JPH06168814A - Mn-zn ferrite and manufacture thereof - Google Patents

Mn-zn ferrite and manufacture thereof

Info

Publication number
JPH06168814A
JPH06168814A JP4320349A JP32034992A JPH06168814A JP H06168814 A JPH06168814 A JP H06168814A JP 4320349 A JP4320349 A JP 4320349A JP 32034992 A JP32034992 A JP 32034992A JP H06168814 A JPH06168814 A JP H06168814A
Authority
JP
Japan
Prior art keywords
oxide
ferrite
component
cao
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4320349A
Other languages
Japanese (ja)
Other versions
JP3622857B2 (en
Inventor
Takashi Kono
貴史 河野
Hideaki Inaba
秀明 稲場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP32034992A priority Critical patent/JP3622857B2/en
Publication of JPH06168814A publication Critical patent/JPH06168814A/en
Application granted granted Critical
Publication of JP3622857B2 publication Critical patent/JP3622857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)

Abstract

PURPOSE:To acquire Mn-Zn ferrite whose core loss in a high frequency region is extremely low. CONSTITUTION:This material has a basic element of an oxide of Fe, Mn and Zn and contains an oxide of Si and Ca and an oxide of Mo and/or W as a sub-element in the basic element in SiO2:0.005 to 0.035wt.% CaO:0.01 to 0.25wt%, MoO3:0.005 to 0.1wt% and WO3:0.005 to 0.1wt% in conversion of SiO2, CaO, MoO3 and WO3, respectively. SnO2:0.5wt% or less (0 not included) and/or TiO2:1.0wt% or less (0 not included) are further contained as a sub-element. The oxide constituting the sub-element is made a composite oxide and used as a raw material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Mn−Zn系フェライ
ト、特にスイッチング電源用トランス等の磁芯として有
用な、高周波域での電力損失が低いMn−Zn系フェラ
イト、及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Mn-Zn ferrite, particularly an Mn-Zn ferrite having a low power loss in a high frequency range, which is useful as a magnetic core of a transformer for a switching power supply and the like, and a method for producing the same. Is.

【0002】[0002]

【従来の技術】Mn−Zn系フェライトは、各種通信機
などのノイズフィルタやトランス用磁芯として、200
KHz程度の駆動周波数で広く使用されている。電子機
器の小型化、高集積化を実現するために、上記部品の駆
動周波数の高周波化が進行しており、500kHz〜1
MHzといった高周波領域での低損失化が望まれている
が、その目的を十分に満足する性能を有するMn−Zn
系フェライトの開発は達成されていなかった。
2. Description of the Related Art Mn-Zn-based ferrite has been used as a magnetic core for noise filters and transformers for various communication devices.
It is widely used with a drive frequency of about KHz. In order to realize downsizing and high integration of electronic devices, the drive frequency of the above-mentioned components is increasing, and 500 kHz to 1
Although it is desired to reduce loss in a high frequency region such as MHz, Mn-Zn having a performance that sufficiently satisfies the purpose.
Development of ferrites has not been achieved.

【0003】例えば、市販の電源用低損失フェライトは
500KHz、50mTにおける電力損失(コアロス)
が250mW/cm3 程度であり、高周波用電源材料と
してはコアロスが大きすぎた。この問題に対し例えば特
開平3−248405号公報では、SiO2 、CaO、
Nb25 、Ta25 、TiO2 の添加により損失の
低減を図っているが、高周波用低損失材として性能的に
十分とはいえなかった。
For example, a commercially available low-loss ferrite for power supply has a power loss (core loss) at 500 KHz and 50 mT.
Was about 250 mW / cm 3 , and the core loss was too large as a high frequency power source material. To solve this problem, for example, in Japanese Patent Laid-Open No. 3-248405, SiO 2 , CaO,
Although the loss was reduced by adding Nb 2 O 5 , Ta 2 O 5 , and TiO 2 , the performance was not sufficient as a low loss material for high frequencies.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記事情を考
慮し、100KHz以上、特に500KHz以上の高周
波域におけるコアロスを低減したMn−Zn系フェライ
ト、及びその製造方法を提供することを目的とする。
In view of the above circumstances, the present invention has an object to provide an Mn-Zn ferrite having reduced core loss in a high frequency range of 100 KHz or more, particularly 500 KHz or more, and a method for producing the same. .

