JP2004217519A - Method of regenerating manganese-zinc ferrite - Google Patents

Method of regenerating manganese-zinc ferrite Download PDF

Info

Publication number
JP2004217519A
JP2004217519A JP2004038389A JP2004038389A JP2004217519A JP 2004217519 A JP2004217519 A JP 2004217519A JP 2004038389 A JP2004038389 A JP 2004038389A JP 2004038389 A JP2004038389 A JP 2004038389A JP 2004217519 A JP2004217519 A JP 2004217519A
Authority
JP
Japan
Prior art keywords
mol
powder
ferrite
firing
regenerated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004038389A
Other languages
Japanese (ja)
Inventor
Osamu Kobayashi
修 小林
Osamu Yamada
修 山田
Koji Honda
弘司 本田
Toshiharu Kawasaki
俊治 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2004038389A priority Critical patent/JP2004217519A/en
Publication of JP2004217519A publication Critical patent/JP2004217519A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which it becomes possible to regenerate waste of an Mn-Zn ferrite fired material. <P>SOLUTION: The method for regenerating waste of Mn-Zn ferrite comprises reusing a powder having an average particle diameter of ≤40 μm obtained by pulverizing a fired material of Mn-Zn ferrite, then controlling components by reusing the powder so that the content of Fe<SB>2</SB>O<SB>3</SB>is ≥44.0 and <50.0 mol %, the content of ZnO is 4.0-26.5 mol%, the content of either or both of TiO<SB>2</SB>and SnO<SB>2</SB>is 0.1-8.0 mol %, the content of CuO is 0.1-16.0 mol % and the remainder is MnO, pulverizing the components so as to obtain a mixed powder, using the mixed power to form, and firing the formed body. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、軟磁性を有するMn−Znフェライトの製造方法に係り、より詳しくはMn−Znフェライトの焼成体の屑の再生利用を可能にするMn−Znフェライトの再生方法に関する。   The present invention relates to a method for producing Mn-Zn ferrite having soft magnetism, and more particularly, to a method for regenerating Mn-Zn ferrite capable of recycling scraps of a sintered body of Mn-Zn ferrite.

軟磁性を有する代表的な酸化物磁性材料としては、Mn−Znフェライトがあり、従来よりスイッチング電源トランス、フライバックトランス、偏向ヨークなどに用いられる低損失材、各種インダクタンス素子、EMI対策用インピーダンス素子、電波吸収材等として多用されている。このMn−Znフェライトは、従来一般には50 mol%よりも多いFe2O3 、平均的には52〜55 mol%のFe2O3 と、10〜24 mol%の ZnOと、残部 MnOとを含有する基本成分組成を有しており、通常は、Fe2O3 、ZnO 、MnO の各原料粉末を所定の割合で混合した後、仮焼、粉砕、成分調整、造粒、成形等の各工程を経て所定の形状とし、しかる後、窒素を流すことにより酸素濃度を大幅に下げた還元性雰囲気中で、1200〜1400℃に3〜4時間保持する焼成処理を行って製造されている。 A typical oxide magnetic material having soft magnetism is Mn-Zn ferrite, a low-loss material conventionally used for a switching power supply transformer, a flyback transformer, a deflection yoke, various inductance elements, and an impedance element for EMI measures. , Are often used as radio wave absorbers. Conventionally, this Mn-Zn ferrite generally comprises more than 50 mol% of Fe 2 O 3 , on average 52 to 55 mol% of Fe 2 O 3 , 10 to 24 mol% of ZnO, and the balance MnO. It has a basic component composition to contain, and usually, after mixing each raw material powder of Fe 2 O 3 , ZnO, MnO at a predetermined ratio, calcining, pulverization, component adjustment, granulation, molding, etc. It is manufactured by performing a sintering process of maintaining the temperature at 1200 to 1400 ° C. for 3 to 4 hours in a reducing atmosphere in which the oxygen concentration is greatly reduced by flowing nitrogen, after passing through the steps to obtain a predetermined shape.

ここで、上記焼成工程で還元性雰囲気とする理由は、50 mol%以上となる多量のFe2O3 を含んでいることから、大気中で焼成すると十分に緻密化が進まず、良好な軟磁性が得られなくなるためである。また、Fe3+ の還元で生成するFe2+ は正の結晶磁気異方性を有し、Fe3+ の負の結晶磁気異方性を打ち消して軟磁性を高める効果があるが、大気中で焼成したのでは、このような還元反応によるFe2+ の生成も期待できなくなるためである。なお、上記粉砕工程においては、平均粒子径がおよそ 1.0〜1.4 μmとなるように粉砕を行っているが、これは、1.4 μmより大きいと焼成時に所望の密度が得られず、一方、 1.0μmより小さいと粉体の扱いが困難になるためである。 Here, the reason for setting the reducing atmosphere in the above-mentioned firing step is that a large amount of Fe 2 O 3 , which is 50 mol% or more, is contained. This is because magnetism cannot be obtained. Further, Fe 2+ formed by reduction of Fe 3+ has a positive crystal magnetic anisotropy, and has an effect of canceling the negative crystal magnetic anisotropy of Fe 3+ to increase soft magnetism. This is because, if calcined, the production of Fe 2+ by such a reduction reaction cannot be expected. In the above-mentioned pulverization step, pulverization is performed so that the average particle diameter is about 1.0 to 1.4 μm.If the average particle diameter is larger than 1.4 μm, a desired density cannot be obtained at the time of calcination. If the particle size is smaller, the handling of the powder becomes difficult.

