JP5201794B2 - Lithium secondary battery and method for producing lithium secondary battery - Google Patents

Lithium secondary battery and method for producing lithium secondary battery Download PDF

Info

Publication number
JP5201794B2
JP5201794B2 JP2005368961A JP2005368961A JP5201794B2 JP 5201794 B2 JP5201794 B2 JP 5201794B2 JP 2005368961 A JP2005368961 A JP 2005368961A JP 2005368961 A JP2005368961 A JP 2005368961A JP 5201794 B2 JP5201794 B2 JP 5201794B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005368961A
Other languages
Japanese (ja)
Other versions
JP2007173026A (en
Inventor
輝 高椋
性洙 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2005368961A priority Critical patent/JP5201794B2/en
Priority to KR1020060131843A priority patent/KR100766981B1/en
Priority to US11/614,374 priority patent/US7910245B2/en
Publication of JP2007173026A publication Critical patent/JP2007173026A/en
Application granted granted Critical
Publication of JP5201794B2 publication Critical patent/JP5201794B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、リチウム二次電池及びリチウム二次電池の製造方法に関するものであり、特に、高容量でサイクル特性に優れたリチウム二次電池に関するものである。   The present invention relates to a lithium secondary battery and a method for producing the lithium secondary battery, and more particularly to a lithium secondary battery having a high capacity and excellent cycle characteristics.

リチウム二次電池は、携帯電話機、デジタルスチルカメラ、デジタルビデオカメラ、ノートパソコン等の電子機器の電源として広く普及している。リチウム二次電池としては、LiCoOを正極活物質とし、黒鉛を負極活物質とし、更に非水溶液を電解質とする電池がある。 Lithium secondary batteries are widely used as power sources for electronic devices such as mobile phones, digital still cameras, digital video cameras, and notebook computers. As a lithium secondary battery, there is a battery using LiCoO 2 as a positive electrode active material, graphite as a negative electrode active material, and a non-aqueous solution as an electrolyte.

近年、リチウム二次電池では、電子機器の使用電力の増加に伴って、高容量化の要求がますます高まってきている。この要求に対応するために、黒鉛に代えてSiを主成分とする負極活物質の研究が進められている。Siを主成分とする負極活物質は、黒鉛と比べて10倍近い充放電容量を有することから、将来の電極材料として有望である。しかしながら、Siを主成分とする負極活物質は、充電時にリチウムと合金を形成してその体積が膨張したり、電解質を分解するなどの不具合があった。
この不具合を解決するために、Siが含まれ、かつ表面のみからSiが除去されてなる多相合金粉末から構成された負極活物質が開発され(特許文献1)、Siを含む負極活物質の実用化が現実のものになってきている。
特開2005−071772号公報
In recent years, lithium secondary batteries have been increasingly demanded for higher capacities as electric power used by electronic devices has increased. In order to meet this requirement, research on a negative electrode active material containing Si as a main component instead of graphite has been underway. A negative electrode active material mainly composed of Si is promising as a future electrode material since it has a charge / discharge capacity nearly 10 times that of graphite. However, the negative electrode active material containing Si as a main component has problems such as forming an alloy with lithium during charging and expanding its volume, or decomposing the electrolyte.
In order to solve this problem, a negative electrode active material composed of a multiphase alloy powder containing Si and having Si removed from only the surface has been developed (Patent Document 1). Practical use is becoming a reality.
Japanese Patent Laid-Open No. 2005-071772

しかしながら、従来のリチウム二次電池では、充電により正極活物質からLiを脱離させた際に、正極活物質が電気化学的に不安定な状態となり、正極活物質を構成するCoなどの金属が溶出して正極活物質が劣化するという問題がある。正極活物質が劣化すると、サイクル特性が劣化したり充電時の安全性が低下したりする。また、正極活物質の劣化は、高容量であるほど顕著であるため、高容量で、なおかつサイクル特性や充電時の安全性に優れたリチウム二次電池を得ることが困難であった。     However, in the conventional lithium secondary battery, when Li is desorbed from the positive electrode active material by charging, the positive electrode active material becomes electrochemically unstable, and a metal such as Co constituting the positive electrode active material is There is a problem that the positive electrode active material deteriorates due to elution. When the positive electrode active material is deteriorated, cycle characteristics are deteriorated or safety during charging is lowered. Moreover, since the deterioration of the positive electrode active material becomes more conspicuous as the capacity increases, it is difficult to obtain a lithium secondary battery having a high capacity and excellent cycle characteristics and safety during charging.

本発明は上記事情に鑑みてなされたものであり、充電することによる正極活物質の劣化を防ぐことができ、高容量でサイクル特性や充電時の安全性に優れたリチウム二次電池及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, can prevent deterioration of the positive electrode active material due to charging, has a high capacity, and is excellent in cycle characteristics and safety during charging, and its manufacture It aims to provide a method.

上記の目的を達成するために、本発明は以下の構成を採用した。
本発明のリチウム二次電池は、リチウムの挿入、脱離が可能な正極活物質を含む正極と、リチウムの挿入、脱離が可能な負極活物質を含む負極と、非水電解質とを具備してなり、前記正極活物質に、下記の一般式(1)〜(5)のうちのいずれか1種または2種以上のポリエーテル変性シリコーン油が担持されていることを特徴とする。
ただし、一般式(1)〜(5)において、kは1〜9の範囲であり、lは0から3の範囲の自然数であり、mは0から1の範囲の自然数であり、nは1〜2の範囲の自然数であり、RはCHまたはCのいずれかであり、ZはCHまたはCのいずれかである。
In order to achieve the above object, the present invention employs the following configuration.
The lithium secondary battery of the present invention comprises a positive electrode containing a positive electrode active material capable of inserting and removing lithium, a negative electrode containing a negative electrode active material capable of inserting and removing lithium, and a non-aqueous electrolyte. Thus, the positive electrode active material carries any one or two or more polyether-modified silicone oils of the following general formulas (1) to (5).
In general formulas (1) to (5), k is in the range of 1 to 9, l is a natural number in the range of 0 to 3, m is a natural number in the range of 0 to 1, and n is 1 Is a natural number in the range of ˜2, R is either CH 3 or C 6 H 5 , and Z is either CH 3 or C 2 H 5 .

Figure 0005201794
Figure 0005201794

また、本発明のリチウム二次電池は、前記負極活物質がSiを主体として構成されていることを特徴とするものとすることができる。
このようなリチウム二次電池とすることで、高容量な負極を有するものとなる。
The lithium secondary battery of the present invention may be characterized in that the negative electrode active material is mainly composed of Si.
By setting it as such a lithium secondary battery, it has a high capacity | capacitance negative electrode.