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
するために、Fe、Mn及びZnの酸化物を基本成分と
し、この基本成分中に副成分として、Si、Caの酸化
物と、さらにMo及び/又はWの酸化物を、それぞれS
iO2 、CaO、MoO3 及びWO3 換算で、SiO
2 :0.005〜0.035wt%、CaO:0.01
〜0.25wt%、MoO3 :0.005〜0.1wt
%、WO3 :0.005〜0.1wt%を含有すること
を特徴とするMn−Zn系フェライトを提供するもの
で、前記副成分としてさらにSn及び/又はTiの酸化
物を、それぞれSnO2 及びTiO2換算で、SnO
2 :0.5wt%以下(0は含まず)、TiO2 :1.
0wt%以下(0は含まず)を含有させることができ、
また、上記Mn−Zn系フェライトの主成分と副成分と
を構成する酸化物となる原料を、混合、焼成するMn−
Zn系フェライトの製造方法において、副成分を構成す
る酸化物となる原料の少なくとも一部を、複合酸化物と
して、主成分を構成する酸化物となる原料及び/又は主
成分を構成する酸化物となる原料の混合物の仮焼物に混
合することを特徴とするMn−Zn系フェライトの製造
方法を提供するものである。
In order to solve the above problems, the present invention uses an oxide of Fe, Mn and Zn as a basic component, and an oxide of Si and Ca as a sub-component in the basic component. Further, oxides of Mo and / or W are added to S
SiO in terms of iO 2 , CaO, MoO 3 and WO 3
2 : 0.005-0.035 wt%, CaO: 0.01
~0.25wt%, MoO 3: 0.005~0.1wt
%, WO 3: is provided a Mn-Zn ferrite, characterized in that it contains 0.005~0.1Wt%, the oxides of more Sn and / or Ti as the auxiliary component, respectively SnO 2 And SnO in terms of TiO 2
2 : 0.5 wt% or less (0 is not included), TiO 2 : 1.
0 wt% or less (not including 0) can be contained,
In addition, Mn- is formed by mixing and firing raw materials to be oxides that form the main component and the sub-component of the Mn-Zn ferrite.
In the method for producing a Zn-based ferrite, at least a part of a raw material to be an oxide constituting a subcomponent is used as a composite oxide, and a raw material to be an oxide to form a main component and / or an oxide to form a main component. The present invention provides a method for producing an Mn-Zn-based ferrite, which comprises mixing the mixture of the following raw materials with a calcined product.

【0006】[0006]

【作用】次に、本発明の組成の限定理由を説明する。 (1)SiO2 を0.005〜0.035wt%に限定
した理由 SiO2 はCaOとの共存によって結晶粒界の比抵抗を
高め渦電流損失の低減に有効に寄与する。しかし含有量
が0.005wt%未満では比抵抗の上昇効果が乏し
く、一方、0.035wt%を超えると異常粒組織とな
ってコアロスが上昇し不適当なので、0.005〜0.
035wt%に限定した。
Next, the reasons for limiting the composition of the present invention will be explained. (1) Reason SiO 2 for limiting the SiO 2 to 0.005~0.035Wt% contributes effectively to reduction of eddy current loss increases the specific resistance of the grain boundaries by the coexistence with CaO. However, if the content is less than 0.005 wt%, the effect of increasing the specific resistance is poor, while if it exceeds 0.035 wt%, an abnormal grain structure results and core loss increases, which is inappropriate.
It was limited to 035 wt%.

【0007】(2)CaOを0.01〜0.25wt%
に限定した理由 CaOはSiO2 との共存下で結晶粒界の比抵抗を上昇
させ低損失をもたらす有用成分であるが、含有量が0.
01%未満の場合はその効果が乏しく、一方、0.25
wt%を超えるとコアロスが非常に大きくなるので、
0.01〜0.25wt%の範囲とした。
(2) 0.01 to 0.25 wt% of CaO
Reason for limiting to CaO is a useful component that raises the specific resistance of the grain boundaries and causes a low loss in the coexistence with SiO 2 , but its content is 0.
If less than 01%, the effect is poor, while 0.25
If it exceeds wt%, the core loss will be very large, so
The range was 0.01 to 0.25 wt%.

【0008】(3)MoO3 、WO3 を0.005〜
0.1wt%に限定した理由 MoO3 及びWO3 は結晶粒成長を抑制し、比抵抗を高
めるため渦電流損失の低減に効果があるが、0.005
wt%未満ではほとんどその効果は認められず、一方、
0.1wt%を超えると結晶粒成長抑制効果が顕著とな
り、残留磁束密度、保磁力が上昇してコアロスが増大す
るので、0.005〜0.1wt%の範囲とした。
(3) 0.005 of MoO 3 and WO 3
Reason for limiting to 0.1 wt% MoO 3 and WO 3 are effective in reducing eddy current loss because they suppress crystal grain growth and increase specific resistance, but 0.005
If it is less than wt%, almost no effect is observed, while
If it exceeds 0.1 wt%, the effect of suppressing the crystal grain growth becomes remarkable, and the residual magnetic flux density and the coercive force increase to increase the core loss, so the range was made 0.005 to 0.1 wt%.

【0009】(4)SnO2 を0.5wt%以下(0は
含まず)に限定した理由 SnO2 は粒界や結晶粒の比抵抗を高め渦電流損失を低
下させるほか、多成分の異質な層が結晶粒界に存在する
ことによる磁気的な悪影響を緩和する作用があるが、
0.5wt%を超えると逆にコアロスが増大するため、
0.5wt%以下(0は含まず)に限定した。
(4) Reason why SnO 2 is limited to 0.5 wt% or less (0 is not included) SnO 2 not only increases the specific resistance of grain boundaries and crystal grains and reduces eddy current loss, but it is also a multi-component heterogeneous material. Although it has the effect of mitigating the adverse magnetic effect of the layer existing at the grain boundaries,
On the contrary, when the content exceeds 0.5 wt%, the core loss increases,
It was limited to 0.5 wt% or less (0 is not included).

【0010】(5)TiO2 を1.0wt%以下(0は
含まず)に限定した理由 TiO2 は、結晶粒界に存在する他、結晶粒にも固溶し
て比抵抗を高める効果があり、渦電流損失の低減に寄与
する。さらに、焼結密度を上昇させ残留磁束密度、保磁
力の低減に効果的である。しかし、1.0wt%を超え
ると異常粒成長が顕著になってコアロスが上昇するの
で、1.0wt%以下(0は含まず)の範囲とした。
[0010] (5) Reason TiO 2 for limiting the TiO 2 below 1.0 wt% (0 is not included), in addition to existing in the crystal grain boundary, the effect of increasing the solid solution and the specific resistance in the grain Yes, it contributes to the reduction of eddy current loss. Further, it is effective in increasing the sintered density and reducing the residual magnetic flux density and coercive force. However, when it exceeds 1.0 wt%, abnormal grain growth becomes remarkable and core loss increases, so the range is set to 1.0 wt% or less (0 is not included).

【0011】本発明のMn−Zn系フェライトは、前記
主成分及び副成分を構成する酸化物となる原料を、混
合、仮焼、粉砕、成形し、次いで焼成することにより製
造することができ、前記原料としては酸化物のみならず
加熱により酸化物となる、例えば、しゅう酸塩や、炭酸
塩等も使用可能で、副成分を構成する酸化物となる原料
は主成分を構成する酸化物となる原料に混合してもよ
く、あるいは、主成分を構成する酸化物となる原料を混
合、仮焼した仮焼物に混合してもよい。
The Mn-Zn ferrite of the present invention can be produced by mixing, calcining, pulverizing, shaping, and then firing the raw materials to be the oxides constituting the main component and subcomponents, As the raw material, not only an oxide but also an oxide upon heating, for example, oxalate, carbonate, and the like can be used, and the raw material that becomes an oxide that constitutes a subcomponent is an oxide that constitutes a main component. May be mixed with the above raw material, or may be mixed with the calcined product obtained by mixing and calcining the raw material which becomes the oxide constituting the main component.

【0012】ところで、多成分の混合系では原料粒度の
相違に基づく不均一な分散などによって生じる特性劣化
は否めない。上記した副成分は大部分が結晶粒界に偏析
すると考えられているが、厚さ数nmとされる結晶粒界
での各元素の存在状態を詳細に解析することは困難であ
り、したがってその均質性にも疑問が残る。この見地に
たって、副成分となる原料の添加に際し、あらかじめ副
成分同士の均質性が原子レベルで理想的と考えられる複
合酸化物を用いて添加実験を行ったところ、単独添加の
場合に比較して、磁気特性が改善されることが明らかと
なった。
By the way, in a multi-component mixed system, characteristic deterioration caused by non-uniform dispersion due to difference in particle size of raw materials cannot be denied. Most of the above-mentioned subcomponents are considered to segregate at the crystal grain boundaries, but it is difficult to analyze in detail the state of existence of each element at the crystal grain boundaries with a thickness of several nm. The question of homogeneity remains. From this point of view, when adding raw materials as subcomponents, we conducted an addition experiment in advance using a complex oxide in which the homogeneity of the subcomponents is considered to be ideal at the atomic level. It became clear that the magnetic characteristics were improved.

【0013】本発明の方法によりMn−Znフェライト
を製造するには、各粉末原料を所定の組成になるように
混合、仮焼、粉砕した後、常法に従い圧縮成形し、次い
で焼成を施せばよい。この際、前記複合酸化物の添加
は、前記混合時及び/又は粉砕時に行われる。
In order to produce Mn-Zn ferrite by the method of the present invention, each powder raw material is mixed so as to have a predetermined composition, calcined, crushed, compression-molded by a conventional method, and then fired. Good. At this time, the addition of the composite oxide is performed during the mixing and / or during the pulverization.

【0014】[0014]

【実施例】以下に、本発明の実施例を説明する。 実施例1 Fe23 :53.5mol%、MnO:37.5mo
l%、ZnO:9.0mol%からなる基本成分の原料
を混合後、950℃×3時間仮焼し、表1及び表2に示
すような配合比でSiO2 、CaO(CaCO3 を使
用)、MoO3 、WO3 (H2 WO4 を使用)、SnO
2 、TiO2 を添加、配合したのち粉砕を施し、粉体を
得た。この粉体にバインダとしてPVAを混合したのち
リング状に成形し、1200℃×3時間本焼成を実施し
た。
EXAMPLES Examples of the present invention will be described below. Example 1 Fe 2 O 3 : 53.5 mol%, MnO: 37.5 mo
1%, ZnO: 9.0 mol% of the basic component raw material was mixed and then calcined at 950 ° C. for 3 hours, and SiO 2 and CaO (using CaCO 3 ) were used at the compounding ratios shown in Table 1 and Table 2. , MoO 3 , WO 3 (using H 2 WO 4 ), SnO
2 , TiO 2 was added and mixed, and then pulverized to obtain a powder. This powder was mixed with PVA as a binder, then molded into a ring, and then subjected to main firing at 1200 ° C. for 3 hours.

【0015】このようにして得られた試料の500KH
z、50mT、80℃におけるコアロスを表1、表2に
併記した。表1は本発明の実施例を、表2は本発明にお
ける副成分含有量が限定範囲外の比較例を示す表であ
る。本発明によれば、500KHzという高い周波数に
おいても低いコアロスを有するMn−Zn系フェライト
が得られる。
500 KH of the sample thus obtained
The core loss at z, 50 mT and 80 ° C. is also shown in Tables 1 and 2. Table 1 is an example of the present invention, and Table 2 is a table showing comparative examples in which the subcomponent content in the present invention is outside the limited range. According to the present invention, an Mn-Zn based ferrite having a low core loss even at a high frequency of 500 KHz can be obtained.

【0016】実施例2 表1に示した試料番号8及び11において、複合酸化物
として、CaOとMoO3 及びCaOとWO3 の複合酸
化物を使用し、MoO3 及びWO3 の全量とCaOの一
部分量を同時に置換した場合の特性差を表3に示す。複
合酸化物の添加によりコアロスが低減されることが明ら
かである。
Example 2 In Sample Nos. 8 and 11 shown in Table 1, the composite oxides of CaO and MoO 3 and CaO and WO 3 were used, and the total amount of MoO 3 and WO 3 and CaO were used. Table 3 shows the characteristic differences when a part of the amount is replaced at the same time. It is clear that the addition of complex oxide reduces core loss.

【0017】なお、実施例2における仮焼条件、本焼成
条件は実施例1とそれぞれ同様とした。
The calcination conditions and the main calcination conditions in Example 2 were the same as those in Example 1.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【発明の効果】本発明により、Fe23 、MnO、Z
nOを基本成分とするMn−Zn系フェライトに、副成
分としてSiO2 、CaO、MoO3 、SnO2 、Ti
2 を特定量含有させることにより、高周波域における
コアロスが著しく低いMn−Zn系フェライトが得られ
た。本フェライトを高周波電源の磁芯等に使用すれば、
電源等の高効率化、小型化に有効である。
According to the present invention, Fe 2 O 3 , MnO, Z
nO the Mn-Zn ferrite having a basic component, SiO 2, CaO as an auxiliary component, MoO 3, SnO 2, Ti
By containing a specific amount of O 2 , a Mn-Zn-based ferrite having a significantly low core loss in the high frequency range was obtained. If this ferrite is used for the magnetic core of a high frequency power supply,
It is effective for increasing the efficiency and downsizing of power supplies.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Fe、Mn及びZnの酸化物を基本成分
とし、この基本成分中に副成分として、Si、Caの酸
化物と、さらにMo及び/又はWの酸化物とを、それぞ
れSiO2 、CaO、MoO3 及びWO3 換算で、 SiO2 :0.005〜0.035wt%、 CaO:0.01〜0.25wt%、 MoO3 :0.005〜0.1wt%、 WO3 :0.005〜0.1wt% を含有することを特徴とするMn−Zn系フェライト。
1. An oxide of Fe, Mn, and Zn as a basic component, and an oxide of Si, Ca and an oxide of Mo and / or W as a sub-component in the basic component are each contained in SiO 2 , CaO, with MoO 3 and WO 3 in terms, SiO 2: 0.005~0.035wt%, CaO : 0.01~0.25wt%, MoO 3: 0.005~0.1wt%, WO 3: 0 0.005-0.1 wt% is contained, The Mn-Zn system ferrite characterized by the above-mentioned.
【請求項2】 請求項1記載のMn−Zn系フェライト
が、副成分として、さらにSn及び/又はTiの酸化物
を、それぞれSnO2 及びTiO2 換算で、 SnO2 :0.5wt%以下(0は含まず) TiO2 :1.0wt%以下(0は含まず) を含有することを特徴とするMn−Zn系フェライト。
2. The Mn—Zn-based ferrite according to claim 1, further comprising an oxide of Sn and / or Ti as a sub-component, in terms of SnO 2 and TiO 2 , SnO 2 : 0.5 wt% or less ( 0 is not included) TiO 2: 1.0 wt% or less (0 Mn-Zn ferrite, characterized in that it contains is not included).
【請求項3】 請求項1又は2に記載のMn−Zn系フ
ェライトの主成分と副成分とを構成する酸化物となる原
料を、混合、焼成するMn−Zn系フェライトの製造方
法において、副成分を構成する酸化物となる原料の少な
くとも一部を、複合酸化物として、主成分を構成する酸
化物となる原料及び/又は主成分を構成する酸化物とな
る原料の混合物の仮焼物に混合することを特徴とするM
n−Zn系フェライトの製造方法。
3. A method for producing an Mn—Zn ferrite according to claim 1, wherein raw materials to be an oxide constituting the main component and the subcomponent of the Mn—Zn ferrite according to claim 1 or 2 are mixed and fired. Mixing at least a part of the raw material to be the oxide constituting the component as a composite oxide into the calcined product of the raw material to be the oxide constituting the main component and / or the mixture of the raw materials to be the oxide constituting the main component M characterized by
Manufacturing method of n-Zn type ferrite.
JP32034992A 1992-11-30 1992-11-30 Mn-Zn ferrite Expired - Fee Related JP3622857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32034992A JP3622857B2 (en) 1992-11-30 1992-11-30 Mn-Zn ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32034992A JP3622857B2 (en) 1992-11-30 1992-11-30 Mn-Zn ferrite

Publications (2)

Publication Number Publication Date
JPH06168814A true JPH06168814A (en) 1994-06-14
JP3622857B2 JP3622857B2 (en) 2005-02-23

Family

ID=18120488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32034992A Expired - Fee Related JP3622857B2 (en) 1992-11-30 1992-11-30 Mn-Zn ferrite

Country Status (1)

Country Link
JP (1) JP3622857B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0609775A2 (en) * 1993-02-03 1994-08-10 SIEMENS MATSUSHITA COMPONENTS GmbH & CO. KG Ferrite with low dissipation and high saturation induction
CN116854459A (en) * 2023-05-19 2023-10-10 江苏阜宁海天金宁三环电子有限公司 High-frequency high-impedance lean iron-manganese-zinc ferrite and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0609775A2 (en) * 1993-02-03 1994-08-10 SIEMENS MATSUSHITA COMPONENTS GmbH & CO. KG Ferrite with low dissipation and high saturation induction
EP0609775A3 (en) * 1993-02-03 1994-12-07 Siemens Matsushita Components Ferrite with low dissipation and high saturation induction.
CN116854459A (en) * 2023-05-19 2023-10-10 江苏阜宁海天金宁三环电子有限公司 High-frequency high-impedance lean iron-manganese-zinc ferrite and preparation method thereof

Also Published As

Publication number Publication date
JP3622857B2 (en) 2005-02-23

Similar Documents

Publication Publication Date Title
JP3108803B2 (en) Mn-Zn ferrite
EP1043287B1 (en) Process for producing Mn-Zn ferrite
JP3108804B2 (en) Mn-Zn ferrite
JP2002167272A (en) METHOD OF MANUFACTURING Mn-Zn FERRITE
JPH06168814A (en) Mn-zn ferrite and manufacture thereof
JP2004247602A (en) MnZn-BASED FERRITE WAVE ABSORBER
JP3366708B2 (en) Low loss Mn-Zn ferrite
JP3584437B2 (en) Method for producing Mn-Zn ferrite
JP2908631B2 (en) Manufacturing method of ferrite magnet
JPH0725618A (en) Production of soft ferrite
JP3238735B2 (en) Manganese-zinc ferrite
JP2938348B2 (en) Oxide magnetic material
JP3245206B2 (en) Manganese-zinc ferrite
JP3621118B2 (en) Manganese-zinc ferrite
JPH09237709A (en) Low loss oxide magnetic material and manufacture thereof
JP3287010B2 (en) Manufacturing method of soft ferrite sintered body for high frequency
JPH06295811A (en) Soft magnetic oxide material
KR100302070B1 (en) Method for preparing soft magnetic ferrite
JPH03242906A (en) Manufacture of low loss oxide magnetic material
JPH0529125A (en) Production of oxide magnetic material
JPH06314608A (en) Low loss oxide magnetic material
JP2004217519A (en) Method of regenerating manganese-zinc ferrite
JPH06349625A (en) High-magnetic permeability oxide magnetic material and manufacure thereof
JP2002208510A (en) High-permeability oxide magnetic material
JP2002353023A (en) Low-loss oxide magnetic material

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees