en) Radiation detecting signal transmitter
US9083946B2 (en) System to detect failed pixels in a sensor array
JP4157389B2 (en) Radiation monitor
US8637827B2 (en) Radiation monitor and method for checking operation of the same
KR101044925B1 (en) Infrared Sensing Apparatus And Control Method Thereof
JPH02128184A (en) Bias abnormality detector of semiconductor radiation detector
JP2551564B2 (en) Accident section detection device for power equipment
JPS6096040A (en) Trouble diagnosing system for optical transmitter
JP3135352B2 (en) Optical position detection sensor
JP2011013136A (en) Optical pulse testing device
JPH0759221A (en) Abnormality detector for gas insulated power equipment
JP7336248B2 (en) Tunnel disaster prevention system and fire detector
KR101981144B1 (en) The self-diagnostic leak sensor and the fault diagnosis module for leak sensor
JPS6316999Y2 (en)
JPH04121035A (en) Accident point spotting device
JP2022139897A (en) Arc fault detection device
JPH0579945A (en) Receiving device for optical communication
JPS6339836Y2 (en)
JPH04168395A (en) Radiation monitor device
JPS62254297A (en) Photoelectric type smoke sensor
JPH0526764A (en) Abnormality detector of optical transmission system
JPH11125653A (en) Internal arc detection device of gas insulation apparatus
JPS61170225A (en) Detector for point of trouble of transmission line