JP2004168570A - Method for manufacturing soluble carbon nanotube - Google Patents

Method for manufacturing soluble carbon nanotube Download PDF

Info

Publication number
JP2004168570A
JP2004168570A JP2002333853A JP2002333853A JP2004168570A JP 2004168570 A JP2004168570 A JP 2004168570A JP 2002333853 A JP2002333853 A JP 2002333853A JP 2002333853 A JP2002333853 A JP 2002333853A JP 2004168570 A JP2004168570 A JP 2004168570A
Authority
JP
Japan
Prior art keywords
carbon nanotubes
amine
walled carbon
carbon nanotube
solubilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002333853A
Other languages
Japanese (ja)
Other versions
JP3764986B2 (en
Inventor
Takeshi Akasaka
健 赤阪
Masaru Maeda
優 前田
Koji Wakahara
孝次 若原
Hiroshi Tokumoto
洋志 徳本
Shinji Minami
信次 南
Masahiro Kako
昌寛 加固
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Advanced Industrial Science and Technology AIST filed Critical Japan Science and Technology Agency
Priority to JP2002333853A priority Critical patent/JP3764986B2/en
Publication of JP2004168570A publication Critical patent/JP2004168570A/en
Application granted granted Critical
Publication of JP3764986B2 publication Critical patent/JP3764986B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an easy method for manufacturing a monolayer carbon nanotube solubilized with an organic solvent and having improved yield and purity. <P>SOLUTION: The method for manufacturing the soluble monolayer carbon nanotube includes steps of subjecting a monolayer carbon nanotube to ultrasonic treatment in a mixture solution at least of sulfuric acid and nitric acid and to ultrasonic treatment in a mixture solution of sulfuric acid and hydrogen peroxide, and then allowing the treated monolayer carbon nanotube to react with amine to modify with the amine in the presence of an organic amine and dehydrating agent in order to solubilize the carbon nanotube with a solvent. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、カーボンナノチューブ、特に単層カーボンナノチューブ(以下、SWCNTと表す場合もある。)を、化学修飾により溶媒に可溶性にしたカーボンナノチューブを温和な条件下で製造する方法に関する
【0002】
【従来の技術】
カーボンナノチューブは製法により、径や長さ、カイラリティ、層数、終端の形態等の違った多様な特性のものが得られる。特に、単層カーボンナノチューブにおいては、製造直後の単層カーボンナノチューブは先端に5員環を含む炭素骨格を有するために閉管状態となっており、またチューブの周りにカーボンナノ粒子やアモルファスカーボン等の炭素不純物が多数付着している。したがって、前記不純物の除去、開口処理、形態の違いとその形態の持つ特徴的な特性の把握、および多様な構造の中から選択した構造のものを特異的に、かつ安定的に量産できる技術の確立が、基本的な問題として重要である。
前記確立の後には、産業界および社会生活において有用性を持ったものとするために、確立された特定の構造形態のカーボンナノチューブの生産に裏付けられた材料の有用性を高める処理技術、すなわち、該カーボンナノチューブに機械的または化学的変形や修飾などにより新しい機能を付与する技術、の確立が必要になる。
そして、前記化学的変形や修飾等による改質処理は溶液中で行えることが、化学反応の容易性の観点から望まれるところであるから、カーボンナノチューブを溶媒に可溶化する技術の確立も重要であり、そのような研究もされている。
【0003】
【特許文献1】
特開平8−12310号公報(特に、請求の範囲、〔0003〕〜〔0006〕、各実施例)
【非特許文献1】
編者 田中 一義「カーボンナノチューブ」ナノデバイスへの挑戦、(株)化学同人、2001年1月30日、p.100−103
【0004】
前記特許文献1には、粗カーボン・ナノチューブを硫酸・硝酸混合溶液などで処理することにより開口、精製、官能基の導入などを緩和な条件で行う方法の発明が記載されている。また、前記非特許文献1には、カーボンナノチューブの末端の開口に最も広く用いられているものとして、酸処理と超音波処理を組み合わせた方法があり、該方法においては、超音波の周波数などの調整により、長さ分布の調整された開口したカーボン・ナノチューブが得られることが記載されている。更に、このようにして得られた開口したカーボン・ナノチューブの開口部へオクタデシルアミンを修飾することにより、ベンゼンなどの有機溶媒に可溶のSWCNTが合成されることが記載されている。しかしながら、前記修飾により可溶化したSWCNTの合成方法は、カルボン酸の酸塩化物への変換、さらにはアミド化の過程を経るという点で簡易な方法とは言い難い。
【0005】
【発明が解決しようとする課題】
本発明の課題は、温和な条件下で、かつ高効率の脱水反応を進行させ、非常に高純度の有機溶媒可溶性のSWNTを合成する方法を提供することである。
前記課題を解決するために、本発明者らは、開口処理したSWCNTを簡易に溶媒可溶性に修飾する手段を検討する中で、有機アミン、特に有機溶媒に親和性の基を有するアミン類を、脱水剤の存在下で前記開口処理したSWCNTと反応させ修飾処理することにより、より容易に溶媒可溶性にすることが出来ることを見出し、前記課題を解決することが出来た。
【0006】
【課題を解決するための手段】
本発明は、単層カーボンナノチューブを少なくとも硫酸−硝酸の混合溶液中での超音波処理および硫酸と過酸化水素の混合溶液中での超音波処理をした後、前記処理した単層カーボンナノチューブに有機アミンおよび脱水剤の存在下で前記アミンと反応させ前記アミンで修飾して溶媒に可溶化した単層カーボンナノチューブを製造する方法である。好ましくは、前記有機アミンが一級、二級アルキルアミン、一級芳香族アミンおよび二級芳香族アミンからなる群から選択される少なくとも1種であることを特徴とする前記前記アミンで修飾して溶媒に可溶化した単層カーボンナノチューブを製造する方法であり、より好ましくは、脱水剤がジシクロヘキシルカルボジイミド、N,N’−カルボニルジイミダゾール、3,4,5−トリフルオロベンゼンボロニックアシッドおよびビス(ビストリメチルシリルアミノ)スズからなる群から選択される少なくとも1種であることを特徴とする前記各アミンで修飾して溶媒に可溶化した単層カーボンナノチューブを製造する方法である。また、使用するSWCNTがアーク放電法で製造された物の場合、硫酸−硝酸の混合溶液中での超音波処理および硫酸と過酸化水素の混合溶液中での超音波処理の前に350℃±20℃の温度、大気下での熱処理および室温における塩酸溶液中での超音波処理をすることを特徴とする前記各アミンで修飾して溶媒に可溶化した単層カーボンナノチューブを製造する方法である。
【0007】
【本発明の実施の態様】
本発明をより詳細に説明する。
A.従来技術では、SWCNT上のカルボキシル基とアミン類との脱水プロセスは熱反応ににより実施していたので、収率が低い、純度が低いなどの問題点があった。そこで本発明においては、前記脱水プロセスを有機脱水剤の存在下で実施する方法を開発し、前記不都合を改善したものである。
B.前記脱水剤としては、SWCNT上のカルボキシル基とアミン類との脱水プロセス(アミド脱水縮合)に選択的、かつ効率で機能するものであれば充分であるが、ジシクロヘキシルカルボジイミド、N,N’−カルボニルジイミダゾール、3,4,5−トリフルオロベンゼンボロニックアシッドおよびビス(ビストリメチルシリルアミノ)スズを好ましいものとして、また、ジシクロヘキシルカルボジイミドを特に好ましいものとして挙げることができる。
C.前記SWCNT上のカルボキシル基とアミン類との脱水プロセスは、ジメチルホルムアミド(DMF)、テトラヒドロフランなどの溶媒を用いるのが好ましい。
D.前記SWCNT上のカルボキシル基とアミン類との脱水プロセスは、120℃±10℃において、少なくとも60時間行うことにより、SWCNT上のカルボキシル基がアミド化された。重量基準の75%の収率で得られた。
E.SWCNTの開口処理は前記文献に記載の方法を採用することが出来る。
【0008】
【実施例】
以下、実施例により本発明を具体的に説明するが、この例示により本発明が限定的に解釈されるものではない。
得られた溶媒可溶性のカーボンナノチューブの紫外(UV)・可視(VL)・近赤外(NRI)吸収スペクトルは、島津製作所製のUV−3150型吸収スペクトル測定装置を用いて測定した。また、AFMイメージはビーコインスツルメント社製のナノスコープIII型原子間力顕微鏡およびSEMイメージは日立製作所製のS−4300型走査型電子顕微鏡を用いて測定した。
【0009】
実施例1
アーク放電法で製造の単層カーボンナノチューブ(Carbolex社製の単層カーボンナノチューブ、AP−SWCNT)150mgを18時間350℃で熱処理し、塩酸(100mL/36%)に室温で超音波分散した。硫酸(5mL/97%)と硝酸(18mL/70%)の混合溶液、硫酸(48mL/97%)と過酸化水素(12mL/30%)の混合溶液中、室温にて超音波処理した。さらにSWNT9.5mgをジメチルホルムアミド(20mL)中に分散し、オクタデシルアミン(1g)とジシクロヘキシルカルボジイミド(DCC)(0.5g)を加え、120℃で60時間反応し、可溶性単層カーボンナノチューブを合成した。
収率75%、生成化合物の純度97%。
【0010】
実施例2
レーザーアブレーション法で製造の単層カーボンナノチューブ(Tube@Rice社製 精製SWCNT)100mgを硫酸(120mL/97%)と硝酸(40mL/70%)の混合溶液中、〜40℃にて超音波処理した後、硫酸(120mL/97%)と過酸化水素(30mL/30%)の混合溶液中撹拌した。さらにSWNT29.2mgをジメチルホルムアミド(60mL)中に分散し、オクタデシルアミン(1g)とジシクロヘキシルカルボジイミド(0.5g)を混合し、120℃で60時間反応し、可溶性単層カーボンナノチューブを合成した。
【0011】
実施例3、実施例1、および2で得られた可溶性SWCNTの特性;可視近赤外(VL−NIR)吸収スペクトル。
可溶化した単層カーボンナノチューブをジクロロメタン、トルエン、テトラヒドロフラン(THF)中で超音波処理し、過剰のオクタデシルアミン(ODA)とジシクロヘキシルカルボジイミド(DCC)を濾別した。可溶化単層カーボンナノチューブをTHFに溶解し、可視近赤外(VL−NIR)吸収スペクトルの測定を行測定を行い、可溶性SWCNTの生成が確認され。その結果を図1に示す。
【0012】
実施例4、実施例1、および2で得られた可溶性SWCNTのラマンスペクトル
可溶化した単層カーボンナノチューブをジクロロメタン、トルエン、テトラヒドロフラン(THF)中で超音波し、過剰のオクタデシルアミン(ODA)とジシクロヘキシルカルボジイミド(DCC)を濾別した。可溶性単層カーボンナノチューブの薄膜をメンブランフィルター上に作成し、ラマンスペクトルを測定を行い、可溶性SWCNTの生成が確認された。測定結果を図2に示す。
【0013】
実施例5、実施例1、および2で得られた可溶性SWCNTの原子間力顕微鏡像
可溶化した単層カーボンナノチューブをジクロロメタン、トルエン、テトラヒドロフラン(THF)中で超音波し、過剰のオクタデシルアミン(ODA)とジシクロヘキシルカルボジイミド(DCC)を濾別した。THFに溶解した可溶性単層カーボンナノチューブをマイカ基盤上に展開し、原子間力顕微鏡でAFMイメージ図の測定を行測定を行い、高純度SWCNTの生成が確認された。結果を図3に示す。
【0014】
実施例5、実施例1、および2で得られた可溶性SWCNTの走査型電子顕微鏡像
可溶化した単層カーボンナノチューブをジクロロメタン、トルエン、テトラヒドロフラン(THF)中で超音波し、過剰のオクタデシルアミン(ODA)とジシクロヘキシルカルボジイミド(DCC)を濾別した。THFに溶解した可溶性単層カーボンナノチューブをマイカ基盤上に展開し、走査型電子顕微鏡でSEMイメージ図の測定を行い、高純度SWCNTの生成が確認された。その結果を図4に示す。
【0015】
【発明の効果】
以上述べたように、本発明の、SWCNT上のカルボキシル基とアミン類との脱水プロセスに、脱水剤を用いるという構成により、SWCNTを溶媒可溶化修飾して得られる化合物の収率および純度が向上するという優れた効果がもたらされる。
【図面の簡単な説明】
【図1】実施例1、2の溶媒可溶化SWCNTの可視近赤外(VL−NIR)吸収スペクトル、(a)は実施例1、(b)は実施例2
【図2】実施例1、2の溶媒可溶化SWCNTのラマンスペクトル、(a)は実施例1、(b)は実施例2
【図3】実施例1、2の溶媒可溶化SWCNTのAFMイメージ、(a)は実施例1、(b)は実施例2
【図4】実施例1、2の溶媒可溶化SWCNTのSEMイメージ、(a)は実施例1、(b)は実施例2
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing carbon nanotubes, particularly single-walled carbon nanotubes (hereinafter sometimes referred to as SWCNTs), under mild conditions, by making the carbon nanotubes soluble in a solvent by chemical modification.
[Prior art]
Depending on the manufacturing method, carbon nanotubes having various characteristics such as diameter, length, chirality, number of layers, and terminal form can be obtained. In particular, in the single-walled carbon nanotube, the single-walled carbon nanotube immediately after production is in a closed state because it has a carbon skeleton containing a five-membered ring at the tip, and the carbon nanotubes and amorphous carbon are surrounded around the tube. Many carbon impurities are attached. Therefore, the technique of removing impurities, performing opening treatment, grasping the difference in form and the characteristic characteristics of the form, and a method capable of specifically and stably mass-producing a structure selected from various structures. Establishment is important as a fundamental issue.
After the establishment, in order to have utility in industry and social life, processing technology that enhances the usefulness of the material backed by the production of carbon nanotubes of an established specific structural form, that is, It is necessary to establish a technique for imparting a new function to the carbon nanotube by mechanical or chemical deformation or modification.
Since it is desired from the viewpoint of the easiness of the chemical reaction that the modification treatment by the chemical deformation or modification can be performed in a solution, it is also important to establish a technique for solubilizing the carbon nanotubes in a solvent. , Such research has been done.
[0003]
[Patent Document 1]
JP-A-8-12310 (particularly, claims, [0003] to [0006], each embodiment)
[Non-patent document 1]
Editor: Kazuyoshi Tanaka Challenge to "Carbon Nanotube" Nanodevice, Kagaku Dojin, January 30, 2001, p. 100-103
[0004]
Patent Document 1 describes an invention of a method in which opening, purification, introduction of a functional group, and the like are performed under mild conditions by treating a crude carbon nanotube with a mixed solution of sulfuric acid and nitric acid. In Non-Patent Document 1, there is a method that combines acid treatment and ultrasonic treatment as one of the most widely used methods for opening the ends of carbon nanotubes. It is described that the adjustment results in an open carbon nanotube having an adjusted length distribution. Furthermore, it is described that by modifying octadecylamine on the opening of the open carbon nanotube thus obtained, SWCNT soluble in an organic solvent such as benzene is synthesized. However, the method for synthesizing SWCNT solubilized by the modification is not a simple method in that it involves a process of converting carboxylic acid into acid chloride and further amidation.
[0005]
[Problems to be solved by the invention]
It is an object of the present invention to provide a method for synthesizing an organic solvent-soluble SWNT of very high purity by promoting a highly efficient dehydration reaction under mild conditions.
In order to solve the above-mentioned problems, the present inventors have studied means for easily modifying the SWCNT that has been subjected to the opening treatment to be solvent-soluble, and have found that organic amines, particularly amines having an affinity group for an organic solvent, The present inventors have found that by performing the modification treatment by reacting with the SWCNT subjected to the opening treatment in the presence of a dehydrating agent, the solvent can be more easily made soluble in the solvent, and the above-mentioned problem can be solved.
[0006]
[Means for Solving the Problems]
In the present invention, the single-walled carbon nanotubes are subjected to at least ultrasonic treatment in a mixed solution of sulfuric acid and nitric acid and ultrasonic treatment in a mixed solution of sulfuric acid and hydrogen peroxide. This is a method for producing single-walled carbon nanotubes which are reacted with the amine in the presence of an amine and a dehydrating agent, modified with the amine and solubilized in a solvent. Preferably, the organic amine is at least one selected from the group consisting of primary, secondary alkylamines, primary aromatic amines and secondary aromatic amines, wherein the organic amine is modified with the amine to form a solvent. It is a method for producing solubilized single-walled carbon nanotubes, and more preferably, the dehydrating agent is dicyclohexylcarbodiimide, N, N'-carbonyldiimidazole, 3,4,5-trifluorobenzeneboronic acid and bis (bistrimethylsilyl) A method for producing single-walled carbon nanotubes modified with each of the amines and solubilized in a solvent, wherein the single-walled carbon nanotubes are at least one selected from the group consisting of amino) tin. When the SWCNT used is manufactured by the arc discharge method, the temperature is set at 350 ° C. ± before the ultrasonic treatment in the mixed solution of sulfuric acid and nitric acid and the ultrasonic treatment in the mixed solution of sulfuric acid and hydrogen peroxide. A method for producing single-walled carbon nanotubes modified with each of the amines and solubilized in a solvent, wherein the single-walled carbon nanotubes are modified by a heat treatment at 20 ° C. in the atmosphere and an ultrasonic treatment in a hydrochloric acid solution at room temperature. .
[0007]
[Embodiment of the present invention]
The present invention will be described in more detail.
A. In the prior art, since the dehydration process between the carboxyl group on SWCNT and the amines was performed by a thermal reaction, there were problems such as low yield and low purity. Therefore, in the present invention, a method for performing the dehydration process in the presence of an organic dehydrating agent has been developed, and the above disadvantage has been improved.
B. As the dehydrating agent, it is sufficient that the dehydrating agent selectively and efficiently functions in a dehydration process (amide dehydration condensation) between a carboxyl group on SWCNT and an amine, but dicyclohexylcarbodiimide, N, N'-carbonyl Preferred are diimidazole, 3,4,5-trifluorobenzeneboronic acid and bis (bistrimethylsilylamino) tin, and particularly preferred is dicyclohexylcarbodiimide.
C. It is preferable to use a solvent such as dimethylformamide (DMF) or tetrahydrofuran for the dehydration process of the carboxyl group on SWCNT and amines.
D. The carboxyl group on the SWCNT was amidated by performing the dehydration process of the carboxyl group on the SWCNT and the amines at 120 ° C. ± 10 ° C. for at least 60 hours. It was obtained in a yield of 75% by weight.
E. FIG. For the opening treatment of the SWCNT, the method described in the above-mentioned document can be adopted.
[0008]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.
The ultraviolet (UV), visible (VL), and near-infrared (NRI) absorption spectra of the obtained solvent-soluble carbon nanotubes were measured using a UV-3150 absorption spectrum measuring device manufactured by Shimadzu Corporation. The AFM image was measured using a Nanoscope type III atomic force microscope manufactured by Becoin Instrument, and the SEM image was measured using an S-4300 type scanning electron microscope manufactured by Hitachi, Ltd.
[0009]
Example 1
150 mg of single-walled carbon nanotubes (Carbonex single-walled carbon nanotubes, AP-SWCNT) manufactured by an arc discharge method was heat-treated at 350 ° C. for 18 hours, and ultrasonically dispersed in hydrochloric acid (100 mL / 36%) at room temperature. Ultrasonic treatment was performed at room temperature in a mixed solution of sulfuric acid (5 mL / 97%) and nitric acid (18 mL / 70%) and a mixed solution of sulfuric acid (48 mL / 97%) and hydrogen peroxide (12 mL / 30%). Further, 9.5 mg of SWNT was dispersed in dimethylformamide (20 mL), octadecylamine (1 g) and dicyclohexylcarbodiimide (DCC) (0.5 g) were added, and the mixture was reacted at 120 ° C. for 60 hours to synthesize a soluble single-walled carbon nanotube. .
Yield 75%, purity of product compound 97%.
[0010]
Example 2
100 mg of single-walled carbon nanotubes (purified SWCNT manufactured by Tube @ Rice) manufactured by a laser ablation method were subjected to ultrasonic treatment at 4040 ° C. in a mixed solution of sulfuric acid (120 mL / 97%) and nitric acid (40 mL / 70%). Thereafter, the mixture was stirred in a mixed solution of sulfuric acid (120 mL / 97%) and hydrogen peroxide (30 mL / 30%). Further, 29.2 mg of SWNT was dispersed in dimethylformamide (60 mL), octadecylamine (1 g) and dicyclohexylcarbodiimide (0.5 g) were mixed, and reacted at 120 ° C. for 60 hours to synthesize a soluble single-walled carbon nanotube.
[0011]
Properties of the soluble SWCNTs obtained in Examples 3, 1 and 2; Visible and near infrared (VL-NIR) absorption spectra.
The solubilized single-walled carbon nanotubes were sonicated in dichloromethane, toluene, and tetrahydrofuran (THF), and excess octadecylamine (ODA) and dicyclohexylcarbodiimide (DCC) were separated by filtration. The solubilized single-walled carbon nanotubes were dissolved in THF, and visible and near-infrared (VL-NIR) absorption spectra were measured and measured, and the formation of soluble SWCNT was confirmed. The result is shown in FIG.
[0012]
Raman spectra of soluble SWCNTs obtained in Examples 4, 1 and 2 The solubilized single-walled carbon nanotubes were sonicated in dichloromethane, toluene, tetrahydrofuran (THF) and excess octadecylamine (ODA) and dicyclohexyl Carbodiimide (DCC) was filtered off. A thin film of a soluble single-walled carbon nanotube was formed on a membrane filter, and a Raman spectrum was measured. As a result, generation of a soluble SWCNT was confirmed. FIG. 2 shows the measurement results.
[0013]
Atomic force microscopy images of the soluble SWCNTs obtained in Examples 5, 1 and 2 The solubilized single-walled carbon nanotubes were sonicated in dichloromethane, toluene, tetrahydrofuran (THF) and excess octadecylamine (ODA) ) And dicyclohexylcarbodiimide (DCC) were filtered off. The soluble single-walled carbon nanotube dissolved in THF was developed on a mica substrate, and an AFM image diagram was measured with an atomic force microscope, and the measurement was performed. As a result, generation of high-purity SWCNT was confirmed. The results are shown in FIG.
[0014]
Scanning Electron Microscope Images of Soluble SWCNTs Obtained in Examples 5, 1 and 2 The solubilized single-walled carbon nanotubes were sonicated in dichloromethane, toluene, tetrahydrofuran (THF) and excess octadecylamine (ODA). ) And dicyclohexylcarbodiimide (DCC) were filtered off. The soluble single-walled carbon nanotubes dissolved in THF were developed on a mica substrate, and SEM image diagrams were measured with a scanning electron microscope, and the generation of high-purity SWCNT was confirmed. The result is shown in FIG.
[0015]
【The invention's effect】
As described above, by using a dehydrating agent in the dehydration process of the carboxyl group on SWCNT and amines of the present invention, the yield and purity of the compound obtained by solubilizing and modifying SWCNT in a solvent are improved. The effect is excellent.
[Brief description of the drawings]
FIG. 1 is a visible and near infrared (VL-NIR) absorption spectrum of solvent-solubilized SWCNTs of Examples 1 and 2, (a) is Example 1, and (b) is Example 2.
FIG. 2 is a Raman spectrum of solvent-solubilized SWCNTs of Examples 1 and 2, (a) is Example 1, (b) is Example 2
FIG. 3 is an AFM image of solvent-solubilized SWCNTs of Examples 1 and 2, (a) is Example 1, (b) is Example 2.
FIG. 4 is an SEM image of solvent-solubilized SWCNTs of Examples 1 and 2, (a) of Example 1 and (b) of Example 2

Claims (4)

単層カーボンナノチューブを少なくとも硫酸−硝酸の混合溶液中での超音波処理および硫酸と過酸化水素の混合溶液中での超音波処理をした後、前記処理した単層カーボンナノチューブに有機アミンおよび脱水剤の存在下で前記アミンを反応させ前記アミンで修飾して溶媒に可溶化した単層カーボンナノチューブを製造する方法。After subjecting the single-walled carbon nanotubes to at least ultrasonic treatment in a mixed solution of sulfuric acid and nitric acid and ultrasonic treatment in a mixed solution of sulfuric acid and hydrogen peroxide, the treated single-walled carbon nanotubes are treated with an organic amine and a dehydrating agent. A method for producing single-walled carbon nanotubes which are modified with the amine to be solubilized in a solvent, by reacting the amine in the presence of the compound. 有機アミンが一級、二級アルキルアミン、一級芳香族アミンおよび二級芳香族アミンからなる群から選択される少なくとも1種であることを特徴とする請求項1に記載の前記アミンで修飾して溶媒に可溶化した単層カーボンナノチューブを製造する方法。The amine modified with the amine according to claim 1, wherein the organic amine is at least one selected from the group consisting of primary, secondary alkylamines, primary aromatic amines and secondary aromatic amines. For producing single-walled carbon nanotubes solubilized in water. 脱水剤がジシクロヘキシルカルボジイミド、N,N’−カルボニルジイミダゾール、3,4,5−トリフルオロベンゼンボロニックアシッドおよびビス(ビストリメチルシリルアミノ)スズからなる群から選択される少なくとも1種であることを特徴とする請求項1または2に記載の前記アミンで修飾して溶媒に可溶化した単層カーボンナノチューブを製造する方法。The dehydrating agent is at least one selected from the group consisting of dicyclohexylcarbodiimide, N, N'-carbonyldiimidazole, 3,4,5-trifluorobenzeneboronic acid and bis (bistrimethylsilylamino) tin. A method for producing single-walled carbon nanotubes modified with the amine according to claim 1 or 2 and solubilized in a solvent. 硫酸−硝酸の混合溶液中での超音波処理および硫酸と過酸化水素の混合溶液中での超音波処理の前に350℃±20℃の温度、大気下での熱処理および室温における塩酸溶液中での超音波処理をすることを特徴とする請求項1、2または3に記載のアミンで修飾して溶媒に可溶化した単層カーボンナノチューブを製造する方法。Before sonication in a mixed solution of sulfuric acid and nitric acid and sonication in a mixed solution of sulfuric acid and hydrogen peroxide, heat treatment in air at 350 ° C. ± 20 ° C. and in hydrochloric acid solution at room temperature. 4. The method for producing single-walled carbon nanotubes modified with an amine and solubilized in a solvent according to claim 1, 2 or 3, wherein ultrasonic treatment is performed.
JP2002333853A 2002-11-18 2002-11-18 Production method of soluble carbon nanotube Expired - Lifetime JP3764986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002333853A JP3764986B2 (en) 2002-11-18 2002-11-18 Production method of soluble carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002333853A JP3764986B2 (en) 2002-11-18 2002-11-18 Production method of soluble carbon nanotube

Publications (2)

Publication Number Publication Date
JP2004168570A true JP2004168570A (en) 2004-06-17
JP3764986B2 JP3764986B2 (en) 2006-04-12

Family

ID=32698447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002333853A Expired - Lifetime JP3764986B2 (en) 2002-11-18 2002-11-18 Production method of soluble carbon nanotube

Country Status (1)

Country Link
JP (1) JP3764986B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094573A1 (en) 2006-02-14 2007-08-23 Lg Chem, Ltd. Rigid random coils and composition comprising the same
WO2008023669A1 (en) 2006-08-21 2008-02-28 Fujitsu Limited n-TYPE SEMICONDUCTOR CARBON NANOMATERIAL, METHOD FOR PRODUCING n-TYPE SEMICONDUCTOR CARBON NANOMATERIAL, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
JP2008513318A (en) * 2004-06-23 2008-05-01 ハイピリオン カタリシス インターナショナル インコーポレイテッド Functionalized single-walled carbon nanotubes
WO2008050794A1 (en) 2006-10-25 2008-05-02 Kuraray Co., Ltd. Transparent conductive film, transparent electrode substrate and method for producing liquid crystal alignment film by using the same, and carbon nanotube and method for producing the same
JP2008179513A (en) * 2007-01-25 2008-08-07 National Institute Of Advanced Industrial & Technology Functionalized carbon nanotube and its manufacture method
US7632422B2 (en) 2007-02-16 2009-12-15 Honda Motor Co., Ltd. Heat transport medium
JPWO2008023669A1 (en) * 2006-08-21 2010-01-07 富士通株式会社 N-type semiconductor carbon nanomaterial, method for producing n-type semiconductor carbon nanomaterial, and method for producing semiconductor device
CN100590068C (en) * 2006-11-10 2010-02-17 同济大学 Method for preparing primary amine carbon nano tube
US7666915B2 (en) 2007-09-24 2010-02-23 Headwaters Technology Innovation, Llc Highly dispersible carbon nanospheres in a polar solvent and methods for making same
CN101104668B (en) * 2006-07-12 2010-12-01 同济大学 Method for preparing functional carbon nano-tube and application thereof
CN101104512B (en) * 2006-07-14 2010-12-08 同济大学 Method for preparing macromolecule modified carbon nano-tube and application thereof
CN101104511B (en) * 2006-07-14 2010-12-08 同济大学 Method for preparing functional carbon nano-tube and application thereof
US7858691B2 (en) 2007-10-09 2010-12-28 Headwaters Technology Innovation, Llc Functionalization of carbon nanoshperes by severe oxidative treatment
US7884300B2 (en) 2004-08-02 2011-02-08 University Of Tsukuba Method of carbon nanotube separation, dispersion liquid and carbon nanotube obtained by the separation method
JP2011098876A (en) * 2009-11-09 2011-05-19 Japan Science & Technology Agency Method for concentrating semiconductive carbon nanotube
WO2012057511A2 (en) * 2010-10-26 2012-05-03 경상대학교 산학협력단 Method for preparing a highly dispersive carbon nanotube for reducing in vivo immunotoxicity
US8435931B2 (en) 2009-07-17 2013-05-07 Exxonmobil Research And Engineering Company Reduced friction lubricating oils containing functionalized carbon nanomaterials
US8841454B2 (en) 2009-07-17 2014-09-23 Exxonmobil Research And Engineering Company Functionalized carbon nanostructures which are soluble in hydrocarbons and method for preparation
WO2015045418A1 (en) * 2013-09-30 2015-04-02 日本ゼオン株式会社 Carbon nanotubes, dispersion liquid thereof, carbon nanotube-containing film and composition material
US20170114248A1 (en) * 2015-10-26 2017-04-27 Yantai University Method For Preparing Carbon Nanotubes Graphene Modified Aqueous Polyurethane Coatings and Adhesives
CN114539624A (en) * 2022-03-07 2022-05-27 南京工业大学 Modification method of high-dispersion amidated low-vitamin carbon material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812310A (en) * 1994-07-05 1996-01-16 Nec Corp Purifying-opening method of carbon-nanotube in liquid phase and introducing method of functional group
JP2002105850A (en) * 2000-10-02 2002-04-10 Toray Ind Inc Method for surface treatment of carbonaceous material
JP2002526360A (en) * 1998-09-18 2002-08-20 ウィリアム・マーシュ・ライス・ユニバーシティ Chemical derivatization of single-walled carbon nanotubes and use of derivatized nanotubes to facilitate solvation
JP2004507436A (en) * 2000-09-06 2004-03-11 ファキュルテ ユニヴェルシテール ノートル−ダム ド ラ ペ Method for producing functionalized short carbon nanotubes and functionalized short carbon nanotubes obtained by the method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812310A (en) * 1994-07-05 1996-01-16 Nec Corp Purifying-opening method of carbon-nanotube in liquid phase and introducing method of functional group
JP2002526360A (en) * 1998-09-18 2002-08-20 ウィリアム・マーシュ・ライス・ユニバーシティ Chemical derivatization of single-walled carbon nanotubes and use of derivatized nanotubes to facilitate solvation
JP2004507436A (en) * 2000-09-06 2004-03-11 ファキュルテ ユニヴェルシテール ノートル−ダム ド ラ ペ Method for producing functionalized short carbon nanotubes and functionalized short carbon nanotubes obtained by the method
JP2002105850A (en) * 2000-10-02 2002-04-10 Toray Ind Inc Method for surface treatment of carbonaceous material

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008513318A (en) * 2004-06-23 2008-05-01 ハイピリオン カタリシス インターナショナル インコーポレイテッド Functionalized single-walled carbon nanotubes
US7884300B2 (en) 2004-08-02 2011-02-08 University Of Tsukuba Method of carbon nanotube separation, dispersion liquid and carbon nanotube obtained by the separation method
JP2009526733A (en) * 2006-02-14 2009-07-23 エルジー・ケム・リミテッド Rigid random coil and composition containing the same
WO2007094573A1 (en) 2006-02-14 2007-08-23 Lg Chem, Ltd. Rigid random coils and composition comprising the same
CN101104668B (en) * 2006-07-12 2010-12-01 同济大学 Method for preparing functional carbon nano-tube and application thereof
CN101104511B (en) * 2006-07-14 2010-12-08 同济大学 Method for preparing functional carbon nano-tube and application thereof
CN101104512B (en) * 2006-07-14 2010-12-08 同济大学 Method for preparing macromolecule modified carbon nano-tube and application thereof
JP5099010B2 (en) * 2006-08-21 2012-12-12 富士通株式会社 Manufacturing method of n-type semiconductor carbon nanomaterial and manufacturing method of semiconductor device
WO2008023669A1 (en) 2006-08-21 2008-02-28 Fujitsu Limited n-TYPE SEMICONDUCTOR CARBON NANOMATERIAL, METHOD FOR PRODUCING n-TYPE SEMICONDUCTOR CARBON NANOMATERIAL, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
JPWO2008023669A1 (en) * 2006-08-21 2010-01-07 富士通株式会社 N-type semiconductor carbon nanomaterial, method for producing n-type semiconductor carbon nanomaterial, and method for producing semiconductor device
WO2008050794A1 (en) 2006-10-25 2008-05-02 Kuraray Co., Ltd. Transparent conductive film, transparent electrode substrate and method for producing liquid crystal alignment film by using the same, and carbon nanotube and method for producing the same
EP2143686A1 (en) 2006-10-25 2010-01-13 Kuraray Co., Ltd. Transperent conductive film, transparent electrode substrate and method for producing liquid crystal alignment film by using the same, and carbon nanotube and method for producing the same
CN100590068C (en) * 2006-11-10 2010-02-17 同济大学 Method for preparing primary amine carbon nano tube
JP2008179513A (en) * 2007-01-25 2008-08-07 National Institute Of Advanced Industrial & Technology Functionalized carbon nanotube and its manufacture method
US7632422B2 (en) 2007-02-16 2009-12-15 Honda Motor Co., Ltd. Heat transport medium
US7666915B2 (en) 2007-09-24 2010-02-23 Headwaters Technology Innovation, Llc Highly dispersible carbon nanospheres in a polar solvent and methods for making same
US7858691B2 (en) 2007-10-09 2010-12-28 Headwaters Technology Innovation, Llc Functionalization of carbon nanoshperes by severe oxidative treatment
US8435931B2 (en) 2009-07-17 2013-05-07 Exxonmobil Research And Engineering Company Reduced friction lubricating oils containing functionalized carbon nanomaterials
US8841454B2 (en) 2009-07-17 2014-09-23 Exxonmobil Research And Engineering Company Functionalized carbon nanostructures which are soluble in hydrocarbons and method for preparation
JP2011098876A (en) * 2009-11-09 2011-05-19 Japan Science & Technology Agency Method for concentrating semiconductive carbon nanotube
WO2012057511A2 (en) * 2010-10-26 2012-05-03 경상대학교 산학협력단 Method for preparing a highly dispersive carbon nanotube for reducing in vivo immunotoxicity
WO2012057511A3 (en) * 2010-10-26 2012-09-07 경상대학교 산학협력단 Method for preparing a highly dispersive carbon nanotube for reducing in vivo immunotoxicity
WO2015045418A1 (en) * 2013-09-30 2015-04-02 日本ゼオン株式会社 Carbon nanotubes, dispersion liquid thereof, carbon nanotube-containing film and composition material
JPWO2015045418A1 (en) * 2013-09-30 2017-03-09 日本ゼオン株式会社 Carbon nanotube and dispersion thereof, and carbon nanotube-containing film and composite material
US20170114248A1 (en) * 2015-10-26 2017-04-27 Yantai University Method For Preparing Carbon Nanotubes Graphene Modified Aqueous Polyurethane Coatings and Adhesives
US9909030B2 (en) * 2015-10-26 2018-03-06 Yantai University Method for preparing carbon nanotubes graphene modified aqueous polyurethane coatings and adhesives
CN114539624A (en) * 2022-03-07 2022-05-27 南京工业大学 Modification method of high-dispersion amidated low-vitamin carbon material

Also Published As

Publication number Publication date
JP3764986B2 (en) 2006-04-12

Similar Documents

Publication Publication Date Title
JP3764986B2 (en) Production method of soluble carbon nanotube
Shen et al. Study on amino-functionalized multiwalled carbon nanotubes
Dettlaff-Weglikowska et al. Chemical functionalization of single walled carbon nanotubes
Li et al. Surface functionalization and characterization of graphitic carbon nanofibers (GCNFs)
Tasis et al. Soluble carbon nanotubes
Wang et al. Microwave-induced rapid chemical functionalization of single-walled carbon nanotubes
US8986512B2 (en) Process for producing chemically functionalized nano graphene materials
Takahashi et al. Dispersion and purification of single-wall carbon nanotubes using carboxymethylcellulose
US20060210466A1 (en) Microwave induced functionalization of single wall carbon nanotubes and composites prepared therefrom
Huang et al. Orientated assembly of single-walled carbon nanotubes and applications
Hsu et al. The synthesis, characterization of oxidized multi-walled carbon nanotubes, and application to surface acoustic wave quartz crystal gas sensor
Zhao et al. Study on purification and tip-opening of CNTs fabricated by CVD
Ma et al. Size-controlled short nanobells: Growth and formation mechanism
JP2007519594A (en) Method for separating metallic single-walled carbon nanotubes from semiconducting single-walled carbon nanotubes
WO2016107532A1 (en) Carbon nanotube modified by monoaminoalkyl terminated polysiloxane and preparation method therefor
US20090304923A1 (en) Microwave Synthesis of Metal-Carbon Nanotube Composites
Jimeno et al. Effects of amine molecular structure on carbon nanotubes functionalization
US20130078374A1 (en) Method of forming carbon nanotubes from carbon-rich fly ash
Stancu et al. Purification of multiwall carbon nanotubes obtained by AC arc discharge method
KR20090006912A (en) Method and apparatus for modifying carbon nanotube using plasma
JP4670100B2 (en) Method for purifying boron nitride nanotubes
Naeimi et al. Solubilization of multi walled carbon nanotubes under a facile and mild condition
KR100790839B1 (en) Method of nondestructively refining carbon nanotube
Yuca et al. Thermal and electrical properties of carbon nanotubes purified by acid digestion
JP2011051887A (en) Method for preparing carbon nanotube, carbon nanotube film, and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060106

R150 Certificate of patent or registration of utility model

Ref document number: 3764986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term