JP2003331838A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2003331838A
JP2003331838A JP2002137899A JP2002137899A JP2003331838A JP 2003331838 A JP2003331838 A JP 2003331838A JP 2002137899 A JP2002137899 A JP 2002137899A JP 2002137899 A JP2002137899 A JP 2002137899A JP 2003331838 A JP2003331838 A JP 2003331838A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium secondary
negative electrode
positive electrode
carbon nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002137899A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kumashiro
祥晃 熊代
Soubun Okumura
壮文 奥村
Masahiro Kasai
昌弘 葛西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002137899A priority Critical patent/JP2003331838A/en
Publication of JP2003331838A publication Critical patent/JP2003331838A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem in a large output and capacity lithium secondary battery using carbon nano tubes, wherein, if separators are used, a short- circuit may be produced by the carbon nano tubes between the positive and negative poles. <P>SOLUTION: In this lithium secondary battery using the carbon nano tube on at least one of the positive pole 1 and the negative pole 2, gel electrolyte 3 having polymer, nonaqueous electrolyte, and alkali metallic salt is disposed between the positive and negative poles to prevent a short-circuit between the positive and negative poles. Thus the high output and high capacity lithium secondary battery can be provided. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、カーボンナノチュ
ーブを含むリチウム二次電池に関する。
TECHNICAL FIELD The present invention relates to a lithium secondary battery containing carbon nanotubes.

【0002】[0002]

【従来の技術】情報化社会の発達に伴い、多くの機能を
有する携帯電話やノート型パソコン等の移動体通信機器
や携帯電子機器が数多く登場し、今後ますます多機能化
が進むことが予想される。これに伴い、その電源である
リチウム二次電池はさらなる高出力化,高容量化が要求
される。
2. Description of the Related Art With the development of information-oriented society, many mobile communication devices and mobile electronic devices such as mobile phones and notebook computers, which have many functions, have appeared, and it is expected that they will become more multifunctional in the future. To be done. Along with this, the lithium secondary battery as the power source is required to have higher output and higher capacity.

【0003】高出力特性を実現するためには、電池の内
部抵抗を低くし、大電流を流したときの電圧降下をでき
るだけ小さくしなければならない。特に、電池の内部抵
抗には、電子伝導性が低い正極活物質を用いているため
正極の極板抵抗の影響が大きい。
In order to realize high output characteristics, it is necessary to lower the internal resistance of the battery and minimize the voltage drop when a large current is passed. In particular, since the positive electrode active material having a low electron conductivity is used, the internal resistance of the battery is greatly affected by the resistance of the positive electrode plate.

【0004】正極の極板抵抗を低くするためには、導電
材として黒鉛やカーボンブラックなどの炭素材の添加が
一般的であるが、カーボンナノチューブを導電材として
用いることで、正極の導電性を向上させ、電池の内部抵
抗を低下させる試みがなされている。例えば特開平7−
14582号公報,特開平11−283629号公報に
おいては導電材にカーボンナノチューブを用いること
で、電池の内部抵抗低減,高率充放電特性を改善したリ
チウム二次電池が開示されている。
In order to reduce the electrode plate resistance of the positive electrode, it is common to add a carbon material such as graphite or carbon black as a conductive material. However, by using carbon nanotubes as a conductive material, the conductivity of the positive electrode can be improved. Attempts have been made to improve and lower the internal resistance of batteries. For example, JP-A-7-
Japanese Patent Laid-Open No. 14582 and Japanese Patent Laid-Open No. 11-283629 disclose a lithium secondary battery in which carbon nanotubes are used as a conductive material to reduce the internal resistance of the battery and improve the high rate charge / discharge characteristics.

【0005】また、リチウム二次電池の高容量化を実現
するためには、高容量の正極,負極が必要となる。現
在、リチウム二次電池の負極としては、黒鉛を代表とす
る炭素材料が用いられるが、黒鉛は理論容量が372m
Ah/gであり、容量の向上には限界がある。負極材料
として金属リチウムを使用することで高容量を得ること
ができるが、充放電を繰り返すことでリチウムのデンド
ライトが析出し、正負極間を短絡するため、充放電のサ
イクル寿命が短く実用には至っていない。
Further, in order to realize a high capacity lithium secondary battery, a high capacity positive electrode and a negative electrode are required. At present, a carbon material typified by graphite is used as the negative electrode of a lithium secondary battery, but graphite has a theoretical capacity of 372 m.
Since it is Ah / g, there is a limit to the capacity improvement. High capacity can be obtained by using metallic lithium as the negative electrode material, but dendrite of lithium is deposited by repeating charging and discharging and short-circuits between the positive and negative electrodes, so the cycle life of charging and discharging is short and practical I haven't arrived.

【0006】負極の高容量化の手段として、例えば特開
平7−14573号公報,特開平7−296795号公
報に、カーボンナノチューブを用いることで高容量,高
エネルギー密度を得たリチウム二次電池が開示されてい
る。
As a means for increasing the capacity of a negative electrode, for example, Japanese Patent Laid-Open Nos. 7-14573 and 7-296795 disclose lithium secondary batteries which have a high capacity and a high energy density by using carbon nanotubes. It is disclosed.

【0007】これまで述べてきたようにカーボンナノチ
ューブを正極の導電材や負極の活物質として用いること
は正極の低抵抗化,負極の高容量化を達成する上で大き
な効果をもたらすが、正極と負極との間に多孔質セパレ
ータをはさんで、これを有機溶媒にリチウム塩電解質を
含有させた電解液に浸したリチウム二次電池にカーボン
ナノチューブを用いると、正極と負極との間を短絡する
問題があった。
As described above, the use of carbon nanotubes as a conductive material for the positive electrode or an active material for the negative electrode brings about great effects in achieving a low resistance of the positive electrode and a high capacity of the negative electrode. When carbon nanotubes are used in a lithium secondary battery in which a porous separator is sandwiched between the negative electrode and an electrolyte solution containing a lithium salt electrolyte in an organic solvent, carbon nanotubes are short-circuited between the positive electrode and the negative electrode. There was a problem.

【0008】カーボンナノチューブは中空円筒状の炭素
繊維であり、ほぼ完全に黒鉛化している。カーボンナノ
チューブの外径が数nmから数十nmで長さが数百nm
から数十μmの繊維状の物質である。
Carbon nanotubes are hollow cylindrical carbon fibers and are almost completely graphitized. The outer diameter of the carbon nanotube is several nm to several tens nm, and the length is several hundred nm.
It is a fibrous substance having a thickness of from several tens of μm.

【0009】一般的なリチウム二次電池は、正極と負極
との間に厚さ15〜60μmの多孔質セパレータをはさ
んで、これを有機溶媒にリチウム塩電解質を含有させた
電解液に浸して電池とする。前記多孔質セパレータは、
0.1μm〜0.5μm程度の孔を有しており、この孔の
中に電解液を保持し、正極と負極との間のリチウムイオ
ンの往来を可能としている。このような電解液とセパレ
ータを用いる電池にカーボンナノチューブを用いると、
カーボンナノチューブの直径は多孔質セパレータの孔径
よりも小さく、電解液中を浮遊し、セパレータの孔を通
して正極と負極との間を短絡する問題があった。
In a general lithium secondary battery, a porous separator having a thickness of 15 to 60 μm is sandwiched between a positive electrode and a negative electrode and immersed in an electrolytic solution containing a lithium salt electrolyte in an organic solvent. Use batteries. The porous separator is
It has a hole of about 0.1 μm to 0.5 μm and holds an electrolytic solution in the hole to allow lithium ions to move between the positive electrode and the negative electrode. When carbon nanotubes are used in a battery that uses such an electrolyte and a separator,
The diameter of the carbon nanotube is smaller than the pore diameter of the porous separator, and there is a problem that the carbon nanotube floats in the electrolytic solution and short-circuits between the positive electrode and the negative electrode through the pores of the separator.

【0010】[0010]

【発明が解決しようとする課題】本発明は、前述の問題
点を改善するために提案されたものであり、正極,負極
の少なくとも一方にカーボンナノチューブを用い、電解
質としてゲル状電解質を用いることで、カーボンナノチ
ューブを用いた場合に生じる正極と負極との間の短絡に
よる不良をなくした高出力,高容量,長寿命のカーボン
ナノチューブを含むリチウム二次電池を提供することを
目的とする。
DISCLOSURE OF THE INVENTION The present invention has been proposed in order to improve the above-mentioned problems, and uses carbon nanotubes for at least one of a positive electrode and a negative electrode and uses a gel electrolyte as an electrolyte. An object of the present invention is to provide a lithium secondary battery containing high-output, high-capacity, long-life carbon nanotubes, which eliminates defects due to short circuit between a positive electrode and a negative electrode when carbon nanotubes are used.

【0011】[0011]

【課題を解決するための手段】本発明者らは、前述の問
題点を解決するため種々検討した結果、以下に述べる知
見を基に本発明を完成するに至った。
As a result of various studies to solve the above problems, the inventors of the present invention have completed the present invention based on the following knowledge.

【0012】高出力,高容量のリチウム二次電池を得る
ため正極もしくは負極の少なくとも一方にカーボンナノ
チューブを含有させた場合に多孔質セパレータを用いる
と、カーボンナノチューブが電解液中を浮遊し、セパレ
ータの孔を通して正極と負極との間を短絡する。従って
正極もしくは負極の少なくとも一方にカーボンナノチュ
ーブを含有させるためには多孔質セパレータの使用は不
可能であり、正極と負極との間にはポリマー,非水電解
液及びアルカリ金属塩からなるゲル状電解質を配するこ
とが必須であることを見出した。
If a porous separator is used when at least one of the positive electrode and the negative electrode contains carbon nanotubes in order to obtain a high-output, high-capacity lithium secondary battery, the carbon nanotubes float in the electrolyte and A short circuit is made between the positive electrode and the negative electrode through the hole. Therefore, it is impossible to use a porous separator to contain carbon nanotubes in at least one of the positive electrode and the negative electrode, and a gel electrolyte composed of a polymer, a non-aqueous electrolytic solution and an alkali metal salt is provided between the positive electrode and the negative electrode. It has been found that it is essential to place

【0013】本発明に用いるカーボンナノチューブの製
法を以下に示すが、製法は特に限定されるものではな
い。100〜500Torr程度のヘリウムなどの不活性ガ
スを封入した反応容器内に配した2本の炭素電極間にア
ーク放電を発生させることにより、陰極側に炭素の堆積
物が形成される。この炭素の堆積物中に黒鉛や非晶質炭
素とともにカーボンナノチューブが含まれている。
The method of producing the carbon nanotubes used in the present invention is shown below, but the method of production is not particularly limited. A carbon deposit is formed on the cathode side by generating an arc discharge between two carbon electrodes arranged in a reaction vessel filled with an inert gas such as helium of about 100 to 500 Torr. This carbon deposit contains carbon nanotubes as well as graphite and amorphous carbon.

【0014】このようにして得られたカーボンナノチュ
ーブの外径は1〜100nm程度であり、その長さは
0.1 〜200μm程度である。この他にもベンゼンを
水素ガスとともに1100℃で熱分解する方法や炭化ケ
イ素を昇華分解する方法で作製したカーボンナノチュー
ブを用いても良い。
The carbon nanotubes thus obtained have an outer diameter of about 1 to 100 nm and a length of about 0.1 to 200 μm. Besides, carbon nanotubes produced by a method of thermally decomposing benzene with hydrogen gas at 1100 ° C. or a method of decomposing and decomposing silicon carbide may be used.

【0015】本発明に用いるポリマー,非水電解液及び
アルカリ金属塩からなるゲル状電解質の主な製法を以下
に示す。
The main methods for producing a gel electrolyte comprising a polymer, a non-aqueous electrolyte and an alkali metal salt used in the present invention are shown below.

【0016】ポリマーとして、ポリエチレングリコール
又はその誘導体、ポリ(メタ)アクリル酸エステル又は
その誘導体、ポリウレタン又はその誘導体の群から選択
される少なくと1種である成分と、分子内に2重結合を
2つ以上有するモノマー及びラジカル開始剤を、所望の
有機溶剤に溶解させた溶液を調製する。この溶液を、離
形性に優れる基板にコーティングして有機溶媒乾燥後、
光あるいは熱架橋させることによりポリマーフィルムを
得ることができる。このポリマーフィルムをアルカリ金
属塩の溶解した非水電解液で膨潤させることにより、ゲ
ル状電解質を作製できる。また、ポリフッ化ビニリデン
又はその誘導体をポリマーとして用いた場合は、所望の
有機溶剤に溶解させ、離形性に優れる基板にコーティン
グした後、有機溶媒を乾燥させることで、アルカリ金属
塩の溶解した非水電解液に膨潤するポリマーフィルムを
作製できる。
As the polymer, at least one component selected from the group of polyethylene glycol or a derivative thereof, poly (meth) acrylic acid ester or a derivative thereof, polyurethane or a derivative thereof, and a double bond in the molecule One or more monomers and a radical initiator are dissolved in a desired organic solvent to prepare a solution. After coating this solution on a substrate with excellent releasability and drying with an organic solvent,
A polymer film can be obtained by crosslinking with light or heat. A gel electrolyte can be prepared by swelling this polymer film with a nonaqueous electrolytic solution in which an alkali metal salt is dissolved. When polyvinylidene fluoride or a derivative thereof is used as a polymer, it is dissolved in a desired organic solvent, coated on a substrate having excellent releasability, and then the organic solvent is dried to remove non-dissolved alkali metal salts. A polymer film that swells in an aqueous electrolyte can be produced.

【0017】また、分子内に2重結合を1つ以上有する
モノマー又はポリマーと分子内に2重結合を2つ以上有
するモノマー又はポリマー及びラジカル開始剤を、アル
カリ金属塩の溶解した非水電解液に溶解させたプレポリ
マー電解質を調製する。このプレポリマー電解質を所望
の厚さのスペーサーを設けたガラス基板上に塗布する。
その後、別のガラス基板を被せて完全に密封し、光ある
いは熱反応させることでゲル状電解質を作製できる。
Further, a non-aqueous electrolyte solution in which an alkali metal salt is dissolved in a monomer or polymer having one or more double bonds in the molecule, a monomer or polymer having two or more double bonds in the molecule and a radical initiator. A prepolymer electrolyte dissolved in is prepared. This prepolymer electrolyte is applied onto a glass substrate provided with a spacer having a desired thickness.
Then, another glass substrate is covered and completely sealed, and a gel electrolyte can be produced by reacting with light or heat.

【0018】本発明のゲル状電解質中のポリマー含有量
は、ポリマー,アルカリ金属塩の溶解した非水電解液の
総量に対し、1〜90重量%とすることが好ましく、3
〜60重量%とすることがより好ましく、5〜30重量
%とすることが特に好ましい。
The content of the polymer in the gel electrolyte of the present invention is preferably 1 to 90% by weight based on the total amount of the non-aqueous electrolyte solution in which the polymer and the alkali metal salt are dissolved.
It is more preferable that the amount is -60% by weight, and it is particularly preferable that the amount is 5-30% by weight.

【0019】ポリマーの含有量が、1重量%未満では、
機械強度が低下する傾向があり、90重量%を超えると
イオン伝導度が低下する傾向がある。ゲル状電解質中の
ポリマーの膨潤度が500%以下であることが望まし
い。膨潤度が500%より大きいと、カーボンナノチュ
ーブを正極もしくは負極に用いた場合、正極と負極との
間を短絡する場合が生じる。本発明におけるポリマーの
膨潤度は、1mol/lLiPF6 のエチレンカーボネー
トとジメチルカーボネート(体積比:1/1)の混合系
電解液にポリマーを2時間浸して膨潤させてから測定し
た。膨潤度は 膨潤度(%)={(膨潤後のポリマーの重量)/(膨潤前
のポリマーの重量)−1}×100 から求めた値を用いる。
When the content of the polymer is less than 1% by weight,
Mechanical strength tends to decrease, and when it exceeds 90% by weight, ionic conductivity tends to decrease. The swelling degree of the polymer in the gel electrolyte is preferably 500% or less. When the degree of swelling is more than 500%, when the carbon nanotube is used for the positive electrode or the negative electrode, a short circuit may occur between the positive electrode and the negative electrode. The degree of swelling of the polymer in the present invention was measured after the polymer was soaked in a mixed electrolyte of 1 mol / l LiPF 6 of ethylene carbonate and dimethyl carbonate (volume ratio: 1/1) for 2 hours to swell. As the degree of swelling, a value obtained from the degree of swelling (%) = {(weight of polymer after swelling) / (weight of polymer before swelling) -1} × 100 is used.

【0020】本発明におけるゲル状電解質中のアルカリ
金属塩は、特に制限はないが、実用的な観点から、例え
ばLiClO4 ,LiBF4 ,LiPF6 ,LiCF3
SO3,LiC29SO3 ,LiN(CF3SO2)2 など
のリチウム化合物が好ましい。これらのリチウム化合物
は、単独で又は2種類以上を組み合わせて用いられ、こ
れらの塩のうちで特に好ましい塩はLiClO4 ,Li
BF4 ,LiPF6 、およびLiN(CF3SO2)2 であ
る。
The alkali metal salt in the gel electrolyte in the present invention is not particularly limited, but from the practical viewpoint, for example, LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 are used.
Lithium compounds such as SO 3 , LiC 2 F 9 SO 3 and LiN (CF 3 SO 2 ) 2 are preferred. These lithium compounds are used alone or in combination of two or more, and particularly preferable salts among these salts are LiClO 4 and Li.
BF 4 , LiPF 6 , and LiN (CF 3 SO 2 ) 2 .

【0021】本発明におけるアルカリ金属塩の含有量は
ポリマー,アルカリ金属塩の溶解した非水電解液の総量
中1〜40重量%とすることが好ましく、3〜30重量
%とすることがより好ましく、5〜20重量%とするこ
とが特に好ましい。アルカリ金属塩の含有量が、1重量
%未満あるいは40重量%以上では、イオン伝導度が低
下する傾向がある。
The content of the alkali metal salt in the present invention is preferably 1 to 40% by weight, more preferably 3 to 30% by weight based on the total amount of the polymer and the non-aqueous electrolyte solution in which the alkali metal salt is dissolved. , 5 to 20% by weight is particularly preferable. When the content of the alkali metal salt is less than 1% by weight or 40% by weight or more, the ionic conductivity tends to decrease.

【0022】本発明におけるゲル状電解質中のアルカリ
金属塩を溶解可能な非水溶媒は、化学的に安定で非水系
であれば特に制限はないが、例えば、エチレンカーボネ
ート,プロピレンカーボネート,ジメチルカーボネー
ト,ジエチルカーボネート,メチルエチルカーボネート
等のカーボネート化合物,テトラヒドロフラン,ジオキ
サン,ジメトキシエタン,ポリエチレンオキシド等のエ
ーテル化合物,γ−ブチロラクトン,プロピロラクトン
等のラクトン化合物等が挙げられる。これらの非水溶剤
は単独で又は2種類以上を組み合わせて使用される。
The non-aqueous solvent capable of dissolving the alkali metal salt in the gel electrolyte of the present invention is not particularly limited as long as it is chemically stable and non-aqueous, and examples thereof include ethylene carbonate, propylene carbonate, dimethyl carbonate, Examples thereof include carbonate compounds such as diethyl carbonate and methyl ethyl carbonate, ether compounds such as tetrahydrofuran, dioxane, dimethoxyethane and polyethylene oxide, and lactone compounds such as γ-butyrolactone and propyrolactone. These non-aqueous solvents are used alone or in combination of two or more.

【0023】このようにして得られたゲル電解質を用い
て、本発明のリチウム二次電池の構成を説明する。
The structure of the lithium secondary battery of the present invention will be described using the gel electrolyte thus obtained.

【0024】少なくとも一方にカーボンナノチューブを
含んだ正極と負極の間にゲル状電解質をはさむことによ
り、本発明のリチウム二次電池とすることができる。正
極,負極を走査型電子顕微鏡及び透過型電子顕微鏡等を
用いて観察することによりカーボンナノチューブの有無
を確認できる。
By sandwiching a gel electrolyte between a positive electrode and a negative electrode containing carbon nanotubes on at least one side, the lithium secondary battery of the present invention can be obtained. The presence or absence of carbon nanotubes can be confirmed by observing the positive electrode and the negative electrode using a scanning electron microscope, a transmission electron microscope, or the like.

【0025】本発明のリチウム二次電池は第一の電極と
しての正極と第二の電極としての負極とを有するもので
あって、両極の間でリチウムイオンがやりとりされるこ
とによって充放電が可能な電池である。両極にあって、
リチウムを含有もしくは吸蔵する物質のことを活物質と
称する。リチウム二次電池の正極は、正極活物質,導電
材,結着剤,集電体からなる。正極活物質は一般に高抵
抗であるため、導電材として炭素粉末を混合することに
より、正極活物質の電気伝導性を補っている。従来技術
においては、黒鉛系導電剤を主たる導電材として用いる
のが一般的であったが、更に電気伝導性を向上させるた
めカーボンナノチューブを導電材に用いることが検討さ
れている。正極の活物質は、リチウムを含有する酸化物
からなる。これは例えば、LiCoO2 やLiNiO2
のような層状構造を有する酸化物や、LiMn24のよ
うなスピネル型の結晶構造を有する酸化物である。粉末
状の正極活物質とカーボンナノチューブを含む炭素材か
らなる導電材,ポリフッ化ビニリデン(PVDF)など
の結着剤を混合する。この合剤を例えば厚さ10〜30
μm程度のアルミニウム箔などの集電体上に塗布し、乾
燥プレスすることで正極となす。プレス後の電極塗布厚
は10〜150μmにするのが望ましい。また、正極活
物質の混合比は、合剤中に80〜95重量%のようにす
るのが望ましい。また導電材の混合比は、合剤中に3〜
15重量%のようにするのが望ましく、導電材中のカー
ボンナノチューブの含有量は、20重量%であることが
望ましい。導電材中のカーボンナノチューブの含有量
が、20重量%未満の場合、カーボンナノチューブを添
加したことによる導電性向上の効果が得られない。最終
的に形成された正極の電極密度は、2.4g/cm3から
3.0g/cm3とすることが望ましく、2.5g/cm3から
2.8g/cm3とすることがより望ましい。
The lithium secondary battery of the present invention has a positive electrode as a first electrode and a negative electrode as a second electrode, and can be charged and discharged by exchanging lithium ions between both electrodes. Battery. On both sides,
A substance containing or occluding lithium is called an active material. The positive electrode of the lithium secondary battery includes a positive electrode active material, a conductive material, a binder, and a current collector. Since the positive electrode active material generally has high resistance, the electrical conductivity of the positive electrode active material is supplemented by mixing carbon powder as a conductive material. In the prior art, it was general to use a graphite-based conductive agent as a main conductive material, but it has been studied to use carbon nanotubes as a conductive material in order to further improve electric conductivity. The positive electrode active material is made of an oxide containing lithium. This is, for example, LiCoO 2 or LiNiO 2
And an oxide having a spinel type crystal structure such as LiMn 2 O 4 . A powdery positive electrode active material, a conductive material made of a carbon material containing carbon nanotubes, and a binder such as polyvinylidene fluoride (PVDF) are mixed. This mixture is, for example, 10 to 30 in thickness.
It is applied on a current collector such as an aluminum foil having a thickness of about μm, and dried and pressed to form a positive electrode. The electrode coating thickness after pressing is preferably 10 to 150 μm. Further, the mixing ratio of the positive electrode active material is preferably 80 to 95% by weight in the mixture. In addition, the mixing ratio of the conductive material is 3 to
The content is preferably 15% by weight, and the content of carbon nanotubes in the conductive material is preferably 20% by weight. When the content of carbon nanotubes in the conductive material is less than 20% by weight, the effect of improving conductivity due to the addition of carbon nanotubes cannot be obtained. The electrode density of the finally formed positive electrode is preferably 2.4 g / cm 3 to 3.0 g / cm 3, and more preferably 2.5 g / cm 3 to 2.8 g / cm 3. .

【0026】負極活物質にはリチウムを吸蔵することの
できる材料であり、カーボンナノチューブを少なくとも
含んだ炭素材料を用いることができる。またカーボンナ
ノチューブを少なくとも含んだ炭素材に加え、ケイ素や
その酸化物を含んでいても良い。負極活物質中のカーボ
ンナノチューブの割合は50重量%以上が望ましく、8
0重量%以上がより望ましい。負極活物質中のカーボン
ナノチューブの割合が50重量%未満、カーボンナノチ
ューブを用いたことによる容量増加の効果が得られな
い。次に負極の作製方法を示す。まず前記負極活物質と
PVDFのような結着材を混合する。この合剤を例えば
厚さ5〜20μmの銅箔の上に塗布して、プレス乾燥し
て負極を作製するものである。
The negative electrode active material is a material capable of occluding lithium, and a carbon material containing at least carbon nanotubes can be used. In addition to the carbon material containing at least carbon nanotubes, silicon or its oxide may be contained. The ratio of carbon nanotubes in the negative electrode active material is preferably 50% by weight or more.
0 wt% or more is more desirable. The proportion of carbon nanotubes in the negative electrode active material is less than 50% by weight, and the effect of increasing the capacity due to the use of carbon nanotubes cannot be obtained. Next, a method for producing the negative electrode will be described. First, the negative electrode active material and a binder such as PVDF are mixed. For example, this mixture is applied onto a copper foil having a thickness of 5 to 20 μm and press-dried to produce a negative electrode.

【0027】本発明のカーボンナノチューブとゲル状電
解質とを組み合わせた系は、リチウムイオン二次電池の
他にも、リチウム一次電池,電気二重層キャパシタ,酵
素センサ用電極材料等に用いることができる。
The system in which the carbon nanotubes and the gel electrolyte of the present invention are combined can be used not only for lithium ion secondary batteries, but also for lithium primary batteries, electric double layer capacitors, electrode materials for enzyme sensors and the like.

【0028】また、本発明のカーボンナノチューブとゲ
ル状電解質とを組み合わせた電池は、携帯電話,PH
S,ノート型パソコン,携帯端末等の小型電子機器の主
電源またはバックアップ用電源として用いることがで
き、さらに、据え置き型のロードレベリング用電源,停
電時のバックアップ用電源,電気自動車用電池等に広く
用いることができる。
The battery of the present invention, which is a combination of the carbon nanotube and the gel electrolyte, can be used in mobile phones, PH
It can be used as a main power source or backup power source for small electronic devices such as S, notebook type personal computers and mobile terminals, and is widely used for stationary load leveling power source, backup power source in case of power failure, electric vehicle battery, etc. Can be used.

【0029】本発明のカーボンナノチューブとゲル状電
解質とを組み合わせた電池を得る方法の一つを例示す
る。例えば、まず、ゲル状電解質を、正極及び負極で挟
み、熱または加圧することによって正極とゲル状電解質
と負極とを密着させて電池の電池反応を起こす部分を作
製する。その後、得られた電池反応を起こす部分を大気
中の湿気や酸素や窒素等と隔離するためにステンレスあ
るいはアルミニウム、あるいはニッケル等でメッキした
金属製の缶に収納して密閉する。こうして得られた本発
明のカーボンナノチューブとゲル状電解質とを用いた電
池は充電と放電とを交互に行うことが可能な二次電池と
なる。
One example of a method for obtaining a battery in which the carbon nanotube of the present invention and a gel electrolyte are combined will be illustrated. For example, first, a gel electrolyte is sandwiched between a positive electrode and a negative electrode, and heat or pressure is applied to bring the positive electrode, the gel electrolyte, and the negative electrode into close contact with each other to form a portion where a battery reaction of a battery occurs. Then, in order to isolate the obtained cell reaction part from moisture, oxygen, nitrogen, etc. in the atmosphere, it is housed in a metal can plated with stainless steel, aluminum, nickel or the like and hermetically sealed. The battery using the carbon nanotube of the present invention and the gel electrolyte thus obtained becomes a secondary battery that can be charged and discharged alternately.

【0030】以上の構成のリチウム二次電池を作製する
ことで、カーボンナノチューブとゲル状電解質を用いた
高出力,高容量のリチウム二次電池を提供することが可
能になった。
By producing the lithium secondary battery having the above structure, it is possible to provide a high output and high capacity lithium secondary battery using the carbon nanotube and the gel electrolyte.

【0031】[0031]

【発明の実施の形態】以下、本発明の実施例及びその比
較例によって本発明を更に具体的に説明するが、本発明
はこれらの実施例に限定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described more specifically with reference to Examples of the present invention and Comparative Examples thereof, but the present invention is not limited to these Examples.

【0032】(実施例1)本発明におけるリチウム二次
電池は次のように作製した。
Example 1 A lithium secondary battery according to the present invention was manufactured as follows.

【0033】図1に示す構成で、直径20mm,高さ25
mmのコイン型リチウム二次電池を作製した。正極1は次
のように作製した。
The structure shown in FIG. 1 has a diameter of 20 mm and a height of 25.
mm coin-type lithium secondary battery was produced. The positive electrode 1 was produced as follows.

【0034】正極活物質は、LiCoO2 とした。この
正極活物質と導電材として外径約10nm,長さ0.5
〜5μmのカーボンナノチューブ,PVDFのNMP溶
液を混合し、充分に混練したものを正極スラリーとし
た。
The positive electrode active material was LiCoO 2 . The positive electrode active material and the conductive material have an outer diameter of about 10 nm and a length of 0.5.
A carbon nanotube of ˜5 μm and an NMP solution of PVDF were mixed and sufficiently kneaded to obtain a positive electrode slurry.

【0035】LiCoO2 ,カーボンナノチューブ,P
VDFの混合比は、重量比で85:10:5とした。こ
のスラリーを、厚さ20μmのアルミニウム箔からなる
正極集電体の片面に塗布し、乾燥した。
LiCoO 2 , carbon nanotube, P
The mixing ratio of VDF was 85: 10: 5 by weight. This slurry was applied to one surface of a positive electrode current collector made of an aluminum foil having a thickness of 20 μm and dried.

【0036】これをロールプレスでプレスして電極を作
製し、正極合剤の塗布厚を0.9mmとした。この電極を
直径が16mmの円盤状に打ち抜いて正極1とした。
This was pressed by a roll press to prepare an electrode, and the coating thickness of the positive electrode mixture was set to 0.9 mm. This electrode was punched out into a disk shape having a diameter of 16 mm to obtain a positive electrode 1.

【0037】また、負極2は以下の方法で作製した。平
均粒径10μmの塊状黒鉛を負極活物質とし、負極活物
質とPVDFのNMP溶液を混合し、充分に混練したも
のを負極スラリーとした。負極活物質,PVDFの混合
比は、重量比で90:10とした。
The negative electrode 2 was manufactured by the following method. Agglomerate graphite having an average particle size of 10 μm was used as a negative electrode active material, and the negative electrode active material and an NMP solution of PVDF were mixed and sufficiently kneaded to obtain a negative electrode slurry. The mixing ratio of the negative electrode active material and PVDF was 90:10 by weight.

【0038】このスラリーを、厚さ10μmの銅箔から
なる負極集電体に正極と同様に塗布した。負極合剤の塗
布厚は0.9mm とした。この電極を塗布部の直径が16
mmの円盤状に打ち抜いて負極2とした。
This slurry was applied to a negative electrode current collector made of a copper foil having a thickness of 10 μm in the same manner as the positive electrode. The coating thickness of the negative electrode mixture was 0.9 mm. This electrode has a diameter of 16
A negative electrode 2 was obtained by punching out into a disc shape of mm.

【0039】ゲル状電解質3は以下の方法で作製した。
フッ化ビニリデンとヘキサフルオロプロピレンの共重合
体(商品名:Kynar2801 ,エルフアトケム社製)1g
を、アセトン5gに溶解した。
The gel electrolyte 3 was prepared by the following method.
Copolymer of vinylidene fluoride and hexafluoropropylene (trade name: Kynar2801, manufactured by Elf Atchem)
Was dissolved in 5 g of acetone.

【0040】この溶液を、ガラス基板上にアプリケータ
ーで塗布し、常圧下アルゴン雰囲気中2時間放置した
後、真空下60℃で12時間乾燥してアセトンを除去
し、膜厚が40μmのポリマーフィルムを得た。
This solution was applied onto a glass substrate with an applicator, left standing for 2 hours in an argon atmosphere under normal pressure, and then dried under vacuum at 60 ° C. for 12 hours to remove acetone to obtain a polymer film having a thickness of 40 μm. Obtained.

【0041】このポリマーフィルムを1mol/l LiP
6 のエチレンカーボネートとジメチルカーボネート
(体積比:1/1)の混合系電解液により膨潤させてゲ
ル状電解質を得た。このゲル電解質に用いたポリマーの
膨潤度は180%であった。
This polymer film was treated with 1 mol / l LiP
A gel electrolyte was obtained by swelling with a mixed electrolyte of F 6 ethylene carbonate and dimethyl carbonate (volume ratio: 1/1). The swelling degree of the polymer used for this gel electrolyte was 180%.

【0042】以上のようにして得られた正極1,負極
2,ゲル状電解質3を用い、正極1と負極2との間には
ゲル状電解質3を挟んで重ね、コイン型リチウム二次電
池を作製した。尚、正極缶4及び負極缶5はガスケット
6により封止されるとともに、互いに絶縁されている。
正極1と正極缶4との間及び負極2と負極缶5の間には
それぞれバネ7を設け、このバネ7により電池缶と電極
及び電極間の接触性を確保している。
Using the positive electrode 1, the negative electrode 2, and the gel electrolyte 3 obtained as described above, the gel electrolyte 3 is sandwiched between the positive electrode 1 and the negative electrode 2, and stacked to form a coin-type lithium secondary battery. It was made. The positive electrode can 4 and the negative electrode can 5 are sealed by a gasket 6 and are insulated from each other.
Springs 7 are provided between the positive electrode 1 and the positive electrode can 4 and between the negative electrode 2 and the negative electrode can 5, respectively, and the spring 7 ensures the contact between the battery can and the electrodes.

【0043】(実施例2)平均粒径3μmの黒鉛と外径
約10nm,長さ0.5 〜5μmのカーボンナノチュー
ブを重量比が80:20となるように混合したものを正
極1の導電材とし、LiCoO2 ,導電材,PVDFの
混合比が重量比で85:10:5とした正極1を用いた
以外は実施例1と同様にしてコイン型リチウム二次電池
を作製した。
Example 2 A conductive material for the positive electrode 1 was prepared by mixing graphite having an average particle diameter of 3 μm and carbon nanotubes having an outer diameter of about 10 nm and a length of 0.5 to 5 μm in a weight ratio of 80:20. Then, a coin-type lithium secondary battery was produced in the same manner as in Example 1 except that the positive electrode 1 in which the mixing ratio of LiCoO 2 , the conductive material, and PVDF was 85: 10: 5 by weight was used.

【0044】(比較例1)平均粒径3μmの黒鉛と平均
粒径0.04μm のカーボンブラックを重量比が80:
20となるように混合したものを正極1の導電材として
用いた以外は実施例1と同様にしてコイン型リチウム二
次電池を作製した。
Comparative Example 1 Graphite having an average particle size of 3 μm and carbon black having an average particle size of 0.04 μm were mixed at a weight ratio of 80:
A coin-type lithium secondary battery was produced in the same manner as in Example 1 except that the mixture of 20 was used as the conductive material of the positive electrode 1.

【0045】(比較例2)平均粒径3μmの黒鉛と外径
約10nm,長さ0.5 〜5μmのカーボンナノチュー
ブを重量比が80:20となるように混合したものを正
極1の導電材とした以外は実施例1と同様にしてコイン
型リチウム二次電池を作製した。
Comparative Example 2 A conductive material for the positive electrode 1 was prepared by mixing graphite having an average particle diameter of 3 μm and carbon nanotubes having an outer diameter of about 10 nm and a length of 0.5 to 5 μm in a weight ratio of 80:20. A coin-type lithium secondary battery was produced in the same manner as in Example 1 except for the above.

【0046】(実施例3)平均粒径3μmの黒鉛と平均
粒径0.04μm のカーボンブラックを重量比が80:
20となるように混合したものを正極1の導電材とし、
負極活物質として外径約30nm,長さ3〜10μmの
カーボンナノチューブを用いた以外は実施例1と同様に
してコイン型リチウム二次電池を作製した。
Example 3 Graphite having an average particle size of 3 μm and carbon black having an average particle size of 0.04 μm were mixed at a weight ratio of 80:
A mixture of 20 is used as the conductive material of the positive electrode 1,
A coin-type lithium secondary battery was produced in the same manner as in Example 1 except that carbon nanotubes having an outer diameter of about 30 nm and a length of 3 to 10 μm were used as the negative electrode active material.

【0047】(実施例4)負極活物質として外径約30
nm,長さ3〜10μmのカーボンナノチューブと平均
粒径10μmの塊状黒鉛を重量比が50:50となるよ
うに混合した負極活物質を用いた以外は実施例3と同様
にしてコイン型リチウム二次電池を作製した。
(Example 4) An outer diameter of about 30 as a negative electrode active material
A coin type lithium secondary battery was used in the same manner as in Example 3 except that a negative electrode active material prepared by mixing carbon nanotubes having a length of 3 nm and a length of 3 to 10 μm and massive graphite having an average particle diameter of 10 μm was mixed at a weight ratio of 50:50. A secondary battery was produced.

【0048】(比較例3)負極活物質として外径約30
nm,長さ3〜10μmのカーボンナノチューブと平均
粒径10μmの塊状黒鉛を重量比が40:60となるよ
うに混合した負極活物質を用いた以外は実施例3と同様
にしてコイン型リチウム二次電池を作製した。
(Comparative Example 3) Outer diameter of about 30 as negative electrode active material
A coin-type lithium secondary battery was used in the same manner as in Example 3 except that the negative electrode active material was prepared by mixing carbon nanotubes having a size of 3 nm to 10 μm and lump graphite having an average particle size of 10 μm in a weight ratio of 40:60. A secondary battery was produced.

【0049】(実施例5)負極活物質として外径約30
nm,長さ3〜10μmのカーボンナノチューブを負極
活物質とした以外は実施例1と同様にしてコイン型リチ
ウム二次電池を作製した。
Example 5 An outer diameter of about 30 as a negative electrode active material
A coin-type lithium secondary battery was produced in the same manner as in Example 1 except that carbon nanotubes having a length of 3 nm and a length of 3 to 10 μm were used as the negative electrode active material.

【0050】(実施例6)負極活物質として外径約30
nm,長さ3〜10μmのカーボンナノチューブと平均
粒径10μmの塊状黒鉛を重量比が50:50となるよ
うに混合した負極活物質を用いた以外は実施例5と同様
にしてコイン型リチウム二次電池を作製した。
Example 6 An outer diameter of about 30 as a negative electrode active material
A coin type lithium secondary battery was used in the same manner as in Example 5 except that a negative electrode active material prepared by mixing carbon nanotubes having a length of 3 nm to 10 μm and massive graphite having an average particle size of 10 μm was mixed at a weight ratio of 50:50. A secondary battery was produced.

【0051】(実施例7)平均粒径3μmの黒鉛と外径
約10nm,長さ0.5 〜5μmのカーボンナノチュー
ブを重量比が20:80となるように混合したものを導
電材とし、外径約30nm,長さ3〜10μmのカーボ
ンナノチューブを負極活物質とした以外は実施例1と同
様にしてコイン型リチウム二次電池を作製した。
Example 7 A mixture of graphite having an average particle size of 3 μm and carbon nanotubes having an outer diameter of about 10 nm and a length of 0.5 to 5 μm in a weight ratio of 20:80 was used as a conductive material. A coin-type lithium secondary battery was produced in the same manner as in Example 1 except that carbon nanotubes having a diameter of about 30 nm and a length of 3 to 10 μm were used as the negative electrode active material.

【0052】(実施例8)負極活物質として外径約30
nm,長さ3〜10μmのカーボンナノチューブと平均
粒径10μmの塊状黒鉛を重量比が50:50となるよ
うに混合したものを負極活物質とした以外は実施例7と
同様にしてコイン型リチウム二次電池を作製した。
(Example 8) Outer diameter of about 30 as negative electrode active material
Coin type lithium was prepared in the same manner as in Example 7 except that a carbon nanotube having a size of 3 nm and a length of 3 to 10 μm and massive graphite having an average particle diameter of 10 μm were mixed at a weight ratio of 50:50 to obtain a negative electrode active material. A secondary battery was produced.

【0053】(実施例9)正極活物質としてLiCoO
2 の替わりにLiNiO2 を用い、導電材中の黒鉛とカ
ーボンナノチューブの重量比が80:20とした正極を
用い、負極活物質としてカーボンナノチューブとSiを
重量比が90:10となるように混合したものを負極活
物質とした以外は実施例1と同様にしてコイン型リチウ
ム二次電池を作製した。
Example 9 LiCoO 2 as a positive electrode active material
Using LiNiO 2 instead of 2, the weight ratio of graphite and carbon nanotubes in the conductive material using a positive electrode was 80:20, the weight ratio of carbon nanotubes and Si as a negative electrode active material is mixed so that the 90:10 A coin-type lithium secondary battery was produced in the same manner as in Example 1 except that the above was used as the negative electrode active material.

【0054】(実施例10)正極活物質としてLiCo
2 の替わりにLiMn24とし、LiMn24,導電
材,PVDFの混合比を重量比で90:7:3で導電材
中の黒鉛とカーボンナノチューブの重量比が80:20
とした正極を用い、負極活物質としてカーボンナノチュ
ーブとSiを重量比が90:10となるように混合した
ものを負極活物質とした以外は実施例1と同様にしてコ
イン型リチウム二次電池を作製した。
Example 10 LiCo as a positive electrode active material
LiMn 2 O 4 was used instead of O 2 , and the mixing ratio of LiMn 2 O 4 , conductive material and PVDF was 90: 7: 3, and the weight ratio of graphite and carbon nanotubes in the conductive material was 80:20.
A coin-type lithium secondary battery was prepared in the same manner as in Example 1 except that the negative electrode active material was prepared by mixing the carbon nanotubes and Si in a weight ratio of 90:10 as the negative electrode active material. It was made.

【0055】(比較例4)ゲル状電解質の替わりに正負
極の間には厚さ40μmのポリエチレン多孔質セパレー
タを挟んで、1mol/dm3 LiPF6のエチレンカーボ
ネートとジメチルカーボネート(体積比:1/1)の混
合系電解を注液した以外は実施例1と同様にしてコイン
型リチウム二次電池を作製した。
Comparative Example 4 A polyethylene porous separator having a thickness of 40 μm was sandwiched between the positive and negative electrodes instead of the gel electrolyte, and 1 mol / dm 3 LiPF 6 of ethylene carbonate and dimethyl carbonate (volume ratio: 1 / A coin-type lithium secondary battery was produced in the same manner as in Example 1 except that the mixed system electrolysis of 1) was injected.

【0056】(比較例5)ゲル状電解質の替わりに正負
極の間には厚さ40μmのポリエチレン多孔質セパレー
タを挟んで、1mol/dm3 LiPF6のエチレンカーボ
ネートとジメチルカーボネート(体積比:1/1)の混
合系電解を注液した以外は実施例2と同様にしてコイン
型リチウム二次電池を作製した。
Comparative Example 5 Instead of the gel electrolyte, a polyethylene porous separator having a thickness of 40 μm was interposed between the positive and negative electrodes, and 1 mol / dm 3 LiPF 6 of ethylene carbonate and dimethyl carbonate (volume ratio: 1 / A coin type lithium secondary battery was produced in the same manner as in Example 2 except that the mixed system electrolysis of 1) was injected.

【0057】(比較例6)ゲル状電解質の替わりに正負
極の間には厚さ40μmのポリエチレン多孔質セパレー
タを挟んで、1mol/dm3 LiPF6のエチレンカーボ
ネートとジメチルカーボネート(体積比:1/1)の混
合系電解を注液した以外は実施例3と同様にしてコイン
型リチウム二次電池を作製した。
Comparative Example 6 Instead of the gel electrolyte, a polyethylene porous separator having a thickness of 40 μm was sandwiched between the positive and negative electrodes, and 1 mol / dm 3 LiPF 6 of ethylene carbonate and dimethyl carbonate (volume ratio: 1 / A coin type lithium secondary battery was produced in the same manner as in Example 3 except that the mixed system electrolysis of 1) was injected.

【0058】(比較例7)ゲル状電解質の替わりに正負
極の間には厚さ40μmのポリエチレン多孔質セパレー
タを挟んで、1mol/dm3 LiPF6のエチレンカーボ
ネートとジメチルカーボネート(体積比:1/1)の混
合系電解を注液した以外は実施例4と同様にしてコイン
型リチウム二次電池を作製した。
Comparative Example 7 A polyethylene porous separator having a thickness of 40 μm was sandwiched between the positive and negative electrodes instead of the gel electrolyte, and 1 mol / dm 3 LiPF 6 of ethylene carbonate and dimethyl carbonate (volume ratio: 1 / A coin-type lithium secondary battery was produced in the same manner as in Example 4 except that the mixed system electrolysis of 1) was injected.

【0059】(比較例8)ゲル状電解質の替わりに正負
極の間には厚さ40μmのポリエチレン多孔質セパレー
タを挟んで、1mol/dm3 LiPF6のエチレンカーボ
ネートとジメチルカーボネート(体積比:1/1)の混
合系電解を注液した以外は実施例5と同様にしてコイン
型リチウム二次電池を作製した。
COMPARATIVE EXAMPLE 8 Instead of the gel electrolyte, a polyethylene porous separator having a thickness of 40 μm was sandwiched between the positive and negative electrodes, and 1 mol / dm 3 LiPF 6 of ethylene carbonate and dimethyl carbonate (volume ratio: 1 / A coin-type lithium secondary battery was produced in the same manner as in Example 5 except that the mixed system electrolysis of 1) was injected.

【0060】(比較例9)ゲル状電解質の替わりに正負
極の間には厚さ40μmのポリエチレン多孔質セパレー
タを挟んで、1mol/dm3 LiPF6のエチレンカーボ
ネートとジメチルカーボネート(体積比:1/1)の混
合系電解を注液した以外は実施例6と同様にしてコイン
型リチウム二次電池を作製した。
(Comparative Example 9) Instead of the gel electrolyte, a polyethylene porous separator having a thickness of 40 μm was sandwiched between the positive and negative electrodes, and 1 mol / dm 3 LiPF 6 of ethylene carbonate and dimethyl carbonate (volume ratio: 1 / A coin type lithium secondary battery was produced in the same manner as in Example 6 except that the mixed system electrolysis of 1) was injected.

【0061】(比較例10)ゲル状電解質の替わりに正
負極の間には厚さ40μmのポリエチレン多孔質セパレ
ータを挟んで、1mol/dm3 LiPF6のエチレンカー
ボネートとジメチルカーボネート(体積比:1/1)の
混合系電解を注液した以外は実施例7と同様にしてコイ
ン型リチウム二次電池を作製した。
Comparative Example 10 A polyethylene porous separator having a thickness of 40 μm was sandwiched between the positive and negative electrodes instead of the gel electrolyte, and 1 mol / dm 3 LiPF 6 of ethylene carbonate and dimethyl carbonate (volume ratio: 1 / A coin type lithium secondary battery was produced in the same manner as in Example 7 except that the mixed system electrolysis of 1) was injected.

【0062】(比較例11)ゲル状電解質の替わりに正
負極の間には厚さ40μmのポリエチレン多孔質セパレ
ータを挟んで、1mol/dm3 LiPF6のエチレンカー
ボネートとジメチルカーボネート(体積比:1/1)の
混合系電解を注液した以外は実施例8と同様にしてコイ
ン型リチウム二次電池を作製した。
(Comparative Example 11) A polyethylene porous separator having a thickness of 40 μm was sandwiched between the positive and negative electrodes instead of the gel electrolyte, and 1 mol / dm 3 LiPF 6 of ethylene carbonate and dimethyl carbonate (volume ratio: 1 / A coin-type lithium secondary battery was produced in the same manner as in Example 8 except that the mixed system electrolysis of 1) was injected.

【0063】(実施例11)実施例1で用いたゲル状電
解質の替わりに以下に示す方法で作製したゲル状電解質
を用いた以外は実施例1と同様にしてコイン型リチウム
二次電池を作製した。
Example 11 A coin-type lithium secondary battery was produced in the same manner as in Example 1 except that the gel electrolyte used in Example 1 was replaced by the gel electrolyte produced by the method described below. did.

【0064】平均分子量が875のポリエチレングリコ
ールジメタクリレート(Aldrich 社製)10gとトリメ
チロールプロパントリメタクリレート2.5g 及び熱重
合開始剤として過酸化ベンゾイル0.01g を、1mol
/dm3 LiBF4のγ−ブチロラクトン電解液50g
に溶解させ、この溶液を厚さ40μmのシリコーンゴム
スペーサーを設けたガラス基板上に注ぎ、そこに別のガ
ラス基板を被せて完全に密封して、アルゴン雰囲気下、
100℃で3時間熱反応させて厚さ40μmのゲル状電
解質を得た。このゲル状電解質に用いたポリマーの膨潤
度は430%であった。
1 mol of 10 g of polyethylene glycol dimethacrylate (made by Aldrich) having an average molecular weight of 875, 2.5 g of trimethylolpropane trimethacrylate and 0.01 g of benzoyl peroxide as a thermal polymerization initiator.
/ Dm 3 LiBF 4 γ-butyrolactone electrolyte solution 50 g
And the solution is poured onto a glass substrate provided with a silicone rubber spacer having a thickness of 40 μm, another glass substrate is covered there, and the mixture is completely sealed.
A thermal reaction was performed at 100 ° C. for 3 hours to obtain a gel electrolyte having a thickness of 40 μm. The swelling degree of the polymer used for this gel electrolyte was 430%.

【0065】(比較例12)実施例1で用いたゲル状電
解質の替わりに以下に示す方法で作製したゲル状電解質
を用いた以外は実施例1と同様にしてコイン型リチウム
二次電池を作製した。
Comparative Example 12 A coin-type lithium secondary battery was prepared in the same manner as in Example 1 except that the gel electrolyte used in Example 1 was replaced by the gel electrolyte prepared by the following method. did.

【0066】平均分子量が875のポリエチレングリコ
ールジメタクリレート(Aldrich 社製)10gとトリメ
チロールプロパントリメタクリレート0.5g 及び熱重
合開始剤として過酸化ベンゾイル0.01g を、1mol
/dm3 LiBF4のγ−ブチロラクトン電解液50g
に溶解させ、この溶液を厚さ40μmのシリコーンゴム
スペーサーを設けたガラス基板上に注ぎ、そこに別のガ
ラス基板を被せて完全に密封して、アルゴン雰囲気下、
100℃で3時間熱反応させて厚さ40μmのゲル状電
解質を得た。このゲル状電解質に用いたポリマーの膨潤
度は900%であった。
1 mol of 10 g of polyethylene glycol dimethacrylate (made by Aldrich) having an average molecular weight of 875, 0.5 g of trimethylolpropane trimethacrylate and 0.01 g of benzoyl peroxide as a thermal polymerization initiator.
/ Dm 3 LiBF 4 γ-butyrolactone electrolyte solution 50 g
And the solution is poured onto a glass substrate provided with a silicone rubber spacer having a thickness of 40 μm, another glass substrate is covered there, and the mixture is completely sealed.
A thermal reaction was performed at 100 ° C. for 3 hours to obtain a gel electrolyte having a thickness of 40 μm. The swelling degree of the polymer used for this gel electrolyte was 900%.

【0067】実施例1〜11,比較例1〜12のコイン
型リチウム二次電池を用いて、4.2V,5mA,12時
間の定電流定電圧による充電後、5mA,25mA,5
0mAの定電流で3.0V までそれぞれ放電し、放電容
量を測定した。
Using the coin-type lithium secondary batteries of Examples 1 to 11 and Comparative Examples 1 to 12, after charging with a constant current and constant voltage of 4.2 V, 5 mA, 12 hours, 5 mA, 25 mA, 5
Each was discharged to a voltage of 3.0 V at a constant current of 0 mA, and the discharge capacity was measured.

【0068】また電池の内部抵抗は3.0V まで放電
後、1時間放置した後1kHzの交流抵抗を測定した。
Regarding the internal resistance of the battery, after discharging to 3.0 V, the battery was allowed to stand for 1 hour and then the AC resistance at 1 kHz was measured.

【0069】交流抵抗測定後、さらに4.2V ,5m
A,12時間の定電流定電圧による充電後、5mAの定
電流で3.0Vまで放電し、この充電,放電を1サイク
ルとして繰り返す充放電サイクル試験を行った。
After measuring the AC resistance, further 4.2 V, 5 m
After charging with a constant current and constant voltage for 12 hours, the battery was discharged to 3.0 V with a constant current of 5 mA, and a charging / discharging cycle test in which this charging and discharging were repeated as one cycle was performed.

【0070】これらの放電容量,内部抵抗の値を実施例
1の値を100とした相対値(放電容量は実施例1にお
いて5mAで放電した際の値を100とする)として表
1にまとめて示す。
The values of these discharge capacities and internal resistances are summarized in Table 1 as relative values with the value of Example 1 as 100 (the discharge capacity is 100 when the value is 5 mA in Example 1). Show.

【0071】また充放電サイクル試験を20サイクル行
った時点での放電容量を1サイクル目の放電容量を10
0とした場合の比で表1に示す。
Further, the discharge capacity at the time when 20 cycles of the charge / discharge cycle test was performed was 10 times the discharge capacity at the first cycle.
The ratio when 0 is shown in Table 1.

【0072】[0072]

【表1】 [Table 1]

【0073】以上の結果より実施例1から11は、正
極,負極ともにカーボンナノチューブを用いなかった比
較例1より内部抵抗が低く、放電容量も増加しており、
正極の導電材もしくは負極活物質の少なくとも一方にカ
ーボンナノチューブを用いた効果が明らかである。
From the above results, Examples 1 to 11 have lower internal resistance and increased discharge capacity than Comparative Example 1 in which neither the positive electrode nor the negative electrode used carbon nanotubes.
The effect of using carbon nanotubes for at least one of the positive electrode conductive material and the negative electrode active material is clear.

【0074】また負極が同じで、正極導電材中のカーボ
ンナノチューブの割合が100重量%,20重量%,1
0重量%である実施例1,実施例2,比較例2の内部抵
抗を比べると、実施例1と実施例2とはほぼ同等なのに
対し、比較例2は1.5 倍程度大きく、正極導電材にカ
ーボンナノチューブを用いた効果が少ない。
The ratio of the carbon nanotubes in the positive electrode conductive material is 100% by weight, 20% by weight, 1% for the same negative electrode.
Comparing the internal resistances of Example 1, Example 2 and Comparative Example 2 which are 0% by weight, Example 1 and Example 2 are almost equivalent, while Comparative Example 2 is about 1.5 times larger and the positive electrode conductivity is higher. The effect of using carbon nanotubes as a material is small.

【0075】このことから、正極導電材にカーボンナノ
チューブを用いた効果を得るためには正極導電材中のカ
ーボンナノチューブの割合を20重量%以上にする必要
がある。
Therefore, in order to obtain the effect of using carbon nanotubes as the positive electrode conductive material, the proportion of carbon nanotubes in the positive electrode conductive material needs to be 20% by weight or more.

【0076】ついで、正極が同じで、負極活物質中のカ
ーボンナノチューブの割合が100重量%,50重量
%,40重量%である実施例3,実施例4,比較例3の
放電容量を比べると、実施例3と実施例4に対し、比較
例3は3分の2程度まで放電容量が減少し、カーボンナ
ノチューブを用いていない比較例1と同程度であること
から、負極活物質にカーボンナノチューブを用いた効果
がみられない。このことから、負極活物質にカーボンナ
ノチューブを用いた効果を得るためには負極活物質中の
カーボンナノチューブの割合を50重量%以上にする必
要がある。
Next, comparing the discharge capacities of Example 3, Example 4 and Comparative Example 3 in which the positive electrode is the same and the proportion of carbon nanotubes in the negative electrode active material is 100% by weight, 50% by weight and 40% by weight. In contrast to Examples 3 and 4, the discharge capacity of Comparative Example 3 was reduced to about two-thirds and the discharge capacity was about the same as that of Comparative Example 1 using no carbon nanotubes. The effect of using is not seen. From this, in order to obtain the effect of using carbon nanotubes as the negative electrode active material, the proportion of carbon nanotubes in the negative electrode active material needs to be 50% by weight or more.

【0077】さらに実施例1〜8のコイン型リチウム二
次電池と、これらのゲル状電解質の替わりにセパレータ
を用いた比較例4〜11のコイン型リチウム二次電池を
比較する。
Further, the coin-type lithium secondary batteries of Examples 1 to 8 are compared with the coin-type lithium secondary batteries of Comparative Examples 4 to 11 using a separator instead of these gel electrolytes.

【0078】セパレータを用いた電池は、比較例8,
9,10のように初期からカーボンナノチューブによる
正負極間の短絡が起こり充放電不可能なものや、比較例
4〜7,11のように初期は充放電可能でゲル状電解質
を用いた場合よりも放電容量が大きく、内部抵抗が小さ
くても初期の数サイクルの内にカーボンナノチューブに
よる正負極間の短絡が起こり充放電不可能なものとな
り、カーボンナノチューブを用いる場合、ゲル状電解質
が必要である。
The battery using the separator is as shown in Comparative Example 8,
Compared with the case where a short circuit between the positive and negative electrodes due to carbon nanotubes occurs from the initial stage such as 9 and 10 and charging / discharging is impossible, or the case where charge / discharge is possible at the initial stage and a gel electrolyte is used as in Comparative Examples 4 to Even if the discharge capacity is large and the internal resistance is small, a short circuit between the positive and negative electrodes due to carbon nanotubes occurs within the initial several cycles, making charging and discharging impossible, and when using carbon nanotubes, a gel electrolyte is required. .

【0079】最後に膨潤度が180%,430%,90
0%のゲル状電解質を用いた以外は同じ実施例1,実施
例11,比較例12を比較すると初期の性能はほぼ同等
であるが、比較例12は初期の数サイクルの内にカーボ
ンナノチューブによる正負極間の短絡が起こり充放電不
可能となる。このことからカーボンナノチューブを用い
る場合、ゲル状電解質中のポリマーの膨潤度は500%
以下とする必要がある。
Finally, the degree of swelling is 180%, 430%, 90
Comparing the same Example 1, Example 11, and Comparative Example 12 except that 0% gel electrolyte was used, the initial performance is almost the same, but Comparative Example 12 uses carbon nanotubes within the initial several cycles. A short circuit occurs between the positive and negative electrodes, making charging and discharging impossible. From this fact, when carbon nanotubes are used, the swelling degree of the polymer in the gel electrolyte is 500%.
Must be:

【0080】[0080]

【発明の効果】本発明によれば、カーボンナノチューブ
を用いた短絡による不良のない高出力,高容量のリチウ
ム二次電池を提供することが可能となる。
According to the present invention, it is possible to provide a high-output, high-capacity lithium secondary battery that uses carbon nanotubes and is free from defects due to short circuits.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るコイン型リチウム二次電池の断面
を示す図である。
FIG. 1 is a view showing a cross section of a coin-type lithium secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1…正極、2…負極、3…ゲル状電解質、4…正極缶、
5…負極缶、6…ガスケット、7…バネ。
1 ... Positive electrode, 2 ... Negative electrode, 3 ... Gel electrolyte, 4 ... Positive electrode can,
5 ... Negative electrode can, 6 ... Gasket, 7 ... Spring.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/62 H01M 4/62 Z 10/40 10/40 B (72)発明者 葛西 昌弘 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 5H029 AJ03 AJ12 AK03 AL02 AL07 AL08 AL11 AM03 AM05 AM07 AM16 BJ03 DJ08 EJ04 EJ12 HJ00 HJ01 HJ02 5H050 AA08 AA15 BA17 CA08 CA09 CB02 CB08 CB09 CB11 DA10 EA10 FA20 HA00 HA01 HA02─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01M 4/62 H01M 4/62 Z 10/40 10/40 B (72) Inventor Masahiro Kasai Hitachi City, Ibaraki Prefecture 7-1-1 Omika-cho F-Term in Hitachi Research Laboratory, Hitachi, Ltd. (Reference) 5H029 AJ03 AJ12 AK03 AL02 AL07 AL08 AL11 AM03 AM05 AM07 AM16 BJ03 DJ08 EJ04 EJ12 HJ00 HJ01 HJ02 5H050 AA08 AA15 BA17 CA08 CA09 CB02 CB08 CB02 CB02 CB02 CB08 DA10 EA10 FA20 HA00 HA01 HA02

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】正極もしくは負極の少なくとも一方にカー
ボンナノチューブを用い、前記正極と前記負極との間に
ポリマー,非水電解液及びアルカリ金属塩有するゲル状
電解質を配したことを特徴とするリチウム二次電池。
1. A lithium secondary battery comprising carbon nanotubes for at least one of a positive electrode and a negative electrode, and a polymer, a non-aqueous electrolyte and a gel electrolyte having an alkali metal salt disposed between the positive electrode and the negative electrode. Next battery.
【請求項2】導電材としてカーボンナノチューブを用い
た正極と、負極材としてカーボンナノチューブを用いた
負極との間にポリマー,非水電解液及びアルカリ金属塩
からなるゲル状電解質を配したことを特徴とするリチウ
ム二次電池。
2. A gel electrolyte composed of a polymer, a non-aqueous electrolyte and an alkali metal salt is disposed between a positive electrode using carbon nanotubes as a conductive material and a negative electrode using carbon nanotubes as a negative electrode material. And a lithium secondary battery.
【請求項3】請求項1乃至請求項2のリチウム二次電池
において、正極材はLiCoO2 ,LiNiO2 ,Li
Mn24、もしくはLiとCo,Ni,Mnなどの遷移
金属の一種又は複数種からなる複合酸化物を含んでいる
ことを特徴とするリチウム二次電池。
3. The lithium secondary battery according to claim 1, wherein the positive electrode material is LiCoO 2 , LiNiO 2 , Li.
A lithium secondary battery comprising Mn 2 O 4 or a composite oxide composed of Li and one or a plurality of transition metals such as Co, Ni and Mn.
【請求項4】請求項1乃至請求項2のリチウム二次電池
において、負極材は黒鉛,非晶質炭素,SiもしくはS
iの酸化物を含んでいることを特徴とするリチウム二次
電池。
4. The lithium secondary battery according to claim 1, wherein the negative electrode material is graphite, amorphous carbon, Si or S.
A lithium secondary battery comprising an oxide of i.
【請求項5】請求項2から4のリチウム二次電池におい
て、炭素材からなる正極の導電材中のカーボンナノチュ
ーブの割合が20重量%以上である正極の導電材を用い
たことを特徴とするリチウム二次電池。
5. The lithium secondary battery according to any one of claims 2 to 4, characterized in that a positive electrode conductive material containing 20% by weight or more of carbon nanotubes in the positive electrode conductive material made of a carbon material is used. Lithium secondary battery.
【請求項6】請求項1から4のリチウム二次電池におい
て、負極材中のカーボンナノチューブの割合が50重量
%以上である負極材を用いたことを特徴とするリチウム
二次電池。
6. The lithium secondary battery according to any one of claims 1 to 4, wherein a negative electrode material having a carbon nanotube content in the negative electrode material of 50% by weight or more is used.
【請求項7】請求項1から4のリチウム二次電池におい
て、炭素材からなる正極の導電材中のカーボンナノチュ
ーブの割合が20重量%以上である正極の導電材を用
い、負極材中のカーボンナノチューブの割合が50重量
%以上である負極材を用いたことを特徴とするリチウム
二次電池。
7. The lithium secondary battery according to any one of claims 1 to 4, wherein the conductive material of the positive electrode is 20% by weight or more in the conductive material of the positive electrode made of a carbon material, and the carbon in the negative electrode material is used. A lithium secondary battery characterized by using a negative electrode material having a nanotube ratio of 50% by weight or more.
【請求項8】請求項1から7記載のリチウム二次電池に
おいて、ゲル状電解質としてのポリマーが含有し、その
膨潤度が500%以下であることを特徴とするリチウム
二次電池。
8. The lithium secondary battery according to any one of claims 1 to 7, characterized in that it contains a polymer as a gel electrolyte and has a swelling degree of 500% or less.
JP2002137899A 2002-05-14 2002-05-14 Lithium secondary battery Withdrawn JP2003331838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002137899A JP2003331838A (en) 2002-05-14 2002-05-14 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002137899A JP2003331838A (en) 2002-05-14 2002-05-14 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2003331838A true JP2003331838A (en) 2003-11-21

Family

ID=29699491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002137899A Withdrawn JP2003331838A (en) 2002-05-14 2002-05-14 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2003331838A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004220911A (en) * 2003-01-15 2004-08-05 Mitsubishi Materials Corp Negative electrode material for lithium polymer battery, negative electrode using the same, lithium ion battery and lithium polymer battery using negative electrode
JP2004220910A (en) * 2003-01-15 2004-08-05 Mitsubishi Materials Corp Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using negative electrode
JP2005166414A (en) * 2003-12-02 2005-06-23 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2006019148A1 (en) * 2004-08-16 2006-02-23 Showa Denko K.K. Positive electrode for a lithium battery and lithium battery employing the same
JP2008112652A (en) * 2006-10-31 2008-05-15 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2009272041A (en) * 2008-04-30 2009-11-19 Mitsubishi Materials Corp Lithium-ion secondary battery
JP2010061933A (en) * 2008-09-03 2010-03-18 Toyo Ink Mfg Co Ltd Negative electrode mixture, and lithium secondary battery using the same
WO2010106292A1 (en) * 2009-03-19 2010-09-23 Arkema France Fluorinated binder composite materials and carbon nanotubes for positive electrodes for lithium batteries
JP2012054071A (en) * 2010-08-31 2012-03-15 Sekisui Chem Co Ltd Lithium ion conductive material, lithium ion conductive electrolyte membrane, lithium ion conductive electrolyte membrane-electrode assembly and lithium ion polymer battery
CN102820471A (en) * 2011-12-08 2012-12-12 中航锂电(洛阳)有限公司 High-safety lithium ion battery cathode material and its preparation method
WO2016104679A1 (en) * 2014-12-26 2016-06-30 日産自動車株式会社 Nonaqueous electrolyte rechargeable battery and manufacturing method therefor
WO2017094381A1 (en) * 2015-12-03 2017-06-08 ソニー株式会社 Secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714573A (en) * 1993-06-24 1995-01-17 Nec Corp Nonaqueous electrolyte secondary battery
JPH11102693A (en) * 1997-09-29 1999-04-13 Hitachi Ltd Lithium secondary battery
JPH11329414A (en) * 1998-03-31 1999-11-30 Aventis Res & Technol Gmbh & Co Kg Lithium battery and electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714573A (en) * 1993-06-24 1995-01-17 Nec Corp Nonaqueous electrolyte secondary battery
JPH11102693A (en) * 1997-09-29 1999-04-13 Hitachi Ltd Lithium secondary battery
JPH11329414A (en) * 1998-03-31 1999-11-30 Aventis Res & Technol Gmbh & Co Kg Lithium battery and electrode

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004220910A (en) * 2003-01-15 2004-08-05 Mitsubishi Materials Corp Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using negative electrode
JP2004220911A (en) * 2003-01-15 2004-08-05 Mitsubishi Materials Corp Negative electrode material for lithium polymer battery, negative electrode using the same, lithium ion battery and lithium polymer battery using negative electrode
JP2005166414A (en) * 2003-12-02 2005-06-23 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US9531008B2 (en) 2004-08-16 2016-12-27 Showa Denko K.K. Positive electrode for a lithium battery and lithium battery employing the same
WO2006019148A1 (en) * 2004-08-16 2006-02-23 Showa Denko K.K. Positive electrode for a lithium battery and lithium battery employing the same
JP2008112652A (en) * 2006-10-31 2008-05-15 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2009272041A (en) * 2008-04-30 2009-11-19 Mitsubishi Materials Corp Lithium-ion secondary battery
JP2010061933A (en) * 2008-09-03 2010-03-18 Toyo Ink Mfg Co Ltd Negative electrode mixture, and lithium secondary battery using the same
WO2010106292A1 (en) * 2009-03-19 2010-09-23 Arkema France Fluorinated binder composite materials and carbon nanotubes for positive electrodes for lithium batteries
FR2943463A1 (en) * 2009-03-19 2010-09-24 Arkema France COMPOSITE MATERIALS BASED ON FLUORO BINDERS AND CARBON NANOTUBES FOR POSITIVE ELECTRODES OF LITHIUM BATTERIES.
JP2012054071A (en) * 2010-08-31 2012-03-15 Sekisui Chem Co Ltd Lithium ion conductive material, lithium ion conductive electrolyte membrane, lithium ion conductive electrolyte membrane-electrode assembly and lithium ion polymer battery
CN102820471A (en) * 2011-12-08 2012-12-12 中航锂电(洛阳)有限公司 High-safety lithium ion battery cathode material and its preparation method
WO2016104679A1 (en) * 2014-12-26 2016-06-30 日産自動車株式会社 Nonaqueous electrolyte rechargeable battery and manufacturing method therefor
CN107112596A (en) * 2014-12-26 2017-08-29 日产自动车株式会社 Rechargeable nonaqueous electrolytic battery and its manufacture method
JPWO2016104679A1 (en) * 2014-12-26 2017-11-16 日産自動車株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
KR101871134B1 (en) * 2014-12-26 2018-06-25 닛산 지도우샤 가부시키가이샤 Nonaqueous electrolyte rechargeable battery and manufacturing method therefor
CN107112596B (en) * 2014-12-26 2019-06-28 日产自动车株式会社 Non-aqueous electrolyte secondary battery and its manufacturing method
US10431851B2 (en) 2014-12-26 2019-10-01 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery and method for manufacturing the same
US11063295B2 (en) 2014-12-26 2021-07-13 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery and method for manufacturing the same
WO2017094381A1 (en) * 2015-12-03 2017-06-08 ソニー株式会社 Secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device
JPWO2017094381A1 (en) * 2015-12-03 2018-07-05 株式会社村田製作所 Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
CN108292781A (en) * 2015-12-03 2018-07-17 株式会社村田制作所 Secondary cell, battery pack, electric vehicle, electric power storage system, electric tool and electronic equipment
US10658697B2 (en) 2015-12-03 2020-05-19 Murata Manufacturing Co., Ltd. Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic device

Similar Documents

Publication Publication Date Title
JP4370079B2 (en) Lithium polymer battery
JP5394239B2 (en) Gel polymer electrolyte and electrochemical device provided with the same
US5851504A (en) Carbon based electrodes
JP4352475B2 (en) Solid electrolyte secondary battery
JP2001110447A (en) Lithium secondary battery
JP4088755B2 (en) Nonaqueous electrolyte secondary battery
JP2002117851A (en) Carbon material, negative electrode for secondary lithium ion battery, and secondary lithium ion battery
WO2002084775A1 (en) Lithium polymer secondary cell
CN113614951A (en) Method for preparing negative electrode for secondary battery
JP2003331838A (en) Lithium secondary battery
KR100462668B1 (en) Polymer cell
JP4559587B2 (en) Solid lithium polymer battery
JP2004079515A (en) Lithium polymer secondary battery and its manufacturing method
JP7115318B2 (en) Electrodes and secondary batteries using radical polymers
JP4132945B2 (en) Nonaqueous electrolyte lithium ion battery and separator therefor
JP4161437B2 (en) Lithium battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
JP2002042874A (en) Polymer secondary battery
JP3316111B2 (en) Manufacturing method of lithium secondary battery
JP2003007303A (en) Nonaqueous electrolyte secondary battery
JP3984359B2 (en) Polymerizable compound, polymer solid electrolyte using the same, and use thereof
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP3512082B2 (en) Thin lithium battery and method of manufacturing the same
JP4624589B2 (en) Vanadium-based composite positive electrode for solid-state lithium polymer battery and lithium polymer battery using the same
JP4682395B2 (en) Non-aqueous battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040816

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070222