ところで、上記したMn−Znフェライトの製造においては、各工程で余剰、不良等の理由で多くの屑が発生するが、成形以前の工程で発生する廃材については、その再生利用に特別の問題はないが、焼成工程で寸法不良、ひび割れ、欠け等の欠陥を生じてスクラップとなる焼成体の屑については、後述の理由により再生利用することは困難で、そのまま破棄されるのが現状である。   By the way, in the production of the above-mentioned Mn-Zn ferrite, a large amount of waste is generated in each step due to surplus, defects, etc., but there is a special problem in the recycling of waste materials generated in the step before molding. However, it is difficult to recycle the waste of the fired body which becomes a scrap due to defects such as dimensional defects, cracks, chips, etc. in the firing step, and it is currently discarded as it is.

ここで、焼成体の屑の再生利用が困難になる理由を説明すると、Mn−Znフェライトの焼成過程は、その構成イオンの中で最も拡散速度の遅い酸素イオンの空孔濃度に律速される。これを支配する因子は、Fe2O3 の含有量と雰囲気の酸素濃度であり、Fe2O3 含有量の少ないほど、かつ雰囲気の酸素濃度が低いほど酸素イオンの空孔が生成し易くなる。しかるに、従来のMn−Znフェライトは、Fe2O3 を50 mol%よりも多く含んでいるため、酸素イオンの空孔が減じるのに相対して鉄イオン、マンガンイオンおよび亜鉛イオンの空孔が多く生成する。つまり、従来のMn−Znフェライトの焼成体を粉砕、成形して再利用しようとする場合は、雰囲気の酸素濃度をかなり下げた条件で焼成を行わなければならないが、実際の量産工程で下げ得る酸素濃度はせいぜい0.1 %程度であり、この程度の酸素濃度では、必要な酸素イオンの空孔濃度を確保することができず、結果として、焼成が円滑に進まず、所望の密度を得ることは困難となる。 Here, the reason why it becomes difficult to recycle the waste of the fired body will be described. The firing process of Mn—Zn ferrite is rate-controlled by the vacancy concentration of oxygen ions having the lowest diffusion rate among the constituent ions. Factors governing this are the Fe 2 O 3 content and the oxygen concentration in the atmosphere. The lower the Fe 2 O 3 content and the lower the oxygen concentration in the atmosphere, the more easily oxygen ion vacancies are generated. . However, the conventional Mn-Zn ferrite, because it contains more than the Fe 2 O 3 50 mol%, relative to iron ions to vacancies of oxygen ions is reduced, pore manganese ions and zinc ions Generates a lot. In other words, when a conventional fired body of Mn—Zn ferrite is to be pulverized, molded, and reused, firing must be performed under conditions where the oxygen concentration in the atmosphere is considerably reduced, but it can be lowered in the actual mass production process. The oxygen concentration is at most about 0.1%. At such an oxygen concentration, it is not possible to secure the necessary vacancy concentration of oxygen ions, and as a result, the calcination does not proceed smoothly and the desired density cannot be obtained. It will be difficult.

本発明は、上記従来の問題点に鑑みてなされたもので、その目的とするところは、焼成に特別の困難さを伴うことなく焼成体の屑の再生利用を可能にするMn−Znフェライトの再生方法を提供することにある。   The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a Mn-Zn ferrite which enables the recycling of waste of a fired body without special difficulty in firing. It is to provide a reproduction method.

上記目的を達成するため、本発明は、(a)Mn−Znフェライトの焼成体を粉砕して平均粒子径40μm以下の再生粉末を得る工程と、(b)前記再生粉末を全量用いてまたは該再生粉末に原料粉末を加えて、Fe2O3 44.0〜50.0 mol%(ただし、50.0 mol%は除く)、 ZnO 4.0〜26.5 mol%、TiO2およびSnO2のうちの1種または2種 0.1〜8.0mol%、CuO 0.1〜16.0 mol%、残部 MnOの成分組成となるように成分調整を行う工程と、(c)前記成分調整を終えた粉末を粉砕して成形用混合粉末を得る工程と、(d)前記混合粉末を用いて成形を行って成形体を得る工程と、(e)前記成形体を焼成する工程と、からなることを特徴とする。 In order to achieve the above object, the present invention provides (a) a step of pulverizing a fired body of Mn-Zn ferrite to obtain a reclaimed powder having an average particle diameter of 40 μm or less, and (b) using all of the reclaimed powder or adding raw material powder playback powder, Fe 2 O 3 44.0~50.0 mol% ( excluding the 50.0 mol%), ZnO 4.0~26.5 mol %, 1 kind or two kinds 0.1 of TiO 2 and SnO 2 8.0 mol%, CuO 0.1 to 16.0 mol%, the step of adjusting the components so as to have the component composition of MnO, (c) a step of pulverizing the powder after the component adjustment to obtain a mixed powder for molding, (D) forming a molded body by using the mixed powder to obtain a molded body; and (e) firing the molded body.

本発明において、上記再利用する粉末すなわち再生粉末の使用量は任意であり、そのままで目標成分組成となる場合は、成形用混合粉末の全量を再生粉末としてもよい。再生粉末のみで目標成分組成とならない場合は、当然のこととして、Fe2O3 、ZnO 、TiO2、SnO2、CuO 、MnO 等の各原料粉末を適当量加えて成分調整を行う。この場合、再生粉末のFe2O3 量は50.0 mol%未満であっても50.0 mol%以上であってもよい。また、この成分調整を終えた再生粉末は粉砕して成形用混合粉末とするが、この混合粉末の平均粒子径は、従来と同様にその下限を 1.0μm程度に抑えるのが望ましい。ただし、その上限は 1.4μmを超えた値、例えば 2.0μm程度としてもかまわない。 In the present invention, the amount of the powder to be reused, that is, the regenerated powder is arbitrary, and when the target component composition is used as it is, the entire mixed powder for molding may be used as the regenerated powder. If the target component composition does not reach the target component composition only with the regenerated powder, the components are adjusted by adding an appropriate amount of each raw material powder such as Fe 2 O 3 , ZnO, TiO 2 , SnO 2 , CuO, and MnO. In this case, the amount of Fe 2 O 3 in the regenerated powder may be less than 50.0 mol% or 50.0 mol% or more. The regenerated powder after the component adjustment is pulverized into a mixed powder for molding. It is desirable that the lower limit of the average particle diameter of the mixed powder be kept at about 1.0 μm as in the conventional case. However, the upper limit may be a value exceeding 1.4 μm, for example, about 2.0 μm.

本発明は、上記したようにFe2O3 を50 mol%未満に抑えているので、再生粉末を使用していても焼成過程で酸素イオンの空孔が生成し易くなり、大気中または酸素を適当量含む雰囲気中で焼成(昇温−保持−降温)しても十分に密度が高まるようになる。ただし、このFe2O3 が少なすぎると初透磁率の低下を招くので、少なくとも44.0 mol%は含有させるようにする。 In the present invention, since Fe 2 O 3 is suppressed to less than 50 mol% as described above, vacancies of oxygen ions are easily generated in the firing process even when the regenerated powder is used, and the air or oxygen is reduced. The density can be sufficiently increased even when firing (heating-holding-cooling) in an atmosphere containing an appropriate amount. However, if the amount of Fe 2 O 3 is too small, the initial magnetic permeability is reduced. Therefore, at least 44.0 mol% is contained.

TiおよびSnは、Fe3+ から電子を受け取ってFe2+ を生成させることが知られている。したがって、これらを含有させることにより大気中または酸素を適当量含む雰囲気中で焼成してもFe2+ を生成することができる。本発明においては、正負の結晶磁気異方性を相殺するために、基本成分組成中に占めるTiO2および/またはSnO2の含有量を 0.1〜8.0mol%とすることで、Fe2+ の生成量を制御してFe3+ とFe2+ との存在比を最適化し、良好な軟磁性を得ることを可能にしている。ただし、TiO2および/またはSnO2の含有量が 0.1 mol%未満ではその効果が小さく、8.0mol%より多いと初透磁率が低下するので、上記範囲 0.1〜8.0mol%とした。 Ti and Sn are known to receive electrons from Fe 3+ and generate Fe 2+ . Therefore, Fe 2+ can be produced by adding these materials even when firing in the air or in an atmosphere containing an appropriate amount of oxygen. In the present invention, in order to offset the positive and negative magnetocrystalline anisotropy, the content of TiO 2 and / or SnO 2 in the basic component composition is set to 0.1 to 8.0 mol%, thereby producing Fe 2+ . By controlling the amount, the abundance ratio between Fe 3+ and Fe 2+ can be optimized, and good soft magnetism can be obtained. However, if the content of TiO 2 and / or SnO 2 is less than 0.1 mol%, the effect is small, and if the content is more than 8.0 mol%, the initial permeability decreases.

ZnO は、キュリー温度や飽和磁化に影響を与えるが、あまり多いとキュリー温度が低くなって実用上問題となり、逆に少なすぎると飽和磁化が減ってしまうため、上記範囲 4.0〜26.5 mol%とするのが望ましい。   ZnO affects the Curie temperature and saturation magnetization, but too much lowers the Curie temperature and poses a practical problem. Conversely, too little decreases the saturation magnetization, so the above range is 4.0 to 26.5 mol%. It is desirable.

本発明は、上記したようにCuO を含有するが、このCuO は、低温焼成を可能にする効果がある。ただし、その含有量があまり少ないと前記した効果が小さく、逆に多すぎると初透磁率が低下してしまうため、上記範囲 0.1〜16.0 mol%とするのが望ましい。   Although the present invention contains CuO as described above, this CuO has the effect of enabling low-temperature firing. However, if the content is too small, the above-mentioned effect is small, and if the content is too large, the initial permeability decreases. Therefore, it is desirable to set the above range to 0.1 to 16.0 mol%.

本発明は、副成分としてCaO 、SiO2 、ZrO2 、Ta2O5、HfO2 、Nb2O5およびY2O3のうちの1種また2種以上を微量含有させることができる。これら副成分は、結晶粒界を高抵抗化させる作用がある。
また、副成分としてV2O5 、Bi2O3 、In2O3、PbO、MoO3および WO3のうちの1種または2種以上を含有させることができる。これらの副成分はいずれも低融点酸化物で、焼結を促進する作用がある。
さらに、副成分としてCr2O3 および Al2O3のうちの1種または2種を含有させてもよいものである。これら副成分は初透磁率の温度特性を改善する効果がある。
The present invention, CaO as an auxiliary component, one of two or more of SiO 2, ZrO 2, Ta 2 O 5, HfO 2, Nb 2 O 5 and Y 2 O 3 can be contained traces. These subcomponents have the effect of increasing the resistance of the crystal grain boundaries.
Further, one or more of V 2 O 5 , Bi 2 O 3 , In 2 O 3 , PbO, MoO 3 and WO 3 can be contained as accessory components. Each of these subcomponents is a low melting point oxide and has an effect of promoting sintering.
Further, one or two of Cr 2 O 3 and Al 2 O 3 may be contained as accessory components. These subcomponents have the effect of improving the temperature characteristics of the initial magnetic permeability.

本発明に係るMn−Znフェライトの再生方法によれば、焼成体の屑を再生利用しても、十分に高い焼成体密度と軟磁性とを得ることができ、しかも、大気中で焼成(昇温−保持−降温)することが可能になるばかりか、再生粉末をそれほど微細にする必要がなく、製造性に優れかつコスト面での利益の大きい再生利用技術が確立する。   According to the method for regenerating Mn—Zn ferrite according to the present invention, it is possible to obtain a sufficiently high calcined body density and soft magnetism even by recycling the waste of the calcined body, and furthermore, it is possible to calcine (raise) in air. Not only is it possible to carry out (temperature-holding-cooling), but also it is not necessary to make the regenerated powder so fine, and a recycling technology that is excellent in manufacturability and has a large profit in cost is established.

Mn−Znフェライトの製造に際しては、焼成工程で発生したMn−Znフェライトの焼成体の屑を適宜の粉砕手段、例えばハンマーミルとジェットミルとを用いて粉砕し、これを再生粉末として、これに主成分としてのFe2O3 、ZnO 、TiO2および/またはSnO2、CuO 、MnO 等の各原料粉末を所定の比率で混合し、目標成分組成の混合粉末を得る。前記再生粉末は、最初から細かなものを用意する必要はなく、約40μm以下とすれば十分で、この場合は、前記混合粉末を仮焼し、さらに約 2.0μm以下に微粉砕する。この場合の仮焼温度は、目標組成によって多少異なるが、850 〜950 ℃の温度範囲内で適宜の温度を選択することができる。また、混合粉末の微粉砕には汎用のボールミルを用いることができる。そして、この微細な混合粉末に、所望により上記種々の副成分の粉末を所定の比率で添加混合し、目標成分組成の混合粉末を得る。その後は、通常のフェライト製造プロセスに従って造粒、成形を行い、さらに、1000〜1300℃で2〜4時間保持する焼成処理を行う。この焼成(昇温−保持−降温)は、大気中で行っても、適当な酸素濃度、例えば 0.1%程度の酸素濃度の雰囲気中で行ってもよいが、酸素を含む雰囲気中で行う場合は、焼成炉中に窒素ガス等の不活性ガスを流して酸素濃度を制御するのが望ましい。 In the production of Mn-Zn ferrite, the refuse of the fired body of Mn-Zn ferrite generated in the firing step is crushed using a suitable crushing means, for example, a hammer mill and a jet mill, and this is used as a regenerated powder. Raw material powders such as Fe 2 O 3 , ZnO, TiO 2 and / or SnO 2 , CuO, MnO as main components are mixed at a predetermined ratio to obtain a mixed powder having a target component composition. It is not necessary to prepare a fine powder of the regenerated powder from the beginning, and it is sufficient if it is about 40 μm or less. In this case, the mixed powder is calcined and then finely pulverized to about 2.0 μm or less. The calcining temperature in this case slightly varies depending on the target composition, but an appropriate temperature can be selected within a temperature range of 850 to 950 ° C. A general-purpose ball mill can be used for finely pulverizing the mixed powder. Then, if necessary, powders of the various sub-components are added and mixed at a predetermined ratio to the fine mixed powder to obtain a mixed powder having a target component composition. After that, granulation and molding are performed according to a normal ferrite manufacturing process, and further, a baking treatment is performed at 1000 to 1300 ° C. for 2 to 4 hours. This baking (heating-holding-cooling) may be performed in the air or in an atmosphere having an appropriate oxygen concentration, for example, an oxygen concentration of about 0.1%. It is desirable to control the oxygen concentration by flowing an inert gas such as nitrogen gas into the firing furnace.

Fe2O3 が52.5 mol%、 MnOが24.2 mol%、ZnO が23.3 mol%となるように各原料粉末をボールミルにて混合した後、空気中、 900℃で2時間仮焼し、さらにボールミルにて20時間粉砕して、平均粒子径 1.2μmの混合粉末を得た。次に、この混合粉末に副成分としてCaO を0.05mass%加え、さらにボールミルにて1時間混合した。そして、この混合粉末にポリビニルアルコールを加えて造粒し、80MPa の圧力で外径18mm,内径10mm,高さ4mmのトロイダル状コア(成形体)を成形した。その後、成形体を焼成炉に入れ、窒素を流すことにより酸素濃度を 0.1%まで下げた雰囲気中で、1300℃に3時間保持する焼成処理並びに焼成後の冷却を行い、従来のMn−Znフェライトと同じ焼成体(試料)1−1を得た。 Each raw material powder was mixed in a ball mill so that Fe 2 O 3 was 52.5 mol%, MnO was 24.2 mol%, and ZnO was 23.3 mol%, and then calcined in air at 900 ° C. for 2 hours. And crushed for 20 hours to obtain a mixed powder having an average particle diameter of 1.2 μm. Next, 0.05 mass% of CaO was added as an auxiliary component to the mixed powder, and the mixture was further mixed for 1 hour by a ball mill. Then, polyvinyl alcohol was added to the mixed powder and granulated, and a toroidal core (formed body) having an outer diameter of 18 mm, an inner diameter of 10 mm, and a height of 4 mm was formed at a pressure of 80 MPa. Thereafter, the molded body is placed in a firing furnace, and a baking treatment of maintaining the temperature at 1300 ° C. for 3 hours and cooling after the baking are performed in an atmosphere in which the oxygen concentration is reduced to 0.1% by flowing nitrogen, and the conventional Mn—Zn ferrite The same fired body (sample) 1-1 was obtained.

次に、上記試料1−1をハンマーミルとジェットミルとを用いて、平均粒子径40μm以下となるように粉砕し、これを再生粉末とした。そして、ボールミルにて1時間混合した後、この混合粉末にポリビニルアルコールを加えて造粒し、80MPa の圧力で外径18mm,内径10mm,高さ4mmのトロイダル状コアを成形した。その後、成形体を焼成炉に入れ、窒素を流すことにより酸素濃度を 0.1%まで下げた雰囲気中で、1300℃に3時間保持する焼成処理並びに焼成後の冷却を行い、従来のMn−Znフェライトと同じ成分組成の再生焼成体(試料)1−2を得た。   Next, the sample 1-1 was pulverized using a hammer mill and a jet mill so as to have an average particle diameter of 40 μm or less, and this was used as a regenerated powder. After mixing in a ball mill for 1 hour, polyvinyl alcohol was added to the mixed powder and granulated to form a toroidal core having an outer diameter of 18 mm, an inner diameter of 10 mm, and a height of 4 mm at a pressure of 80 MPa. Thereafter, the molded body is placed in a firing furnace, and a baking treatment of maintaining the temperature at 1300 ° C. for 3 hours and cooling after the baking are performed in an atmosphere in which the oxygen concentration is reduced to 0.1% by flowing nitrogen, and the conventional Mn—Zn ferrite A regenerated fired body (sample) 1-2 having the same component composition as in Example 1 was obtained.

一方、同じく上記試料1−1をハンマーミルとジュットミルとを用いて、平均粒子径40μm以下となるように粉砕し、これを再生粉末とした。そして、これに必要な原料を加えて、Fe2O3 が48.0 mol%、TiO2またはSnO2が2.0mol%、残部が MnOとZnO とでモル比26:25となるように成分調整を行った。そして、ボールミルにて混合した後、空気中、 900℃で2時間仮焼し、さらにボールミルにて粉砕して、平均粒子径 1.2μmおよび 2.0μmの混合粉末を得た。次に、この混合粉末にポリビニルアルコールを加えて造粒し、80MPa の圧力で外径18mm,内径10mm,高さ4mmのトロイダル状コア(成形体)を成形した。その後、成形体を焼成炉に入れ、大気中、または窒素を流すことにより酸素濃度を 0.1%まで下げた雰囲気中で、1300℃に3時間保持する焼成処理並びに焼成後の冷却を行い、CuO 以外は本発明と実質的に同じ成分組成の再生焼成体(試料)1−3〜1−7を得た。
そして、上記のようにして得た各試料1−1〜1−7について、蛍光X線分析によって最終的な成分を確認し、さらに焼成体密度と1MHz での初透磁率とを測定した。それらの結果を表1に示す。
On the other hand, the sample 1-1 was ground using a hammer mill and a jut mill so as to have an average particle diameter of 40 μm or less, and this was used as a regenerated powder. Then, the necessary raw materials were added thereto, and the components were adjusted so that Fe 2 O 3 was 48.0 mol%, TiO 2 or SnO 2 was 2.0 mol%, and the balance was MnO and ZnO in a molar ratio of 26:25. Was. Then, after mixing in a ball mill, the mixture was calcined at 900 ° C. for 2 hours in the air and further pulverized in a ball mill to obtain a mixed powder having an average particle diameter of 1.2 μm and 2.0 μm. Next, polyvinyl alcohol was added to the mixed powder and granulated, and a toroidal core (formed body) having an outer diameter of 18 mm, an inner diameter of 10 mm, and a height of 4 mm was formed at a pressure of 80 MPa. Thereafter, the molded body is placed in a baking furnace, and is subjected to a baking treatment in which the oxygen concentration is reduced to 0.1% by flowing nitrogen and the atmosphere is reduced to 0.1% at 1300 ° C. for 3 hours and a cooling after the baking is performed. Obtained regenerated fired bodies (samples) 1-3 to 1-7 having substantially the same component composition as the present invention.
The final components of each of the samples 1-1 to 1-7 obtained as described above were confirmed by X-ray fluorescence analysis, and the density of the fired body and the initial magnetic permeability at 1 MHz were measured. Table 1 shows the results.

Figure 2004217519
Figure 2004217519

表1に示す結果より、従来のMn−Znフェライトと同じ成分組成の再生焼成体である試料1−2は、オリジナル(非再生焼成体)の試料1−1に比較して密度が低く、初透磁率も大幅に低下して実用に耐えないものとなっている。これに対して、本発明と実質的に同じ試料1−3〜1−7は、同じ再生焼成体となっているにもかかわらず、オリジナルの試料1−1とほぼ同等の密度および初透磁率を有するものとなり、本発明の製造方法が焼成体の再生利用に大きく寄与することが明らかとなった。また、本試料の中では、大気中で焼成を行った試料1−3〜1−5と酸素濃度を 0.1%まで下げた雰囲気中で焼成を行った試料1−6および1−7との間に、密度および初透磁率においてほとんど差が認められず、大気中で焼成を行っても全く問題のないことが分かった。   From the results shown in Table 1, Sample 1-2, which is a regenerated sintered body having the same composition as the conventional Mn-Zn ferrite, has a lower density than the original (non-regenerated sintered body) Sample 1-1, and has a lower initial density. The magnetic permeability is also greatly reduced, making it unsuitable for practical use. In contrast, Samples 1-3 to 1-7, which are substantially the same as the present invention, have substantially the same density and initial permeability as the original Sample 1-1, despite having the same regenerated and fired body. It has been clarified that the production method of the present invention greatly contributes to recycling of the fired body. In addition, among the present samples, samples 1-3 to 1-5 fired in the air and samples 1-6 and 1-7 fired in an atmosphere in which the oxygen concentration was reduced to 0.1% were used. In addition, almost no difference was recognized in the density and the initial magnetic permeability, and it was found that there was no problem even if firing was performed in the air.

上記実施例1の試料1−1をハンマーミルとジェットミルとを用いて、平均粒子径40μm以下となるように粉砕し、これを再生粉末とした。そして、これに必要な原料を加えて、Fe2O3 が48.0 mol%、TiO2が2.0mol%、 CuOが0〜20.0 mol%、残部が MnOとZnO とでモル比26:25となるように成分調整を行った。そして、ボールミルにて混合した後、空気中、 850℃で2時間仮焼し、さらにボールミルにて粉砕して、平均粒子径 2.0μmの混合粉末を得た。次に、この混合粉末にポリビニルアルコールを加えて造粒し、80MPa の圧力で外径18mm,内径10mm,高さ4mmのトロイダル状コア(成形体)を成形した。その後、成形体を焼成炉に入れ、大気中で、 900〜1300℃で3時間焼成処理並びに焼成後の冷却を行い、再生焼成体としての試料2−1〜2−4を得た。
そして、このようにして得た各試料2−1〜2−4について、最終的な成分を蛍光X線分析によって確認すると共に、1MHz での初透磁率を測定した。それらの結果を表2に示す。
The sample 1-1 of Example 1 was pulverized using a hammer mill and a jet mill so as to have an average particle diameter of 40 μm or less, and this was used as a regenerated powder. Then, the necessary raw materials are added to the mixture so that Fe 2 O 3 is 48.0 mol%, TiO 2 is 2.0 mol%, CuO is 0 to 20.0 mol%, and the balance is MnO and ZnO in a molar ratio of 26:25. The components were adjusted. Then, after mixing in a ball mill, the mixture was calcined at 850 ° C. for 2 hours in the air and further pulverized in a ball mill to obtain a mixed powder having an average particle diameter of 2.0 μm. Next, polyvinyl alcohol was added to the mixed powder and granulated to form a toroidal core (molded body) having an outer diameter of 18 mm, an inner diameter of 10 mm, and a height of 4 mm at a pressure of 80 MPa. Thereafter, the molded body was placed in a firing furnace, and subjected to firing treatment at 900 to 1300 ° C. for 3 hours in the air and cooling after firing, thereby obtaining samples 2-1 to 2-4 as regenerated fired bodies.
For each of the samples 2-1 to 2-4 thus obtained, the final components were confirmed by X-ray fluorescence analysis, and the initial magnetic permeability at 1 MHz was measured. Table 2 shows the results.

Figure 2004217519
Figure 2004217519

表2に示す結果より、 CuOを全く含まない試料2−1では、1000以上の高い初透磁率を得るのに、焼成温度を1300℃以上の高温に設定しなければならないが、 CuOを適量含有させた試料2−2および2−3は、焼成温度を1000℃程度に低く設定しても1000以上の高い初透磁率が得られている。しかし、 CuOを比較的多量(20.0 mol%)に含有する試料2−4は、焼成温度にかかわりなく1000以上の高い初透磁率を得ることは不可能となり、 CuOを適量含有させることが、焼成温度の低下並びに高周波域での初透磁率の向上に有効であることが分かった。   According to the results shown in Table 2, in Sample 2-1 containing no CuO, the firing temperature must be set to a high temperature of 1300 ° C or higher to obtain a high initial permeability of 1000 or more. Samples 2-2 and 2-3 obtained have a high initial magnetic permeability of 1000 or more even when the firing temperature is set as low as about 1000 ° C. However, for sample 2-4 containing a relatively large amount of CuO (20.0 mol%), it is impossible to obtain a high initial permeability of 1000 or more regardless of the firing temperature. It was found to be effective in lowering the temperature and improving the initial magnetic permeability in a high frequency range.

上記実施例1の試料1−1をハンマーミルとジェットミルとを用いて、平均粒子径40μm以下となるように粉砕し、これを再生粉末とした。そして、これに必要な原料を加えて、Fe2O3 が48.0 mol%、TiO2 が2.0mol%、残部が MnOとZnO とでモル比26:25となるように成分調整した。そして、ボールミルにて混合した後、空気中、 900℃で2時間仮焼し、さらにボールミルにて粉砕して、平均粒子径 2.0μmの混合粉末を得た。次に、この混合粉末に副成分としてMoO3を0.05mass%、ZrO2を0.10mass%またはAl2O3 を0.15mass%加え、さらにボールミルにて1時間粉砕した。そして、この混合粉末にポリビニルアルコールを加えて造粒し、80MPa の圧力で外径18mm,内径10mm,高さ4mmのトロイダル状コア(成形体)を成形した。その後、成形体を焼成炉に入れ、大気中で、 900〜1300℃で3時間焼成処理並びに焼成後の冷却を行い、再生焼成体としての試料3−1〜3−3を得た。そして、このようにして得た各試料3−1〜3−3について、最終的な成分を蛍光X線分析によって確認すると共に、焼成体密度および1MHz での初透磁率を測定した。それらの結果を表3に示す。
表3に示す結果より、副成分としてMoO3、ZrO2、Al2O3 を微量添加しても、高い密度と高い初透磁率とが得られることが分かった。
The sample 1-1 of Example 1 was pulverized using a hammer mill and a jet mill so as to have an average particle diameter of 40 μm or less, and this was used as a regenerated powder. The necessary raw materials were added thereto, and the components were adjusted so that Fe 2 O 3 was 48.0 mol%, TiO 2 was 2.0 mol%, and the balance was MnO and ZnO in a molar ratio of 26:25. Then, after mixing in a ball mill, the mixture was calcined in air at 900 ° C. for 2 hours and further pulverized in a ball mill to obtain a mixed powder having an average particle diameter of 2.0 μm. Next, 0.05 mass% of MoO 3 , 0.10 mass% of ZrO 2 or 0.15 mass% of Al 2 O 3 were added as auxiliary components to the mixed powder, and the mixture was further pulverized by a ball mill for 1 hour. Then, polyvinyl alcohol was added to the mixed powder and granulated, and a toroidal core (formed body) having an outer diameter of 18 mm, an inner diameter of 10 mm, and a height of 4 mm was formed at a pressure of 80 MPa. Thereafter, the molded body was placed in a firing furnace, and subjected to a baking treatment at 900 to 1300 ° C. for 3 hours in the atmosphere and cooling after the baking to obtain samples 3-1 to 3-3 as regenerated baking bodies. For each of the samples 3-1 to 3-3 thus obtained, the final components were confirmed by X-ray fluorescence analysis, and the density of the fired body and the initial magnetic permeability at 1 MHz were measured. Table 3 shows the results.
From the results shown in Table 3, it was found that high density and high initial magnetic permeability can be obtained even when a small amount of MoO 3 , ZrO 2 , or Al 2 O 3 is added as a subcomponent.

Figure 2004217519
Figure 2004217519

Claims (5)

(a)Mn−Znフェライトの焼成体を粉砕して平均粒子径40μm以下の再生粉末を得る工程と、
(b)前記再生粉末を全量用いてまたは該再生粉末に原料粉末を加えて、Fe2O3 44.0〜50.0 mol%(ただし、50.0 mol%は除く)、 ZnO 4.0〜26.5 mol%、TiO2およびSnO2のうちの1種または2種 1.0〜8.0mol%、CuO 0.1〜16.0 mol%、残部 MnOの成分組成となるように成分調整を行う工程と、
(c)前記成分調整を終えた粉末を粉砕して成形用混合粉末を得る工程と、
(d)前記混合粉末を用いて成形を行って成形体を得る工程と、
(e)前記成形体を焼成する工程と、
からなることを特徴とするMn−Znフェライトの再生方法。
(A) pulverizing a fired body of Mn—Zn ferrite to obtain a regenerated powder having an average particle diameter of 40 μm or less;
(B) Using the entire amount of the regenerated powder or adding the raw material powder to the regenerated powder, Fe 2 O 3 44.0 to 50.0 mol% (excluding 50.0 mol%), ZnO 4.0 to 26.5 mol%, TiO 2 and One or two of SnO 2 1.0 to 8.0 mol%, CuO 0.1 to 16.0 mol%, the step of adjusting the components so as to have the component composition of MnO,
(C) crushing the powder after the component adjustment to obtain a mixed powder for molding;
(D) a step of performing molding using the mixed powder to obtain a molded body;
(E) firing the molded body;
A method for regenerating Mn-Zn ferrite, comprising:
前記成形体の焼成を大気中で行うことを特徴とする請求項1に記載のMn−Znフェライトの再生方法。   The method for regenerating Mn-Zn ferrite according to claim 1, wherein the firing of the compact is performed in the atmosphere. 前記混合粉末の平均粒子径が1.0〜2.0μmであることを特徴とする請求項1または2に記載のMn−Znフェライトの再生方法。   The Mn-Zn ferrite regeneration method according to claim 1, wherein the mixed powder has an average particle diameter of 1.0 to 2.0 μm. 前記再生粉末のFe2O3 量が50.0 mol%未満であることを特徴とする請求項1乃至3の何れか1項に記載のMn−Znフェライトの再生方法。 The method of reproducing Mn-Zn ferrite according to any one of claims 1 to 3, wherein the amount of Fe 2 O 3 of the reproducing powder is less than 50.0 mol%. 前記再生粉末のFe2O3 量が50.0 mol%以上であることを特徴とする請求項1乃至3の何れか1項に記載のMn−Znフェライトの再生方法。

The method of reproducing Mn-Zn ferrite according to any one of claims 1 to 3, wherein the amount of Fe 2 O 3 of the reproducing powder is 50.0 mol% or more.

JP2004038389A 1999-04-05 2004-02-16 Method of regenerating manganese-zinc ferrite Withdrawn JP2004217519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004038389A JP2004217519A (en) 1999-04-05 2004-02-16 Method of regenerating manganese-zinc ferrite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9767799 1999-04-05
JP2004038389A JP2004217519A (en) 1999-04-05 2004-02-16 Method of regenerating manganese-zinc ferrite

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000007818A Division JP2000351625A (en) 1999-04-05 2000-01-17 PRODUCTION OF Mn-Zn FERRITE

Publications (1)

Publication Number Publication Date
JP2004217519A true JP2004217519A (en) 2004-08-05

Family

ID=32910574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004038389A Withdrawn JP2004217519A (en) 1999-04-05 2004-02-16 Method of regenerating manganese-zinc ferrite

Country Status (1)

Country Link
JP (1) JP2004217519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115716747A (en) * 2022-11-23 2023-02-28 上海华源磁业股份有限公司 Method for producing low-loss material by using MnZn ferrite magnetic core grinding machine mud

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115716747A (en) * 2022-11-23 2023-02-28 上海华源磁业股份有限公司 Method for producing low-loss material by using MnZn ferrite magnetic core grinding machine mud

Similar Documents

Publication Publication Date Title
US7294284B2 (en) Method for producing Mn-Zn ferrite
JP3584438B2 (en) Mn-Zn ferrite and method for producing the same
JP2000351625A (en) PRODUCTION OF Mn-Zn FERRITE
JP3108804B2 (en) Mn-Zn ferrite
JP2002167272A (en) METHOD OF MANUFACTURING Mn-Zn FERRITE
JP2002167271A (en) METHOD OF MANUFACTURING Mn-Zn FERRITE
JP2007297232A (en) Method for producing oxide magnetic material
JP2004217519A (en) Method of regenerating manganese-zinc ferrite
US6461531B2 (en) Mn-Zn ferrite and production process thereof
JP3584437B2 (en) Method for producing Mn-Zn ferrite
JP2005179098A (en) Mn-Ni-Zn BASED FERRITE
JP3287010B2 (en) Manufacturing method of soft ferrite sintered body for high frequency
JP2004196658A (en) Manganese-zinc ferrite and method of manufacturing the same
JP2005170763A (en) Mn/Zn FERRITE, ITS MANUFACTURING METHOD AND ELECTRONIC PART
WO2023182133A1 (en) MnZn-BASED FERRITE
JP2004238211A (en) Manganese-zinc ferrite
JPH1074612A (en) High-permeability oxide magnetic material
JP2004196657A (en) METHOD OF MANUFACTURING Mn-Zn FERRITE
JPH06314608A (en) Low loss oxide magnetic material
JPH06112033A (en) Manufacture of ferrite material
JPH06168814A (en) Mn-zn ferrite and manufacture thereof
JPH1064718A (en) High permeability oxide magnetic material
JPH10203864A (en) Production of manganese-zinc soft ferrite
JPH05267038A (en) Manufacture of oxide magnetic material
JPH0529125A (en) Production of oxide magnetic material

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070109