また、上記の目的を達成するために、本発明のリチウム二次電池の製造方法は、リチウムの挿入、脱離が可能な正極活物質を含む正極と、リチウムの挿入、脱離が可能な負極活物質を含む負極と、非水電解質とを具備してなるリチウム二次電池の製造方法であって、前記正極活物質に、下記の一般式(6)〜(10)のうちのいずれか1種または2種以上のポリエーテル変性シリコーン油を担持させることを特徴とする。
ただし、一般式(6)〜(10)において、kは1〜9の範囲であり、lは0から3の範囲の自然数であり、mは0から1の範囲の自然数であり、nは1〜2の範囲の自然数であり、RはCHまたはCのいずれかであり、ZはCHまたはCのいずれかである。
In order to achieve the above object, the method for producing a lithium secondary battery of the present invention includes a positive electrode including a positive electrode active material capable of inserting and removing lithium, and a negative electrode capable of inserting and removing lithium. A method for producing a lithium secondary battery comprising a negative electrode including an active material and a nonaqueous electrolyte, wherein the positive electrode active material includes any one of the following general formulas (6) to (10): A seed or two or more polyether-modified silicone oils are supported.
In general formulas (6) to (10), k is in the range of 1 to 9, l is a natural number in the range of 0 to 3, m is a natural number in the range of 0 to 1, and n is 1 Is a natural number in the range of ˜2, R is either CH 3 or C 6 H 5 , and Z is either CH 3 or C 2 H 5 .

Figure 0005201794
Figure 0005201794

このような製造方法によれば、正極活物質に、上記の一般式(6)〜(10)のうちのいずれか1種または2種以上のポリエーテル変性シリコーン油が担持されているリチウム二次電池を容易に得ることができる。   According to such a production method, a lithium secondary in which any one or two or more polyether-modified silicone oils of the above general formulas (6) to (10) are supported on the positive electrode active material. A battery can be obtained easily.

また、本発明のリチウム二次電池の製造方法は、前記正極に前記ポリエーテル変性シリコーン油を塗布することにより、前記正極活物質に前記ポリエーテル変性シリコーン油を担持させることを特徴とする方法とすることができる。   The method for producing a lithium secondary battery of the present invention is characterized in that the polyether-modified silicone oil is supported on the positive electrode active material by applying the polyether-modified silicone oil to the positive electrode. can do.

また、本発明のリチウム二次電池の製造方法は、前記ポリエーテル変性シリコーン油を前記正極活物質に含浸させた後、前記正極を形成することにより、前記正極活物質に前記ポリエーテル変性シリコーン油を担持させることを特徴とする方法としてもよい。   The method for producing a lithium secondary battery according to the present invention includes the step of impregnating the polyether-modified silicone oil into the positive electrode active material, and then forming the positive electrode, whereby the polyether-modified silicone oil is added to the positive electrode active material. It is good also as a method characterized by carrying | supporting.

本発明のリチウム二次電池は、正極活物質に、上記の一般式(1)〜(5)のうちのいずれか1種または2種以上のポリエーテル変性シリコーン油が担持されているものであるので、正極活物質の劣化が防止され、高容量化した場合でもサイクル特性や充電時の安全性に優れたリチウム二次電池となる。   The lithium secondary battery of the present invention is one in which any one or two or more polyether-modified silicone oils of the above general formulas (1) to (5) are supported on the positive electrode active material. Therefore, the positive electrode active material is prevented from being deteriorated, and even when the capacity is increased, the lithium secondary battery is excellent in cycle characteristics and safety during charging.

以下、本発明の実施の形態を説明する。
本発明のリチウム二次電池は、正極と負極と電解質とを具備している。
(正極)
本発明のリチウム二次電池では、正極として、リチウムの挿入、脱離が可能な正極活物質と導電助材と結着剤とが含有されてなる正極合材と、正極合材に接合される正極集電体とからなるシート状の電極を用いることができる。また、正極の電極として、上記の正極合材を円板状に成形させてなるペレット型若しくはシート状の電極も用いることができる。
Embodiments of the present invention will be described below.
The lithium secondary battery of the present invention includes a positive electrode, a negative electrode, and an electrolyte.
(Positive electrode)
In the lithium secondary battery of the present invention, a positive electrode mixture containing a positive electrode active material capable of inserting and removing lithium, a conductive additive, and a binder as a positive electrode is joined to the positive electrode mixture. A sheet-like electrode composed of a positive electrode current collector can be used. Further, as the positive electrode, a pellet-type or sheet-like electrode obtained by forming the positive electrode mixture into a disk shape can also be used.

また、本発明のリチウム二次電池では、正極を構成する正極活物質に、ポリエーテル変性シリコーン油が担持されている。正極活物質にポリエーテル変性シリコーン油が担持されているとは、例えば、正極活物質自体にポリエーテル変性シリコーン油をしみ込ませた状態とか、正極活物質の表面にポリエーテル変性シリコーン油を付けた状態のことをいう。   Moreover, in the lithium secondary battery of this invention, the polyether modified silicone oil is carry | supported by the positive electrode active material which comprises a positive electrode. The fact that the polyether-modified silicone oil is supported on the positive electrode active material means that, for example, the positive electrode active material itself is impregnated with the polyether-modified silicone oil or the surface of the positive electrode active material is attached with the polyether-modified silicone oil. It means a state.

正極活物質としては、Liを含んだ化合物、酸化物、硫化物を挙げることができ、含まれる金属としては、例えば、Mn、Co、Ni、Fe、Al等、少なくとも一種類以上含む物質を例示できる。更に具体的にはLiMn、LiCoO、LiNiO、LiFeO2、LiNi1/3Co1/3Mn1/32、LiNi0.8Co0.2等を例示できる。
また結着剤としてはポリフッ化ビニリデン、ポリ4フッ化エチレン等を例示できる。
更に導電助材としては、カーボンブラック、ケッチェンブラック、黒鉛等の炭素化物を例示できる。更に正極集電体としては、アルミニウム、ステンレス等からなる金属箔または金属網を例示できる。
Examples of the positive electrode active material include Li-containing compounds, oxides, and sulfides, and examples of the contained metal include substances containing at least one or more of Mn, Co, Ni, Fe, Al, and the like. it can. More specifically, LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , LiFeO 2, LiNi 1/3 Co 1/3 Mn 1/3 O 2, LiNi 0.8 Co 0.2 O 2 and the like can be exemplified.
Examples of the binder include polyvinylidene fluoride and polytetrafluoroethylene.
Furthermore, examples of the conductive aid include carbonized materials such as carbon black, ketjen black, and graphite. Furthermore, examples of the positive electrode current collector include a metal foil or a metal net made of aluminum, stainless steel, or the like.

また、ポリエーテル変性シリコーン油としては、上記の一般式(1)〜(5)のうちのいずれか1種または2種以上のポリエーテル変性シリコーン油を用いることができる。上記の一般式(1)〜(5)に示すポリエーテル変性シリコーン油は、直鎖ポリシロキサン鎖(SiR-O-(SiRO-)-SiR)または環状ポリシロキサンに、1本乃至2本のポリエーテル鎖[(-(CH-(CH(CH)CH-O-(CO)-Z)または(-(CH-(CH(CH)CH-O-(CO)-(CHCH(CH))-(CH)-]が結合してなるものである。これらのポリエーテル変性シリコーン油は、鎖状または環状のポリシロキサン鎖を有するために熱安定性が高いものである。 Moreover, as a polyether modified silicone oil, any 1 type (s) or 2 or more types of polyether modified silicone oils of said general formula (1)-(5) can be used. One polyether-modified silicone oil represented by the above general formulas (1) to (5) is included in a linear polysiloxane chain (SiR 2 —O— (SiR 2 O—) k —SiR 2 ) or a cyclic polysiloxane. To two polyether chains [(— (CH 2 ) 1 — (CH (CH 3 ) CH 2 ) m —O— (C 2 H 4 O) n —Z) or (— (CH 2 ) 1 — ( CH (CH 3) CH 2) m -O- (C 2 H 4 O) n - (CH 2 CH (CH 3)) m - (CH 2) l) -] in which is formed by bonding. These polyether-modified silicone oils have high thermal stability because they have a linear or cyclic polysiloxane chain.

また、上記一般式(1)〜(5)に示すポリエーテル変性シリコーン油の構造式の中で、kは1〜9の範囲であり、lは0から3の範囲の自然数であり、mは0から1の範囲の自然数であり、nは1〜2の範囲の自然数であり、RはCHまたはCのいずれかであり、ZはCHまたはCのいずれかである。
kが9を越えると熱安定性は向上するものの、粘度が高くなるおそれがあり、正極の電極に塗布しにくくなるため好ましくない。またkが0ではシリコーン油が分解しやすくなるので、kは1以上が好ましい。
また、lが3を越えると粘度が高くなって正極の電極に塗布しにくくなるので好ましくない。また、mが1を越えた場合にも、ポリエーテル鎖が長くなって粘度が高くなり、正極の電極に塗布しにくくなるので好ましくない。
また、nが1未満(即ちnが0)だと、分解しやすくなるので好ましくない。
また、nが2を越えるとポリエーテル鎖が長くなって粘度が高くなり、正極の電極に塗布しにくくなるので好ましくない。
更に、RがCHまたはCのいずれかであり、ZがCHまたはCのいずれかであれば、ポリエーテル変性シリコーン油の合成が容易になる。
In the structural formulas of the polyether-modified silicone oils represented by the general formulas (1) to (5), k is in the range of 1 to 9, l is a natural number in the range of 0 to 3, and m is Is a natural number in the range of 0 to 1, n is a natural number in the range of 1 to 2, R is either CH 3 or C 6 H 5 , and Z is either CH 3 or C 2 H 5 is there.
If k exceeds 9, the thermal stability is improved, but the viscosity is likely to increase, and it is difficult to apply to the positive electrode, which is not preferable. Further, when k is 0, silicone oil is easily decomposed, so k is preferably 1 or more.
On the other hand, when l exceeds 3, it is not preferable because the viscosity increases and it becomes difficult to apply to the positive electrode. Further, when m exceeds 1, it is not preferable because the polyether chain becomes long and the viscosity becomes high and it becomes difficult to apply to the positive electrode.
Moreover, it is not preferable that n is less than 1 (that is, n is 0) because it is easily decomposed.
On the other hand, if n exceeds 2, the polyether chain becomes long and the viscosity becomes high, which makes it difficult to apply to the positive electrode.
Furthermore, when R is either CH 3 or C 6 H 5 and Z is either CH 3 or C 2 H 5 , the synthesis of the polyether-modified silicone oil is facilitated.

正極活物質に担持されているポリエーテル変性シリコーン油の量は、正極活物質に対して0.001質量%〜10質量%の範囲が好ましく、0.001質量%〜5質量%の範囲がより好ましい。ポリエーテル変性シリコーン油の量が正極活物質に対して0.001質量%未満だと、正極の劣化を防止する効果が十分に得られない恐れがある。また、ポリエーテル変性シリコーン油の量が正極活物質に対して10質量%を超えると、電解質と正極活物質との接触が必要以上に妨げられ、充放電効率を低下させる場合がある。     The amount of the polyether-modified silicone oil supported on the positive electrode active material is preferably in the range of 0.001% by mass to 10% by mass with respect to the positive electrode active material, and more preferably in the range of 0.001% by mass to 5% by mass. preferable. When the amount of the polyether-modified silicone oil is less than 0.001% by mass with respect to the positive electrode active material, the effect of preventing the deterioration of the positive electrode may not be sufficiently obtained. Moreover, when the quantity of polyether modified silicone oil exceeds 10 mass% with respect to a positive electrode active material, the contact with an electrolyte and a positive electrode active material will be prevented more than needed, and charge / discharge efficiency may be reduced.

また、正極活物質にポリエーテル変性シリコーン油を担持させる方法としては、いかなる方法を用いてもよく、例えば、あらかじめ正極活物質と導電助材と結着剤とからなる正極合材を集電体上に形成して正極を製造し、この正極をポリエーテル変性シリコーン油中に浸すことにより正極にポリエーテル変性シリコーン油を塗布した後、乾燥させる方法などを用いることができる。この場合、例えば、ポリエーテル変性シリコーン油に代えて、ポリエーテル変性シリコーン油を含む溶媒などの溶液を用い、溶液中に正極の電極を浸した後、乾燥して溶媒を揮発させる方法などを用いることができる。ここでの溶媒としては、例えば、電池電解液で用いるカーボネート系溶媒(ジメチルカーボネート、ジエチルカーボネートなど)や、アセトン、エーテル、アルコール等、上記のポリエーテル変性シリコーン油を溶解するものであれば、いかなるものであってもよいが、沸点が高く、揮発しにくいものを用いることが望ましい。また、溶媒が残存する可能性のある場合、電池電解液で用いる溶媒が好ましい。   Moreover, any method may be used as a method for supporting the polyether-modified silicone oil on the positive electrode active material. For example, a positive electrode mixture composed of a positive electrode active material, a conductive additive, and a binder is collected in advance. It is possible to use a method in which a positive electrode is produced by forming the positive electrode, and the positive electrode is coated with a polyether-modified silicone oil by immersing the positive electrode in a polyether-modified silicone oil, followed by drying. In this case, for example, instead of the polyether-modified silicone oil, a solution such as a solvent containing a polyether-modified silicone oil is used, and after the positive electrode is immersed in the solution, the solvent is volatilized by drying. be able to. As the solvent here, for example, any carbonate-based solvent (dimethyl carbonate, diethyl carbonate, etc.) used in the battery electrolyte, acetone, ether, alcohol, etc., as long as it dissolves the above polyether-modified silicone oil can be used. Although it may be a thing, it is desirable to use a thing with a high boiling point and being hard to volatilize. Moreover, when there exists a possibility that a solvent may remain | survive, the solvent used with a battery electrolyte solution is preferable.

また、正極活物質にポリエーテル変性シリコーン油を担持させる他の方法としては、例えば、あらかじめ正極活物質にポリエーテル変性シリコーン油を含浸させておき、ポリエーテル変性シリコーン油の含浸した正極活物質と導電助材と結着剤とからなる正極合材をN−メチル−2−ピロリドンなどのバインダーに投入して正極スラリーとし、得られた正極スラリーを集電体上に塗布した後、乾燥させてバインダーを揮発除去することにより正極を製造する方法などを挙げることができる。   Further, as another method of supporting the polyether-modified silicone oil on the positive electrode active material, for example, the positive electrode active material is impregnated with the polyether-modified silicone oil in advance, and the positive electrode active material impregnated with the polyether-modified silicone oil and A positive electrode mixture composed of a conductive additive and a binder is put into a binder such as N-methyl-2-pyrrolidone to form a positive electrode slurry. The obtained positive electrode slurry is applied onto a current collector and then dried. The method of manufacturing a positive electrode by volatilizing and removing a binder can be mentioned.

さらに、正極活物質にポリエーテル変性シリコーン油を担持させる他の方法としては、例えば、正極活物質と導電助材と結着剤とからなる正極合材を、ポリエーテル変性シリコーン油と共にN−メチル−2−ピロリドンなどのバインダーに投入して正極スラリーとし、得られた正極スラリーを集電体上に塗布した後、乾燥させてバインダーを揮発除去することにより正極を製造する方法などを挙げることができる。   Furthermore, as another method of supporting the polyether-modified silicone oil on the positive electrode active material, for example, a positive electrode mixture composed of a positive electrode active material, a conductive additive and a binder is used together with a polyether-modified silicone oil and N-methyl. -2-Pyrrolidone and the like are put into a positive electrode slurry, and after the obtained positive electrode slurry is applied on a current collector, it is dried and the binder is volatilized and removed to give a positive electrode. it can.

ポリエーテル変性シリコーン油を製造するには、例えば、R基の一部を水素に置換したポリシロキサンに対して、例えば(CH=CH-)のような二重結合を有するポリエーテル化合物を反応させることによって得られる。
尚、このようにして製造されたポリエーテル変性シリコーン油には、触媒成分であるPt(白金)や、重合禁止剤であるBHTが数〜数十ppm程度含まれている。PtやBHTはサイクル特性に悪影響を及ぼすものであるから、できるだけ除去することが望ましい。本発明ではポリエーテル変性シリコーン油に含まれるPtが少なくとも5ppm未満であるとともにBHTが60ppm未満であることが好ましく、Pt、BHTがそれぞれ検出限界以下であることがより好ましい。
In order to produce a polyether-modified silicone oil, for example, a polyether compound having a double bond such as (CH 2 ═CH—) is reacted with a polysiloxane in which a part of the R group is substituted with hydrogen. To obtain.
The polyether-modified silicone oil produced in this way contains about several to several tens of ppm of Pt (platinum) as a catalyst component and BHT as a polymerization inhibitor. Since Pt and BHT adversely affect the cycle characteristics, it is desirable to remove them as much as possible. In the present invention, it is preferable that Pt contained in the polyether-modified silicone oil is at least less than 5 ppm and BHT is less than 60 ppm, and more preferably that Pt and BHT are each below the detection limit.

(負極)
負極としては、リチウムの挿入、脱離が可能な負極活物質と結着剤及び必要に応じて導電助材とが含有されてなる負極合材と、この負極合材に接合される負極集電体とからなるシート状の電極を用いることができる。また、上記の負極合材を円板状に成形させてなるペレット型若しくはシート状の電極も用いることができる。
(Negative electrode)
As the negative electrode, a negative electrode mixture containing a negative electrode active material capable of inserting and removing lithium, a binder, and, if necessary, a conductive additive, and a negative electrode current collector bonded to the negative electrode mixture A sheet-like electrode made of a body can be used. Moreover, the pellet type or sheet-like electrode formed by shape | molding said negative electrode compound material in a disk shape can also be used.

負極の結着剤は、有機質または無機質のいずれでも良く、負極活物質と共に溶媒に分散あるいは溶解し、更に溶媒を除去することにより負極活物質を結着させるものであればどのようなものでもよい。また、負極活物質と共に混合し、加圧成形等の固化成形を行うことにより負極活物質を結着させるものでもよい。このような結着剤として例えば、ビニル系樹脂、セルロース系樹脂、フェノール樹脂、熱可塑性樹脂、熱硬化性樹脂などが使用でき、例えばポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、スチレンブタジエンラバー、等の樹脂を例示できる。
また、負極活物質及び結着剤の他に、導電助材としてカーボンブラック、黒鉛粉末、炭素繊維、金属粉末、金属繊維等を添加しても良い。更に負極集電体としては、銅からなる金属箔または金属網を例示できる。
The binder for the negative electrode may be either organic or inorganic, and may be any material as long as it is dispersed or dissolved in a solvent together with the negative electrode active material and further binds the negative electrode active material by removing the solvent. . Alternatively, the negative electrode active material may be bound by mixing with the negative electrode active material and performing solidification molding such as pressure molding. As such a binder, for example, vinyl resin, cellulose resin, phenol resin, thermoplastic resin, thermosetting resin and the like can be used, such as polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, styrene butadiene rubber, etc. Resins can be exemplified.
In addition to the negative electrode active material and the binder, carbon black, graphite powder, carbon fiber, metal powder, metal fiber, or the like may be added as a conductive additive. Furthermore, examples of the negative electrode current collector include a metal foil or a metal net made of copper.

負極活物質の一例としては、Siを主体とした急冷合金やメカニカルアロイで得られた合金が挙げられる。   Examples of the negative electrode active material include a quenched alloy mainly composed of Si and an alloy obtained by mechanical alloy.

なお、本実施形態においては、負極活物質として、Siを主体として構成されている合金を例に挙げて説明したが、本発明において使用可能な負極活物質は、上記の例に限定されるものではなく、例えば、人造黒鉛、天然黒鉛、黒鉛化炭素繊維、黒鉛化メソカーボンマイクロビーズ、非晶質炭素等の炭素質材料を例示できる。また、負極活物質として、リチウムと合金化が可能な金属質物単体やこの金属質物と炭素質材料を含む複合物も負極活物質として例示できる。リチウムと合金化が可能な金属としては、上述したSiの他、Al、Sn、Pb、Zn、Bi、In、Mg、Ga、Cd等を例示できる。また負極活物質として金属リチウム箔も使用できる。   In this embodiment, the negative electrode active material has been described by taking an example of an alloy mainly composed of Si. However, the negative electrode active material usable in the present invention is limited to the above example. Instead, for example, carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, graphitized mesocarbon microbeads, and amorphous carbon can be exemplified. Moreover, as a negative electrode active material, the metal substance simple substance which can be alloyed with lithium, and the composite containing this metal substance and a carbonaceous material can be illustrated as a negative electrode active material. Examples of the metal that can be alloyed with lithium include Al, Sn, Pb, Zn, Bi, In, Mg, Ga, and Cd, in addition to the above-described Si. A metal lithium foil can also be used as the negative electrode active material.

(非水電解質)
非水電解質としては、例えば、非プロトン性溶媒にリチウム塩が溶解されてなる非水電解質を例示できる。
非プロトン性溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ベンゾニトリル、アセトニトリル、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、ジオキソラン、4−メチルジオキソラン、N、N−ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ジオキサン、1,2−ジメトキシエタン、スルホラン、ジクロロエタン、クロロベンゼン、ニトロベンゼン、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルブチルカーボネート、ジプロピルカーボネート、ジイソプロピルカーボネート、ジブチルカーボネート、ジエチレングリコール、ジメチルエーテル等の非プロトン性溶媒、あるいはこれらの溶媒のうちの二種以上を混合した混合溶媒を例示でき、特にプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)のいずれか1つを必ず含むとともにジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)のいずれか1つを必ず含むものが好ましい。
(Nonaqueous electrolyte)
Examples of the non-aqueous electrolyte include a non-aqueous electrolyte in which a lithium salt is dissolved in an aprotic solvent.
As aprotic solvents, propylene carbonate, ethylene carbonate, butylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, dioxolane, 4-methyldioxolane, N, N-dimethylformamide, dimethylacetamide, dimethyl Sulfoxide, dioxane, 1,2-dimethoxyethane, sulfolane, dichloroethane, chlorobenzene, nitrobenzene, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl butyl carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate , Diethylene glycol, dimethyl An aprotic solvent such as ether or a mixed solvent obtained by mixing two or more of these solvents can be exemplified, and in particular, any one of propylene carbonate (PC), ethylene carbonate (EC), and butylene carbonate (BC) In addition, it is preferable to always contain any one of dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC).

また、リチウム塩としては、LiPF、LiBF、LiSbF、LiAsF、LiClO、LiCFSO、Li(CFSON、LiCSO、LiSbF、LiAlO、LiAlCl、LiN(C2x+1SO)(C2y十1SO)(ただしx、yは自然数)、LiCl、LiI等のうちの1種または2種以上のリチウム塩を混合させてなるものを例示でき、特にLiPFを含むものが好ましい。 As the lithium salt, LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiClO 4, LiCF 3 SO 3, Li (CF 3 SO 2) 2 N, LiC 4 F 9 SO 3, LiSbF 6, LiAlO 4, LiAlCl 4, LiN (C x F 2x + 1 SO 2) (C y F 2y tens 1 SO 2) (provided that x, y is a natural number), LiCl, by mixing one or more lithium salts of such LiI In particular, those containing LiPF 6 are preferred.

また非水電解質に代えて、PEO、PVA等のポリマーに上記記載のリチウム塩のいずれかを混合させたものや、膨潤性の高いポリマーに有機電解液を含浸させたもの等、いわゆるポリマー電解質を用いても良い。   In place of the non-aqueous electrolyte, a polymer electrolyte such as PEO or PVA mixed with any of the lithium salts described above, or a highly swellable polymer impregnated with an organic electrolyte may be used. It may be used.

更に、本発明のリチウム二次電池は、正極、負極、電解質のみに限られず、必要に応じて他の部材等を備えていても良く、例えば正極と負極を隔離するセパレータを具備しても良い。セパレータは、非水電解質がゲル化していない場合には必須であり、多孔質のポリプロピレンフィルム、多孔質のポリエチレンフィルム等、公知のセパレータを適宜使用できる。   Furthermore, the lithium secondary battery of the present invention is not limited to the positive electrode, the negative electrode, and the electrolyte, and may include other members as necessary. For example, the lithium secondary battery may include a separator that separates the positive electrode and the negative electrode. . The separator is essential when the non-aqueous electrolyte is not gelled, and a known separator such as a porous polypropylene film or a porous polyethylene film can be appropriately used.

次に、本実施形態のリチウム二次電池の充電反応について説明する。
一般的に、充電反応は、次のようにして進行する。例えば、正極活物質としてLiCoOを用いた場合には、充電によりLiCoOからリチウムイオンが脱離し、脱離したリチウムイオンが負極活物質(例えば黒鉛)の結晶中に挿入される。ここで、充電が進んで充電末期になると、LiCoOがLi0.5CoO等の電気化学的に不安定な状態となる。具体的には、Coが溶出されやすい状態となる。
本実施形態においては、正極活物質に、ポリエーテル変性シリコーン油が担持されているので、正極活物質の表面と電解質との接触が妨げられ、充電時における正極活物質の劣化が防止されるものと考えられる。よって、本実施形態のリチウム二次電池によれば、サイクル特性や充電時の安全性に優れ、特に過充電耐性に優れたリチウム二次電池が得られる。
Next, the charging reaction of the lithium secondary battery of this embodiment will be described.
In general, the charging reaction proceeds as follows. For example, when LiCoO 2 is used as the positive electrode active material, lithium ions are desorbed from LiCoO 2 by charging, and the desorbed lithium ions are inserted into the crystal of the negative electrode active material (eg, graphite). Here, when charging progresses and the end of charging is reached, LiCoO 2 enters an electrochemically unstable state such as Li 0.5 CoO 2 . Specifically, Co is easily eluted.
In this embodiment, since the polyether active silicone oil is supported on the positive electrode active material, contact between the surface of the positive electrode active material and the electrolyte is prevented, and deterioration of the positive electrode active material during charging is prevented. it is conceivable that. Therefore, according to the lithium secondary battery of this embodiment, a lithium secondary battery having excellent cycle characteristics and safety during charging, and particularly excellent overcharge resistance can be obtained.

このように本実施形態のリチウム二次電池では、正極活物質に、ポリエーテル変性シリコーン油が担持されているので、充電時の正極活物質の電気化学的な安定性が向上し、正極活物質の劣化が生じにくくなると推定される。しかも、充電時の正極活物質の電気化学的な安定性が向上して、正極活物質からLiイオンが取り出しやすくなると考えられ、サイクル特性が向上する。したがって、本実施形態のリチウム二次電池のように、負極活物質としてSiを主体として構成された高容量のものを用いた場合でもサイクル特性や充電時の安全性に優れたものとなる。   As described above, in the lithium secondary battery of this embodiment, since the polyether-modified silicone oil is supported on the positive electrode active material, the electrochemical stability of the positive electrode active material during charging is improved, and the positive electrode active material It is presumed that the deterioration of is less likely to occur. Moreover, it is considered that the electrochemical stability of the positive electrode active material during charging is improved, and Li ions can be easily taken out from the positive electrode active material, thereby improving cycle characteristics. Therefore, even when a high-capacity material mainly composed of Si is used as the negative electrode active material like the lithium secondary battery of this embodiment, the cycle characteristics and the safety during charging are excellent.

(実施例1)
次のようにしてリチウム二次電池を製造した。
まず、LiCoOからなる正極活物質96質量部と、ポリフッ化ビニリデン10質量部からなる結着剤と、炭素粉末(カーボンブラック(Denka Black:商品名))2質量部からなる導電助材とを混合し、更にN−メチル−2−ピロリドンを混合して正極スラリーとした。次いで、得られた正極スラリーを、ドクターブレード法によりアルミニウム箔からなる集電体上に塗布し、乾燥させてN−メチル−2−ピロリドンを揮発させた後、圧延し、シート状の電極を得た。
Example 1
A lithium secondary battery was manufactured as follows.
First, 96 parts by mass of a positive electrode active material composed of LiCoO 2 , a binder composed of 10 parts by mass of polyvinylidene fluoride, and a conductive additive composed of 2 parts by mass of carbon powder (carbon black (Denka Black: trade name)). Then, N-methyl-2-pyrrolidone was further mixed to form a positive electrode slurry. Next, the obtained positive electrode slurry was applied onto a current collector made of aluminum foil by a doctor blade method, dried to volatilize N-methyl-2-pyrrolidone, and then rolled to obtain a sheet-like electrode. It was.

また、下記式(11)に示す構造のポリエーテル変性シリコーン油をジメチルカーボネート(DMC)からなる溶媒に添加することにより、10質量%のシリコーン溶液を調製した。
そして、得られたシリコーン溶液中に、上記の電極を浸した後、乾燥して溶媒を揮発させて正極を得た。なお、得られた正極の正極活物質に担持されたポリエーテル変性シリコーン油の量は、正極活物質に対して0.5質量%であった。
Moreover, a 10 mass% silicone solution was prepared by adding the polyether modified silicone oil of the structure shown in following formula (11) to the solvent which consists of dimethyl carbonate (DMC).
And after immersing said electrode in the obtained silicone solution, it dried and volatilized the solvent and obtained the positive electrode. The amount of the polyether-modified silicone oil supported on the positive electrode active material of the positive electrode obtained was 0.5% by mass with respect to the positive electrode active material.

Figure 0005201794
Figure 0005201794

また、以下の手順で多相合金粉末からなる負極活物質を製造した。
まず、塊状のSiを60質量部と、Ni粉末を30質量部と、Ag粉末を10質量部とをそれぞれ用意し、これらを混合してから高周波加熱法により溶解して合金溶湯とした。次いで、得られた合金溶湯をヘリウムガスを用いたガスアトマイズ法によって急冷することにより、平均粒径10μmの急冷合金粉末を得た。
次に、得られた急冷合金粉末30gを5Nの水酸化ナトリウム水溶液500ml中に入れ、室温でゆっくり攪拌しながら1時間かけて含侵処理した。その後、ナトリウムの残留がないように純水で十分に洗浄してから乾燥した後、粒度の調整を行って平均粒径12μmとした。このようにして、負極活物質を製造した。
Moreover, the negative electrode active material which consists of multiphase alloy powder was manufactured in the following procedures.
First, 60 parts by mass of bulk Si, 30 parts by mass of Ni powder, and 10 parts by mass of Ag powder were prepared, mixed, and then melted by a high-frequency heating method to obtain a molten alloy. Next, the obtained molten alloy was rapidly cooled by a gas atomizing method using helium gas to obtain a rapidly cooled alloy powder having an average particle size of 10 μm.
Next, 30 g of the rapidly quenched alloy powder obtained was put into 500 ml of 5N sodium hydroxide aqueous solution and impregnated for 1 hour with slow stirring at room temperature. Then, after sufficiently washing with pure water so that no sodium remains, the particle size was adjusted to an average particle size of 12 μm. In this way, a negative electrode active material was produced.

ここで得られた含侵処理後の負極活物質について、SEMによる観察を行なった。その結果、負極活物質の表面が多孔質構造であることが確認できた。また、負極活物質について、IPC分析を行った。その結果、Si量が60質量部から50質量部に減少していた。さらに、負極活物質についてEDXにより表面の元素分布を調べた。その結果、NiとSiとの合金相においてのみSiが存在し、含侵処理前に存在していたSiの単層がほとんど存在していなかった。   The negative electrode active material after impregnation treatment obtained here was observed by SEM. As a result, it was confirmed that the surface of the negative electrode active material had a porous structure. Moreover, the IPC analysis was performed about the negative electrode active material. As a result, the amount of Si was reduced from 60 parts by mass to 50 parts by mass. Further, the surface element distribution of the negative electrode active material was examined by EDX. As a result, Si was present only in the alloy phase of Ni and Si, and there was almost no Si monolayer that existed before the impregnation treatment.

次に、得られた負極活物質を70質量部と、平均粒径3μmの黒鉛粉末を20質量部と、ポリフッ化ビニリデンからなる結着剤を10質量部とを混合し、更にN−メチル−2−ピロリドンを混合して負極スラリーとした。この負極スラリーを、ドクターブレード法により厚み14μmのCu箔からなる集電体上に塗布し、乾燥させてN−メチル−2−ピロリドンを揮発させた後、圧延した。このようにして負極を製造した。   Next, 70 parts by mass of the obtained negative electrode active material, 20 parts by mass of graphite powder having an average particle size of 3 μm, and 10 parts by mass of a binder made of polyvinylidene fluoride were mixed, and N-methyl- 2-Pyrrolidone was mixed to form a negative electrode slurry. This negative electrode slurry was applied onto a current collector made of Cu foil having a thickness of 14 μm by a doctor blade method, dried to volatilize N-methyl-2-pyrrolidone, and then rolled. In this way, a negative electrode was produced.

次に、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とをEC:DEC=30:70で混合させてなる混合溶媒に、1.3モル/Lの濃度となるようにLiPFを添加して非水電解質を調製した。 Next, LiPF 6 was added to a mixed solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at EC: DEC = 30: 70 so that the concentration was 1.3 mol / L. A non-aqueous electrolyte was prepared.

その後、上記の正極および負極を円板状に切り出し、正極と負極を対向させて正極と負極の間にポリプロピレン製多孔質セパレータを配置してこれらを電池ケースに収納し、上記の電解質を注液してから電池ケースを密閉することにより、コイン型のリチウム二次電池を製造した。   Thereafter, the positive electrode and the negative electrode are cut into a disk shape, the positive electrode and the negative electrode are opposed to each other, a polypropylene porous separator is disposed between the positive electrode and the negative electrode, and these are accommodated in a battery case, and the electrolyte is injected. Then, a coin-type lithium secondary battery was manufactured by sealing the battery case.

(比較例1)
次のようにしてリチウム二次電池を製造した。
まず、実施例1と同様のシート状の電極を製造し、実施例1のポリエーテル変性シリコーン油に浸す前の電極を正極とした。また、実施例1と同様の負極を製造し、非水電解質を調製した。そして、実施例1と同様にして、コイン型のリチウム二次電池を製造した。
(Comparative Example 1)
A lithium secondary battery was manufactured as follows.
First, a sheet-like electrode similar to that of Example 1 was manufactured, and the electrode before being immersed in the polyether-modified silicone oil of Example 1 was used as a positive electrode. Moreover, the same negative electrode as Example 1 was manufactured, and the nonaqueous electrolyte was prepared. In the same manner as in Example 1, a coin-type lithium secondary battery was manufactured.

このようにして得られた実施例1および比較例1のリチウム二次電池について、電池電圧が4.15Vになるまで0.2Cの電流で定電流充電をした後、電流値が0.01Cになるまで定電圧充電を行った。その後、電池電圧が5.75Vになるまで0.2Cの電流で定電流放電をした。次いで、1Cの電流で上記の充電および放電を100サイクル行なった。その結果を表1に示す。
なお、表1においては、1Cの電流での1サイクルのときの容量を100%とした場合における100サイクルのときの容量から算出した容量維持率を示す。
The lithium secondary batteries of Example 1 and Comparative Example 1 thus obtained were charged at a constant current of 0.2 C until the battery voltage reached 4.15 V, and then the current value was 0.01 C. Constant voltage charging was performed until Thereafter, constant current discharge was performed at a current of 0.2 C until the battery voltage reached 5.75V. Next, 100 cycles of the above charging and discharging were performed at a current of 1 C. The results are shown in Table 1.
In Table 1, the capacity retention rate calculated from the capacity at 100 cycles when the capacity at 1 cycle at 1 C current is 100% is shown.

Figure 0005201794
Figure 0005201794

表1に示すように、実施例1のリチウム二次電池は、比較例1のリチウム二次電池と比較して、容量維持率が高いことが確認できた。これは、実施例1の正極活物質にポリエーテル変性シリコーン油が担持されているため、充放電サイクルの進行に伴う正極活物質の劣化が防止された結果によるものと推定される。

As shown in Table 1, it was confirmed that the lithium secondary battery of Example 1 had a higher capacity retention rate than the lithium secondary battery of Comparative Example 1. This is presumably due to the result of preventing the deterioration of the positive electrode active material accompanying the progress of the charge / discharge cycle because the polyether-modified silicone oil was supported on the positive electrode active material of Example 1.

Claims (2)

リチウムの挿入、脱離が可能な正極活物質を含む正極と、リチウムの挿入、脱離が可能な負極活物質を含む負極と、非水電解質とを具備してなるリチウム二次電池の製造方法であって、
前記正極に下記の一般式(6)〜(10)のうちのいずれか1種または2種以上のポリエーテル変性シリコーン油を塗布することにより、前記正極活物質に、前記ポリエーテル変性シリコーン油を担持させることを特徴とするリチウム二次電池の製造方法。
ただし、一般式(6)〜(10)において、kは1〜9の範囲であり、lは0から3の範囲の自然数であり、mは0から1の範囲の自然数であり、nは1〜2の範囲の自然数であり、RはCHまたはCのいずれかであり、ZはCHまたはCのいずれかである。
Figure 0005201794
A method for producing a lithium secondary battery, comprising: a positive electrode including a positive electrode active material capable of inserting and desorbing lithium; a negative electrode including a negative electrode active material capable of inserting and desorbing lithium; and a nonaqueous electrolyte. Because
By applying the positive electrode the following general formula (6) to (10) any one or more of the polyether-modified silicone oils of the positive electrode active material, the polyether-modified silicone oil A method for producing a lithium secondary battery, comprising supporting the lithium secondary battery.
In general formulas (6) to (10), k is in the range of 1 to 9, l is a natural number in the range of 0 to 3, m is a natural number in the range of 0 to 1, and n is 1 Is a natural number in the range of ˜2, R is either CH 3 or C 6 H 5 , and Z is either CH 3 or C 2 H 5 .
Figure 0005201794
リチウムの挿入、脱離が可能な正極活物質を含む正極と、リチウムの挿入、脱離が可能な負極活物質を含む負極と、非水電解質とを具備してなるリチウム二次電池の製造方法であって、A method for producing a lithium secondary battery, comprising: a positive electrode including a positive electrode active material capable of inserting and desorbing lithium; a negative electrode including a negative electrode active material capable of inserting and desorbing lithium; and a nonaqueous electrolyte. Because
下記の一般式(6)〜(10)のうちのいずれか1種または2種以上のポリエーテル変性シリコーン油を前記正極活物質に含浸させた後、前記正極を形成することにより、前記正極活物質に、前記ポリエーテル変性シリコーン油を担持させることを特徴とするリチウム二次電池の製造方法。After the positive electrode active material is impregnated with any one or two or more polyether-modified silicone oils of the following general formulas (6) to (10), the positive electrode is formed by forming the positive electrode. A method for producing a lithium secondary battery, comprising supporting a polyether-modified silicone oil on a substance.
ただし、一般式(6)〜(10)において、kは1〜9の範囲であり、lは0から3の範囲の自然数であり、mは0から1の範囲の自然数であり、nは1〜2の範囲の自然数であり、RはCHIn general formulas (6) to (10), k is in the range of 1 to 9, l is a natural number in the range of 0 to 3, m is a natural number in the range of 0 to 1, and n is 1 Is a natural number in the range of ~ 2, R is CH 3 またはCOr C 6 H 5 のいずれかであり、ZはCHZ is CH 3 またはCOr C 2 H 5 のいずれかである。One of them.
Figure 0005201794
Figure 0005201794
JP2005368961A 2005-12-22 2005-12-22 Lithium secondary battery and method for producing lithium secondary battery Active JP5201794B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005368961A JP5201794B2 (en) 2005-12-22 2005-12-22 Lithium secondary battery and method for producing lithium secondary battery
KR1020060131843A KR100766981B1 (en) 2005-12-22 2006-12-21 Cathode active material for lithium secondary battery, lithium secondary battery comprising the same, and method for preparing lithium secondary battery
US11/614,374 US7910245B2 (en) 2005-12-22 2006-12-21 Positive active material with a polyether modified silicone oil and rechargeable lithium battery including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005368961A JP5201794B2 (en) 2005-12-22 2005-12-22 Lithium secondary battery and method for producing lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2007173026A JP2007173026A (en) 2007-07-05
JP5201794B2 true JP5201794B2 (en) 2013-06-05

Family

ID=38299303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005368961A Active JP5201794B2 (en) 2005-12-22 2005-12-22 Lithium secondary battery and method for producing lithium secondary battery

Country Status (2)

Country Link
JP (1) JP5201794B2 (en)
KR (1) KR100766981B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5664942B2 (en) * 2011-05-12 2015-02-04 株式会社豊田自動織機 ELECTRODE FOR LITHIUM ION SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND LITHIUM ION SECONDARY BATTERY USING THE ELECTRODE
JP6384476B2 (en) * 2013-05-14 2018-09-05 日本ゼオン株式会社 Lithium ion secondary battery binder composition, lithium ion secondary battery slurry composition, lithium ion secondary battery electrode, lithium ion secondary battery, and method for producing lithium ion secondary battery binder composition
KR102534508B1 (en) 2016-01-27 2023-05-19 에스케이온 주식회사 Operation Method for Li-Battery and Apparatus thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878053A (en) * 1994-07-07 1996-03-22 Ricoh Co Ltd Lithium nonaqueous secondary battery
JPH10125307A (en) * 1996-10-23 1998-05-15 Sony Corp Lithium-ion secondary battery
JPH11273732A (en) 1998-03-24 1999-10-08 Tomiyama Pure Chemical Industries Ltd Nanaqueous electrolyte for secondary battery
JP2001110455A (en) * 1999-10-12 2001-04-20 Sony Corp Nonaqueous electrolyte battery
JP4537035B2 (en) * 2003-01-09 2010-09-01 三星エスディアイ株式会社 Non-aqueous electrolyte and lithium secondary battery
KR100529089B1 (en) * 2003-11-29 2005-11-15 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery and rechargeable lithium battery comprising same

Also Published As

Publication number Publication date
KR100766981B1 (en) 2007-10-15
KR20070066944A (en) 2007-06-27
JP2007173026A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
CN101192663B (en) An electrode for a rechargeable lithium battery and a rechargeable lithium battery fabricated therefrom
JP5290247B2 (en) Electrolytic solution for lithium battery, lithium battery, and operating method of lithium battery
KR101108945B1 (en) Electrolyte for lithium-sulphur batteries and lithium-sulphur batteries using the same
US20110179636A1 (en) Intercalation anode protection for cells with dissolved lithium polysulfides
KR101201804B1 (en) Negative active for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP5907682B2 (en) Composition for positive electrode protective film of lithium secondary battery, lithium secondary battery including the positive electrode protective film, and method for producing the same
JP4423277B2 (en) Lithium secondary battery
JP5277225B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM BATTERY, LITHIUM BATTERY CONTAINING THE SAME, AND METHOD FOR OPERATING LITHIUM BATTERY
JP2004103558A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery containing electrolytic solution
JP5702901B2 (en) Lithium secondary battery and non-aqueous electrolyte for lithium secondary battery
JP5357517B2 (en) Lithium ion secondary battery
KR101431259B1 (en) Additive for non-aqueous electrolyte and secondary battery using the same
JPH09147913A (en) Nonaqueous electrolyte battery
JP4345658B2 (en) Secondary battery
US7910245B2 (en) Positive active material with a polyether modified silicone oil and rechargeable lithium battery including the same
KR102096068B1 (en) Non-aqueous electrolyte for lithium ion battery containing silyl ether and lithium ion battery including the same
WO2022054343A1 (en) Lithium secondary battery
JP2008071624A (en) Lithium polymer battery
JP5201794B2 (en) Lithium secondary battery and method for producing lithium secondary battery
JP2004342575A (en) Secondary battery
CN112542608A (en) Rechargeable lithium battery and method of manufacturing the same
JP2006185728A (en) Lithium secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP4535722B2 (en) Nonaqueous electrolyte secondary battery
JP4394375B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121106

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130212

R150 Certificate of patent or registration of utility model

Ref document number: 5201794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250