JP2004235141A - Nonaqueous electrolyte and lithium secondary battery - Google Patents

Nonaqueous electrolyte and lithium secondary battery Download PDF

Info

Publication number
JP2004235141A
JP2004235141A JP2003363591A JP2003363591A JP2004235141A JP 2004235141 A JP2004235141 A JP 2004235141A JP 2003363591 A JP2003363591 A JP 2003363591A JP 2003363591 A JP2003363591 A JP 2003363591A JP 2004235141 A JP2004235141 A JP 2004235141A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
polyether
chemical formula
lithium secondary
examples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003363591A
Other languages
Japanese (ja)
Other versions
JP4537035B2 (en
Inventor
Takitaro Yamaguchi
滝太郎 山口
Ryuichi Shimizu
竜一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2003363591A priority Critical patent/JP4537035B2/en
Priority to KR1020030097895A priority patent/KR100578803B1/en
Priority to CNB2004100058174A priority patent/CN100341197C/en
Priority to US10/754,453 priority patent/US7351501B2/en
Publication of JP2004235141A publication Critical patent/JP2004235141A/en
Application granted granted Critical
Publication of JP4537035B2 publication Critical patent/JP4537035B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte having excellent thermal stability and excellent ion conductivity of a lithium ion, and a lithium secondary battery. <P>SOLUTION: Polyether reformed silicone oil formed by a polyether chain combined with the terminal of a straight chained polysiloxane chain, a cyclic carbonate and a solute are contained in this nonaqueous electrolyte. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、非水電解液及びリチウム二次電池に関するものであり、特に、熱安定性に優れるとともにイオン伝導性にも優れた非水電解液及びリチウム二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte and a lithium secondary battery, and more particularly, to a non-aqueous electrolyte and a lithium secondary battery having excellent thermal stability and excellent ion conductivity.

従来のリチウム二次電池用の非水電解液としては、エチレンカーボネート、プロピレンカーボネートなどの環状エステルに、ジメチルカーボネート、プロピオン酸エチルなどの直鎖状エステルや、テトラヒドロフランなどの環状エーテルを混合した混合物が用いられている。しかし、直鎖状エステルや環状エーテルは引火点が低く、これらを数十体積%の割合で含む従来の非水電解液は熱安定性の点で問題がある。そこで最近では、下記特許文献1〜3に記載されているように、熱安定性に優れるとともに環境調和性にも優れた電解液としてシリコーンオイル類を溶媒として用いた電解液が提案されている。
特開平8−78053号公報 特開平11−214032号公報 特開2000―581123号公報
Conventional non-aqueous electrolytes for lithium secondary batteries include a mixture of a cyclic ester such as ethylene carbonate and propylene carbonate, a linear ester such as dimethyl carbonate and ethyl propionate, and a cyclic ether such as tetrahydrofuran. Used. However, linear esters and cyclic ethers have low flash points, and conventional non-aqueous electrolytes containing these at a rate of several tens of volume% have a problem in terms of thermal stability. Therefore, recently, as described in Patent Literatures 1 to 3 below, an electrolyte using silicone oils as a solvent has been proposed as an electrolyte having excellent thermal stability and excellent environmental friendliness.
JP-A-8-78053 JP-A-11-214032 JP 2000-581123 A

しかし、上記特許文献1〜3に記載されたシリコーンオイル類は、熱安定性に優れるものの、リチウム二次電池の電解液として用いる場合にはイオン伝導性が十分でないという問題があった。   However, although the silicone oils described in Patent Literatures 1 to 3 are excellent in thermal stability, they have a problem that when used as an electrolyte for a lithium secondary battery, the ionic conductivity is not sufficient.

本発明は上記事情に鑑みてなされたものであり、熱安定性に優れ、かつリチウムイオンのイオン伝導性に優れた非水電解液及びリチウム二次電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a non-aqueous electrolyte and a lithium secondary battery having excellent thermal stability and excellent ion conductivity of lithium ions.

上記の目的を達成するために、本発明は以下の構成を採用した。
本発明の非水電解液は、直鎖ポリシロキサン鎖の末端にポリエーテル鎖が結合してなる下記[化1](例えば、実施例におけるオイル1)または下記[化2](例えば、実施例におけるオイル2)のいずれかに示す構造のポリエーテル変性シリコーン油と、環状カーボネートと、溶質とが含有されてなることを特徴とする(例えば、実施例における試験例1〜4及び7〜9と実施例1〜4の非水電解液)。ただし、下記[化1]または下記[化2]において、kは0〜10の範囲であり、mは2から4の範囲の自然数であり、nは1〜4の範囲の自然数であり、RはCHまたはCのいずれかであり、ZはCHまたはCのいずれかである。
In order to achieve the above object, the present invention employs the following configurations.
The non-aqueous electrolyte solution of the present invention comprises the following [Chemical Formula 1] (for example, Oil 1 in the Examples) or the following [Chemical Formula 2] (for example, in which a polyether chain is bonded to the end of a linear polysiloxane chain). Characterized in that it contains a polyether-modified silicone oil having a structure shown in any one of the above (2), a cyclic carbonate, and a solute (for example, Test Examples 1-4 and 7-9 in Examples) Non-aqueous electrolytes of Examples 1 to 4). However, in the following [Chemical formula 1] or [Chemical formula 2], k is in the range of 0 to 10, m is a natural number in the range of 2 to 4, n is a natural number in the range of 1 to 4, and R is Is either CH 3 or C 6 H 5 , and Z is either CH 3 or C 2 H 5 .

Figure 2004235141
Figure 2004235141

Figure 2004235141
Figure 2004235141

係る非水電解液によれば、上記の[化1]または[化2]に記載の構造を有するポリエーテル変性シリコーン油を含むので、熱安定性に優れ、かつリチウムイオンのイオン伝導性が高い非水電解液を得ることができる。   Such a non-aqueous electrolyte contains the polyether-modified silicone oil having the structure described in the above [Chemical Formula 1] or [Chemical Formula 2], and thus has excellent thermal stability and high ion conductivity of lithium ions. A non-aqueous electrolyte can be obtained.

また本発明の非水電解液は、先に記載の非水電解液であり、25℃における前記ポリエーテル変性シリコーン油の粘度が10cSt未満(例えば、実施例におけるオイル1、2)であることを特徴とする。
係る非水電解液によれば、前記ポリエーテル変性シリコーン油の粘度が10cSt未満なので、リチウムイオンの移動がスムーズに行われて、リチウムイオンのイオン伝導度を向上することができる。
The non-aqueous electrolyte of the present invention is the non-aqueous electrolyte described above, wherein the viscosity of the polyether-modified silicone oil at 25 ° C. is less than 10 cSt (for example, oils 1 and 2 in Examples). Features.
According to such a non-aqueous electrolyte, the viscosity of the polyether-modified silicone oil is less than 10 cSt, so that lithium ions can move smoothly and the ion conductivity of lithium ions can be improved.

また本発明の非水電解液においては、前記ポリエーテル変性シリコーン油の引火点が120℃以上(例えば、実施例におけるオイル5、6、7)であることが好ましく、160℃以上(例えば、実施例におけるオイル1、2)であることがより好ましい。
係る非水電解液によれば、前記ポリエーテル変性シリコーン油の引火点が120℃以上なので、高温で引火する可能性が低く、非水電解液の熱安定性を高めることができる。
In the nonaqueous electrolyte of the present invention, the polyether-modified silicone oil preferably has a flash point of 120 ° C. or higher (for example, oils 5, 6, and 7 in Examples), and 160 ° C. or higher (for example, More preferred are oils 1 and 2) in the examples.
According to such a non-aqueous electrolyte, since the flash point of the polyether-modified silicone oil is 120 ° C. or higher, the possibility of ignition at a high temperature is low, and the thermal stability of the non-aqueous electrolyte can be improved.

また、本発明の非水電解液においては、鎖状カーボネートが添加されていても良い(例えば、実施例における実施例1〜4の非水電解液)。
また、本発明の非水電解液においては、フッ素化環状カーボネートが添加されていても良い(例えば、実施例における実施例10、11の非水電解液)。
In the non-aqueous electrolyte of the present invention, a chain carbonate may be added (for example, the non-aqueous electrolyte of Examples 1 to 4 in Examples).
Further, the nonaqueous electrolyte of the present invention may contain a fluorinated cyclic carbonate (for example, the nonaqueous electrolyte of Examples 10 and 11 in Examples).

次に、本発明のリチウム二次電池は、正極と負極と非水電解液とを具備してなり、前記非水電解液が、直鎖ポリシロキサン鎖の末端にポリエーテル鎖が結合してなる下記[化3](例えば、実施例におけるオイル1)または下記[化4](例えば、実施例におけるオイル2)のいずれかに示すポリエーテル変性シリコーン油と、環状カーボネートと、溶質とを含有してなるものであることを特徴とする(例えば、実施例における試験例1〜4及び7〜9と実施例1〜4のリチウム二次電池)。ただし、下記[化3]または下記[化4]において、kは0〜10の範囲であり、mは2から4の範囲の自然数であり、nは1〜4の範囲の自然数であり、RはCHまたはCのいずれかであり、ZはCHまたはCのいずれかである。 Next, the lithium secondary battery of the present invention includes a positive electrode, a negative electrode, and a non-aqueous electrolyte, and the non-aqueous electrolyte is formed by bonding a polyether chain to a terminal of a linear polysiloxane chain. It contains a polyether-modified silicone oil shown in the following [Chemical Formula 3] (for example, Oil 1 in Examples) or [Formula 4] (for example, Oil 2 in Examples), a cyclic carbonate, and a solute. (E.g., lithium secondary batteries of Test Examples 1 to 4 and 7 to 9 and Examples 1 to 4 in Examples). However, in the following [Chemical Formula 3] or [Chemical Formula 4], k is in the range of 0 to 10, m is a natural number in the range of 2 to 4, n is a natural number in the range of 1 to 4, R Is either CH 3 or C 6 H 5 , and Z is either CH 3 or C 2 H 5 .

Figure 2004235141
Figure 2004235141

Figure 2004235141
Figure 2004235141

係るリチウム二次電池によれば、非水電解液が上記の[化3]または[化4]に記載の構造を有するポリエーテル変性シリコーン油を含むので、非水電解液の熱安定性並びにイオン伝導性が向上し、高温での安定性に優れるとともに高率充放電が可能なリチウム二次電池を構成することができる。   According to such a lithium secondary battery, the non-aqueous electrolyte contains the polyether-modified silicone oil having the structure described in the above [Chemical Formula 3] or [Chemical Formula 4]. A lithium secondary battery having improved conductivity, excellent stability at high temperatures, and capable of high-rate charge / discharge can be provided.

また本発明のリチウム二次電池は、先に記載のリチウム二次電池であり、前記負極の表面にポリアクリレート化合物、アジリジン化合物、フッ素化環状カーボネートのうち、単一成分または混合物からなる被膜が形成されていることを特徴とする(例えば、実施例における試験例7〜9と実施例3、4のリチウム二次電池)。
係るリチウム二次電池によれば、負極の表面に上記の被膜が形成されているので、この被膜の存在により、負極表面においてポリエーテル変性シリコーン油を含む非水電解液が分解するおそれがなく、リチウム二次電池の充放電容量を向上できる。
Further, the lithium secondary battery of the present invention is the lithium secondary battery described above, wherein a film made of a single component or a mixture of a polyacrylate compound, an aziridine compound, and a fluorinated cyclic carbonate is formed on the surface of the negative electrode. (For example, lithium secondary batteries of Test Examples 7 to 9 and Examples 3 and 4 in Examples).
According to such a lithium secondary battery, since the above-mentioned coating is formed on the surface of the negative electrode, the presence of this coating does not cause the non-aqueous electrolyte containing polyether-modified silicone oil to be decomposed on the surface of the negative electrode, The charge / discharge capacity of the lithium secondary battery can be improved.

また、本発明のリチウム二次電池においては、前記非水電解液に更に鎖状カーボネートが添加されていても良い(例えば、実施例における実施例1〜4のリチウム二次電池)。
また、本発明のリチウム二次電池においては、前記非水電解液に更にフッ素化環状カーボネートが添加されていても良い(例えば、実施例における実施例10、11のリチウム二次電池)。
Further, in the lithium secondary battery of the present invention, a chain carbonate may be further added to the nonaqueous electrolyte (for example, the lithium secondary batteries of Examples 1 to 4 in Examples).
Further, in the lithium secondary battery of the present invention, a fluorinated cyclic carbonate may be further added to the nonaqueous electrolyte (for example, the lithium secondary batteries of Examples 10 and 11 in Examples).

なお、上記のポリアクリレート化合物としては、下記[化5]で表されるようなジペンタエリスリトール構造を具備してなるものが好ましく、具体的には、下記[化6]で表されるような6つのアクリル基を有するもの(例えば、実施例における試験例7〜9及び実施例3〜4のリチウム二次電池)が好ましい。   As the above polyacrylate compound, a compound having a dipentaerythritol structure represented by the following [Chemical Formula 5] is preferable, and specifically, a compound represented by the following [Chemical Formula 6] Those having six acrylic groups (for example, lithium secondary batteries of Test Examples 7 to 9 and Examples 3 and 4 in Examples) are preferable.

Figure 2004235141
Figure 2004235141

Figure 2004235141
Figure 2004235141

上記のアジリジン化合物としては、下記[化7]〜[化10]に示す構造のものを例示できる。
更に、アジリジン化合物として、下記[化8]に示す構造式で表される化合物、又は下記[化7]に示す構造式で表される化合物と下記[化8](例えば、実施例における試験例7〜9及び実施例3〜4のリチウム二次電池)に示す構造式で表される化合物との混合物であってもよい。
更にまた、アジリジン化合物として、下記[化9]〜[化10]に示すものを含んでいても良い。これらの化合物は、下記の[化7]及び/又は[化8]に示すものと同時に使用することが好ましい。
尚、下記[化7]の構造式中、RはH、CH、OHのいずれかであり、RはHまたはCHのいずれか一方である。また、下記[化8]の構造式中、RはHまたはCHのいずれか一方であり、下記[化9]におけるnは0〜10の範囲が好ましく、下記[化10]におけるnは0〜10の範囲が好ましい。
Examples of the aziridine compound include those having the structures shown in the following [Formula 7] to [Formula 10].
Further, as the aziridine compound, a compound represented by the following structural formula [Chemical formula 8] or a compound represented by the following structural formula [Chemical formula 7] and a compound represented by the following [Chemical formula 8] (for example, test examples in Examples) 7 to 9 and the lithium secondary batteries of Examples 3 and 4).
Furthermore, the aziridine compound may include the compounds shown in the following [Formula 9] to [Formula 10]. These compounds are preferably used simultaneously with those shown in the following [Formula 7] and / or [Formula 8].
In the following structural formula, R 1 is H, CH 3 or OH, and R 2 is H or CH 3 . Further, in the following structural formula [Chemical formula 8], R 2 is either H or CH 3 , n 1 in the following [Chemical formula 9] is preferably in a range of 0 to 10, and n 1 in the following [Chemical formula 10] 2 is preferably in the range of 0 to 10.

Figure 2004235141
Figure 2004235141

Figure 2004235141
Figure 2004235141

Figure 2004235141
Figure 2004235141

Figure 2004235141
Figure 2004235141

本発明の非水電解液によれば、上記の[化1]または[化2]に記載の構造を有するポリエーテル変性シリコーン油を含むので、熱安定性に優れ、かつリチウムイオンのイオン伝導性が高い非水電解液を得ることができる。
また、本発明のリチウム二次電池によれば、非水電解液が上記の[化3]または[化4]に記載の構造を有するポリエーテル変性シリコーン油を含むので、非水電解液の熱安定性並びにイオン伝導性が向上し、高温での安定性に優れるとともに高率充放電が可能なリチウム二次電池を構成することができる。
According to the non-aqueous electrolyte of the present invention, since it contains the polyether-modified silicone oil having the structure described in the above [Chemical Formula 1] or [Chemical Formula 2], it has excellent thermal stability and ion conductivity of lithium ions. , A non-aqueous electrolyte having a high value can be obtained.
Further, according to the lithium secondary battery of the present invention, since the non-aqueous electrolyte contains the polyether-modified silicone oil having the structure described in the above [Chemical Formula 3] or [Chemical Formula 4], the heat of the non-aqueous electrolytic solution is A lithium secondary battery having improved stability and ionic conductivity, excellent stability at high temperatures, and capable of high-rate charge / discharge can be provided.

以下、本発明の実施の形態を図面を参照して説明する。
本発明のリチウム二次電池は、正極と負極と非水電解液とを具備してなり、前記非水電解液が、直鎖ポリシロキサン鎖の末端にポリエーテル鎖が結合してなる上記[化3](上記[化1]と同じ)または上記[化4](上記[化2]と同じ)のいずれかに示すポリエーテル変性シリコーン油と、環状カーボネートと、溶質とを含有してなるものである。尚、上記[化3]または上記[化4]中、kは0〜10の範囲であり、mは2から4の範囲の自然数であり、nは1〜4の範囲の自然数であり、RはCHまたはCのいずれかであり、ZはCHまたはCのいずれかである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The lithium secondary battery of the present invention comprises a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the non-aqueous electrolyte is formed by bonding a polyether chain to a terminal of a linear polysiloxane chain. 3] (same as the above [Chemical formula 1]) or [Chemical formula 4] (the same as the above [Chemical formula 2]), containing a polyether-modified silicone oil, a cyclic carbonate, and a solute. It is. In the above [Chemical Formula 3] or [Chemical Formula 4], k is in the range of 0 to 10, m is a natural number in the range of 2 to 4, n is a natural number in the range of 1 to 4, and R is Is either CH 3 or C 6 H 5 , and Z is either CH 3 or C 2 H 5 .

本発明に係る非水電解液は、ポリエーテル変性シリコーン油と環状カーボネートとの混合溶媒にリチウム塩(溶質)が溶解されてなる非水電解液である。またこの非水電解液には更に鎖状カーボネートが添加されていても良く、フッ素化環状カーボネートが添加されていても良い。
また、この非水電解液をポリマーに含浸させてなるゲル電解質を用いても良い。ポリマーとしては、PEO、PPO、PAN、PVDF、PMA、PMMA等のポリマーあるいはその重合体を用いることができる。
The non-aqueous electrolyte according to the present invention is a non-aqueous electrolyte obtained by dissolving a lithium salt (solute) in a mixed solvent of a polyether-modified silicone oil and a cyclic carbonate. Further, a chain carbonate or a fluorinated cyclic carbonate may be added to the non-aqueous electrolyte.
Further, a gel electrolyte obtained by impregnating a polymer with the nonaqueous electrolyte may be used. As the polymer, a polymer such as PEO, PPO, PAN, PVDF, PMA, PMMA, or a polymer thereof can be used.

ポリエーテル変性シリコーン油は、上記[化3]に示したように直鎖ポリシロキサン鎖(SiR-O-(SiRO-)-SiR)の両方の末端に2本のポリエーテル鎖(-(CH-O-(CO)-Z)が結合してなるもの、または上記[化4]に示したように直鎖ポリシロキサン鎖(SiR-O-(SiRO-)-SiR)の一方の末端に1本のポリエーテル鎖(-(CH-O-(CO)-Z)が結合してなるものである。これらのポリエーテル変性シリコーン油は、ポリシロキサン鎖を有するために熱安定性が高く、またポリエーテル鎖中のエーテル結合を構成する酸素とリチウムイオンとが溶媒和するために高いイオン伝導度を示す。
また、直鎖ポリシロキサン鎖の末端の一方または両方にポリエーテル鎖が結合するため、ポリエーテル変性シリコーン油の全体構造が直線状となり、これによりポリエーテル鎖の柔軟性が向上して粘度を低下させることができる。これにより、非水電解液のイオン伝導度を向上できる。また、ポリエーテル鎖が直鎖ポリシロキサン鎖のいずれか一方または両方に結合することで、ポリエーテル変性シリコーン油の粘度をより低下させることができ、非水電解液のイオン伝導度を更に向上することができる。
The polyether-modified silicone oil has two polyether chains at both ends of a linear polysiloxane chain (SiR 2 —O— (SiR 2 O—) k —SiR 2 ) as shown in the above [Chemical Formula 3]. (— (CH 2 ) m —O— (C 2 H 4 O) n —Z), or a linear polysiloxane chain (SiR 3 —O— (SiR 2 O-) k -SiR 2 one end to one of the polyether chain of) (- (CH 2) m -O- (C 2 H 4 O) n -Z) those formed by bonding is there. These polyether-modified silicone oils have high thermal stability due to having a polysiloxane chain, and exhibit high ionic conductivity due to solvation of oxygen and lithium ions constituting an ether bond in the polyether chain. .
In addition, since the polyether chain is bonded to one or both ends of the linear polysiloxane chain, the overall structure of the polyether-modified silicone oil becomes linear, thereby improving the flexibility of the polyether chain and lowering the viscosity. Can be done. Thereby, the ionic conductivity of the non-aqueous electrolyte can be improved. Further, by bonding the polyether chain to one or both of the linear polysiloxane chains, the viscosity of the polyether-modified silicone oil can be further reduced, and the ionic conductivity of the non-aqueous electrolyte is further improved. be able to.

このようなポリエーテル変性シリコーン油を非水電解液に添加することにより、非水電解液の引火点を高めて熱安定性を向上させるとともに、リチウムイオンのイオン伝導度を高めることができる。また、ポリエーテル変性シリコーン油を含む非水電解液をリチウム二次電池の電解質として用いることにより、高温での安定性に優れるとともに高率充放電が可能なリチウム二次電池を構成することができる。   By adding such a polyether-modified silicone oil to the non-aqueous electrolyte, the flash point of the non-aqueous electrolyte can be increased to improve the thermal stability and increase the ion conductivity of lithium ions. In addition, by using a non-aqueous electrolyte containing a polyether-modified silicone oil as an electrolyte of a lithium secondary battery, a lithium secondary battery having excellent stability at high temperatures and capable of high-rate charge / discharge can be configured. .

また本実施形態のポリエーテル変性シリコーン油は、25℃における粘度が10cSt未満であることが好ましい。粘度が10cSt未満であれば、非水電解液の粘度を小さくすることができ、リチウムイオンのイオン伝導度を向上することができる。
また本実施形態のポリエーテル変性シリコーン油は、引火点が120℃以上であることが好ましく、160℃以上であることがより好ましい。引火点が120℃以上であれば、非水電解液の引火点を高めることができ、非水電解液の熱安定性を向上できる。
Further, the polyether-modified silicone oil of the present embodiment preferably has a viscosity at 25 ° C. of less than 10 cSt. When the viscosity is less than 10 cSt, the viscosity of the non-aqueous electrolyte can be reduced, and the ion conductivity of lithium ions can be improved.
Further, the flash point of the polyether-modified silicone oil of the present embodiment is preferably 120 ° C. or higher, more preferably 160 ° C. or higher. When the flash point is 120 ° C. or higher, the flash point of the non-aqueous electrolyte can be increased, and the thermal stability of the non-aqueous electrolyte can be improved.

また、上記[化3]及び上記[化4]に示す構造式の中で、kは0〜10の範囲であり、mは2から4の範囲の自然数であり、nは1〜4の範囲の自然数であり、RはCHまたはCのいずれかであり、ZはCHまたはCのいずれかである。
kが10を越えると熱安定性は向上するものの、粘度が高くなるおそれがあり、リチウムイオンとの溶媒和する能力が低下してイオン伝導度が低下するので好ましくない。
また、mが2未満だと、後述するポリエーテル変性シリコーン油の合成が困難であり、mが4を越えると粘度が高くなって結果的にイオン伝導度が低下するので好ましくない。
また、nが1未満(即ちnが0)だと、ポリシロキサン鎖に連結するポリエーテル鎖がほとんどなくなり、環状カーボネートとの相溶性が低下するので好ましくなく、nが4を越えるとポリエーテル鎖が長くなって粘度が高くなり、イオン伝導度が低下するので好ましくない。
更に、RがCHまたはCのいずれかであり、ZがCHまたはCのいずれかであれば、ポリエーテル変性シリコーン油の合成が容易になる。
Further, in the structural formulas shown in the above [Formula 3] and [Formula 4], k is in the range of 0 to 10, m is a natural number in the range of 2 to 4, and n is in the range of 1 to 4. Where R is either CH 3 or C 6 H 5 and Z is either CH 3 or C 2 H 5 .
When k exceeds 10, the thermal stability is improved, but the viscosity may be increased, and the ability to solvate with lithium ions is reduced and the ionic conductivity is lowered, which is not preferable.
On the other hand, if m is less than 2, it is difficult to synthesize a polyether-modified silicone oil described later, and if m exceeds 4, the viscosity increases and the ionic conductivity decreases, which is not preferable.
If n is less than 1 (that is, n is 0), there is almost no polyether chain linked to the polysiloxane chain, and the compatibility with the cyclic carbonate decreases. , The viscosity increases and the ionic conductivity decreases, which is not preferred.
Further, when R is either CH 3 or C 6 H 5 and Z is either CH 3 or C 2 H 5 , the synthesis of the polyether-modified silicone oil is facilitated.

次に環状カーボネートとしては、例えば、エチレンカーボネート、ブチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン等のうちの1種以上を含むものが好ましい。これらの環状カーボネートはリチウムイオンと溶媒和しやすいため、非水電解液自体のイオン伝導度を高めることができる。
また鎖状カーボネートとしては、例えば、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートのうちの1種以上を含むものが好ましい。これらの鎖状カーボネートは低粘度であるので、非水電解液自体の粘度を下げてイオン伝導度を高めることができる。ただし、これら鎖状カーボネートは引火点が低いので、過剰に添加すると非水電解液の引火点を下げてしまうので過剰添加しないように注意を払う必要がある。
更にフッ素化環状カーボネートとしては、フッ化エチレンカーボネートを例示することができ、特にモノフルオロエチレンカーボネートが好ましい。フッ素化環状カーボネートを添加することにより、非水電解液の不燃性をより向上させてリチウム二次電池の安全性を高めることができる。また、負極表面にフッ素化環状カーボネートによる被膜が形成され、この被膜によって非水電解液の分解が抑制され、リチウム二次電池のサイクル特性を向上できる。また、非水電解液の分解が抑制されることに伴って、分解ガスの発生量も少なくなる。
Next, the cyclic carbonate preferably contains, for example, at least one of ethylene carbonate, butylene carbonate, propylene carbonate, and γ-butyrolactone. Since these cyclic carbonates are easily solvated with lithium ions, the ionic conductivity of the non-aqueous electrolyte itself can be increased.
The chain carbonate preferably contains, for example, one or more of dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate. Since these chain carbonates have low viscosities, the viscosity of the non-aqueous electrolyte itself can be reduced to increase the ionic conductivity. However, since these chain carbonates have low flash points, care must be taken not to add excessively, since excessive addition lowers the flash point of the non-aqueous electrolyte.
Further, as the fluorinated cyclic carbonate, fluorinated ethylene carbonate can be exemplified, and monofluoroethylene carbonate is particularly preferable. By adding the fluorinated cyclic carbonate, the nonflammability of the nonaqueous electrolyte can be further improved, and the safety of the lithium secondary battery can be improved. In addition, a film of fluorinated cyclic carbonate is formed on the surface of the negative electrode, and this film suppresses decomposition of the non-aqueous electrolyte, thereby improving the cycle characteristics of the lithium secondary battery. Further, as the decomposition of the non-aqueous electrolyte is suppressed, the amount of generated decomposition gas is reduced.

更にリチウム塩(溶質)としては、LiPF、LiBF、Li[N(SO)]、Li[B(OCOCF] 、Li[B(OCOC]を用いることができるが、LiPFまたはBETI塩(Li[N(SO])のいずれか一方または両方を用いることが好ましい。本発明ではLiPFの分解に伴ってポリエーテル変性シリコーン油のSi−O結合が切断される可能性もあることから、リチウム塩としてBETI塩(Li[N(SO])を用いることがより好ましい。
これらリチウム塩の非水電解質における濃度は、0.5モル/L以上2.0モル/L以下であることが好ましい。非水電解液中にこれらのリチウム塩が含まれるので、非水電解液自体のイオン伝導度を高めることができる。
Further, as the lithium salt (solute), LiPF 6 , LiBF 4 , Li [N (SO 2 C 2 F 6 ) 2 ], Li [B (OCOCF 3 ) 4 ], Li [B (OCOC 2 F 5 ) 4 ] However, it is preferable to use one or both of LiPF 6 and a BETI salt (Li [N (SO 2 C 2 F 5 ) 2 ]). In the present invention, since the Si—O bond of the polyether-modified silicone oil may be broken along with the decomposition of LiPF 6, the BETI salt (Li [N (SO 2 C 2 F 5 ) 2 ]] is used as the lithium salt. Is more preferred.
The concentration of these lithium salts in the non-aqueous electrolyte is preferably 0.5 mol / L or more and 2.0 mol / L or less. Since these lithium salts are contained in the non-aqueous electrolyte, the ionic conductivity of the non-aqueous electrolyte itself can be increased.

非水電解液におけるポリエーテル変性シリコーン油の含有率は、5体積%以上70体積%以下の範囲が好ましく、10体積%以上50体積%以下の範囲がより好ましい。ポリエーテル変性シリコーン油の含有率が5体積%未満だと非水電解液の引火点を高めることができないので好ましくなく、含有率が70体積%を超えると非水電解液の粘度が高くなってイオン伝導度が低下するので好ましくない。
非水電解液における環状カーボネートの含有率は、30体積%以上95体積%以下の範囲が好ましく、50体積%以上90体積%以下の範囲がより好ましい。環状カーボネートの含有率が30体積%未満だとイオン伝導度が低下するので好ましくなく、含有率が95体積%を超えると非水電解液の粘度が高くなってイオン伝導度が低下するので好ましくない。
The content of the polyether-modified silicone oil in the nonaqueous electrolyte is preferably in the range of 5% by volume to 70% by volume, more preferably in the range of 10% by volume to 50% by volume. If the content of the polyether-modified silicone oil is less than 5% by volume, the flash point of the non-aqueous electrolyte cannot be increased, so that it is not preferable. If the content exceeds 70% by volume, the viscosity of the non-aqueous electrolyte increases. It is not preferable because ionic conductivity is lowered.
The content of the cyclic carbonate in the nonaqueous electrolyte is preferably in the range of 30% by volume to 95% by volume, and more preferably in the range of 50% by volume to 90% by volume. If the content of the cyclic carbonate is less than 30% by volume, the ionic conductivity is lowered, which is not preferable. If the content is more than 95% by volume, the viscosity of the non-aqueous electrolyte is increased, and the ionic conductivity is lowered, which is not preferable. .

更に、非水電解液に鎖状カーボネートを添加する場合には、鎖状カーボネートの含有率を5体積%以上70体積%以下の範囲にするのが好ましく、10体積%以上65体積%以下の範囲にするのがより好ましい。鎖状カーボネートの含有率が5体積%未満では添加効果が現れないので好ましくなく、含有率が70体積%を超えると環状カーボネート及びポリエーテル変性シリコーン油の含有量が相対的に低下し、非水電解液の引火点が低下するので好ましくない。
更に、非水電解液にフッ素化環状カーボネートを添加する場合には、フッ素化環状カーボネートの含有率を0.1体積%以上25体積%以下の範囲にすることが好ましく、0.5体積%以上10体積%以下の範囲にすることがより好ましい。フッ素化環状カーボネートの含有率が0.1体積%未満だと負極表面の被膜の形成が不十分となり電解液の分解が抑制できないので好ましくなく、含有率が25体積%を超えると非水電解液の粘度が高くなってイオン伝導度が低下するので好ましくない。
Further, when a chain carbonate is added to the non-aqueous electrolyte, the content of the chain carbonate is preferably in the range of 5% by volume to 70% by volume, more preferably in the range of 10% by volume to 65% by volume. Is more preferable. If the content of the chain carbonate is less than 5% by volume, the effect of addition is not exhibited, which is not preferable. If the content exceeds 70% by volume, the content of the cyclic carbonate and the polyether-modified silicone oil relatively decreases, and It is not preferable because the flash point of the electrolytic solution is lowered.
Further, when a fluorinated cyclic carbonate is added to the non-aqueous electrolyte, the content of the fluorinated cyclic carbonate is preferably in the range of 0.1% by volume to 25% by volume, more preferably 0.5% by volume or more. More preferably, it is within the range of 10% by volume or less. If the content of the fluorinated cyclic carbonate is less than 0.1% by volume, the formation of a film on the negative electrode surface is insufficient, and the decomposition of the electrolyte cannot be suppressed. Is undesirably high because of the increase in viscosity and the ionic conductivity.

ポリエーテル変性シリコーン油を製造するには、例えば、R基の一部を水素に置換したポリシロキサンに対して、例えば(CH=CH-)のような二重結合を有するポリエーテル化合物を反応させることによって得られる。
例えば、上記[化1]及び上記[化3]のポリエーテル変性シリコーン油は、例えば塩化白金触媒存在下で、SiHRO(SiRO)SiHR(ポリシロキサン)に、CH=CH(CHm−2O(CO)Z(ポリエーテル置換のポリオレフィン)をハイドロシリレーション反応させることにより得られる。
また、上記[化2]及び上記[化4]のポリエーテル変性シリコーン油は、例えば塩化白金触媒存在下で、SiRO(SiRO)SiHR(ポリシロキサン)に、CH=CH(CHm−2O(CO)Z(ポリエーテル置換のポリオレフィン)をハイドロシリレーション反応させることにより得られる。
In order to produce a polyether-modified silicone oil, for example, a polysiloxane compound having a double bond such as (CH 2 CHCH—) is reacted with a polysiloxane in which a part of the R group is replaced by hydrogen. It is obtained by doing.
For example, the Formula 1] and a polyether-modified silicone oils of the above Formula 3], for example in the presence of a platinum chloride catalyst, to SiHR 2 O (SiR 2 O) k SiHR 2 ( polysiloxanes), CH 2 = CH (CH 2) m-2 O (C 2 H 5 O) n Z (the polyolefin polyether substituted) obtained by hydrosilylation reaction.
Further, the [formula 2], and polyether-modified silicone oils of the above-mentioned [Chemical Formula 4] is, for example, in the presence of a platinum chloride catalyst, to SiR 3 O (SiR 2 O) k SiHR 2 ( polysiloxanes), CH 2 = CH (CH 2) m-2 O (C 2 H 5 O) n Z (the polyolefin polyether substituted) obtained by hydrosilylation reaction.

尚、上記の工程で得られたポリエーテル変性シリコーン油には、触媒成分であるPt(白金)や、重合禁止剤であるBHTが数〜数十ppm程度含まれている。これらPtやBHTはサイクル特性に悪影響を及ぼすものであるから、できるだけ除去することが望ましい。除去する方法としては、真空蒸留法などの手段を用いることができる。蒸留の回数は1回で十分であるが、安全のためには2回以上行うことが望ましい。蒸留を行うことで、Pt及びBHTの含有量は検出限界以下になる。
真空蒸留前のポリエーテル変性シリコーン油には、Ptが5ppm程度、BHTが60ppm程度含まれていることから、本発明ではポリエーテル変性シリコーン油に含まれるPtが少なくとも5ppm未満であるとともにBHTが60ppm未満であることが好ましく、Pt、BHTがそれぞれ検出限界以下であることがより好ましい。
In addition, the polyether-modified silicone oil obtained in the above process contains Pt (platinum) as a catalyst component and BHT as a polymerization inhibitor in an amount of about several to several tens ppm. Since Pt and BHT adversely affect cycle characteristics, it is desirable to remove Pt and BHT as much as possible. As a removing method, a means such as a vacuum distillation method can be used. Although the number of times of distillation is sufficient once, it is desirable to perform it twice or more for safety. By performing the distillation, the contents of Pt and BHT become lower than the detection limit.
Since the polyether-modified silicone oil before vacuum distillation contains about 5 ppm of Pt and about 60 ppm of BHT, in the present invention, Pt contained in the polyether-modified silicone oil is at least less than 5 ppm and BHT is 60 ppm. It is preferable that Pt and BHT are each below the detection limit.

次に正極は、正極活物質粉末にポリフッ化ビニリデン等の結着材とカーボンブラック等の導電助材を混合してシート状、扁平円板状等に成形したものを例示でき、更に正極活物質粉末等をシート状、扁平円板状等に成形して金属集電体に積層したものも例示できる。上記の正極活物質としては、コバルト、マンガン、ニッケルから選ばれる少なくとも一種とリチウムとの複合酸化物のいずれか1種以上のものが好ましく、具体的には、LiMn、LiCoO、LiNiO、LiFeO、V等が好ましい。またTiS、MoS、有機ジスルフィド化合物または有機ポリスルフィド化合物等のリチウムを吸蔵・放出が可能なものを用いても良い。 Next, examples of the positive electrode include a material obtained by mixing a binder such as polyvinylidene fluoride and a conductive auxiliary material such as carbon black into a positive electrode active material powder and forming the mixture into a sheet shape, a flat disk shape, or the like. Examples thereof include powders and the like, which are formed into a sheet shape, a flat disk shape, and the like and laminated on a metal current collector. As the positive electrode active material, any one or more of composite oxides of lithium and at least one selected from cobalt, manganese, and nickel is preferable, and specifically, LiMn 2 O 4 , LiCoO 2 , and LiNiO 2 , LiFeO 2 , V 2 O 5 and the like. Further, a material capable of inserting and extracting lithium, such as TiS, MoS, an organic disulfide compound, or an organic polysulfide compound, may be used.

またセパレータは、非水電解液がゲル化していない場合には必須であり、多孔質のポリプロピレンフィルム、多孔質のポリエチレンフィルム等、公知のセパレータを適宜使用できる。   The separator is indispensable when the non-aqueous electrolyte is not gelled, and a known separator such as a porous polypropylene film or a porous polyethylene film can be appropriately used.

負極は、リチウムを吸蔵・放出が可能な負極活物質粉末に、ポリフッ化ビニリデン等の結着材と、場合によってカーボンブラック等の導電助材を混合してシート状、扁平円板状等に成形したものを例示でき、更に負極活物質等をシート状、扁平円板状等に成形して金属集電体に積層したものも例示できる。負極活物質としては、人造黒鉛、天然黒鉛、黒鉛化炭素繊維、黒鉛化メソカーボンマイクロビーズ、非晶質炭素等の炭素質材料を例示できる。また、リチウムと合金化が可能な金属質物単体やこの金属質物と炭素質材料を含む複合物も負極活物質として例示できる。リチウムと合金化が可能な金属としては、Al、Si、Sn、Pb、Zn、Bi、In、Mg、Ga、Cd等を例示できる。また負極活物質として金属リチウム箔も使用できる。   The negative electrode is formed into a sheet shape, flat disk shape, etc. by mixing a binder such as polyvinylidene fluoride and a conductive aid such as carbon black in some cases with a negative electrode active material powder capable of inserting and extracting lithium. Examples further include those obtained by forming the negative electrode active material and the like into a sheet shape, a flat disk shape, and the like, and laminating the same on a metal current collector. Examples of the negative electrode active material include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, graphitized mesocarbon microbeads, and amorphous carbon. Further, a simple substance of a metal which can be alloyed with lithium or a composite containing this metal and a carbonaceous material can also be exemplified as the negative electrode active material. Examples of metals that can be alloyed with lithium include Al, Si, Sn, Pb, Zn, Bi, In, Mg, Ga, and Cd. Further, a metal lithium foil can be used as the negative electrode active material.

また、負極の表面には、ポリアクリレート化合物、アジリジン環を有するアジリジン化合物のうちのいずれか一方または両方からなる被膜が形成されていることが好ましい。この被膜が形成されると、ポリエーテル変性シリコーン油の分解がこの被膜の存在により防止され、リチウム二次電池の放電容量を高めることができる。   Further, it is preferable that a coating made of one or both of a polyacrylate compound and an aziridine compound having an aziridine ring is formed on the surface of the negative electrode. When this film is formed, the decomposition of the polyether-modified silicone oil is prevented by the presence of this film, and the discharge capacity of the lithium secondary battery can be increased.

なお、ポリアクリレート化合物としては、上記[化5]で表されるようなジペンタエリスリトール構造を具備してなるものが好ましく、特に、上記[化6]で表されるような6つのアクリル基を有する化合物が最も好ましい。   As the polyacrylate compound, a compound having a dipentaerythritol structure represented by the above [Chemical Formula 5] is preferable. In particular, six acryl groups represented by the above [Chemical Formula 6] Are most preferred.

アジリジン化合物としては、上記[化7]〜[化10]に示す構造のものを例示できる。
またアジリジン化合物として、[化8]に示す構造式で表される化合物、又は上記[化7]に示す構造式で表される化合物と上記[化8]に示す構造式で表される化合物との混合物であってもよい。
また、アジリジン化合物として、上記[化9]〜[化10]に示すものを含んでいても良い。これらの化合物は、上記の[化7]及び/又は上記[化8]に示すものと同時に使用することが好ましい。
尚、上記[化7]の構造式中、RはH、CH、OHのいずれかであり、RはHまたはCHのいずれか一方である。また、上記[化8]の構造式中、RはHまたはCHのいずれか一方であり、上記[化9]におけるnは0〜10の範囲が好ましく、上記[化10]におけるnは0〜10の範囲が好ましい。
Examples of the aziridine compound include those having the structures shown in the above [Formula 7] to [Formula 10].
Further, as the aziridine compound, a compound represented by the structural formula shown in [Chemical Formula 8], or a compound represented by the structural formula shown in the above [Chemical Formula 7] and a compound represented by the structural formula shown in the above [Formula 8] May be used.
Further, the aziridine compound may include the compounds shown in the above [Formula 9] to [Formula 10]. These compounds are preferably used simultaneously with those shown in the above [Formula 7] and / or the above [Formula 8].
Incidentally, the structural formulas of the above Formula 7], R 1 is H, are either CH 3, OH, R 2 is one of H or CH 3. Further, in the structural formula of the above [Chemical formula 8], R 2 is either H or CH 3 , n 1 in the above [Chemical formula 9] is preferably in the range of 0 to 10, and n 1 in the above [Chemical formula 10] 2 is preferably in the range of 0 to 10.

これらのポリアクリレート化合物やアジリジン化合物は、非水電解液に添加された状態でリチウム二次電池に組み込まれ、初充電時に負極表面で重合して被膜を形成する。形成された被膜は、リチウムイオンの伝導性に優れる一方でポリエーテル変性シリコーン油による溶解性が低く、安定した被膜構造を維持できる。   These polyacrylate compounds and aziridine compounds are incorporated in a lithium secondary battery in a state where they are added to a non-aqueous electrolyte, and polymerize on the surface of the negative electrode during the initial charge to form a film. The formed film has excellent lithium ion conductivity, but low solubility in polyether-modified silicone oil, and can maintain a stable film structure.

上記[化5]及び[化6]に示すポリアクリレート化合物は、アニオン重合を行うアニオン付加重合性モノマーであり、充電時に卑な電位を示す負極表面上で被膜を形成する。このポリアクリレート化合物がアニオン重合すると、分子内の二重結合が開裂してそれぞれ別のポリアクリレート化合物と結合する反応が連鎖的に起こり、負極表面上にポリアクリレート化合物が重合してなる被膜が形成される。
即ち、ポリアクリレート化合物による皮膜の形成は、図1に示すように進行するものと推定される。まず図1(a)に示すように、初充電開始前には、非水電解液中にポリアクリレート化合物が存在しており、次に図1(b)に示すように、充電を開始すると、ポリアクリレート化合物が負極表面に引き寄せられ、負極表面上でアニオン重合し、最終的に図1(c)に示すように被膜が形成される。
The polyacrylate compound represented by the above [Chemical Formula 5] and [Chemical Formula 6] is an anion addition polymerizable monomer which performs anionic polymerization, and forms a film on the surface of the negative electrode which exhibits a low potential when charged. When this polyacrylate compound undergoes anionic polymerization, a double bond in the molecule is cleaved and a reaction in which each of the polyacrylate compounds is bonded to another polyacrylate compound occurs in a chain, thereby forming a film formed by polymerization of the polyacrylate compound on the negative electrode surface. Is done.
That is, it is presumed that the formation of the film by the polyacrylate compound proceeds as shown in FIG. First, as shown in FIG. 1 (a), before the start of the first charge, the polyacrylate compound is present in the non-aqueous electrolyte. Then, as shown in FIG. 1 (b), when the charge is started, The polyacrylate compound is attracted to the surface of the negative electrode, anionically polymerizes on the surface of the negative electrode, and finally a film is formed as shown in FIG.

また、上記[化7]〜[化10]に示すアジリジン化合物は、炭素2つと窒素1つを骨格とするアジリジン環を具備して構成され、このアジリジン環が、リチウムと配位するか、あるいは開裂して別のアジリジン化合物とともに重合体を形成することによって、被膜を形成する。   Further, the aziridine compound represented by the above [Chemical Formula 7] to [Chemical Formula 10] is configured to include an aziridine ring having two carbon atoms and one nitrogen as a skeleton, and this aziridine ring coordinates with lithium, or A film is formed by cleaving to form a polymer with another aziridine compound.

即ち、アジリジン化合物による皮膜の形成は、図2に示すように進行するものと推定される。まず図2(a)に示すように、初充電開始前には、非水電解液中にリチウムイオンとアジリジン化合物の全部又は一部が、高次の網目構造にまでは達しない程度のイオン架橋物(「Li−アジリジン架橋物」と称する。)として存在しているものと考えられる。このLi−アジリジン架橋物は、アジリジン化合物の負の電荷を有するアジリジン環が、陽イオンであるリチウムイオンに配位して形成されているものと考えられる。
次に、図2(b)に示すように、充電を開始すると、陽イオンであるリチウムイオンが負極に引き寄せられることによって、Li−アジリジン架橋物が負極表面に付着する。これにより、負極表面において、アジリジン化合物の密度増加が生じる。
次に、リチウムイオンがアジリジン環とのイオン架橋から解き放たれ、負極内に吸蔵される。すると、残されたアジリジン環が開裂し、重合反応が開始され、その結果図2(c)に示すように被膜が形成される。この生成した被膜は負の電荷を帯びているため、陽イオンのみを輸送する被膜となる。そのため、電解液が直接負極に接して分解することを防止することができる。
That is, it is assumed that the formation of the film by the aziridine compound proceeds as shown in FIG. First, as shown in FIG. 2 (a), before the start of the first charge, all or a part of the lithium ion and the aziridine compound in the non-aqueous electrolyte is ionic cross-linked to such an extent that it does not reach a higher-order network structure. (Referred to as “Li-aziridine cross-linked product”). It is considered that this Li-aziridine cross-linked product is formed by coordinating a negatively charged aziridine ring of an aziridine compound with a lithium ion as a cation.
Next, as shown in FIG. 2B, when charging is started, lithium ions, which are cations, are attracted to the negative electrode, so that the Li-aziridine cross-linked substance adheres to the negative electrode surface. This causes an increase in the density of the aziridine compound on the negative electrode surface.
Next, lithium ions are released from ionic cross-links with the aziridine ring and occluded in the negative electrode. Then, the remaining aziridine ring is cleaved and the polymerization reaction is started, and as a result, a film is formed as shown in FIG. Since the formed film has a negative charge, it becomes a film that transports only cations. Therefore, it is possible to prevent the electrolytic solution from directly contacting the negative electrode and decomposing.

また、ポリアクリレート化合物とアジリジン化合物とが混合されてなる被膜は、ポリエーテル変性シリコーン油による溶解性が特に低く、より安定した被膜を維持できる。
即ち図3に示すように、ポリアクリレート化合物とアジリジン化合物が同時に添加された場合は、図1及び図2で説明した重合反応と同様の反応がそれぞれ進行し(図3(a)及び(b))、最終的にポリアクリレート化合物とアジリジン化合物が混合してなる皮膜が形成される(図3(c))。係る皮膜は極めて緻密で強固であり、ポリエーテル変性シリコーン油に対する耐性が極めて高いものである。
Further, a film formed by mixing a polyacrylate compound and an aziridine compound has particularly low solubility in polyether-modified silicone oil, and can maintain a more stable film.
That is, as shown in FIG. 3, when the polyacrylate compound and the aziridine compound are added at the same time, the same reaction as the polymerization reaction described with reference to FIGS. 1 and 2 proceeds (FIGS. 3A and 3B). ), And finally, a film formed by mixing the polyacrylate compound and the aziridine compound is formed (FIG. 3C). Such a film is extremely dense and strong, and has extremely high resistance to polyether-modified silicone oil.

ポリアクリレート化合物は、非水電解液に対して0.1質量%以上1.0質量%以下の範囲で添加することが好ましい。またアジリジン化合物は、非水電解液に対して0.5質量%以上1.5質量%以下の範囲で添加することが好ましい。
ポリアクリレート化合物やアジリジン化合物の添加量が上記範囲より少ないと負極表面に十分な被膜を形成できなくなるので好ましくなく、添加量が上記範囲より多いと被膜が厚くなり、界面抵抗が増加するので好ましくない。
The polyacrylate compound is preferably added in a range of 0.1% by mass or more and 1.0% by mass or less based on the non-aqueous electrolyte. The aziridine compound is preferably added in a range of 0.5% by mass or more and 1.5% by mass or less based on the non-aqueous electrolyte.
If the addition amount of the polyacrylate compound or the aziridine compound is less than the above range, it is not preferable because a sufficient film cannot be formed on the negative electrode surface, and if the addition amount is more than the above range, the film becomes thick and the interface resistance increases, which is not preferable. .

上記のリチウム二次電池によれば、非水電解液に上記のポリエーテル変性シリコーン油が含まれているので、非水電解液の熱安定性が向上し、これによりリチウム二次電池の高温特性を向上できるとともに耐熱性を高めることができる。また、非水電解液に上記のポリエーテル変性シリコーン油が含まれてもイオン伝導度が低下することがなく、これによりリチウム二次電池の高率放電特性を向上できる。
また、負極の表面にポリアクリレート化合物やアジリジン化合物からなる被膜が形成されているので、ポリエーテル変性シリコーン油の分解が防止されて、リチウム二次電池の高率放電特性を向上できる。
According to the above-mentioned lithium secondary battery, since the above-mentioned polyether-modified silicone oil is contained in the non-aqueous electrolyte, the thermal stability of the non-aqueous electrolyte is improved. And heat resistance can be improved. In addition, even if the non-aqueous electrolyte contains the above polyether-modified silicone oil, the ionic conductivity does not decrease, thereby improving the high rate discharge characteristics of the lithium secondary battery.
Further, since a coating made of a polyacrylate compound or an aziridine compound is formed on the surface of the negative electrode, decomposition of the polyether-modified silicone oil is prevented, and the high-rate discharge characteristics of the lithium secondary battery can be improved.

本実施形態のリチウム二次電池において、ポリアクリレート化合物やアジリジン化合物からなる被膜を負極に形成するには、後述の「化成」のように初充電を行えばよい。
尚、ポリアクリレート化合物やアジリジン化合物は、非水電解液に対する含有量が高い場合、それ自体が他の溶媒及びリチウム塩を取り込んでゲル化し、固体電解質を形成する場合がある。
したがって、本実施形態のリチウム二次電池を非水電解液二次電池として製造する場合には、たとえば、放置してもゲルを形成できない程度に少量のポリアクリレート化合物、アジリジン化合物のうちのいずれか一方または両方を非水電解質に添加し、負極表面にのみ皮膜を形成させればよい。
また、本実施形態のリチウム二次電池をゲル電解質二次電池として製造する場合には、ゲル形成に充分な比較的多量のポリアクリレート化合物やアジリジン化合物を非水電解質に添加し、ゲル化が完全に終了する前に、初充電を行うことによって、負極に皮膜を形成させればよい。
In the lithium secondary battery of the present embodiment, in order to form a film made of a polyacrylate compound or an aziridine compound on the negative electrode, the first charge may be performed as in “chemical formation” described later.
When the content of the polyacrylate compound or the aziridine compound in the nonaqueous electrolyte is high, the polyacrylate compound or the aziridine compound itself may take another solvent and a lithium salt into a gel to form a solid electrolyte.
Therefore, when manufacturing the lithium secondary battery of the present embodiment as a non-aqueous electrolyte secondary battery, for example, a small amount of a polyacrylate compound or an aziridine compound to such an extent that a gel cannot be formed even when left unattended One or both may be added to the non-aqueous electrolyte to form a film only on the negative electrode surface.
When the lithium secondary battery of the present embodiment is manufactured as a gel electrolyte secondary battery, a relatively large amount of a polyacrylate compound or an aziridine compound sufficient for gel formation is added to the non-aqueous electrolyte, so that gelation is completed. Before the end, the first charge may be performed to form a film on the negative electrode.

「実験例1:非水電解液の特性」
SiH(CHOSiH(CHと、CH=CHCHCHO(CO)CHとを塩化白金触媒存在下でハイドロシリレーション反応させることにより、下記[化11]に示す構造のポリエーテル変性シリコーン油を得た。以下、オイル1と称す。尚、このオイル1は、上記[化1]または上記[化3]において、RをCHとし、ZをCHとし、kを0とし、mを4とし、nを3としたものに相当する。
また、Si(CHOSiH(CHと、CH=CHCHCHO(CO)CHとを塩化白金触媒存在下でハイドロシリレーション反応させることにより、下記[化12]に示す構造のポリエーテル変性シリコーン油を得た。以下、オイル2と称す。尚、このオイル2は、上記[化2]または上記[化4]において、RをCHとし、ZをCHとし、kを0とし、mを4とし、nを3としたものに相当する。
更に、Si(CHOSiH(CH)OSi(CHと、CH=CHCHCHO(CO)CHとを塩化白金触媒存在下でハイドロシリレーション反応させることにより、下記[化13]に示す構造のポリエーテル変性シリコーン油を得た。以下、オイル3と称す。
"Experimental example 1: Characteristics of non-aqueous electrolyte"
And SiH (CH 3) 2 OSiH ( CH 3) 2, by causing CH 2 = CHCH 2 CH 2 O (C 2 H 5 O) 3 CH 3 and the the hydrosilylation reaction in the presence of a platinum chloride catalyst, the following [ A polyether-modified silicone oil having the structure shown in Chemical formula 11] was obtained. Hereinafter, referred to as oil 1. The oil 1 corresponds to the above [Chemical Formula 1] or [Chemical Formula 3] wherein R is CH 3 , Z is CH 3 , k is 0, m is 4, and n is 3. I do.
Further, by subjecting Si (CH 3 ) 3 OSiH (CH 3 ) 2 and CH 2 CHCHCH 2 CH 2 O (C 2 H 5 O) 3 CH 3 to a hydrosilylation reaction in the presence of a platinum chloride catalyst, A polyether-modified silicone oil having the structure shown in the following [Formula 12] was obtained. Hereinafter, referred to as oil 2. The oil 2 corresponds to the above [Chemical Formula 2] or [Chemical Formula 4] in which R is CH 3 , Z is CH 3 , k is 0, m is 4, and n is 3. I do.
Furthermore, Si (CH 3 ) 3 OSiH (CH 3 ) OSi (CH 3 ) 3 and CH 2 CHCHCH 2 CH 2 O (C 2 H 5 O) 4 CH 3 are hydrosilylated in the presence of a platinum chloride catalyst. By reacting, a polyether-modified silicone oil having the structure shown in the following [Chemical Formula 13] was obtained. Hereinafter, referred to as oil 3.

Figure 2004235141
Figure 2004235141

Figure 2004235141
Figure 2004235141

Figure 2004235141
Figure 2004235141

オイル1の粘度は25℃で9.7cStであり、オイル2の粘度は25℃で4.9cStであり、オイル3の粘度は25℃で9.4cStであった。またオイル1及び2は−40℃において液体であり、オイル3は−40℃において固体であった。
また、オイル1及びオイル2に対して、JIS−K2265に規定される開放式引火点測定装置により、室温から160℃の範囲で引火点を測定したところ、引火点が検出されなかった。従ってオイル1及びオイル2の引火点は少なくとも160℃を越えるものである。
The viscosity of Oil 1 was 9.7 cSt at 25 ° C., the viscosity of Oil 2 was 4.9 cSt at 25 ° C., and the viscosity of Oil 3 was 9.4 cSt at 25 ° C. Oils 1 and 2 were liquid at −40 ° C., and oil 3 was solid at −40 ° C.
When the flash point of Oil 1 and Oil 2 was measured in a range from room temperature to 160 ° C. using an open flash point measurement device defined in JIS-K2265, no flash point was detected. Thus, the flash point of Oil 1 and Oil 2 is at least above 160 ° C.

得られたオイル1〜3とエチレンカーボネート(EC)とを混合して混合溶媒とし、更にこの混合溶媒にLiPFを1モル/Lの濃度となるように添加することにより、試験例1〜6の非水電解液を調製した。尚、表1に非水電解液の組成を示す。表1中、オイル1〜3及びECの混合比は体積比である。 The oils 1 to 3 thus obtained and ethylene carbonate (EC) were mixed to form a mixed solvent, and LiPF 6 was added to the mixed solvent so as to have a concentration of 1 mol / L. Was prepared. Table 1 shows the composition of the non-aqueous electrolyte. In Table 1, the mixing ratio of oils 1 to 3 and EC is a volume ratio.

Figure 2004235141
Figure 2004235141

また、表1には、各試験例の非水電解液のイオン伝導度及び粘度を示す。イオン伝導度は20℃と0℃で測定し、粘度は25℃で測定した。試験例1〜4の非水電解液は、ポリエーテル基がポリシロキサン鎖の末端に結合したポリエーテル変性シリコーン油(オイル1,2)を含有し、一方、試験例5及び6の非水電解液は、ポリエーテル基がポリシロキサン鎖のほぼ中央に結合したポリエーテル変性シリコーン油(オイル3)を含有している。   Table 1 shows the ionic conductivity and the viscosity of the nonaqueous electrolyte solution of each test example. The ionic conductivity was measured at 20 ° C. and 0 ° C., and the viscosity was measured at 25 ° C. The non-aqueous electrolytes of Test Examples 1 to 4 contain a polyether-modified silicone oil (oils 1 and 2) in which a polyether group is bonded to the end of a polysiloxane chain, while the non-aqueous electrolytes of Test Examples 5 and 6 The liquid contains a polyether-modified silicone oil (oil 3) in which polyether groups are bonded at approximately the center of the polysiloxane chain.

まずECとオイル1〜3の比が5:5である試験例1,3,5の非水電解液について、これらの粘度を比較すると、表1に示したように、試験例5の非水電解液の粘度が、試験例1または3の非水電解液よりも高くなっている。この粘度の影響によって、試験例5の20℃におけるイオン伝導度が試験例1または3よりも低くなったものと思われる。また、試験例1、3、5のうち、0℃においてイオン伝導度を示したのは、2本のポリエーテル鎖を有するオイル1を含んだ試験例1のみであり、低温でのイオン伝導度に優れることが分かる。   First, the viscosities of the non-aqueous electrolytes of Test Examples 1, 3, and 5, in which the ratio of EC to Oils 1 to 3 was 5: 5, were compared. The viscosity of the electrolyte is higher than that of the non-aqueous electrolyte of Test Example 1 or 3. It is considered that the ionic conductivity at 20 ° C. of Test Example 5 was lower than that of Test Example 1 or 3 due to the influence of the viscosity. Among Test Examples 1, 3, and 5, only Test Example 1 containing oil 1 having two polyether chains showed ionic conductivity at 0 ° C. It turns out that it is excellent.

次に、ECとオイル1〜3の比が8:2である試験例2,4,6の非水電解液について、これらの粘度を比較すると、表1に示したように、試験例6の非水電解液の粘度が、試験例2または4の非水電解液よりも高くなっている。この粘度の影響によって、試験例6の20℃におけるイオン伝導度が試験例2または4よりも低くなったものと思われる。また、試験例2、4、6のうち、0℃においてイオン伝導度を示したのは、1本のポリエーテル鎖を有するオイル2を含んだ試験例4のみであり、低温でのイオン伝導度に優れることが分かる。   Next, when the viscosities of the non-aqueous electrolyte solutions of Test Examples 2, 4, and 6 in which the ratio of EC to Oils 1 to 3 was 8: 2 were compared, as shown in Table 1, The viscosity of the non-aqueous electrolyte is higher than that of Test Example 2 or 4. It is considered that the ionic conductivity at 20 ° C. of Test Example 6 was lower than that of Test Example 2 or 4 due to the influence of this viscosity. Further, among Test Examples 2, 4, and 6, only Test Example 4 containing oil 2 having one polyether chain showed ionic conductivity at 0 ° C. It turns out that it is excellent.

以上の結果から、直線構造のオイル1または2を含有する非水電解液(試験例1〜4)は、分岐構造のオイル3を含有する非水電解液(試験例5、6)よりもイオン伝導度が高く、リチウム二次電池の電解液として好適であることが分かる。   From the above results, the non-aqueous electrolyte containing oil 1 or 2 having a linear structure (Test Examples 1 to 4) was more ionized than the non-aqueous electrolyte containing oil 3 having a branched structure (Test Examples 5 and 6). It can be seen that the conductivity is high and suitable as an electrolyte for a lithium secondary battery.

「実験例2:リチウム二次電池の性能」
実験例1で得られた試験例1〜6の非水電解液を用いて、コイン型のリチウム二次電池を作成し、放電容量を測定した。
電池の製造は、LiCoOを正極活物質、ポリフッ化ビニリデンを結着剤、カーボンブラックを導電助材、Al箔を集電体とするペレット状の正極と、黒鉛を負極活物質、ポリフッ化ビニリデンを結着剤、Cu箔を集電体とするペレット状の負極と、ポロプロピレン製セパレータとを重ね合わせた状態で電池容器に挿入し、試験例1〜6の非水電解液を注入した後に電池容器を封口することにより行い、直径20mm、高さ1.6mm、設計充放電容量が5mAhのコイン型の電池(試験例1〜6)を製造した。
次に、各電池に対して、0.2Cの電流で電池電圧が4.2Vに達するまで定電流充電をした後に9時間の定電圧充電する条件で充電を行った。そして、0.2Cの電流で電池電圧が2.75Vになるまで放電を行うことにより、各電池の放電容量を測定した。結果を図4及び図5に示す。
"Experimental example 2: Performance of lithium secondary battery"
Using the non-aqueous electrolytes of Test Examples 1 to 6 obtained in Experimental Example 1, coin-type lithium secondary batteries were prepared, and the discharge capacity was measured.
The battery is manufactured by using LiCoO 2 as a positive electrode active material, polyvinylidene fluoride as a binder, carbon black as a conductive auxiliary material, a pellet-shaped positive electrode using Al foil as a current collector, graphite as a negative electrode active material, and polyvinylidene fluoride. A binder, a pellet-shaped negative electrode having a Cu foil as a current collector, and a separator made of polypropylene are inserted in a battery container in a state of being overlapped, and after injecting the non-aqueous electrolyte of Test Examples 1 to 6, This was performed by closing the battery container, and coin-type batteries (Test Examples 1 to 6) having a diameter of 20 mm, a height of 1.6 mm, and a designed charge / discharge capacity of 5 mAh were manufactured.
Next, each battery was charged at a constant current of 0.2 C until the battery voltage reached 4.2 V, and then charged under a condition of constant voltage charging for 9 hours. Then, discharging was performed at a current of 0.2 C until the battery voltage became 2.75 V, and the discharge capacity of each battery was measured. The results are shown in FIGS.

また、試験例2,4,6の非水電解液に皮膜形成化合物を添加したものを用いてコイン型のリチウム二次電池を作成し、放電容量を測定した。
添加する皮膜形成化合物としては、上記[化6]に示す構造のポリアクリレート化合物(以下、PAAと表記)と、下記[化14]に示す構造のテトラメチロールメタン-トリ-β-アジリジニルプロピネート[tetramethylolmethane-tri-β-aziridinylpropionate]と上記[化8]のRがHである化合物とが、25:75の割合で混合した混合物(以下、TAZOと表記)を用いた。
試験例2,4,6の非水電解液に、PAAを0.2質量%、TAZOを1質量%の割合で添加することにより、試験例7、8、9の非水電解液を調製した。これらの具体的な組成は表1に併せて示す。
そして、試験例7、8、9の非水電解液を用いたこと以外は上記と同様にして、試験例7、8、9のリチウム二次電池を製造した。
次に、試験例7、8、9の各電池に対して、0.2Cの電流で電池電圧が3Vに達するまで定電流充電をした後に4時間の定電圧充電をし、更に0.2Cの電流で電池電圧が4.2Vに達するまで定電流充電をした後に9時間の定電圧充電する2段階充電を行うことにより、各電池について初充電(化成)を行い、負極表面に皮膜を形成させた。
その後、全ての電池について、0.2Cの電流で電池電圧が2.75Vになるまで放電を行って放電容量を測定した。結果を図5に示す。
In addition, coin-type lithium secondary batteries were prepared using the non-aqueous electrolytes of Test Examples 2, 4, and 6 to which a film-forming compound was added, and the discharge capacity was measured.
Examples of the film-forming compound to be added include a polyacrylate compound having a structure represented by the above [Chemical Formula 6] (hereinafter referred to as PAA) and a tetramethylolmethane-tri-β-aziridinylproyl structure having a structure represented by the following [Chemical Formula 14]. A mixture (hereinafter, referred to as TAZO) in which a pinate [tetramethylolmethane-tri-β-aziridinylpropionate] and the compound of the above [Formula 8] in which R 2 is H was mixed at a ratio of 25:75 was used.
The non-aqueous electrolytes of Test Examples 7, 8, and 9 were prepared by adding 0.2% by mass of PAA and 1% by mass of TAZO to the non-aqueous electrolytes of Test Examples 2, 4, and 6. . These specific compositions are also shown in Table 1.
Then, the lithium secondary batteries of Test Examples 7, 8, and 9 were manufactured in the same manner as above, except that the nonaqueous electrolytes of Test Examples 7, 8, and 9 were used.
Next, the batteries of Test Examples 7, 8, and 9 were charged at a constant current of 0.2 C at a current of 0.2 C until the battery voltage reached 3 V, and then charged at a constant voltage of 4 hours. By performing constant-current charging until the battery voltage reaches 4.2 V with current and then performing two-stage charging with constant-voltage charging for 9 hours, initial charging (chemical formation) is performed for each battery, and a film is formed on the negative electrode surface. Was.
Thereafter, all the batteries were discharged at a current of 0.2 C until the battery voltage reached 2.75 V, and the discharge capacity was measured. FIG. 5 shows the results.

Figure 2004235141
Figure 2004235141

図4に示すように、実験例2、4,6の電池の放電容量が実験例1、3,5の電池よりも高くなっていることが分かる。これは、実験例2、4,6における非水電解液中のECの含有率が比較的高いため及び粘度が低くイオン伝導度が高いためと考えられる。
一方、図5に示すように、被膜形成化合物を添加した電池(試験例7、8)は、被膜形成化合物が未添加の試験例2,4,6の電池に対して、放電容量が大幅に向上していることが分かる。また、試験例7、8の電池は、直鎖構造のポリエーテル変性シリコーン油(オイル1,2)を含んでおり、試験例9の電池(分岐構造のポリエーテル変性シリコーン油(オイル3)を含有したもの)に対して優れた放電容量を示すことが分かる。
As shown in FIG. 4, it can be seen that the discharge capacities of the batteries of Experimental Examples 2, 4, and 6 are higher than those of the batteries of Experimental Examples 1, 3, and 5. This is considered to be due to the relatively high content of EC in the non-aqueous electrolyte solution in Experimental Examples 2, 4, and 6, and the low viscosity and high ionic conductivity.
On the other hand, as shown in FIG. 5, the batteries to which the film-forming compound was added (Test Examples 7 and 8) had a significantly higher discharge capacity than the batteries of Test Examples 2, 4, and 6 to which no film-forming compound was added. It can be seen that it has improved. Further, the batteries of Test Examples 7 and 8 contained the linear structure polyether-modified silicone oil (oils 1 and 2), and the batteries of Test Example 9 (branched structure polyether-modified silicone oil (oil 3)) were used. It can be seen that the composition exhibits excellent discharge capacity with respect to the above-mentioned content.

また、試験例1〜9の非水電解液の引火点並びに、従来の非水電解液の引火点を測定したところ、従来の非水電解液については引火点58℃が確認され、試験例1〜9については室温から160℃の範囲で引火点が確認されなかった。これは、試験例1〜9の非水電解液には、160℃未満で引火する物質が全く含まれず、このため引火点測定装置によっても引火しなかったと考えられる。
尚、従来の非水電解液は、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒(体積比でEC:DEC=3:7)にLiPFを1.3モル/Lの濃度で溶解させたものである。また、引火点の測定は、JIS−K2265に規定される開放式引火点測定装置により、室温から160℃の範囲で引火点を測定した。
When the flash point of the non-aqueous electrolyte of Test Examples 1 to 9 and the flash point of the conventional non-aqueous electrolyte were measured, a flash point of 58 ° C. was confirmed for the conventional non-aqueous electrolyte. As for Nos. To 9, no flash point was confirmed in the range of room temperature to 160 ° C. This is presumably because the non-aqueous electrolytes of Test Examples 1 to 9 did not contain any substance that ignites below 160 ° C., and thus did not ignite even with the flash point measuring device.
The conventional non-aqueous electrolyte is prepared by dissolving LiPF 6 at a concentration of 1.3 mol / L in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (EC: DEC = 3: 7 by volume ratio). It was made. The flash point was measured using an open-type flash point measurement device defined in JIS-K2265 in a range from room temperature to 160 ° C.

「実験例3:リチウム二次電池の性能」
エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒(体積比でEC:DEC=3:7)にLiPFを1.3モル/Lの濃度で溶解させてなる比較例1の非水電解液を調製した。
次に、比較例1の非水電解液に、上記[化11]に示す構造のオイル1を10体積%の含有率となるように添加することにより、実施例1の非水電解液を調製した。
また、比較例1の非水電解液に、上記[化12]に示す構造のオイル2を10体積%の含有率となるように添加することにより、実施例2の非水電解液を調製した。
更に、実施例1の非水電解液に、PAAを0.2質量%、TAZOを1質量%の割合で添加することにより、実施例3の非水電解液を調製した。
更に、実施例2の非水電解液に、PAAを0.2質量%、TAZOを1質量%の割合で添加することにより、実施例4の非水電解液を調製した。
次に、比較例1の非水電解液に、上記[化13]に示す構造のオイル3を10体積%の含有率となるように添加することにより、比較例2の非水電解液を調製した。
更に、比較例2の非水電解液に、PAAを0.2質量%、TAZOを1質量%の割合で添加することにより、比較例3の非水電解液を調製した。
"Experimental example 3: Performance of lithium secondary battery"
Non-aqueous electrolysis of Comparative Example 1 in which LiPF 6 is dissolved at a concentration of 1.3 mol / L in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (EC: DEC = 3: 7 by volume ratio) A liquid was prepared.
Next, the non-aqueous electrolyte of Example 1 was prepared by adding the oil 1 having the structure shown in the above [Chemical Formula 11] to the non-aqueous electrolyte of Comparative Example 1 so as to have a content of 10% by volume. did.
The non-aqueous electrolyte of Example 2 was prepared by adding the oil 2 having the structure shown in the above [Chemical Formula 12] to the non-aqueous electrolyte of Comparative Example 1 so as to have a content of 10% by volume. .
Further, the non-aqueous electrolyte of Example 3 was prepared by adding 0.2% by mass of PAA and 1% by mass of TAZO to the non-aqueous electrolyte of Example 1.
Further, the non-aqueous electrolyte of Example 4 was prepared by adding 0.2% by mass of PAA and 1% by mass of TAZO to the non-aqueous electrolyte of Example 2.
Next, the non-aqueous electrolyte of Comparative Example 2 was prepared by adding the oil 3 having the structure shown in the above [Chemical Formula 13] to the non-aqueous electrolyte of Comparative Example 1 so as to have a content of 10% by volume. did.
Furthermore, the non-aqueous electrolyte of Comparative Example 3 was prepared by adding 0.2% by mass of PAA and 1% by mass of TAZO to the non-aqueous electrolyte of Comparative Example 2.

そして、実施例1〜4並びに比較例1〜3の非水電解液を用いたこと以外は実験例2と同様にして、実施例1〜4及び比較例1〜3のリチウム二次電池を製造した。
次に、実施例1、2と比較例1、2の各電池に対して、0.5Cの電流で電池電圧が4.2Vに達するまで定電流充電をした後に9時間の定電圧充電する条件で充電を行った。そして、0.2C、0.5C、1.0C、2.0Cの電流で電池電圧が2.75Vになるまでそれぞれ放電を行うことにより、放電電流毎の各電池の放電容量を測定した。結果を図6及び図7に示す。
Then, the lithium secondary batteries of Examples 1 to 4 and Comparative Examples 1 to 3 were manufactured in the same manner as in Experimental Example 2 except that the nonaqueous electrolytes of Examples 1 to 4 and Comparative Examples 1 to 3 were used. did.
Next, for each of the batteries of Examples 1 and 2 and Comparative Examples 1 and 2, a condition of performing constant-current charging at a current of 0.5 C until the battery voltage reaches 4.2 V and then charging for 9 hours at a constant voltage Was charged. Then, discharge was performed at a current of 0.2 C, 0.5 C, 1.0 C, and 2.0 C until the battery voltage reached 2.75 V, and the discharge capacity of each battery at each discharge current was measured. The results are shown in FIGS.

また、実施例3、4と比較例3の電池については、0.2Cの電流で電池電圧が3Vに達するまで定電流充電をした後に4時間の定電圧充電をし、更に0.2Cの電流で電池電圧が4.2Vに達するまで定電流充電をした後に9時間の定電圧充電する2段階充電を行うことにより、各電池について初充電(化成)を行い、負極表面に皮膜を形成させた。
その後、0.2C、0.5C、1.0C、2.0Cの電流で電池電圧が2.75Vになるまでそれぞれ放電を行うことにより、放電電流毎の各電池の放電容量を測定した。結果を図6及び図7に示す。
The batteries of Examples 3 and 4 and Comparative Example 3 were charged at a constant current of 0.2 C until the battery voltage reached 3 V, then charged at a constant voltage for 4 hours, and further charged at a current of 0.2 C. By performing constant-current charging until the battery voltage reaches 4.2 V and then performing two-stage charging with constant-voltage charging for 9 hours, initial charging (chemical formation) was performed for each battery, and a film was formed on the negative electrode surface. .
Thereafter, discharge was performed at a current of 0.2 C, 0.5 C, 1.0 C, and 2.0 C until the battery voltage reached 2.75 V, and the discharge capacity of each battery at each discharge current was measured. The results are shown in FIGS.

図6に示すように、0.2〜1.0Cの放電電流の範囲では、実施例3、4の電池の放電容量が実施例1、2の放電容量よりも高くなっていることが分かる。これは、実施例3及び4の電池では被膜形成化合物を添加して負極表面に被膜を形成しているので、オイル1,2の分解が抑制されて放電容量が向上したものと考えられる。
また図6及び図7に示すように、比較例2はいずれの放電電流でも実施例3とほぼ同等の放電容量を示すが、比較例3は1.0〜2.0Cの範囲で実施例1〜4よりも放電容量が低くなっていることが分かる。
As shown in FIG. 6, in the range of the discharge current of 0.2 to 1.0 C, it can be seen that the discharge capacities of the batteries of Examples 3 and 4 are higher than those of Examples 1 and 2. This is presumably because in the batteries of Examples 3 and 4, a film-forming compound was added to form a film on the negative electrode surface, so that decomposition of oils 1 and 2 was suppressed and discharge capacity was improved.
As shown in FIGS. 6 and 7, Comparative Example 2 shows almost the same discharge capacity as that of Example 3 at any discharge current, but Comparative Example 3 shows that the discharge capacity of Example 1 was in the range of 1.0 to 2.0 C. It can be seen that the discharge capacity is lower than that of Nos.

次に、図8には、充放電電流を1Cとしたときのサイクル特性を示す。図8に示すように、実施例3の電池は比較例1よりもサイクル特性が優れていることが分かる。
また、実施例4は比較例1よりも放電容量が少ないものの、サイクル曲線の傾きが比較例1より小さくなっており、サイクルの進行に伴う放電容量の劣化が比較例1よりも少ないことが分かる。
更に、比較例3の電池は、実施例4よりも放電容量が少なく、またサイクル曲線の傾きが実施例4より大きくなっており、サイクルの進行に伴う放電容量の劣化が実施例4よりも大きいことが分かる。
このように、被膜形成化合物を添加した非水電解液を備えたリチウム二次電池(実施例3、4)は、サイクル特性に優れることが分かる。
Next, FIG. 8 shows the cycle characteristics when the charge / discharge current is 1 C. As shown in FIG. 8, it can be seen that the battery of Example 3 had better cycle characteristics than Comparative Example 1.
Further, although the discharge capacity of Example 4 was smaller than that of Comparative Example 1, the slope of the cycle curve was smaller than that of Comparative Example 1, and it can be seen that the deterioration of the discharge capacity due to the progress of the cycle was smaller than that of Comparative Example 1. .
Further, the battery of Comparative Example 3 has a smaller discharge capacity than that of Example 4, and the slope of the cycle curve is larger than that of Example 4, and the deterioration of the discharge capacity with the progress of the cycle is larger than that of Example 4. You can see that.
Thus, it can be seen that the lithium secondary batteries provided with the non-aqueous electrolyte to which the film-forming compound was added (Examples 3 and 4) have excellent cycle characteristics.

次に、下記[化15]に示す構造のポリエーテル変性シリコーン油を合成した。以下、オイル4と称す。尚、このオイル4は、上記[化1]または上記[化3]において、RをCHとし、ZをCHとし、kを0とし、mを4とし、nを2としたものに相当する。
そして、上記の比較例1の非水電解液に、下記[化15]に示す構造のオイル4を10体積%の含有率となるように添加することにより、実施例5の非水電解液を調製した。
そして、実施例5の非水電解液を用いたこと以外は実験例2と同様にして、実施例5のリチウム二次電池を製造した。
Next, a polyether-modified silicone oil having the structure shown in the following [Chemical Formula 15] was synthesized. Hereinafter, it is referred to as oil 4. The oil 4 corresponds to the above [Chemical Formula 1] or [Chemical Formula 3] in which R is CH 3 , Z is CH 3 , k is 0, m is 4, and n is 2. I do.
Then, the non-aqueous electrolyte of Example 5 was added to the non-aqueous electrolyte of Comparative Example 1 by adding Oil 4 having the structure shown in the following [Formula 15] to a content of 10% by volume. Prepared.
Then, a lithium secondary battery of Example 5 was manufactured in the same manner as in Experimental Example 2 except that the non-aqueous electrolyte of Example 5 was used.

Figure 2004235141
Figure 2004235141

次に、実施例5の電池に対して、0.5Cの電流で電池電圧が4.2Vに達するまで定電流充電をした後に9時間の定電圧充電する条件で充電を行った。そして、0.2C、0.5C、1.0C、2.0Cの電流で電池電圧が2.75Vになるまでそれぞれ放電を行うことにより、放電電流毎の各電池の放電容量を測定した。結果を図9に示す。また図9には実施例1及び比較例1の結果を併せて示す。   Next, the battery of Example 5 was charged at a constant current of 0.5 C until the battery voltage reached 4.2 V, and then charged under a condition of 9 hours of constant voltage charging. Then, discharge was performed at a current of 0.2 C, 0.5 C, 1.0 C, and 2.0 C until the battery voltage reached 2.75 V, and the discharge capacity of each battery at each discharge current was measured. FIG. 9 shows the results. FIG. 9 also shows the results of Example 1 and Comparative Example 1.

図9に示すように、実施例5の電池は、放電電流が0.2C、0.5Cのときに、実施例1よりも放電容量が向上していることがわかる。   As shown in FIG. 9, it can be seen that the discharge capacity of the battery of Example 5 was higher than that of Example 1 when the discharge current was 0.2 C and 0.5 C.

このように、実施例5の電池の放電容量が実施例1よりも向上したのは次の理由によるものと考えられる。
即ち、実施例1の非水電解液に含まれるオイル1は、上記[化1]に示す構造式においてnを3にしたものに相当するが、このオイル1は図10に示すようにオイル1の単独でリチウムイオン(Li)に配位できる。更に、電解液中にはECのみにより配位されたリチウムイオン(Li)も共存している。
このような実施例1の電解液を用いた場合、初充電において、図10に示すように、負極表面にEC由来の被膜10とシリコーンオイル分解由来の被膜20が競争反応で生成する。このようにして、負極表面上にリチウムイオンが透過しないシリコーンオイル分解由来の被膜20が生成されるものと考えられる。
As described above, the reason why the discharge capacity of the battery of Example 5 was improved over that of Example 1 is considered to be as follows.
That is, the oil 1 contained in the non-aqueous electrolyte of Example 1 corresponds to the case where n is 3 in the structural formula shown in the above [Chemical Formula 1]. Alone can be coordinated to lithium ion (Li + ). Further, lithium ions (Li + ) coordinated only by EC coexist in the electrolytic solution.
When such an electrolytic solution of Example 1 is used, in the initial charge, as shown in FIG. 10, a coating 10 derived from EC and a coating 20 derived from decomposition of silicone oil are formed on the negative electrode surface by a competitive reaction. In this way, it is considered that a coating film 20 derived from the decomposition of silicone oil, through which lithium ions do not permeate, is formed on the negative electrode surface.

それに対して、実施例5の非水電解液に含まれるオイル4は、上記[化1]に示す構造式においてnを2にしたものに相当するが、このオイル4は図11に示すようにオイル4単独ではnの数が小さいためリチウムイオン(Li)に配位できない。すなわち図11に示すように電解液中ではリチウムイオンがECのみに配位する。
このため、図11に示すように、初充電において、EC由来の被膜10が図10の場合よりも多く形成される。その結果、実施例1の電解液よりも実施5の方がより良好な被膜を形成でき、これにより0.2C及び0.5Cのときにおける放電容量が増加したものと思われる。
On the other hand, the oil 4 contained in the non-aqueous electrolyte of Example 5 corresponds to the one in which n is 2 in the structural formula shown in the above [Chemical Formula 1]. Oil 4 alone cannot coordinate to lithium ions (Li + ) because the number of n is small. That is, as shown in FIG. 11, lithium ions coordinate only to EC in the electrolyte.
For this reason, as shown in FIG. 11, the EC-derived coating 10 is formed more in the first charge than in the case of FIG. As a result, it is considered that a better film could be formed in Example 5 than in the electrolytic solution of Example 1, thereby increasing the discharge capacity at 0.2C and 0.5C.

「実験例4:非水電解液及びリチウム二次電池の特性」
Si(CHOSiH(CHと、CH=CHCHO(CO)CHとを塩化白金触媒存在下でハイドロシリレーション反応させることにより、下記[化16]に示す構造のポリエーテル変性シリコーン油を得た。以下、オイル5と称す。尚、このオイル5は、上記[化2]または上記[化4]において、RをCHとし、ZをCHとし、kを0とし、mを3とし、nを2としたものに相当する。
"Experimental example 4: Characteristics of non-aqueous electrolyte and lithium secondary battery"
By subjecting Si (CH 3 ) 3 OSiH (CH 3 ) 2 and CH 2 CHCHCH 2 O (C 2 H 5 O) 2 CH 3 to a hydrosilation reaction in the presence of a platinum chloride catalyst, the following [Formula 16] A polyether-modified silicone oil having the structure shown in the following formula was obtained. Hereinafter, it is referred to as oil 5. The oil 5 corresponds to the above [Chemical Formula 2] or [Chemical Formula 4] where R is CH 3 , Z is CH 3 , k is 0, m is 3, and n is 2. I do.

Figure 2004235141
Figure 2004235141

また、このオイル5に対して真空蒸留を行うことにより、オイルに含まれるPt、BHTなどの除去を行った。2回蒸留したものをオイル6、1回蒸留したものをオイル7と略す。   The oil 5 was subjected to vacuum distillation to remove Pt, BHT and the like contained in the oil. Double-distilled oil is referred to as oil 6, and single-distilled oil is referred to as oil 7.

オイル5の粘度は25℃で2.6cP(3.7cSt)であった。また、オイル5に対して、JIS−K2265に規定される開放式引火点測定装置により、室温から120℃の範囲で引火点を測定したところ、引火点が検出されなかった。従ってオイル5の引火点は少なくとも120℃を越えるものである。   Oil 5 had a viscosity of 2.6 cP (3.7 cSt) at 25 ° C. Further, when the flash point of the oil 5 was measured in a range from room temperature to 120 ° C. using an open-type flash point measurement device defined in JIS-K2265, no flash point was detected. Therefore, the flash point of oil 5 is at least higher than 120 ° C.

また、オイル5〜7に含まれるPt量とBHT量をそれぞれ測定した。Pt量はICP発光分光法で測定し、BHTについてはガスクロマトグラフィー法により測定した。その結果、オイル5にはPtが5ppm含有され、BHTが60ppm含有されていた。一方、真空蒸留を行ったオイル6、7については、Pt、BHTのいずれも検出限界以下であった。   Further, the amounts of Pt and BHT contained in the oils 5 to 7 were measured. The Pt amount was measured by ICP emission spectroscopy, and the BHT was measured by gas chromatography. As a result, Oil 5 contained 5 ppm of Pt and 60 ppm of BHT. On the other hand, for oils 6 and 7 subjected to vacuum distillation, both Pt and BHT were below the detection limit.

次に、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒(体積比でEC:DEC=3:7)にLiPFを1.3モル/Lの濃度で溶解させてなる第1電解液を調製した。この第1電解液に、オイル5を15体積%の含有率となるように添加することにより、実施例6の非水電解液を調製した。
また、第1電解液に、オイル6を15体積%の含有率となるように添加することにより、実施例7の非水電解液を調製した。
更に、第1電解液に、オイル7を15体積%の含有率となるように添加することにより、実施例8の非水電解液を調製した。
Next, a first electrolytic solution obtained by dissolving LiPF 6 at a concentration of 1.3 mol / L in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (EC: DEC = 3: 7 by volume ratio). Was prepared. The non-aqueous electrolyte of Example 6 was prepared by adding the oil 5 to the first electrolyte so as to have a content of 15% by volume.
The non-aqueous electrolyte of Example 7 was prepared by adding the oil 6 to the first electrolyte so as to have a content of 15% by volume.
Further, the non-aqueous electrolyte of Example 8 was prepared by adding the oil 7 to the first electrolyte so as to have a content of 15% by volume.

また、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒(体積比でEC:DEC=3:7)にLiBETIを1.3モル/Lの濃度で溶解させてなる第2電解液を調製した。この第2電解液に、オイル6を15体積%の含有率となるように添加することにより、実施例9の非水電解液を調製した。   Also, a second electrolytic solution is prepared by dissolving LiBETI at a concentration of 1.3 mol / L in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (EC: DEC = 3: 7 by volume ratio). did. The non-aqueous electrolyte of Example 9 was prepared by adding the oil 6 to the second electrolyte so as to have a content of 15% by volume.

また、第1電解液に、オイル5を15体積%、モノフルオロエチレンカーボネート(FEC)を5体積%添加することにより、実施例10の非水電解液を調製した。
また、第1電解液に、オイル6を15体積%、モノフルオロエチレンカーボネート(FEC)を5体積%添加することにより、実施例11の非水電解液を調製した。
Further, a non-aqueous electrolyte of Example 10 was prepared by adding 15% by volume of oil 5 and 5% by volume of monofluoroethylene carbonate (FEC) to the first electrolyte.
The nonaqueous electrolyte of Example 11 was prepared by adding 15% by volume of oil 6 and 5% by volume of monofluoroethylene carbonate (FEC) to the first electrolyte.

実施例6の非水電解液について、粘度及び伝導度を測定したところ、粘度は5.66cPであり、伝導度は6.1mS/cmであった。実施例7〜11の非水電解液についても実施例6とほぼ同様な結果が得られた。このように、実施例6〜11の非水電解液は、粘度及び伝導度の点から見ると、リチウム二次電池用の電解液として特に問題ない物性を有している。   When the viscosity and the conductivity of the nonaqueous electrolyte solution of Example 6 were measured, the viscosity was 5.66 cP and the conductivity was 6.1 mS / cm. For the non-aqueous electrolytes of Examples 7 to 11, substantially the same results as in Example 6 were obtained. Thus, the non-aqueous electrolytes of Examples 6 to 11 have physical properties that are not particularly problematic as electrolytes for lithium secondary batteries in terms of viscosity and conductivity.

次に、実施例6〜11の非水電解液を用いて、パウチ型のリチウム二次電池を作成し、放電容量を測定した。
電池の製造は、LiCoOを正極活物質、ポリフッ化ビニリデンを結着剤、カーボンブラックを導電助材、Al箔を集電体とする正極と、黒鉛を負極活物質、ポリフッ化ビニリデンを結着剤、Cu箔を集電体とする負極と、ポロプロピレン製セパレータとを重ね合わせた状態で渦巻き状に巻回し、これを電池容器に挿入し、実施例6〜11の非水電解液を注入した後に電池容器を封口することにより行い、設計充放電容量が820mAhの電池を製造した。
Next, pouch-type lithium secondary batteries were prepared using the non-aqueous electrolytes of Examples 6 to 11, and the discharge capacities were measured.
Batteries are manufactured by bonding LiCoO 2 as a positive electrode active material, polyvinylidene fluoride as a binder, carbon black as a conductive additive, and an aluminum foil as a current collector, and graphite as a negative electrode active material and polyvinylidene fluoride. And a negative electrode having a current collector made of Cu foil and a propylene separator are spirally wound in a state of being overlapped with each other, inserted into a battery container, and injected with the nonaqueous electrolyte of Examples 6 to 11. After that, the battery container was sealed to produce a battery having a designed charge / discharge capacity of 820 mAh.

そして、実施例6〜11の各電池に対して、0.2Cの電流で電池電圧が4.2Vに達するまで定電流充電をした後に9時間の定電圧充電する2段階充電を行うことにより、各電池について初充電(化成)を行い、負極表面に皮膜を形成させた。
その後、0.2C、0.5C、1.0C、2.0Cの電流で電池電圧が2.75Vになるまでそれぞれ放電を行うことにより、放電電流毎の各電池の放電容量を測定した。結果を図12に示す。
Then, for each of the batteries of Examples 6 to 11, by performing a two-stage charge of performing a constant current charge for 9 hours after performing a constant current charge until the battery voltage reaches 4.2 V with a current of 0.2 C, Each battery was initially charged (formulated) to form a film on the negative electrode surface.
Thereafter, discharge was performed at a current of 0.2 C, 0.5 C, 1.0 C, and 2.0 C until the battery voltage reached 2.75 V, and the discharge capacity of each battery at each discharge current was measured. FIG. 12 shows the results.

図12に示すように、実施例6〜9の間では大きな差はなく、蒸留の有無、リチウム塩の違いによる有意差は見られなかった。一方、FECを添加した実施例10及び11については、実施例6〜9よりも放電容量が向上し、設計容量である820mAhに近い値を示している。これは、化成時に負極表面にFECによる良好な被膜が形成され、この被膜によって非水電解液の分解が防止されたためである。   As shown in FIG. 12, there was no significant difference between Examples 6 to 9, and no significant difference was observed due to the presence or absence of distillation and the difference in lithium salt. On the other hand, in Examples 10 and 11 to which FEC was added, the discharge capacity was improved as compared with Examples 6 to 9, and showed a value close to the design capacity of 820 mAh. This is because a good film by FEC was formed on the surface of the negative electrode during chemical formation, and this film prevented the decomposition of the non-aqueous electrolyte.

次に、図13には、充放電電流を1Cとしたときのサイクル特性を示す。図13に示すように、FECを添加した実施例10及び11については、実施例6、7、9よりもサイクル特性が向上している。ただし、蒸留を行っていない実施例10については、40サイクルを経過してからサイクル特性が低下していことがわかる。また、実施例6と実施例7を比較すると、蒸留を行った実施例7の方のサイクル特性が向上していることが分かる。このように、蒸留の有無でサイクル特性に差が出たのは、蒸留によってPt、BHTが取り除かれたためである。
またリチウム塩としてLiBETIを使用した実施例9については、実施例7と同等のサイクル特性を示していることがわかる。また、図示はしないが更にサイクルを繰り返すとLiPFよりもサイクルが良好であった。このように、LiBETIは、LiPFよりも優れたサイクル特性を示すことが分かる。
Next, FIG. 13 shows the cycle characteristics when the charge / discharge current is 1 C. As shown in FIG. 13, in Examples 10 and 11 to which FEC was added, the cycle characteristics were improved as compared with Examples 6, 7, and 9. However, in Example 10 in which distillation was not performed, it was found that the cycle characteristics were reduced after 40 cycles. Further, comparing Example 6 and Example 7, it can be seen that the cycle characteristics of Example 7 in which distillation was performed were improved. As described above, the difference in the cycle characteristics depending on the presence or absence of the distillation is due to the removal of Pt and BHT by the distillation.
In addition, it can be seen that Example 9 using LiBETI as the lithium salt exhibited the same cycle characteristics as Example 7. Further, although not illustrated was cycle better than LiPF 6 further repeated cycles. Thus, LiBETI is found to exhibit excellent cycle characteristics than LiPF 6.

更に、図14〜図18には、実施例6〜11のリチウム二次電池の化成時における充電電圧に対するクーロン効率のプロファイルを示す。図14は実施例6、図15は実施例7、図16は実施例8、図17は実施例9、図18は実施例10及び11のクーロン効率のプロファイルである。   Further, FIGS. 14 to 18 show profiles of Coulomb efficiency with respect to the charging voltage during the formation of the lithium secondary batteries of Examples 6 to 11. 14 shows the coulomb efficiency profiles of the sixth embodiment, FIG. 15 shows the seventh embodiment, FIG. 16 shows the eighth embodiment, FIG. 17 shows the ninth embodiment, and FIG. 18 shows the coulomb efficiency profiles of the tenth and eleventh embodiments.

図14〜図18に示すように、FECが無添加の実施例6〜8については、3.3V付近にピークが観察される。このピークはLiPFが負極表面の皮膜に取り込まれる際の何らかの反応により現れたものと考えられる。一方、実施例10及び11については、実施例6〜8の3.3V付近にみられた被膜形成に伴う電流が小さくなっている。また、化成時のガス発生量も少なくなっている。このことは、FECの添加によって、負極表面に良好な皮膜の形成が促されているためと考えられる。
また、実施例9については、LiBETIが添加されているために、3.3V付近にみられた被膜形成に伴う電流が小さくなり、負極表面に良好な皮膜の形成が促されていると考えられる。
As shown in FIGS. 14 to 18, in Examples 6 to 8 in which FEC was not added, a peak was observed at around 3.3 V. It is considered that this peak appeared due to some reaction when LiPF 6 was taken into the film on the negative electrode surface. On the other hand, in Examples 10 and 11, the current associated with the formation of the film observed near 3.3 V in Examples 6 to 8 was small. Also, the amount of gas generated during chemical formation is reduced. This is presumably because the addition of FEC promoted the formation of a good film on the negative electrode surface.
In addition, in Example 9, since LiBETI was added, the current associated with the formation of the film, which was observed at around 3.3 V, became small, and it is considered that the formation of a good film on the negative electrode surface was promoted. .

尚、上記[化2]でRをCH、m=4、k=0、n=2としたオイルについて、実験例4と同様にして試験を行った結果、実験例4と同様に良い結果が得られた。 In addition, as for the oil in which R was CH 3 , m = 4, k = 0, and n = 2 in the above [Chemical Formula 2], a test was performed in the same manner as in Experimental Example 4, and as a result, a good result was obtained as in Experimental Example 4. was gotten.

負極にポリアクリレート化合物の被膜が形成される機構の説明図。FIG. 4 is an explanatory diagram of a mechanism in which a film of a polyacrylate compound is formed on a negative electrode. 負極にアジリジン化合物の被膜が形成される機構の説明図。FIG. 4 is an explanatory view of a mechanism for forming a film of an aziridine compound on a negative electrode. 負極にポリアクリレート化合物及びアジリジン化合物の被膜が形成される機構の説明図。Explanatory drawing of the mechanism by which a film of a polyacrylate compound and an aziridine compound is formed on a negative electrode. 試験例1〜6のリチウム二次電池の放電曲線を示すグラフ。7 is a graph showing discharge curves of the lithium secondary batteries of Test Examples 1 to 6. 試験例2,4及び6〜9のリチウム二次電池の放電曲線を示すグラフ。10 is a graph showing discharge curves of the lithium secondary batteries of Test Examples 2, 4, and 6 to 9. 実施例1〜4及び比較例1のリチウム二次電池の放電電流と放電容量との関係を示すグラフ。5 is a graph showing the relationship between the discharge current and the discharge capacity of the lithium secondary batteries of Examples 1 to 4 and Comparative Example 1. 比較例1〜3のリチウム二次電池の放電電流と放電容量との関係を示すグラフ。9 is a graph showing the relationship between the discharge current and the discharge capacity of the lithium secondary batteries of Comparative Examples 1 to 3. 実施例3〜4及び比較例1、3のリチウム二次電池のサイクル数と放電容量との関係を示すグラフ。9 is a graph showing the relationship between the number of cycles and the discharge capacity of the lithium secondary batteries of Examples 3 to 4 and Comparative Examples 1 and 3. 実施例1、4及び比較例1のリチウム二次電池の放電電流と放電容量との関係を示すグラフ。5 is a graph showing the relationship between the discharge current and the discharge capacity of the lithium secondary batteries of Examples 1 and 4 and Comparative Example 1. 実施例1の非水電解液を用いた場合の初充電時の反応機構を説明するための模式図。FIG. 3 is a schematic diagram for explaining a reaction mechanism at the time of initial charging when the non-aqueous electrolyte of Example 1 is used. 実施例5の非水電解液を用いた場合の初充電時の反応機構を説明するための模式図。FIG. 14 is a schematic diagram for explaining a reaction mechanism at the time of initial charging when the nonaqueous electrolyte of Example 5 is used. 実施例6〜11のリチウム二次電池の放電電流と放電容量との関係を示すグラフ。12 is a graph showing the relationship between the discharge current and the discharge capacity of the lithium secondary batteries of Examples 6 to 11. 実施例6〜11のリチウム二次電池のサイクル数と放電容量との関係を示すグラフ。12 is a graph showing the relationship between the number of cycles and the discharge capacity of the lithium secondary batteries of Examples 6 to 11. 実施例6のリチウム二次電池の初充電時における充電電圧に対するクーロン効率のプロファイルを示すグラフ。13 is a graph showing a profile of Coulomb efficiency with respect to a charging voltage at the time of initial charging of the lithium secondary battery of Example 6. 実施例7のリチウム二次電池の初充電時における充電電圧に対するクーロン効率のプロファイルを示すグラフ。14 is a graph showing a profile of Coulomb efficiency with respect to a charging voltage at the time of initial charging of the lithium secondary battery of Example 7. 実施例8のリチウム二次電池の初充電時における充電電圧に対するクーロン効率のプロファイルを示すグラフ。18 is a graph showing a profile of Coulomb efficiency with respect to a charging voltage at the time of initial charging of the lithium secondary battery of Example 8. 実施例9のリチウム二次電池の初充電時における充電電圧に対するクーロン効率のプロファイルを示すグラフ。19 is a graph showing a profile of Coulomb efficiency with respect to a charging voltage at the time of initial charging of the lithium secondary battery of Example 9. 実施例10及び実施例11のリチウム二次電池の初充電時における充電電圧に対するクーロン効率のプロファイルを示すグラフ。13 is a graph showing a profile of Coulomb efficiency with respect to a charging voltage at the time of initial charging of the lithium secondary batteries of Examples 10 and 11.

Claims (9)

直鎖ポリシロキサン鎖の末端にポリエーテル鎖が結合してなる下記[化1]または下記[化2]のいずれかに示す構造のポリエーテル変性シリコーン油と、環状カーボネートと、溶質とが含有されてなることを特徴とする非水電解液。
ただし、下記[化1]または下記[化2]において、kは0〜10の範囲であり、mは2から4の範囲の自然数であり、nは1〜4の範囲の自然数であり、RはCHまたはCのいずれかであり、ZはCHまたはCのいずれかである。
Figure 2004235141
Figure 2004235141
It contains a polyether-modified silicone oil having a structure represented by either of the following [Chemical Formula 1] or [Chemical Formula 2] in which a polyether chain is bonded to a terminal of a linear polysiloxane chain, a cyclic carbonate, and a solute. A non-aqueous electrolyte characterized by comprising:
However, in the following [Chemical formula 1] or [Chemical formula 2], k is in the range of 0 to 10, m is a natural number in the range of 2 to 4, n is a natural number in the range of 1 to 4, and R is Is either CH 3 or C 6 H 5 , and Z is either CH 3 or C 2 H 5 .
Figure 2004235141
Figure 2004235141
25℃における前記ポリエーテル変性シリコーン油の粘度が10cSt未満であることを特徴とする請求項1に記載の非水電解液。   The non-aqueous electrolyte according to claim 1, wherein the viscosity of the polyether-modified silicone oil at 25 ° C is less than 10 cSt. 前記ポリエーテル変性シリコーン油の引火点が120℃以上であることを特徴とする請求項1または請求項2に記載の非水電解液。   The non-aqueous electrolyte according to claim 1, wherein the flash point of the polyether-modified silicone oil is 120 ° C. or higher. 鎖状カーボネートが添加されてなることを特徴とする請求項1ないし請求項3のいずれかに記載の非水電解液。   The non-aqueous electrolyte according to any one of claims 1 to 3, wherein a chain carbonate is added. 前記非水電解液にフッ素化環状カーボネートが添加されてなることを特徴とする請求項1ないし請求項4のいずれかに記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein a fluorinated cyclic carbonate is added to the non-aqueous electrolyte. 正極と負極と非水電解液とを具備してなり、前記非水電解液が、直鎖ポリシロキサン鎖の末端にポリエーテル鎖が結合してなる下記[化3]または下記[化4]のいずれかに示す構造のポリエーテル変性シリコーン油と、環状カーボネートと、溶質とを含有してなるものであることを特徴とするリチウム二次電池。
ただし、下記[化3]または下記[化4]において、kは0〜10の範囲であり、mは2から4の範囲の自然数であり、nは1〜4の範囲の自然数であり、RはCHまたはCのいずれかであり、ZはCHまたはCのいずれかである。
Figure 2004235141
Figure 2004235141
A non-aqueous electrolyte comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the non-aqueous electrolyte has the following [Chemical Formula 3] or [Chemical Formula 4] wherein a polyether chain is bonded to a terminal of a linear polysiloxane chain. A lithium secondary battery comprising a polyether-modified silicone oil having any of the structures described above, a cyclic carbonate, and a solute.
However, in the following [Chemical Formula 3] or [Chemical Formula 4], k is in the range of 0 to 10, m is a natural number in the range of 2 to 4, n is a natural number in the range of 1 to 4, R Is either CH 3 or C 6 H 5 , and Z is either CH 3 or C 2 H 5 .
Figure 2004235141
Figure 2004235141
前記負極の表面にポリアクリレート化合物、アジリジン化合物、フッ素化環状カーボネートのうち、単一成分または混合物からなる被膜が形成されていることを特徴とする請求項6に記載のリチウム二次電池。   The lithium secondary battery according to claim 6, wherein a coating made of a single component or a mixture of a polyacrylate compound, an aziridine compound, and a fluorinated cyclic carbonate is formed on a surface of the negative electrode. 前記非水電解液に鎖状カーボネートが添加されてなることを特徴とする請求項6または請求項7に記載のリチウム二次電池。   8. The lithium secondary battery according to claim 6, wherein a chain carbonate is added to the non-aqueous electrolyte. 前記非水電解液にフッ素化環状カーボネートが添加されてなることを特徴とする請求項6ないし請求項8のいずれかに記載のリチウム二次電池。   The lithium secondary battery according to any one of claims 6 to 8, wherein a fluorinated cyclic carbonate is added to the non-aqueous electrolyte.
JP2003363591A 2003-01-09 2003-10-23 Non-aqueous electrolyte and lithium secondary battery Expired - Fee Related JP4537035B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003363591A JP4537035B2 (en) 2003-01-09 2003-10-23 Non-aqueous electrolyte and lithium secondary battery
KR1020030097895A KR100578803B1 (en) 2003-01-09 2003-12-26 Non aqueous electrolyte and rechargeable lithium battery
CNB2004100058174A CN100341197C (en) 2003-01-09 2004-01-09 Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
US10/754,453 US7351501B2 (en) 2003-01-09 2004-01-09 Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003003047 2003-01-09
JP2003363591A JP4537035B2 (en) 2003-01-09 2003-10-23 Non-aqueous electrolyte and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2004235141A true JP2004235141A (en) 2004-08-19
JP4537035B2 JP4537035B2 (en) 2010-09-01

Family

ID=32964641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003363591A Expired - Fee Related JP4537035B2 (en) 2003-01-09 2003-10-23 Non-aqueous electrolyte and lithium secondary battery

Country Status (2)

Country Link
JP (1) JP4537035B2 (en)
KR (1) KR100578803B1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093064A (en) * 2004-08-24 2006-04-06 Shin Etsu Chem Co Ltd Non-aqueous electrolytic liquid and battery using the same
JP2007012507A (en) * 2005-07-01 2007-01-18 Sony Corp Battery
KR100684729B1 (en) * 2004-07-09 2007-02-20 삼성에스디아이 주식회사 Rechargeable lithium battery
JP2007141496A (en) * 2005-11-15 2007-06-07 Samsung Sdi Co Ltd Lithium secondary battery
JP2007172960A (en) * 2005-12-21 2007-07-05 Samsung Sdi Co Ltd Lithium secondary battery and method of manufacturing lithium secondary battery
JP2007173026A (en) * 2005-12-22 2007-07-05 Samsung Sdi Co Ltd Lithium secondary battery and method of manufacturing lithium secondary battery
JP2008537293A (en) * 2005-04-19 2008-09-11 エルジー・ケム・リミテッド Electrode improved in safety by introduction of cross-linked polymer, and electrochemical element including the same
JP2008538448A (en) * 2005-04-19 2008-10-23 エルジー・ケム・リミテッド Functional electrolyte additive and electrochemical device including the same
JP2011065842A (en) * 2009-09-16 2011-03-31 Nissan Motor Co Ltd Electrolyte for lithium secondary battery, and bipolar secondary battery using the same
US8076031B1 (en) 2003-09-10 2011-12-13 West Robert C Electrochemical device having electrolyte including disiloxane
JP2014056847A (en) * 2007-03-27 2014-03-27 Hitachi Vehicle Energy Ltd Lithium secondary battery
US8765295B2 (en) 2004-02-04 2014-07-01 Robert C. West Electrolyte including silane for use in electrochemical devices
JP5676733B1 (en) * 2013-09-02 2015-02-25 財團法人工業技術研究院 Electrolyte solution, lithium battery and electrochemical carrier structure
JP2015513170A (en) * 2012-01-10 2015-04-30 モーメンティブ・パフォーマンス・マテリアルズ・インク Silicone epoxy ether composition, method for producing the same and use thereof
US9786954B2 (en) 2004-02-04 2017-10-10 Robert C. West Electrolyte including silane for use in electrochemical devices
JP2020528201A (en) * 2017-11-03 2020-09-17 エルジー・ケム・リミテッド Electrolytes for lithium secondary batteries and lithium secondary batteries containing them
CN113410516A (en) * 2021-08-02 2021-09-17 清远萨菲安新材料有限公司 Organic silicon electrolyte and preparation method and application thereof
CN117558988A (en) * 2024-01-12 2024-02-13 深圳海辰储能科技有限公司 Electrolyte, energy storage device and power utilization system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883801B2 (en) 2005-11-15 2011-02-08 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same
US7914931B2 (en) 2005-12-21 2011-03-29 Samsung Sdi Co., Ltd. Separator for rechargeable lithium battery, rechargeable lithium battery including the same, and method for preparing rechargeable lithium battery
US7910245B2 (en) 2005-12-22 2011-03-22 Samsung Sdi Co., Ltd. Positive active material with a polyether modified silicone oil and rechargeable lithium battery including the same
JP5356405B2 (en) 2007-12-17 2013-12-04 エルジー・ケム・リミテッド Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery provided with the same
WO2010058993A2 (en) 2008-11-20 2010-05-27 주식회사 엘지화학 Lithium secondary battery having improved characteristics
KR101135502B1 (en) 2008-12-22 2012-04-16 삼성에스디아이 주식회사 Lithium secondary battery
CN110690500A (en) * 2019-10-14 2020-01-14 北京工业大学 Polymer electrolyte with high voltage window

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878053A (en) * 1994-07-07 1996-03-22 Ricoh Co Ltd Lithium nonaqueous secondary battery
JPH09251861A (en) * 1996-01-10 1997-09-22 Sanyo Chem Ind Ltd Organic solvent for electrolyte, lithium secondary battery, and electric double layer capacitor
JP2002373660A (en) * 2001-06-18 2002-12-26 Hitachi Maxell Ltd Nonaqueous secondary battery
KR20020096841A (en) * 2001-06-19 2002-12-31 삼성에스디아이 주식회사 Polymer electrolyte and lithium secondary battery comprising the same
JP2003142157A (en) * 2001-10-31 2003-05-16 Sony Corp Electrolyte and battery using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878053A (en) * 1994-07-07 1996-03-22 Ricoh Co Ltd Lithium nonaqueous secondary battery
JPH09251861A (en) * 1996-01-10 1997-09-22 Sanyo Chem Ind Ltd Organic solvent for electrolyte, lithium secondary battery, and electric double layer capacitor
JP2002373660A (en) * 2001-06-18 2002-12-26 Hitachi Maxell Ltd Nonaqueous secondary battery
KR20020096841A (en) * 2001-06-19 2002-12-31 삼성에스디아이 주식회사 Polymer electrolyte and lithium secondary battery comprising the same
JP2003142157A (en) * 2001-10-31 2003-05-16 Sony Corp Electrolyte and battery using it

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8076031B1 (en) 2003-09-10 2011-12-13 West Robert C Electrochemical device having electrolyte including disiloxane
US8765295B2 (en) 2004-02-04 2014-07-01 Robert C. West Electrolyte including silane for use in electrochemical devices
US9786954B2 (en) 2004-02-04 2017-10-10 Robert C. West Electrolyte including silane for use in electrochemical devices
KR100684729B1 (en) * 2004-07-09 2007-02-20 삼성에스디아이 주식회사 Rechargeable lithium battery
JP2006093064A (en) * 2004-08-24 2006-04-06 Shin Etsu Chem Co Ltd Non-aqueous electrolytic liquid and battery using the same
US7459239B2 (en) * 2004-08-24 2008-12-02 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolytic solution and battery
JP2008537293A (en) * 2005-04-19 2008-09-11 エルジー・ケム・リミテッド Electrode improved in safety by introduction of cross-linked polymer, and electrochemical element including the same
JP2008538448A (en) * 2005-04-19 2008-10-23 エルジー・ケム・リミテッド Functional electrolyte additive and electrochemical device including the same
JP2007012507A (en) * 2005-07-01 2007-01-18 Sony Corp Battery
JP2007141496A (en) * 2005-11-15 2007-06-07 Samsung Sdi Co Ltd Lithium secondary battery
JP2007172960A (en) * 2005-12-21 2007-07-05 Samsung Sdi Co Ltd Lithium secondary battery and method of manufacturing lithium secondary battery
JP2007173026A (en) * 2005-12-22 2007-07-05 Samsung Sdi Co Ltd Lithium secondary battery and method of manufacturing lithium secondary battery
JP2014056847A (en) * 2007-03-27 2014-03-27 Hitachi Vehicle Energy Ltd Lithium secondary battery
JP2011065842A (en) * 2009-09-16 2011-03-31 Nissan Motor Co Ltd Electrolyte for lithium secondary battery, and bipolar secondary battery using the same
JP2015513170A (en) * 2012-01-10 2015-04-30 モーメンティブ・パフォーマンス・マテリアルズ・インク Silicone epoxy ether composition, method for producing the same and use thereof
JP5676733B1 (en) * 2013-09-02 2015-02-25 財團法人工業技術研究院 Electrolyte solution, lithium battery and electrochemical carrier structure
JP2015050182A (en) * 2013-09-02 2015-03-16 財團法人工業技術研究院Industrial Technology Research Institute Electrolyte solution, lithium battery, and electrochemical carrier structure
JP2020528201A (en) * 2017-11-03 2020-09-17 エルジー・ケム・リミテッド Electrolytes for lithium secondary batteries and lithium secondary batteries containing them
JP7027628B2 (en) 2017-11-03 2022-03-02 エルジー エナジー ソリューション リミテッド Electrolytes for lithium secondary batteries and lithium secondary batteries containing them
CN113410516A (en) * 2021-08-02 2021-09-17 清远萨菲安新材料有限公司 Organic silicon electrolyte and preparation method and application thereof
CN117558988A (en) * 2024-01-12 2024-02-13 深圳海辰储能科技有限公司 Electrolyte, energy storage device and power utilization system

Also Published As

Publication number Publication date
KR100578803B1 (en) 2006-05-11
JP4537035B2 (en) 2010-09-01
KR20040065152A (en) 2004-07-21

Similar Documents

Publication Publication Date Title
JP4537035B2 (en) Non-aqueous electrolyte and lithium secondary battery
JP4527605B2 (en) Electrolytic solution for lithium ion secondary battery and lithium ion secondary battery including the same
KR101702406B1 (en) Lithium rechargeable battery
US7351501B2 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
JP4423277B2 (en) Lithium secondary battery
CN1860638A (en) Non-inflammable non aqueous electrolyte and lithium-ion battery containing the same
EP3058613A1 (en) Copolymers with a polyacrylic acid backbone as performance enhancers for lithium-ion cells
CN109716578B (en) Electrochemical cell comprising difunctional silyl phosphonate
KR20180022247A (en) Nonaqueous electrolytic solution comprising coating agent and lithium secondary battery
CN113711413B (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR101938767B1 (en) Electrolyte additives for lithium rechargeable battery and manufacturing method thereof, electrolyte including the same additives and manufacturing method thereof, and lithium rechargeable battery including the same additives
KR20040084858A (en) Positive Electrode, Non-Aqueous Electrolyte Secondary Battery, and Method of Manufacturing the Same
JP2000228216A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP2006093064A (en) Non-aqueous electrolytic liquid and battery using the same
JP5068449B2 (en) Lithium secondary battery
JP4179521B2 (en) Flame retardant electrolyte and non-aqueous electrolyte secondary battery
JP2009187880A (en) Nonaqueous electrolyte secondary battery
JP2005190978A (en) Nonaqueous electrolyte secondary battery
EP3890090B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
CN116417670A (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
EP3879616B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
JP5201794B2 (en) Lithium secondary battery and method for producing lithium secondary battery
JP2022552872A (en) Composition
CN111354977A (en) Lithium ion battery electrolyte, preparation method thereof and lithium battery comprising lithium ion battery electrolyte
KR100471968B1 (en) Electrolytes and lithium secondary batteries

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040813

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080604

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080609

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080704

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080709

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080804

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100326

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees