JP2005283327A - Deterioration/anomaly detection device for semiconductor radiation detector - Google Patents

Deterioration/anomaly detection device for semiconductor radiation detector Download PDF

Info

Publication number
JP2005283327A
JP2005283327A JP2004097572A JP2004097572A JP2005283327A JP 2005283327 A JP2005283327 A JP 2005283327A JP 2004097572 A JP2004097572 A JP 2004097572A JP 2004097572 A JP2004097572 A JP 2004097572A JP 2005283327 A JP2005283327 A JP 2005283327A
Authority
JP
Japan
Prior art keywords
radiation detector
semiconductor radiation
pulse
height distribution
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004097572A
Other languages
Japanese (ja)
Other versions
JP4528547B2 (en
Inventor
Susumu Naito
晋 内藤
Minenori Mitsubori
峰仙 三堀
Nobuaki Ono
信明 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Corp
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Plant Systems and Services Corp filed Critical Toshiba Corp
Priority to JP2004097572A priority Critical patent/JP4528547B2/en
Publication of JP2005283327A publication Critical patent/JP2005283327A/en
Application granted granted Critical
Publication of JP4528547B2 publication Critical patent/JP4528547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deterioration/anomaly detection device for a semiconductor radiation detector to properly perform anomaly diagnosis on the radiation detector without giving rise to false recognition due to temperature change. <P>SOLUTION: By the irradiation of electromagnetic wave pulses from an oscillator 17, wave height distribution of pulse height values is acquired from the semiconductor radiation detector 11 by a wave height discrimination part 21. Further, an anomaly in a bias voltage of the radiation detector 11 is detected by a bias voltage anomaly detecting means 15 while an anomaly in a supply power source voltage to an amplifier for amplifying a detection signal of the radiation detector is detected by a supply power source anomaly detection means 24. When the bias voltage and the source voltage are normal while the height distribution from the discrimination part 21 deviates from a normal range, a wave height distribution analysis means 16 finds the temperature of the radiation detector based on the height distribution. When wave height distribution corrected as to the temperature deviates from a prescribed range, semiconductor crystals of the radiation detector are determined to be deteriorated or anomalous. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、バイアス電圧を印加して放射線に対する感度を持たせた半導体放射線検出器の劣化や異常を検出する半導体放射線検出器の劣化異常検出装置に関する。   The present invention relates to a deterioration anomaly detection apparatus for a semiconductor radiation detector that detects deterioration or anomaly of a semiconductor radiation detector that is sensitive to radiation by applying a bias voltage.

例えば、原子力発電所、病院、研究機関等の放射線管理区域においては、放射線レベルを放射線検出器で検出してモニターするようにしている。放射線検出器としては、バイアス電圧を印加して放射線に対する感度を持たせた半導体放射線検出器がある。従って、印加するバイアス電圧が適正な範囲であることが必要である。   For example, in radiation control areas such as nuclear power plants, hospitals, and research institutions, radiation levels are detected and monitored by radiation detectors. As a radiation detector, there is a semiconductor radiation detector which has a sensitivity to radiation by applying a bias voltage. Therefore, it is necessary that the bias voltage to be applied is in an appropriate range.

半導体放射線検出器やそれを用いた測定系の健全性を確認するものとして、次のような確認方式が採用されている。   As a method for confirming the soundness of a semiconductor radiation detector and a measurement system using the semiconductor radiation detector, the following confirmation method is adopted.

(1)放射線源(バグソース)を半導体放射線検出器に常時照射し、半導体放射線検出器の出力パルスの波高値の変化を監視することにより測定系の異常を検知する。 (1) A semiconductor radiation detector is always irradiated with a radiation source (bug source), and an abnormality in the measurement system is detected by monitoring a change in the peak value of the output pulse of the semiconductor radiation detector.

(2)半導体放射線検出器にバイアス電圧を印可する電源を監視しその異常を検知する。 (2) The power supply that applies the bias voltage to the semiconductor radiation detector is monitored and its abnormality is detected.

(3)測定系の信号処理系(前置増幅器)の電源電圧を監視しその異常を検知する。 (3) The power supply voltage of the signal processing system (preamplifier) of the measurement system is monitored and its abnormality is detected.

(4)定期的な点検では、前置増幅器に電荷パルスを供給し、その応答から前置増幅器以降の測定系の異常を検知する。 (4) In periodic inspection, a charge pulse is supplied to the preamplifier, and an abnormality in the measurement system after the preamplifier is detected from the response.

また、半導体放射線検出器の健全性を確認するものとしては、光パルス源を半導体放射線検出器に照射し、半導体放射線検出器の出力パルスの波高値の変化を監視することにより、半導体放射線検出器のバイアス電圧の健全性を確認するようにしたものがある(例えば、特許文献1参照)。
特公平6−72930号公報(第1図、第2図)
In order to confirm the soundness of the semiconductor radiation detector, the semiconductor radiation detector is irradiated by irradiating the semiconductor radiation detector with an optical pulse source and monitoring the change in the peak value of the output pulse of the semiconductor radiation detector. In some cases, the soundness of the bias voltage is confirmed (for example, see Patent Document 1).
Japanese Examined Patent Publication No. 6-72930 (FIGS. 1 and 2)

しかし、半導体放射線検出器は、その固有の特性として、温度変化により出力パルスの波高値が変化するため、出力パルスの波高値の変化のみを監視していた場合には、健全な半導体放射線検出器を異常であると誤った診断をする可能性がある。また、バグソースを用いて健全性を確認する方式では、半導体放射線検出器だけでなく半導体放射線検出器を含めた測定計全体の健全性の確認ができるが、バグソースは高価であり、さらに放射線源であるため取り扱いに様々な制限を受ける。   However, as a characteristic of semiconductor radiation detectors, the peak value of the output pulse changes due to temperature changes, so when only monitoring the change of the peak value of the output pulse, it is a healthy semiconductor radiation detector. There is a possibility of making a wrong diagnosis as abnormal. In addition, the method of checking the soundness using a bug source can check not only the semiconductor radiation detector but also the whole measuring instrument including the semiconductor radiation detector, but the bug source is expensive and the radiation Because it is a source, it is subject to various restrictions on handling.

本発明の目的は、温度変化による誤認を起こさずに、半導体放射線検出器の異常診断を適正に行うことができる半導体放射線検出器の劣化異常検出装置を提供することである。   An object of the present invention is to provide a deterioration detection device for a semiconductor radiation detector that can properly perform an abnormality diagnosis of the semiconductor radiation detector without causing misperception due to a temperature change.

本発明の半導体放射線検出器の劣化異常検出装置は、半導体放射線検出器に電磁波パルスを入力する発振器と、前記半導体放射線検出器のバイアス電圧が異常となったことを検出するバイアス電圧異常検出手段と、前記半導体放射線検出器の検出信号を増幅する増幅器への供給電源電圧が異常となったことを検出する供給電源異常検出手段と、前記発振器から電磁波パルスが照射されたことにより前記半導体放射線検出器から出力されるパルス波高値の波高分布を取得する波高弁別部と、前記バイアス電圧及び前記供給電源電圧が正常で前記波高弁別部からの波高分布が正常範囲を逸脱しているときは前記波高分布に基づいて前記半導体放射線検出器の温度を求めその温度に対する補正した波高分布が所定範囲を逸脱しているときは前記半導体放射線検出器の半導体結晶の劣化または異常であると判別する波高分布分析手段とを備えたことを特徴とする。   A deterioration detector for a semiconductor radiation detector according to the present invention includes an oscillator for inputting an electromagnetic wave pulse to the semiconductor radiation detector, and a bias voltage abnormality detector for detecting that the bias voltage of the semiconductor radiation detector is abnormal. A power supply abnormality detecting means for detecting that a power supply voltage to an amplifier for amplifying a detection signal of the semiconductor radiation detector has become abnormal; and the semiconductor radiation detector by irradiating an electromagnetic wave pulse from the oscillator A pulse height discriminating unit for obtaining a pulse height distribution of a pulse peak value output from the pulse height distribution when the bias voltage and the supply power supply voltage are normal and the pulse height distribution from the pulse height discriminating part deviates from a normal range. When the temperature of the semiconductor radiation detector is obtained based on the above and the corrected wave height distribution with respect to the temperature is out of the predetermined range, the semiconductor Characterized by comprising a pulse height distribution analysis means for determining that the degradation or abnormality of the radiation detector of the semiconductor crystal.

ここで、波高分布に基づいて半導体放射線検出器の温度を求めることに代えて、半導体放射線検出器の温度を検出する温度検出器を設け、温度検出器で検出された温度に基づいてその温度に対する補正した波高分布を求め、求めた波高分布が所定範囲を逸脱しているときは半導体放射線検出器の半導体結晶の劣化または異常であると判別するようにしてもよい。また、波高分布に基づいて半導体放射線検出器の温度を求めることに代えて、半導体放射線検出器のリーク電流を検出する電流検出器を設け、電流検出器で検出されたリーク電流に基づいて半導体放射線検出器の温度を求め、その温度に対する補正した波高分布を求めて、その波高分布が所定範囲を逸脱しているときは半導体放射線検出器の半導体結晶の劣化または異常であると判別するようにしてもよい。   Here, instead of obtaining the temperature of the semiconductor radiation detector based on the wave height distribution, a temperature detector for detecting the temperature of the semiconductor radiation detector is provided, and the temperature is detected based on the temperature detected by the temperature detector. A corrected wave height distribution may be obtained, and when the obtained wave height distribution deviates from a predetermined range, it may be determined that the semiconductor crystal of the semiconductor radiation detector is deteriorated or abnormal. Further, instead of obtaining the temperature of the semiconductor radiation detector based on the wave height distribution, a current detector for detecting the leakage current of the semiconductor radiation detector is provided, and the semiconductor radiation is detected based on the leakage current detected by the current detector. Obtain the temperature of the detector, find the corrected wave height distribution for that temperature, and if the wave height distribution deviates from the predetermined range, determine that the semiconductor crystal of the semiconductor radiation detector is deteriorated or abnormal. Also good.

本発明によれば、半導体放射線検出器の温度特性による誤診断を起こすことなく、さらに高価な放射線源(バグソース)を用いずに、半導体放射線検出器の半導体結晶の劣化や異常を検知できる。   According to the present invention, it is possible to detect deterioration or abnormality of a semiconductor crystal of a semiconductor radiation detector without causing erroneous diagnosis due to temperature characteristics of the semiconductor radiation detector and without using an expensive radiation source (bug source).

図1は本発明の第1の実施の形態に係わる半導体放射線検出器の劣化異常検出装置のブロック構成図である。半導体放射線検出器11は半導体結晶を有し、バイアス電源12により、半導体結晶に負電圧、正電圧が印加され、その内部に空乏層を形成させて放射線に対する感度を持たせる。バイアス電源12から半導体放射線検出器11に印加されるバイアス電圧はバイアス電圧検出器13で検出され、信号処理部14のバイアス電圧異常検出手段15に入力される。バイアス電圧異常検出手段15は、半導体放射線検出器11のバイアス電圧が異常となったか否かを判定し、異常となったと判定したときはそのバイアス電圧異常検出信号を波高分布分析手段16に出力する。   FIG. 1 is a block diagram of a deterioration abnormality detecting device for a semiconductor radiation detector according to a first embodiment of the present invention. The semiconductor radiation detector 11 has a semiconductor crystal, and a negative power supply and a positive voltage are applied to the semiconductor crystal by a bias power source 12, and a depletion layer is formed in the semiconductor crystal to give sensitivity to radiation. A bias voltage applied to the semiconductor radiation detector 11 from the bias power source 12 is detected by the bias voltage detector 13 and input to the bias voltage abnormality detection means 15 of the signal processing unit 14. The bias voltage abnormality detection means 15 determines whether or not the bias voltage of the semiconductor radiation detector 11 has become abnormal, and outputs the bias voltage abnormality detection signal to the wave height distribution analysis means 16 when it is determined that it has become abnormal. .

また、発振器17は、半導体放射線検出器11の健全性を確認するための電磁パルスを発振するものであり、発振器17からの電磁波パルスは発光ダイオード18を介して半導体放射線検出器11に入力される。発振器17からの電磁波パルスは電磁波パルス光量調節器19で調節される。   The oscillator 17 oscillates an electromagnetic pulse for confirming the soundness of the semiconductor radiation detector 11. The electromagnetic wave pulse from the oscillator 17 is input to the semiconductor radiation detector 11 via the light emitting diode 18. . The electromagnetic wave pulse from the oscillator 17 is adjusted by an electromagnetic wave pulse light amount adjuster 19.

一方、半導体放射線検出器11で検出された発光ダイオード18からの検出信号は、信号増幅器20で信号増幅されて波高弁別部21に入力される。波高弁別部21は発振器17から発振され発光ダイオード18で光に変換された電磁波パルスによる光が照射されたことにより、半導体放射線検出器11から出力されるパルス波高値の波高分布を取得し、信号処理部14の波高分布分析手段16に入力される。   On the other hand, the detection signal from the light emitting diode 18 detected by the semiconductor radiation detector 11 is amplified by the signal amplifier 20 and input to the wave height discrimination unit 21. The pulse height discriminating unit 21 obtains the pulse height distribution of the pulse peak value output from the semiconductor radiation detector 11 by irradiating light from the electromagnetic wave pulse oscillated from the oscillator 17 and converted into light by the light emitting diode 18. Input to the wave height distribution analysis means 16 of the processing unit 14.

また、主電源22は発振器17及び信号増幅器20に電源を供給するものであり、その主電源22の供給電源電圧は電圧検出器23で検出され、信号処理部14の供給電源異常検出手段24に入力される。供給電源異常検出手段24は、主電源22の供給電源電圧が異常となったか否かを検出し、異常となったことを検出したときは供給電源電圧異常検出信号を波高分布分析手段16に出力する。   The main power supply 22 supplies power to the oscillator 17 and the signal amplifier 20, and the power supply voltage of the main power supply 22 is detected by the voltage detector 23 and supplied to the power supply abnormality detection means 24 of the signal processing unit 14. Entered. The power supply abnormality detection means 24 detects whether or not the power supply voltage of the main power supply 22 has become abnormal. When it is detected that the abnormality has occurred, a power supply voltage abnormality detection signal is output to the wave height distribution analysis means 16. To do.

波高分布分析手段16は、バイアス電圧及び供給電源電圧が正常で、かつ波高弁別部21からの波高分布が正常範囲を逸脱しているときは、その波高分布に基づいて半導体放射線検出器11の温度を求め、その温度に対する補正した波高分布が所定範囲を逸脱しているか否かを判定し、逸脱しているときは、半導体放射線検出器11の半導体結晶の劣化または異常であると判別する。   When the bias voltage and the power supply voltage are normal and the wave height distribution from the wave height discriminating unit 21 deviates from the normal range, the wave height distribution analyzing unit 16 determines the temperature of the semiconductor radiation detector 11 based on the wave height distribution. It is determined whether or not the corrected wave height distribution with respect to the temperature deviates from a predetermined range, and when it deviates, it is determined that the semiconductor crystal of the semiconductor radiation detector 11 is deteriorated or abnormal.

すなわち、バイアス電源12は半導体放射線検出器11にバイアス電圧を供給する。またそのバイアス電圧はバイアス電源12のバイアス電圧検出器13で監視されその情報は、信号処理部14のバイアス電圧異常検出手段15に入力される。主電源22は信号増幅器20および発振器17に電源電圧を供給し、また、その電源電圧は主電源22の電圧検出器23で監視され、その情報は信号処理部15の供給電源異常検出手段24に入力される。   That is, the bias power supply 12 supplies a bias voltage to the semiconductor radiation detector 11. The bias voltage is monitored by the bias voltage detector 13 of the bias power source 12 and the information is input to the bias voltage abnormality detecting means 15 of the signal processing unit 14. The main power supply 22 supplies a power supply voltage to the signal amplifier 20 and the oscillator 17, and the power supply voltage is monitored by the voltage detector 23 of the main power supply 22, and the information is supplied to the supply power supply abnormality detecting means 24 of the signal processing unit 15. Entered.

発光ダイオード18は、発振器17によって駆動され電磁波パルスを半導体放射線検出器11に照射する。また電磁波パルスの光量は電磁波パルス光量調節器19によって、半導体放射線検出器11の出力パルスの波高分布が波高弁別部21の測定範囲内におさまるように調節される。照射された電磁波パルス群による半導体放射線検出器11の出力パルス群は、信号増幅器20で増幅され、波高弁別部21で波高分布に変換され、信号処理部14の波高分布分析手段16へ入力される。   The light emitting diode 18 is driven by the oscillator 17 to irradiate the semiconductor radiation detector 11 with an electromagnetic wave pulse. The light amount of the electromagnetic wave pulse is adjusted by the electromagnetic wave pulse light amount adjuster 19 so that the wave height distribution of the output pulse of the semiconductor radiation detector 11 falls within the measurement range of the wave height discriminating unit 21. The output pulse group of the semiconductor radiation detector 11 by the irradiated electromagnetic wave pulse group is amplified by the signal amplifier 20, converted into the wave height distribution by the wave height discriminating unit 21, and input to the wave height distribution analyzing means 16 of the signal processing unit 14. .

ここで、半導体放射線検出器11は、そのバンドギャップエネルギーより大きいエネルギーの光子(量子力学上で電磁波を取り扱う上での最小単位)に対して感度を持つ。例えば、CdTe半導体放射線検出器(バンドギャップエネルギー約1.5eV)の場合、1.5eV以上のエネルギーの光子(波長では0.83μm以下、すなち可視光領域を全て含む)に対し感度を持つため、例えば発光ダイオード18からの電磁波パルスを擬似放射線源として利用できる。そこで、この電磁波パルスを半導体放射線検出器11に照射することにより、半導体放射線検出器11から電荷パルスを出力し、その出力パルスの波高分布を検出し波高分布分析手段16で監視することにしている。   Here, the semiconductor radiation detector 11 is sensitive to photons having energy larger than the band gap energy (the minimum unit for handling electromagnetic waves in quantum mechanics). For example, in the case of a CdTe semiconductor radiation detector (with a band gap energy of about 1.5 eV), it has sensitivity to photons with an energy of 1.5 eV or more (wavelength is 0.83 μm or less, that is, including the entire visible light region). The electromagnetic wave pulse from the light emitting diode 18 can be used as a pseudo radiation source. Therefore, by irradiating the semiconductor radiation detector 11 with this electromagnetic wave pulse, a charge pulse is output from the semiconductor radiation detector 11, and the wave height distribution of the output pulse is detected and monitored by the wave height distribution analyzing means 16. .

次に、波高分布分析手段16での演算処理内容を説明する。まず、出力パルスの波高値の分布は、その波高値の平均値が入射光量に比例した値を持つ正規分布に従う。この平均値は、半導体放射線検出器11の半導体結晶の劣化または異常により変化する。また一方で、この平均値はバイアス電圧の異常や信号増幅器20の異常、さらには半導体放射線検出器11が健全であったとしても固有の温度特性により変化する。   Next, the contents of calculation processing in the wave height distribution analysis means 16 will be described. First, the distribution of peak values of output pulses follows a normal distribution in which the average value of the peak values has a value proportional to the amount of incident light. This average value changes due to deterioration or abnormality of the semiconductor crystal of the semiconductor radiation detector 11. On the other hand, this average value varies depending on the abnormal temperature characteristic of the bias voltage, the abnormality of the signal amplifier 20, and the temperature characteristic of the semiconductor radiation detector 11 even if the semiconductor radiation detector 11 is healthy.

バイアス電圧の異常については、例えばバイアス電圧の供給電源であるバイアス電源12の監視により独立に検知できる。信号増幅器20の異常については、信号増幅器20の印可電圧の監視により独立に検知できる。   Abnormality of the bias voltage can be detected independently by monitoring the bias power source 12, which is a power source for supplying the bias voltage, for example. Abnormality of the signal amplifier 20 can be detected independently by monitoring the applied voltage of the signal amplifier 20.

ここで、平均値の温度特性による変化は半導体放射線検出器11の半導体結晶内での電子と正孔との移動速度と寿命が温度によって変化することにより起こるが、温度が分かればその変化量は理論的に算出可能である。この温度はパルス波高分布の統計処理から知ることができる。半導体放射線検出器11においては、半導体放射線検出器11の温度とそのリーク電流との間に強い相関があることが知られており、例えば、CdTe半導体放射線検出器の場合、温度が10℃上昇するとリーク電流は約2倍増加する。ここでリーク電流は半導体放射線検出器のノイズの支配的な成分であり、リーク電流の増加によってノイズは増え、それはパルス波高分布のばらつきとして検出される。   Here, the change due to the temperature characteristic of the average value occurs when the moving speed and lifetime of electrons and holes in the semiconductor crystal of the semiconductor radiation detector 11 change depending on the temperature. It can be calculated theoretically. This temperature can be known from statistical processing of the pulse height distribution. In the semiconductor radiation detector 11, it is known that there is a strong correlation between the temperature of the semiconductor radiation detector 11 and its leakage current. For example, in the case of a CdTe semiconductor radiation detector, when the temperature increases by 10 ° C. The leakage current increases about twice. Here, the leakage current is a dominant component of the noise of the semiconductor radiation detector, and the noise increases with the increase of the leakage current, which is detected as a variation in the pulse wave height distribution.

従って、パルス波高分布のばらつきの尺度としてパルス波高分布の標準偏差からリーク電流量がわかり、リーク電流量から温度が分かり、温度からパルス波高値の平均値の変化量のうち温度特性が寄与している量が特定できる。このような特性をもつ半導体放射線検出器11としては、CdTeの他にGe、CZT、HgI2、TlBr、Si放射線検出器等がある。   Therefore, the amount of leakage current can be found from the standard deviation of the pulse height distribution as a measure of the variation of the pulse height distribution, the temperature can be found from the amount of leakage current, and the temperature characteristics contribute to the change in the average value of the pulse height from the temperature. Can identify the amount. As the semiconductor radiation detector 11 having such characteristics, there are Ge, CZT, HgI2, TlBr, Si radiation detector and the like in addition to CdTe.

図2は、半導体放射線検出器11による出力パルスの波高分布の特性図であり、図2(a)はパルス波高分布の温度特性による補正についての説明図、図2(b)は補正後のパルス波高分布で劣化や異常の判定を行う場合の説明図である。   FIG. 2 is a characteristic diagram of the pulse height distribution of the output pulse by the semiconductor radiation detector 11, FIG. 2 (a) is an explanatory diagram for correction by the temperature characteristic of the pulse wave height distribution, and FIG. 2 (b) is the pulse after correction. It is explanatory drawing in the case of determining deterioration and abnormality by wave height distribution.

図2(a)において、ある温度での健全な半導体放射線検出器11による出力パルスの波高分布が、波高分布P1で示されるように正規分布(平均値A1、標準偏差σ1)であるとする。この波高分布P1が、ある時点で図2(a)の波高分布P2の正規分布(平均値A2、標準偏差σ2)に変化したとする。この時点で、バイアス電源12のバイアス電圧検出器13および主電源22の電圧検出器23に異常が検出されていない場合、変化の原因は半導体放射線検出器11の温度変化起因によるものか、または劣化や異常が原因である。   In FIG. 2A, it is assumed that the pulse height distribution of the output pulse by the healthy semiconductor radiation detector 11 at a certain temperature is a normal distribution (average value A1, standard deviation σ1) as indicated by the wave height distribution P1. It is assumed that the wave height distribution P1 changes to a normal distribution (average value A2, standard deviation σ2) of the wave height distribution P2 in FIG. At this time, when no abnormality is detected in the bias voltage detector 13 of the bias power source 12 and the voltage detector 23 of the main power source 22, the cause of the change is due to the temperature change of the semiconductor radiation detector 11 or the deterioration. Or is due to an abnormality.

ここで事前に理論計算および実測によって導出した標準偏差σと平均値Aとの温度特性の式から、健全な半導体結晶が標準偏差の変化量(σ2−σ1)に対して起きる平均値の変化量Tを求め、平均値の変化量(A2−A1)に対し、変化量T分の温度特性に対する補正を行う。この温度補正後の平均値の変化量が事前に設定した許容範囲外の場合、半導体放射線検出器11の半導体結晶は劣化または異常を起こしていると判定する。   Here, from the equation of temperature characteristics of standard deviation σ and average value A derived in advance by theoretical calculation and actual measurement, the amount of change in average value that occurs for a healthy semiconductor crystal with respect to the amount of change in standard deviation (σ2−σ1). T is obtained, and the temperature characteristic corresponding to the change amount T is corrected for the change amount (A2-A1) of the average value. When the change amount of the average value after the temperature correction is outside the allowable range set in advance, it is determined that the semiconductor crystal of the semiconductor radiation detector 11 has deteriorated or malfunctioned.

すなわち、図2(b)に示すように、出力パルスの波高分布が波高分布P2として検出された場合、波高分布P2に基づいてそのときの半導体放射線検出器11の温度を算出し、温度補正した波高分布Pを求める。いま、温度補正した波高分布P’が、その温度における予め定めた波高分布P1の許容範囲にあるときは、半導体放射線検出器11の半導体結晶は健全であると判定する。一方、温度補正した波高分布P”が、その温度における予め定めた波高分布P1の許容範囲を逸脱しているときは、半導体放射線検出器11の半導体結晶は劣化または異常を起こしていると判定する。   That is, as shown in FIG. 2B, when the wave height distribution of the output pulse is detected as the wave height distribution P2, the temperature of the semiconductor radiation detector 11 at that time is calculated and corrected based on the wave height distribution P2. The wave height distribution P is obtained. If the temperature corrected wave height distribution P 'is within the allowable range of the predetermined wave height distribution P1 at that temperature, it is determined that the semiconductor crystal of the semiconductor radiation detector 11 is healthy. On the other hand, when the temperature-corrected wave height distribution P ″ deviates from the predetermined allowable range of the wave height distribution P1 at the temperature, it is determined that the semiconductor crystal of the semiconductor radiation detector 11 has deteriorated or malfunctioned. .

第1の実施の形態によれば、電磁波パルスの出力パルスの波高分布において、温度特性の寄与を除去した結果から半導体結晶の劣化および異常の判別が可能であるので、温度特性による誤診断を避け、半導体結晶の劣化および異常が適正に検知できる。また、バイアス電圧の異常はバイアス電圧異常検出手段15で検出でき、信号増幅器の異常は供給電源異常検出手段24で検出できる。   According to the first embodiment, it is possible to determine the deterioration and abnormality of the semiconductor crystal from the result of removing the contribution of the temperature characteristic in the wave height distribution of the output pulse of the electromagnetic wave pulse. The deterioration and abnormality of the semiconductor crystal can be detected properly. Further, the abnormality of the bias voltage can be detected by the bias voltage abnormality detecting means 15 and the abnormality of the signal amplifier can be detected by the power supply abnormality detecting means 24.

図3は、本発明の第2の実施の形態に係わる半導体放射線検出器の劣化異常検出装置のブロック構成図である。この第2の実施の形態は、図1に示した第1の実施の形態に対し、半導体放射線検出器11の温度を検出する温度検出器25を追加して設け、温度検出器で検出された温度に基づいてその温度に対する補正した波高分布を求め、求めた波高分布が所定範囲を逸脱しているときは半導体放射線検出器の半導体結晶の劣化または異常であると判別するようにしたものである。図1と同一要素には同一符号を付し重複する説明は省略する。   FIG. 3 is a block diagram of a deterioration abnormality detecting device for a semiconductor radiation detector according to the second embodiment of the present invention. In the second embodiment, a temperature detector 25 for detecting the temperature of the semiconductor radiation detector 11 is additionally provided to the first embodiment shown in FIG. 1 and detected by the temperature detector. Based on the temperature, the corrected wave height distribution for the temperature is obtained, and when the obtained wave height distribution deviates from a predetermined range, it is determined that the semiconductor radiation detector is deteriorated or abnormal. . The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

図3において、温度検出器25で半導体放射線検出器11の温度を測定し、その情報は信号処理部14の波高分布分析手段16に入力される。第1の実施の形態では、パルス波高分布の標準偏差からリーク電流量を求め、そのリーク電流量から温度を算出するようにしているが、半導体放射線検出器11の温度を温度検出器25により検出して直接的に入力し、平均値の温度特性の式から平均値の変化量Tを求め温度補正を行う。第2の実施の形態によれば、直接的に半導体放射線検出器11の温度を入力するので信号処理部14の演算処理の負担が軽くなる。   In FIG. 3, the temperature of the semiconductor radiation detector 11 is measured by the temperature detector 25, and the information is input to the wave height distribution analysis means 16 of the signal processing unit 14. In the first embodiment, the leakage current amount is obtained from the standard deviation of the pulse wave height distribution, and the temperature is calculated from the leakage current amount. However, the temperature detector 25 detects the temperature of the semiconductor radiation detector 11. Then, the value is directly input, and the change amount T of the average value is obtained from the equation of the temperature characteristic of the average value, and the temperature correction is performed. According to the second embodiment, since the temperature of the semiconductor radiation detector 11 is directly input, the calculation processing load of the signal processing unit 14 is reduced.

図4は、本発明の第3の実施の形態に係わる半導体放射線検出器の劣化異常検出装置のブロック構成図である。この第3の実施の形態は、図1に示した第1の実施の形態に対し、半導体放射線検出器11のリーク電流を検出する電流検出器26を追加して設け、電流検出器26で検出されたリーク電流に基づいて半導体放射線検出器11の温度を求め、その温度に対する補正した波高分布を求めて、その波高分布が所定範囲を逸脱しているときは半導体放射線検出器11の半導体結晶の劣化または異常であると判別するようにしたものである。図1と同一要素には同一符号を付し重複する説明は省略する。   FIG. 4 is a block diagram of a deterioration abnormality detecting device for a semiconductor radiation detector according to the third embodiment of the present invention. In the third embodiment, a current detector 26 for detecting a leakage current of the semiconductor radiation detector 11 is additionally provided to the first embodiment shown in FIG. The temperature of the semiconductor radiation detector 11 is obtained based on the leaked current, and the corrected wave height distribution for the temperature is obtained. When the wave height distribution deviates from a predetermined range, the semiconductor crystal of the semiconductor radiation detector 11 It is determined that it is deteriorated or abnormal. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

図4において、電流検出器26により半導体放射線検出器11のリーク電流を測定し、その情報は波高分布分析手段16に入力される。第1の実施の形態では、パルス波高分布の標準偏差からリーク電流量を求め、そのリーク電流量から温度を算出するようにしているが、半導体放射線検出器11のリーク電流を電流検出器26により検出し、その検出したリーク電流から温度を導出し、平均値の温度特性の式から平均値の変化量Tを求め温度補正を行う。第3の実施の形態によれば、半導体放射線検出器11のリーク電流を検出して信号処理部14で温度を演算するので、信号処理部14はパルス波高分布の標準偏差からリーク電流量を求める演算処理が不要となり負担が軽くなる。   In FIG. 4, the leakage current of the semiconductor radiation detector 11 is measured by the current detector 26, and the information is input to the wave height distribution analyzing means 16. In the first embodiment, the leakage current amount is obtained from the standard deviation of the pulse wave height distribution, and the temperature is calculated from the leakage current amount. However, the leakage current of the semiconductor radiation detector 11 is detected by the current detector 26. The temperature is detected, the temperature is derived from the detected leakage current, and the change amount T of the average value is obtained from the equation of the temperature characteristic of the average value, and temperature correction is performed. According to the third embodiment, since the leakage current of the semiconductor radiation detector 11 is detected and the temperature is calculated by the signal processing unit 14, the signal processing unit 14 obtains the leakage current amount from the standard deviation of the pulse wave height distribution. Arithmetic processing is unnecessary and the burden is reduced.

本発明の第1の実施の形態に係わる半導体放射線検出器の劣化異常検出装置のブロック構成図。The block block diagram of the degradation abnormality detection apparatus of the semiconductor radiation detector concerning the 1st Embodiment of this invention. 本発明の第1の実施の形態における電磁波パルス照射に対し半導体放射線検出器による出力パルスの波高分布の特性図。The characteristic figure of the pulse height distribution of the output pulse by a semiconductor radiation detector with respect to the electromagnetic wave pulse irradiation in the 1st Embodiment of this invention. 本発明の第2の実施の形態に係わる半導体放射線検出器の劣化異常検出装置のブロック構成図。The block block diagram of the degradation abnormality detection apparatus of the semiconductor radiation detector concerning the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係わる半導体放射線検出器の劣化異常検出装置のブロック構成図。The block block diagram of the degradation abnormality detection apparatus of the semiconductor radiation detector concerning the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

11…半導体放射線検出器、12…バイアス電源、13…バイアス電圧検出器、14…信号処理部、15…バイアス電圧異常検出手段、16…波高分布分析手段、17…発振器、18…発光ダイオード、19…電磁波パルス光量調節器、20…信号増幅器、21…波高弁別部、22…主電源、23…電圧検出器、24…供給電源異常検出手段、25…温度検出器、26…電流検出器
DESCRIPTION OF SYMBOLS 11 ... Semiconductor radiation detector, 12 ... Bias power supply, 13 ... Bias voltage detector, 14 ... Signal processing part, 15 ... Bias voltage abnormality detection means, 16 ... Wave height distribution analysis means, 17 ... Oscillator, 18 ... Light emitting diode, 19 DESCRIPTION OF SYMBOLS ... Electromagnetic pulse light quantity controller, 20 ... Signal amplifier, 21 ... Wave height discrimination part, 22 ... Main power supply, 23 ... Voltage detector, 24 ... Supply power supply abnormality detection means, 25 ... Temperature detector, 26 ... Current detector

Claims (3)

半導体放射線検出器に電磁波パルスを入力する発振器と、前記半導体放射線検出器のバイアス電圧が異常となったことを検出するバイアス電圧異常検出手段と、前記半導体放射線検出器の検出信号を増幅する増幅器への供給電源電圧が異常となったことを検出する供給電源異常検出手段と、前記発振器から電磁波パルスが照射されたことにより前記半導体放射線検出器から出力されるパルス波高値の波高分布を取得する波高弁別部と、前記バイアス電圧及び前記供給電源電圧が正常で前記波高弁別部からの波高分布が正常範囲を逸脱しているときは前記波高分布に基づいて前記半導体放射線検出器の温度を求めその温度に対する補正した波高分布が所定範囲を逸脱しているときは前記半導体放射線検出器の半導体結晶の劣化または異常であると判別する波高分布分析手段とを備えたことを特徴とする半導体放射線検出器の劣化異常検出装置。 To an oscillator for inputting an electromagnetic wave pulse to a semiconductor radiation detector, a bias voltage abnormality detecting means for detecting that the bias voltage of the semiconductor radiation detector is abnormal, and an amplifier for amplifying a detection signal of the semiconductor radiation detector A power supply abnormality detecting means for detecting that the power supply voltage of the power supply is abnormal, and a wave height for obtaining a pulse height distribution of a pulse peak value output from the semiconductor radiation detector when an electromagnetic wave pulse is irradiated from the oscillator When the pulse voltage distribution from the discriminating unit, the bias voltage and the supply power supply voltage is normal and the pulse height discriminating unit deviates from the normal range, the temperature of the semiconductor radiation detector is obtained based on the wave height distribution. When the corrected wave height distribution with respect to is out of a predetermined range, the semiconductor crystal of the semiconductor radiation detector is deteriorated or abnormal. Semiconductor radiation detector degradation abnormality detection apparatus characterized by comprising a pulse height distribution analysis means for discriminating. 半導体放射線検出器に電磁波パルスを入力する発振器と、前記半導体放射線検出器の温度を検出する温度検出器と、前記半導体放射線検出器のバイアス電圧が異常となったことを検出するバイアス電圧異常検出手段と、前記半導体放射線検出器の検出信号を増幅する増幅器への供給電源電圧が異常となったことを検出する供給電源異常検出手段と、前記発振器から電磁波パルスが照射されたことにより前記半導体放射線検出器から出力されるパルス波高値の波高分布を取得する波高弁別部と、前記バイアス電圧及び前記供給電源電圧が正常で前記波高弁別部からの波高分布が正常範囲を逸脱しているときは前記温度検出器で検出された温度に基づいて得られたその温度に対する補正した波高分布が所定範囲を逸脱しているときは前記半導体放射線検出器の半導体結晶の劣化または異常であると判別する波高分布分析手段とを備えたことを特徴とする半導体放射線検出器の劣化異常検出装置。 An oscillator for inputting an electromagnetic wave pulse to a semiconductor radiation detector, a temperature detector for detecting the temperature of the semiconductor radiation detector, and a bias voltage abnormality detection means for detecting that the bias voltage of the semiconductor radiation detector is abnormal A power supply abnormality detecting means for detecting that the power supply voltage to the amplifier for amplifying the detection signal of the semiconductor radiation detector is abnormal, and detecting the semiconductor radiation by irradiating an electromagnetic wave pulse from the oscillator A pulse height discriminating unit for obtaining a pulse height distribution of a pulse peak value output from a detector, and the temperature when the bias voltage and the supply power voltage are normal and the wave height distribution from the pulse height discriminating part is out of a normal range. When the corrected wave height distribution for the temperature obtained based on the temperature detected by the detector deviates from a predetermined range, the semiconductor discharge Semiconductor radiation detector degradation abnormality detection apparatus characterized by comprising a pulse height distribution analysis means for determining that the degradation or abnormality of the line detectors of the semiconductor crystal. 半導体放射線検出器に電磁波パルスを入力する発振器と、前記半導体放射線検出器のリーク電流を検出する電流検出器と、前記半導体放射線検出器のバイアス電圧が異常となったことを検出するバイアス電圧異常検出手段と、前記半導体放射線検出器の検出信号を増幅する増幅器への供給電源電圧が異常となったことを検出する供給電源異常検出手段と、前記発振器から電磁波パルスが照射されたことにより前記半導体放射線検出器から出力されるパルス波高値の波高分布を取得する波高弁別部と、前記バイアス電圧及び前記供給電源電圧が正常で前記波高弁別部からの波高分布が正常範囲を逸脱しているときは前記電流検出器で検出されたリーク電流に基づいて得られた前記半導体放射線検出器の温度に対する補正した波高分布を求めその波高分布が所定範囲を逸脱しているときは前記半導体放射線検出器の半導体結晶の劣化または異常であると判別する波高分布分析手段とを備えたことを特徴とする半導体放射線検出器の劣化異常検出装置。
An oscillator for inputting an electromagnetic wave pulse to a semiconductor radiation detector, a current detector for detecting a leakage current of the semiconductor radiation detector, and a bias voltage abnormality detection for detecting that the bias voltage of the semiconductor radiation detector is abnormal Means, a power supply abnormality detecting means for detecting that the power supply voltage to the amplifier for amplifying the detection signal of the semiconductor radiation detector is abnormal, and the semiconductor radiation by being irradiated with the electromagnetic wave pulse from the oscillator A pulse height discriminating unit for acquiring a pulse height distribution of a pulse peak value output from a detector, and when the bias voltage and the supply power supply voltage are normal and the pulse height distribution from the pulse height discriminating part is out of a normal range, The corrected wave height distribution with respect to the temperature of the semiconductor radiation detector obtained based on the leakage current detected by the current detector is obtained. Deterioration abnormality detection of a semiconductor radiation detector, comprising: a pulse height distribution analysis means for determining that the semiconductor crystal of the semiconductor radiation detector is deteriorated or abnormal when the high distribution deviates from a predetermined range apparatus.
JP2004097572A 2004-03-30 2004-03-30 Degradation abnormality detector for semiconductor radiation detector Expired - Fee Related JP4528547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004097572A JP4528547B2 (en) 2004-03-30 2004-03-30 Degradation abnormality detector for semiconductor radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004097572A JP4528547B2 (en) 2004-03-30 2004-03-30 Degradation abnormality detector for semiconductor radiation detector

Publications (2)

Publication Number Publication Date
JP2005283327A true JP2005283327A (en) 2005-10-13
JP4528547B2 JP4528547B2 (en) 2010-08-18

Family

ID=35181880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004097572A Expired - Fee Related JP4528547B2 (en) 2004-03-30 2004-03-30 Degradation abnormality detector for semiconductor radiation detector

Country Status (1)

Country Link
JP (1) JP4528547B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044020A (en) * 2008-08-18 2010-02-25 Aloka Co Ltd Radiation measuring apparatus
JP2010145319A (en) * 2008-12-22 2010-07-01 Mitsubishi Electric Corp Radioactive gas monitor
JP2011133454A (en) * 2009-11-30 2011-07-07 Toshiba Corp Method of determining malfunction of semiconductor radiation detector and the semiconductor radiation detector using the same
JP2019154989A (en) * 2018-03-16 2019-09-19 住友重機械工業株式会社 Neutron capture therapy system, and neutron beam detection device
JP2021502682A (en) * 2017-11-13 2021-01-28 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティドSaint−Gobain Ceramics And Plastics, Inc. Devices with semiconductor-based photomultiplier tubes and methods for gain stabilization
JP2021032809A (en) * 2019-08-28 2021-03-01 日立Geニュークリア・エナジー株式会社 Radiation monitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245177A (en) * 1986-04-17 1987-10-26 Yokogawa Electric Corp Semiconductor radiation detector
JPH02128184A (en) * 1988-11-09 1990-05-16 Fuji Electric Co Ltd Bias abnormality detector of semiconductor radiation detector
JPH04168395A (en) * 1990-10-31 1992-06-16 Toshiba Corp Radiation monitor device
JP2002277556A (en) * 2001-02-22 2002-09-25 Koninkl Philips Electronics Nv Radiation sensor and radiation detector for computed tomography device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245177A (en) * 1986-04-17 1987-10-26 Yokogawa Electric Corp Semiconductor radiation detector
JPH02128184A (en) * 1988-11-09 1990-05-16 Fuji Electric Co Ltd Bias abnormality detector of semiconductor radiation detector
JPH04168395A (en) * 1990-10-31 1992-06-16 Toshiba Corp Radiation monitor device
JP2002277556A (en) * 2001-02-22 2002-09-25 Koninkl Philips Electronics Nv Radiation sensor and radiation detector for computed tomography device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044020A (en) * 2008-08-18 2010-02-25 Aloka Co Ltd Radiation measuring apparatus
JP2010145319A (en) * 2008-12-22 2010-07-01 Mitsubishi Electric Corp Radioactive gas monitor
JP2011133454A (en) * 2009-11-30 2011-07-07 Toshiba Corp Method of determining malfunction of semiconductor radiation detector and the semiconductor radiation detector using the same
JP2021502682A (en) * 2017-11-13 2021-01-28 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティドSaint−Gobain Ceramics And Plastics, Inc. Devices with semiconductor-based photomultiplier tubes and methods for gain stabilization
US11131703B2 (en) 2017-11-13 2021-09-28 Saint-Gobain Ceramics & Plastics, Inc. Apparatus comprising a semiconductor-based photomultiplier and method regarding gain stabilization
JP2019154989A (en) * 2018-03-16 2019-09-19 住友重機械工業株式会社 Neutron capture therapy system, and neutron beam detection device
JP7021989B2 (en) 2018-03-16 2022-02-17 住友重機械工業株式会社 Neutron capture therapy system and neutron detector
JP2021032809A (en) * 2019-08-28 2021-03-01 日立Geニュークリア・エナジー株式会社 Radiation monitor
JP7168531B2 (en) 2019-08-28 2022-11-09 日立Geニュークリア・エナジー株式会社 Radiation monitor

Also Published As

Publication number Publication date
JP4528547B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
KR20150032754A (en) Detection of x-rays, and x-ray detector system
JP2008523405A (en) Improved gamma ray imaging device
KR101085312B1 (en) Dose detector and dosimeter
KR20190130097A (en) Monitoring system for radiation dose
JP4528547B2 (en) Degradation abnormality detector for semiconductor radiation detector
JP2016526171A (en) X-ray imaging apparatus and apparatus for measuring X-ray dose parameters in an X-ray detector
JP6066835B2 (en) Radiation measurement equipment
JP2001004560A (en) X-ray inspecting device
JP5089568B2 (en) Radioactive gas monitor
JP3709340B2 (en) Radiation measurement equipment
Escoffier et al. Accurate measurement of the electron beam polarization in JLab Hall A using Compton polarimetry
JP2007225507A (en) Radioactivity inspection method and device
JPH10197639A (en) Environmental radiation monitor
US7342242B2 (en) Method and apparatus for estimating photomultiplier sensitivity change
JP4157389B2 (en) Radiation monitor
US10895652B2 (en) Object radiography apparatus and method for determining a state of an object radiography apparatus
JP2006029986A (en) Radiation measuring device
JP2895330B2 (en) Gamma ray measuring device
JP6689453B2 (en) Radiation measuring apparatus and method
JP2001174394A (en) Particle size distribution measuring device
KR101835530B1 (en) Method and device for determining the x-ray radiation attenuation caused by the object to be examined
JP2001194460A (en) Radiation monitor
KR101094158B1 (en) Gas Flow Proportional Counting Radiation Detector Fault Checking Circuit and Method for Whole Body Contamination Monitor
WO2015052822A1 (en) Testing apparatus and testing method
JP5336836B2 (en) Radiation monitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4528547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees