JP2004164797A - Projection detection head and projection test equipment using the same - Google Patents

Projection detection head and projection test equipment using the same Download PDF

Info

Publication number
JP2004164797A
JP2004164797A JP2002332210A JP2002332210A JP2004164797A JP 2004164797 A JP2004164797 A JP 2004164797A JP 2002332210 A JP2002332210 A JP 2002332210A JP 2002332210 A JP2002332210 A JP 2002332210A JP 2004164797 A JP2004164797 A JP 2004164797A
Authority
JP
Japan
Prior art keywords
disk
projection
detection
protrusion
detection element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002332210A
Other languages
Japanese (ja)
Inventor
Satoshi Tabata
敏 田畑
Takanori Nagano
貴範 永野
Shinya Matsuoka
伸也 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002332210A priority Critical patent/JP2004164797A/en
Publication of JP2004164797A publication Critical patent/JP2004164797A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique capable of detecting a projection of a height of ≤10×10<SP>-9</SP>m on a disk 1 surface and an average diameter of ≤0.1×10<SP>-6</SP>m with good reliability. <P>SOLUTION: A detection element 4<SB>a1</SB>having a coefficient of resistance temperature ranging from about 3,000 to about 7,000 ppm/°C of a projection detection head 4a for detecting the projection on the disk 1 surface or the detection element 4<SB>a1</SB>consisting of platinum, platinum alloy, tungsten or tungsten alloy is mounted on the opposite surface side of the disk 1 on a slider 4a<SB>2</SB>and when the detection element 4<SB>a1</SB>comes into contact with the projection during rotation of the disk 1, the temperature of the detection element 4<SB>a1</SB>is raised by the heat generated due to the contact to increase the resistance value of the detection element 4<SB>a1</SB>and a voltage change-component is fetched as a projection detection signal. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、磁気ディスクなどディスクの面上の突起を検出する技術に関する。
【0002】
【従来の技術】
近年、磁気ディスク装置では、高密度記録化が主流のために、記録・再生用の磁気ヘッドと磁気ディスクの記録膜との距離(スペーシング)が短縮化され、これに伴って、磁気ディスクの表面の平坦化が必要条件となっている。また、再生時の感度向上に対応した磁気ディスクの低ノイズ化も要求されている。スペーシングは現在、15×10−9m以下のものまでが製品化されている。
【0003】
従来、磁気ディスクは、磁気ディスクドライブへの組立てに先立ち、磁気ディスク単体の状態で、グライドテストやサーティファイテストの単板試験を行う。グライドテストは、ディスク表面に存在する異常突起(許容範囲外の突起部)を検出しディスクを選別する試験で、グライドテスト専用のヘッドとして、スライダ部に、圧電素子を用いた衝撃センサを設け、磁気ディスク表面から一定距離浮上させた状態で該ディスク表面をシークし、突起物に衝突した時の信号を検知して異常突起を検出する。グライドテスト用のヘッドとしては、圧電素子に替え、磁気抵抗素子(以下、MR素子という)を用いる場合もある。該MR素子を用いる方式では、ディスク表面の突起がMR素子に衝突する際に該MR素子に発生するサーマルアスピリティ出力を検知することで、ディスク上の突起物を検出する。また、サーティファイテストは、上記グライドテストに合格したディスクに対し、所定の記録信号が基準レベル以上で再生可能か否かを判断したり、再生信号の変化の大きい箇所を磁気的な欠陥箇所として検出したりして、ディスク選別を行う試験である。該サーティファイテストは、一般には、欠陥検査装置(サーティファイヤー)を用いて、検査対象の1トラックに規定周波数で記録を行い、その位置でトラック平均再生信号レベルを測定し、その値に対する規定のスライスレベルから外れる信号をパルス信号化することでそのトラック上の欠陥を判定する。他のトラックについても同様に行う。
【0004】
また、磁気ディスク面の突起を検出する技術が記載された公報としては、特開平10−64057号公報(特許文献1)、特開平10−198956号公報(特許文献2)及び特開平8−167121号公報(特許文献3)がある。特開平10−64057号公報には、磁気ディスク上の突起を精度良く検出するために、磁気ディスク上を浮上するスライダの磁気ディスク対向面に、突起検出センサとして、熱伝導率が60W/mK〜80W/mK、抵抗値が27Ωのパーマロイや比熱が0.139J/gK、密度が16.6g/cm、温度感度が0.1%/゜Cのタンタル等の抵抗体を設け、該抵抗体が突起に衝突したときに熱に変換されるエネルギーで該抵抗体の温度を上昇させ、抵抗体の抵抗値を増大させて突起検出を行うようにした構成が記載され、特開平10−198956号公報には、磁気ディスクのグライド検査を確実かつ容易に行えるようにするために、温度によって電気抵抗が変化するMR素子と、該MR素子に密着し空気支持面上に設けられた熱伝導膜とをスライダ構造体上に設け、ディスク表面の突起とスライダとによる摩擦熱が熱伝導膜を介してMR素子に伝わることで、該MR素子により突起検出を行う構成が記載されている。また、特開平8−167121号公報には、磁気ヘッドと同じ感度で、磁気ディスク上の異常突起を検出するために、接触熱で抵抗変化を生じるMR素子などの検出素子を磁気ヘッド上に設け、該検出素子の抵抗変化分を検出することにより、異常突起を検出する構成が記載されている。なお、一般に、該MR素子の抵抗温度係数は、約1200〜2400ppm/゜Cである。
【0005】
【特許文献1】
特開平10−64057号公報(段落番号0021、図2)
【特許文献2】
特開平10−198956号公報(段落番号0015、図1)
【特許文献3】
特開平8−167121号公報(段落番号0015、0018、図1、図3)
【0006】
【発明が解決しようとする課題】
最近の高密度記録用ディスクでは、ディスク面の突起としては、高さ10×10−9m以下、平均直径(周上で平均化した直径)0.1×10−6m以下のものまでを検出して、ディスク選別されることが望まれる。圧電素子や、MR素子や、タンタル等を用いた抵抗体などによる上記従来技術では、検出感度が低いために、上記寸法の突起を精度良く検出することは難しい。また検出感度のばらつきも大きく、信頼性上も問題となるおそれがある。AE(Acoustic Emission(音響発散))センサの場合もほぼ同様である。
本発明の課題点は、上記従来技術の状況に鑑み、記録媒体としてのディスクの面上の突起を検出する技術として、(1)高さ10×10−9m以下、平均直径0.1×10−6m以下の突起も検出できるようにすること、(2)ノイズレベルに対し信号レベルを少なくとも2倍以上にできること、(3)検出感度のばらつきが小さく、高信頼性を確保できること、等である。
本発明の目的は、かかる課題点を解決できる技術の提供にある。
【0007】
【課題を解決するための手段】
上記課題点を解決するために、本発明では、基本的に、磁気ディスクなどのディスクのディスク面上の突起を検出する突起検出ヘッドを、抵抗温度係数が約3000ppm/゜Cから約7000ppm/゜Cの範囲にある検出素子、または、白金、白金合金、タングステンまたはタングステン合金から成る検出素子を、スライダ上のディスク対向面側に搭載した構成とし、ディスク回転時に該検出素子が突起と接触したとき、該接触による発熱で該検出素子を温度上昇させ該検出素子の抵抗値を増大させ、これに基づく電圧変化分を突起の検出信号として取り出す。具体的には、(1)突起検出ヘッド(該当実施例:符号4a)として、抵抗温度係数が約3000ppm/゜Cから約7000ppm/゜Cの範囲にある検出素子(該当実施例:符号4a)と、該検出素子をディスク対向面側に保持し該検出素子をディスク面上に所定距離浮上させるスライダ(該当実施例:符号4a)とを備え、上記ディスクの回転時に、該ディスクの面上の突起が上記検出素子に接触したとき、該接触による発熱で該検出素子を温度上昇させ該検出素子の抵抗値を増大させ、これに基づく電圧変化分を上記突起の検出信号として出力する構成とする。(2)突起検出ヘッドとして、白金、白金合金、タングステンまたはタングステン合金から成る検出素子(該当実施例:符号4a)と、該検出素子をディスク対向面側に保持し該検出素子をディスク面上に所定距離浮上させるスライダ(該当実施例:符号4a)とを備え、上記ディスクの回転時に、該ディスクの面上の突起が上記検出素子に接触したとき、該接触による発熱で該検出素子を温度上昇させ該検出素子の抵抗値を増大させ、これに基づく電圧変化分を上記突起の検出信号として出力する構成とする。(3)ディスク面上の突起を検査する突起検査装置として、抵抗温度係数が約3000ppm/゜Cから約7000ppm/゜Cの範囲にある検出素子(該当実施例:符号4a)をスライダ(該当実施例:符号4a)のディスク対向面側に備え、上記ディスク(該当実施例:符号1)の回転時に、該ディスクの面上の突起が上記検出素子に接触したとき、該接触による該検出素子の温度変化に基づく抵抗値変化を、該突起に対応した電圧信号に変え検出信号として出力する突起検出ヘッド(該当実施例:符号4a)と、該突起検出ヘッドからの検出信号を処理する信号処理回路(該当実施例:符号5、6)と、該信号処理結果を記憶するメモリ(該当実施例:符号7)と、該信号処理結果に基づく表示を行う表示部(該当実施例:符号11)と、上記ディスクを回転駆動するディスク回転駆動手段(該当実施例:符号2、3、8、9)とを備え、上記ディスクを所定速度で回転させ、上記検出素子をディスク面から所定距離浮上させた状態で、該ディスクの面上の突起を検査する構成とする。(4)突起検査装置として、白金、白金合金、タングステンまたはタングステン合金から成る検出素子(該当実施例:符号4a)と、該検出素子をディスク対向面側に保持し該検出素子をディスク面上に所定距離浮上させるスライダ(該当実施例:符号4a)とを備え、上記ディスクの回転時に、該ディスクの面上の突起が上記検出素子に接触したとき、該接触による該検出素子の温度変化に基づく抵抗値変化を、該突起に対応した電圧信号に変え検出信号として出力する突起検出ヘッド(該当実施例:符号4a)と、該突起検出ヘッドからの検出信号を処理する信号処理回路(該当実施例:符号5、6)と、該信号処理結果を記憶するメモリ(該当実施例:符号7)と、該信号処理結果に基づく表示を行う表示部(該当実施例:符号11)と、上記ディスクを回転駆動するディスク回転駆動手段(該当実施例:符号2、3、8、9)と、装置全体を制御する制御手段(該当実施例:符号10)とを備え、上記ディスクを所定速度で回転させた状態で、該ディスクの面上の突起を検査する構成とする。
【0008】
【発明の実施の形態】
以下、本発明の実施例につき、図面を用いて説明する。
図1〜図4は、本発明の実施例の説明図である。図1は本発明の突起検出ヘッドの構成例図、図2は、図1の突起検出ヘッドを用いて磁気ディスクの突起検出を行う突起検査装置の構成例図、図3は、図1の突起検出ヘッドにおける検出素子の熱抵抗変化率と出力電圧との関係を示す図、図4は、図1の突起検出ヘッドで検出可能な磁気ディスクの突起寸法範囲を示す図である。図3、図4の特性ではいずれも、従来の突起検出ヘッドの特性も比較のために示す。
図1(a)は、磁気ディスク面上に突起検出ヘッドを配したときの状態を示す図、また、図1(b)は、突起検出ヘッドに組み込まれる突起検出素子を拡大して示す図、図1(c)は、突起検出4aのディスク対向面すなわちスライダ面の構成例図である。図1において、1は磁気ディスク、2は、磁気ディスク1を回転させるスピンドル、4はヘッドアセンブリ、4aは、スライダの磁気ディスク面に対向する面(ディスク対向面=スライダ面)に突起検出素子が組込まれて成る突起検出ヘッド、4bは、突起検出ヘッド4aを支持するヘッド支持部材、4cは、ヘッドアセンブリ全体を保持するベースプレート、4aは、スライダのスライダ面(ディスク対向面)に組み込まれスライダとともに突起検出ヘッド4aを構成する突起検出素子、4a11は突起検出素子4a内における素子本体部、4a12及び4a13は、同じく突起検出素子4a内における素子電極部、iは、素子電極部4a12、4a13間に外部回路から通電される電流、4aはスライダ、4a21は、スライダ4aの前方側の第1の凸状面部、4a22は、スライダ4aの後方側の第2の凸状面部、4a23は、第1の凸状面部4a21と第2の凸状面部4a22との間の平面部、Aは突起検出素子4aが設けられる部分である。突起検出素子4aにおいて、素子本体部4a11及び素子電極部4a12、4a13は、白金、白金合金、タングステン、またはタングステン合金などの薄膜でスパッタ法やリフトオフ工程法等により形成される。素子の両端にはメッキ通電膜を形成し、リード線を接続する。また、スライダ4aの上記第1、第2の凸状面部はエッチング等により形成される。突起検出時、磁気ディスク1は、スピンドル2によって、例えば4500〜15000rpmの範囲の所定回転数で回転される。該スピンドル2はさらに、モータ(図示なし)によって回転駆動される。突起検出ヘッド4aは、磁気ディスク1の面から、例えば5×10−9m程度浮上させた状態で支持される。突起検出ヘッド4aの浮上は、スライダ4aのディスク対向面(スライダ面)の上記第1の凸状面部4a21、第2の凸状面部4a22及び平面部4a22等により発生する空気圧によって確保される。スライダ4aの前方側の第1の凸状面部4a21側では浮上量が大きく、スライダ4aの後方側の第2の凸状面部4a22側よりも大きく、ディスク面に対しスライダ面は傾斜した状態となる。該傾斜状態で突起検出ヘッド4aは、上記A部分の浮上量が5×10−9m程度となるようにされる。また、突起検出ヘッド4aの素子本体部4a11には、外部回路(図示なし)から、素子電極部4a12、4a13に接続されたリード線と該素子電極部4a12、4a13を介して所定の略一定の電流iが供給される。磁気ディスク1の面上に、例えば5×10−9mよりも高い突起がある場合、該突起はスライダ4aのA部分に接触し、該A部分に熱を発生させる。該熱は突起検出素子4aに伝わり、少なくとも素子本体部4a11の温度を上昇させて突起検出素子4aの抵抗値を増大させる。該抵抗値の増大により、通電電流iに基づく素子電極部4a12、4a13間の電圧が増大する。該電圧の増大分は、突起検出信号としてリード線を介して外部回路側に取り出される。一般に、突起の高さが高い場合ほど、また、突起の平均直径が大きい場合ほど、突起検出ヘッドのA部分への接触力が大きく、A部分での発生熱量も大きい。この結果、突起検出素子4aの素子本体部4a11の温度上昇も大きく、素子電極部4a12、4a13間の電圧増大分も大きい。また、温度上昇による抵抗値の変化量は、抵抗温度係数が大きい場合ほど大きい。白金合金の抵抗温度係数は約3600ppm/゜C、タングステン合金の抵抗温度係数は約3800ppm/゜Cである。従って、白金、白金合金、タングステン、タングステン合金の4種類の材料のうちではタングステン合金が最も大きな抵抗変化量が得られ、検出信号としての電圧増大分も大きくなる。検出信号のS/N比も高くすることが可能となる。現状では、抵抗温度係数の最大限界は、寿命などの点から約7000ppm/゜C程度までが可能と考えられる。なお、MR素子の抵抗温度係数は、約1200〜2400ppm/゜Cである。
【0009】
図2は、図1の突起検出ヘッドを用いた突起検査装置の構成例図である。
図2において、1は磁気ディスク、2は磁気ディスク1を回転させるスピンドル、3はスピンドル2を回転駆動するためのモータ、4はヘッドアセンブリ、4aは突起検出ヘッド、4bはヘッド支持部材、4cはベースプレート、5は、突起検出ヘッド4からの検出信号電圧を増幅するための増幅部、6はアナログ信号をデジタル信号に変換するA/D変換部、7はデジタル信号を記憶するメモリ、8はモータ3を駆動する駆動回路、9は、該駆動回路を制御する制御部、10は、検査装置全体の制御を行うマイクロプロセッサ、11は装置操作用のパーソナルコンピュータである。かかる構成において、駆動回路8は、制御回路9によって制御された状態でモータ3を所定の回転数で回転駆動する。モータ3は直結されたスピンドル2を回転させる。スピンドル2は磁気ディスク1を回転させる。磁気ディスク面の突起による熱発生に基づく突起検出信号(電圧信号)が突起検出ヘッド4aから出力されたとき、該検出信号は増幅部5で増幅され、A/D変換部6でデジタル信号に変換される。該デジタル信号は、マイクロプロセッサ10による制御に基づきメモリ7に記憶される。該マイクロプロセッサ10は、上記制御回路9の制御も行う。パーソナルコンピュータ11は、マイクロプロセッサ10の条件設定を変える等の操作を行うとともに、メモリ7に記憶されたデータの表示等も行う。
【0010】
図3は、図1の突起検出ヘッドにおけるの突起検出素子の熱抵抗変化率(抵抗温度係数)と出力電圧との関係の予測特性を示す図である。条件としては、磁気ディスクの回転数7200rpm、突起検出素子は、幅1.0×10−6m、高さ0.5×10−6m、厚み20×10−9m、抵抗温度係数が約3600ppm/゜Cの白金合金の薄膜、突起検出ヘッドの浮上量約10×10−9m、通電電流約20×10−3A、磁気ディスク面の突起の平均直径約0.1×10−6m、高さ約11×10−9mとしている。この結果、出力電圧は150×10−3Vで、ノイズレベル約50×10−3Vの約3倍の値である。これは検出信号として十分である。これに対し、従来のMR素子では出力電圧が50×10−3Vで、ノイズレベルと同レベルとなる。突起寸法が大きい場合は、突起検出素子の抵抗温度係数に比例した出力電圧が得られるが、突起寸法が上記実測条件のように小さい場合は、突起検出素子の抵抗温度係数値が約3000ppm/゜C以上ないと、出力電圧がノイズにかくれてしまい、検出信号として識別不可能となる。本結果によると、突起検出素子の抵抗温度係数値が約3000ppm/゜C以上であれば、平均直径0.1×10−6m以下、高さ10×10−9m以下の突起を検出可能である。出力電圧レベルもノイズレベルの約2倍にできる見通しもある。突起検出素子の抵抗温度係数値としては、7000ppm/゜C程度までが可能と予想され、かかる特性の突起検出素子の場合は、さらに出力を増大できると考えられる。突起検出素子の検出感度を上げる手段としては、突起検出素子の抵抗温度係数値を上げることの他、素子の体積を小さくして、突起との衝突によるエネルギーを伝達し易くするとともに、温度上昇をし易くすることも有効である。温度上昇分が増大することで抵抗変化量が増大し、電圧変化が増大する。この結果、検出可能な突起寸法の下限値をさらに小さくし、検出可能範囲を広げることが可能となる。
【0011】
図4は、図1の突起検出ヘッドによって検出可能な磁気ディスクの突起寸法範囲の実測結果及び予測結果をプロットした特性例を示す図である。条件としては、上記図3の場合と同様、磁気ディスクの回転数7200rpm、突起検出素子は、幅1.0×10−6m、高さ0.5×10−6m、厚み20×10−9m、抵抗温度係数が約3600ppm/゜Cの白金合金薄膜、突起検出ヘッドの浮上量約10×10−9m、通電電流約20×10−3Aとしている。この結果、突起寸法として、平均直径0.1×10−6m〜0.5×10−6mの突起を検出再現率90%以上で検出可能であり、平均直径0.05×10−6m〜1.0×10−6mの突起も検出再現率約80%で検出できる。ヘッド浮上量を10×10−9m以下にすれば高さ10×10−9m以下の突起も検出可能なことも別途行った実験で確かめられている。この結果、図1の突起検出ヘッドによって検出可能な磁気ディスクの突起寸法範囲としては、下限値が突起高さ10×10−9m以下、平均直径約0.05×10−6mで少なくとも平均直径約0.1×10−6m以下である。突起検出素子として、さらに抵抗温度係数の高いものを用いた場合には、検出可能な突起高さの下限値をさらに小さい値にすることができ、例えば予想される最大限界値の7000ppm/゜C程度にまでした場合には、検出可能な突起高さの下限値を最小限界値にできると考えられる。これに対し、従来の圧電素子では、検出可能な突起寸法範囲は、下限値が突起高さ10×10−9m以上、平均直径約0.5×10−6mである。該圧電素子の場合、平均直径約0.5×10−6m〜2.0×10−6mの突起に対しては検出再現率が50%以下となってしまい、検出の信頼性が低い。検出再現率を90%以上にできるのは、平均直径約1.0×10−6m〜2.0×10−6mの突起の場合である。これは突起との接触による圧電素子の圧電効果が小さくなり、電圧値がノイズレベル近傍になってしまうことが原因である。また、従来のGMR(Giant MagnetoResistive)素子(MR素子)の場合は、平均直径約0.5×10−6m〜2.0×10−6mの突起の場合でも検出再現率を90%以上にできる。しかし、平均直径が約0.5×10−6m以下となると急激に検出感度が低下してしまい、平均直径約0.1×10−6mでは、検出再現率が30%程度にまで下がる。
【0012】
以上説明したように、上記実施例構成によれば、磁気ディスク面上の突起として、高さ10×10−9m以下、平均直径0.1×10−6m以下の突起までを検出することができる。信号レベルをノイズレベルの少なくとも2倍以上にした状態で検出することができる。検出感度のばらつきも小さく、検出の高信頼性を確保できる。これによって、高密度磁気記録用の磁気ディスクの突起検出と、それに基づくディスク選別の信頼性を向上させることができる。
なお、上記実施例では、磁気ディスクの場合の例であるが、本発明はこれに限定されることなく、検出する突起は磁気ディスク以外の記録媒体のディスクの突起であってもよい。
【0013】
【発明の効果】
本発明によれば、高さ10×10−9m以下、平均直径0.1×10−6m以下の突起までを検出することができる。これによって、高密度記録用のディスクの選別における信頼性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の突起検出ヘッドの構成例を示す図である。
【図2】図1の突起検出ヘッドを用いた突起検査装置の構成例を示す図である。
【図3】図1の突起検出ヘッドの出力電圧特性例を示す図である。
【図4】図1の突起検出ヘッドで検出可能な突起寸法範囲を示す図である。
【符号の説明】
1…磁気ディスク、 2…スピンドル、 3…モータ、 4…ヘッドアセンブリ、 4a…突起検出ヘッド、 4b…ヘッド支持部材、 4c…ベースプレート、 4a…突起検出素子、 4a11…素子本体部、 4a12、4a13…素子電極部、 i…電流、 4a…スライダ、 4a21…第1の凸状面部、 4a22…第2の凸状面部、 4a23…平面部、 A…突起検出素子設置部分、 5…増幅部、 6…A/D変換部、 7…メモリ、 8…駆動回路、 9…制御部、10…マイクロプロセッサ、 11…パーソナルコンピュータ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technique for detecting a protrusion on a surface of a disk such as a magnetic disk.
[0002]
[Prior art]
In recent years, in magnetic disk devices, high-density recording has become mainstream, and the distance (spacing) between a recording / reproducing magnetic head and a recording film of the magnetic disk has been shortened. Surface flattening is a necessary condition. In addition, there is a demand for a magnetic disk with low noise corresponding to an improvement in sensitivity during reproduction. At present, spacings up to 15 × 10 −9 m or less are commercialized.
[0003]
Conventionally, a magnetic disk is subjected to a single-plate test such as a glide test or a certification test in a state of a single magnetic disk before being assembled into a magnetic disk drive. The glide test is a test that detects abnormal protrusions (projections outside the allowable range) on the disk surface and selects the disk.As a dedicated head for the glide test, a slider is provided with an impact sensor using a piezoelectric element on the slider. The disk surface is sought in a state of being levitated from the surface of the magnetic disk by a predetermined distance, and a signal when the disk collides with the protrusion is detected to detect an abnormal protrusion. As the head for the glide test, a magnetoresistive element (hereinafter, referred to as an MR element) may be used instead of the piezoelectric element. In the method using the MR element, a protrusion on the disk is detected by detecting a thermal aspirity output generated on the MR element when the projection on the disk surface collides with the MR element. In the certification test, it is determined whether or not a predetermined recording signal can be reproduced at or above a reference level on a disk that passes the above glide test, and a portion where a change in the reproduction signal is large is detected as a magnetically defective portion. This is a test for disc sorting. In the certification test, generally, a defect inspection apparatus (certifier) is used to record data on one track to be inspected at a specified frequency, measure a track average reproduction signal level at that position, and specify a specified slice for the value. A defect on the track is determined by converting a signal out of the level into a pulse signal. The same applies to other tracks.
[0004]
Japanese Patent Application Laid-Open Nos. 10-64057 (Patent Document 1), 10-198956 (Patent Document 2) and 8-167121 disclose techniques for detecting protrusions on a magnetic disk surface. There is an official gazette (Patent Document 3). Japanese Patent Application Laid-Open No. H10-64057 discloses that in order to accurately detect a protrusion on a magnetic disk, a slider having a thermal conductivity of 60 W / mK or less is provided as a protrusion detection sensor on a surface facing a magnetic disk of a slider floating above the magnetic disk. A resistor such as tantalum having a power of 80 W / mK, a resistance value of 27 Ω, a specific heat of 0.139 J / gK, a density of 16.6 g / cm 3 , and a temperature sensitivity of 0.1% / ° C is provided. Japanese Patent Application Laid-Open No. 10-198956 describes a configuration in which the temperature of the resistor is increased by energy that is converted into heat when it collides with the projection, and the resistance of the resistor is increased to detect the projection. The publication discloses an MR element whose electrical resistance changes with temperature and a heat transfer device provided on an air support surface in close contact with the MR element in order to reliably and easily perform a glide inspection of a magnetic disk. A configuration is described in which a conductive film is provided on a slider structure, and the protrusion of the disk surface and the frictional heat generated by the slider are transmitted to the MR element via the heat conductive film, whereby the MR element detects the protrusion. Japanese Patent Application Laid-Open No. 8-167121 discloses that a detection element such as an MR element that generates a resistance change due to contact heat is provided on a magnetic head in order to detect an abnormal protrusion on a magnetic disk with the same sensitivity as that of a magnetic head. A configuration is described in which an abnormal protrusion is detected by detecting a change in resistance of the detection element. In general, the MR element has a temperature coefficient of resistance of about 1200 to 2400 ppm / ° C.
[0005]
[Patent Document 1]
JP-A-10-64057 (paragraph number 0021, FIG. 2)
[Patent Document 2]
JP-A-10-198956 (paragraph number 0015, FIG. 1)
[Patent Document 3]
JP-A-8-167121 (paragraphs 0015 and 0018, FIGS. 1 and 3)
[0006]
[Problems to be solved by the invention]
In recent high-density recording disks, the protrusions on the disk surface have a height of 10 × 10 −9 m or less and an average diameter (diameter averaged on the circumference) of 0.1 × 10 −6 m or less. It is desired to be detected and disc sorted. In the above-described conventional technology using a piezoelectric element, an MR element, or a resistor using tantalum or the like, it is difficult to accurately detect a protrusion having the above dimensions because of low detection sensitivity. In addition, there is a large variation in detection sensitivity, which may cause a problem in reliability. The same applies to the case of an AE (Acoustic Emission (acoustic emission)) sensor.
In view of the state of the prior art described above, the problems of the present invention are: (1) a height of 10 × 10 −9 m or less and an average diameter of 0.1 × to the 10 -6 m can be detected following projection, (2) the noise level to the signal level can be at least twice or more, (3) variations in the detection sensitivity is small, can be ensured high reliability, etc. It is.
An object of the present invention is to provide a technique capable of solving such a problem.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, according to the present invention, basically, a protrusion detection head for detecting protrusions on a disk surface of a disk such as a magnetic disk is provided with a temperature coefficient of resistance of about 3000 ppm / ° C to about 7000 ppm / ° C. When a detecting element in the range of C or a detecting element made of platinum, a platinum alloy, tungsten, or a tungsten alloy is mounted on the disk facing surface side of the slider, and the detecting element comes into contact with a projection during rotation of the disk, Then, the temperature of the detection element is raised by the heat generated by the contact to increase the resistance value of the detection element, and a voltage change based on this is taken out as a detection signal of the protrusion. Specifically, (1) a detection element having a temperature coefficient of resistance in the range of about 3000 ppm / ° C to about 7000 ppm / ° C (corresponding example: code 4a 1) ), And a slider (corresponding embodiment: reference numeral 4a 2 ) for holding the detection element on the disk-facing surface side and floating the detection element on the disk surface by a predetermined distance, and the surface of the disk when the disk rotates. When the upper projection comes into contact with the detection element, the temperature of the detection element rises due to the heat generated by the contact to increase the resistance value of the detection element, and a voltage change based on this is output as a detection signal of the projection. And (2) As a protrusion detection head, a detection element made of platinum, a platinum alloy, tungsten or a tungsten alloy (corresponding embodiment: reference numeral 4a 1 ), and the detection element is held on the disk facing surface side and the detection element is placed on the disk surface And a slider (applicable embodiment: reference numeral 4a 2 ) for floating a predetermined distance, and when the projection on the surface of the disk contacts the detection element during rotation of the disk, the detection element is heated by the contact to cause the detection element to generate heat. The configuration is such that the temperature is increased to increase the resistance value of the detection element, and a voltage change based on this is output as a detection signal of the protrusion. (3) As a protrusion inspection device for inspecting protrusions on the disk surface, a detection element (corresponding embodiment: reference numeral 4a 1 ) having a temperature coefficient of resistance in the range of about 3000 ppm / ° C. to about 7000 ppm / ° C. Example: provided on the disk-facing surface side of reference numeral 4a 2 ), when a projection on the surface of the disk comes into contact with the detection element during rotation of the disk (corresponding embodiment: reference numeral 1), the detection by the contact is performed. A projection detection head (corresponding to reference numeral 4a) that converts a resistance value change based on a temperature change of the element into a voltage signal corresponding to the projection and outputs it as a detection signal, and a signal for processing a detection signal from the projection detection head A processing circuit (corresponding embodiment: reference numerals 5 and 6), a memory (corresponding embodiment: reference numeral 7) for storing the signal processing result, and a display unit (corresponding embodiment: reference numeral) for displaying based on the signal processing result 11), and disk rotation driving means (corresponding embodiments: symbols 2, 3, 8, and 9) for rotating the disk, rotating the disk at a predetermined speed, and moving the detection element at a predetermined distance from the disk surface. In the floating state, the projections on the surface of the disk are inspected. (4) As a projection inspection device, a detection element (corresponding embodiment: reference numeral 4a 1 ) made of platinum, a platinum alloy, tungsten or a tungsten alloy, and the detection element is held on the disk facing surface side and the detection element is placed on the disk surface A slider (corresponding embodiment: reference numeral 4a 2 ) for floating a predetermined distance, and when a projection on the surface of the disk contacts the detection element during rotation of the disk, a temperature change of the detection element due to the contact. A projection detection head that changes a resistance value change based on the projection into a voltage signal corresponding to the projection and outputs the detection signal as a detection signal (applicable embodiment: reference numeral 4a), and a signal processing circuit that processes the detection signal from the projection detection head (applicable) Example: Reference numerals 5 and 6), a memory for storing the signal processing result (applicable example: reference numeral 7), and a display unit for displaying based on the signal processing result (applicable example: reference numeral 11), disk rotation driving means for rotating and driving the disk (corresponding embodiments: 2, 3, 8, 9) and control means for controlling the entire apparatus (corresponding embodiment: 10) In a state where the disk is rotated at a predetermined speed, a projection on the surface of the disk is inspected.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 4 are explanatory diagrams of an embodiment of the present invention. FIG. 1 is a configuration example of a projection detection head of the present invention, FIG. 2 is a configuration example of a projection inspection device that detects a projection of a magnetic disk using the projection detection head of FIG. 1, and FIG. 3 is a projection of FIG. FIG. 4 is a diagram illustrating a relationship between a thermal resistance change rate of a detection element and an output voltage in the detection head, and FIG. 4 is a diagram illustrating a protrusion dimension range of a magnetic disk that can be detected by the protrusion detection head of FIG. 3 and 4, the characteristics of the conventional projection detection head are also shown for comparison.
FIG. 1A is a diagram illustrating a state in which a protrusion detection head is arranged on a magnetic disk surface, and FIG. 1B is an enlarged view illustrating a protrusion detection element incorporated in the protrusion detection head. FIG. 1C is a configuration example diagram of the disk facing surface of the protrusion detection 4a, that is, the slider surface. In FIG. 1, 1 is a magnetic disk, 2 is a spindle for rotating the magnetic disk 1, 4 is a head assembly, and 4a is a projection detecting element on a surface of the slider facing the magnetic disk surface (disk facing surface = slider surface). incorporated by comprising projection detection head, 4b, the head support member, 4c for supporting the projection detection head 4a is a base plate for holding the entire head assembly, 4a 1 is incorporated into a slider surface of the slider (the disk-facing surface) slider The projection detecting element 4a 11 which constitutes the projection detecting head 4a together with the element main body part in the projection detecting element 4a, 4a 12 and 4a 13 are the element electrode parts in the same projection detecting element 4a, and i is the element electrode part 4a 12, 4a 13 current applied from an external circuit between, 4a 2 slider, 4a 21 is Sly First convex surface, 4a 22 of the front side of 4a 2, the second convex surface portions, 4a 23 of the rear side of the slider 4a 2 includes a first convex surface portion 4a 21 second convex surface flat portion between 4a 22, a 1 is a partial protrusion detecting elements 4a 1 is provided. In the projection detecting elements 4a 1, the device body portion 4a 11 and the element electrode part 4a 12, 4a 13 is platinum, it is formed by a platinum alloy, tungsten, or sputtering a thin film such as tungsten alloy or a lift-off process method. A plating conductive film is formed on both ends of the element, and lead wires are connected. Also, the first slider 4a 2, the second convex surface portions are formed by etching or the like. At the time of detecting the protrusion, the magnetic disk 1 is rotated by the spindle 2 at a predetermined rotation speed in a range of, for example, 4500 to 15000 rpm. The spindle 2 is further driven to rotate by a motor (not shown). The projection detection head 4a is supported, for example, by flying about 5 × 10 −9 m from the surface of the magnetic disk 1. Floating projections detection head 4a is ensured by the first convex surface portion 4a 21, air pressure generated by the second convex surface portions 4a 22 and the flat surface portion 4a 22 of the disk facing surface of the slider 4a 2 (slider surface) Is done. Large flying height at the front side a first convex surface portion 4a 21 side of the slider 4a 2, greater than the second convex surface portion 4a 22 side of the slider 4a 2 of the rear side, the slider surface the disk surface is inclined It will be in the state of having done. The inclined state projections detection head 4a is the flying height of the A 1 moiety is such that the 5 × 10 -9 order m. Further, the device body portion 4a 11 of the protrusion detection head 4a from an external circuit (not shown), via the element electrode portion 4a 12, 4a 13 connected to the lead wire and the element electrode part 4a 12, 4a 13 A predetermined substantially constant current i is supplied. If on the surface of the magnetic disk 1, for example, a higher projection than 5 × 10 -9 m,該Tokki contacts the A 1 portion of the slider 4a 2, to generate heat to the A 1 moiety. Heat is transmitted to the projection detecting elements 4a 1, increases the resistance of the projection detecting elements 4a 1 is raised to a temperature of at least the element main body portion 4a 11. The increase of the resistance value, the voltage between the device electrodes portion 4a 12, 4a 13 based on electric current i is increased. The increase in the voltage is taken out to the external circuit side via a lead wire as a protrusion detection signal. In general, as when the height of the projection is high, also as the case where the average diameter of the protrusions is large, large contact force to A 1 portion of the protrusion detection head, amount of heat generated by A 1 portion is also large. As a result, larger temperature rise of the element main body section 4a 11 of the projection detecting elements 4a 1, also large voltage increment between the device electrodes portion 4a 12, 4a 13. Further, the amount of change in the resistance value due to the temperature rise is larger as the temperature coefficient of resistance is larger. The platinum alloy has a temperature coefficient of resistance of about 3600 ppm / ° C, and the tungsten alloy has a temperature coefficient of resistance of about 3800 ppm / ° C. Therefore, among the four materials of platinum, platinum alloy, tungsten, and tungsten alloy, the tungsten alloy has the largest resistance change amount, and the voltage increase as the detection signal is also large. It is also possible to increase the S / N ratio of the detection signal. At present, it is considered that the maximum limit of the temperature coefficient of resistance can be up to about 7000 ppm / ° C. in view of life and the like. The MR element has a temperature coefficient of resistance of about 1200 to 2400 ppm / ° C.
[0009]
FIG. 2 is a configuration example diagram of a projection inspection apparatus using the projection detection head of FIG.
In FIG. 2, 1 is a magnetic disk, 2 is a spindle for rotating the magnetic disk 1, 3 is a motor for driving the spindle 2 for rotation, 4 is a head assembly, 4a is a protrusion detection head, 4b is a head support member, and 4c is a head support member. A base plate, 5 an amplification unit for amplifying a detection signal voltage from the protrusion detection head 4, 6 an A / D conversion unit for converting an analog signal into a digital signal, 7 a memory for storing a digital signal, and 8 a motor Reference numeral 9 denotes a driving circuit for driving the driving circuit, 9 denotes a control unit for controlling the driving circuit, 10 denotes a microprocessor for controlling the entire inspection apparatus, and 11 denotes a personal computer for operating the apparatus. In such a configuration, the drive circuit 8 drives the motor 3 to rotate at a predetermined rotation speed under the control of the control circuit 9. The motor 3 rotates the directly connected spindle 2. The spindle 2 rotates the magnetic disk 1. When a protrusion detection signal (voltage signal) based on heat generation due to protrusions on the magnetic disk surface is output from the protrusion detection head 4a, the detection signal is amplified by the amplifier 5 and converted to a digital signal by the A / D converter 6. Is done. The digital signal is stored in the memory 7 under the control of the microprocessor 10. The microprocessor 10 also controls the control circuit 9. The personal computer 11 performs operations such as changing the condition setting of the microprocessor 10, and also displays data stored in the memory 7.
[0010]
FIG. 3 is a diagram showing a predicted characteristic of a relationship between a thermal resistance change rate (temperature coefficient of resistance) of a projection detection element and an output voltage in the projection detection head of FIG. The conditions are as follows: the rotational speed of the magnetic disk is 7200 rpm, the protrusion detecting element is 1.0 × 10 −6 m in width, 0.5 × 10 −6 m in height, 20 × 10 −9 m in thickness, and the temperature coefficient of resistance is about A thin film of a platinum alloy of 3600 ppm / ° C, a flying height of the protrusion detection head of about 10 × 10 −9 m, a conduction current of about 20 × 10 −3 A, and an average diameter of the protrusion on the magnetic disk surface of about 0.1 × 10 −6. m and a height of about 11 × 10 −9 m. As a result, the output voltage is 150 × 10 −3 V, which is about three times the noise level of about 50 × 10 −3 V. This is sufficient as a detection signal. In contrast, the output voltage of the conventional MR element is 50 × 10 −3 V, which is the same as the noise level. When the size of the protrusion is large, an output voltage proportional to the temperature coefficient of resistance of the protrusion detection element is obtained. However, when the size of the protrusion is small as in the actual measurement conditions, the temperature coefficient of resistance of the protrusion detection element is about 3000 ppm / ゜. If it is not more than C, the output voltage is hidden by noise and cannot be identified as a detection signal. According to this result, when the temperature coefficient of resistance of the protrusion detection element is about 3000 ppm / ° C or more, a protrusion having an average diameter of 0.1 × 10 −6 m or less and a height of 10 × 10 −9 m or less can be detected. It is. There is also a prospect that the output voltage level can be about twice the noise level. It is expected that the temperature coefficient of resistance of the protrusion detecting element can be up to about 7000 ppm / ° C., and it is considered that the output of the protrusion detecting element having such characteristics can be further increased. Means for increasing the detection sensitivity of the projection detection element include increasing the temperature coefficient of resistance of the projection detection element, reducing the volume of the element, making it easier to transmit energy due to collision with the projection, and reducing the temperature rise. It is also effective to make it easier. As the temperature rise increases, the resistance change amount increases, and the voltage change increases. As a result, it is possible to further reduce the lower limit value of the detectable protrusion dimension and to expand the detectable range.
[0011]
FIG. 4 is a diagram illustrating an example of characteristics obtained by plotting an actual measurement result and a prediction result of a protrusion dimension range of a magnetic disk that can be detected by the protrusion detection head of FIG. The conditions, as in the case of FIG 3, the magnetic disk rotational speed 7200 rpm, the projection detection element has a width 1.0 × 10 -6 m, the height 0.5 × 10 -6 m, thickness 20 × 10 - 9 m, a platinum alloy thin film having a temperature coefficient of resistance of about 3600 ppm / ° C., a flying height of the protrusion detection head of about 10 × 10 −9 m, and a conduction current of about 20 × 10 −3 A. As a result, a projection having an average diameter of 0.1 × 10 −6 m to 0.5 × 10 −6 m can be detected with a detection reproducibility of 90% or more, and an average diameter of 0.05 × 10 −6. A protrusion of m to 1.0 × 10 −6 m can be detected with a detection reproducibility of about 80%. Has been confirmed in experiments performed separately head flying height 10 × 10 -9 if m below the height 10 × 10 -9 m or less projections that can be detected. As a result, as for the protrusion dimension range of the magnetic disk that can be detected by the protrusion detection head of FIG. 1, the lower limit is a protrusion height of 10 × 10 −9 m or less, an average diameter of about 0.05 × 10 −6 m, and at least an average. The diameter is about 0.1 × 10 −6 m or less. In the case where an element having a higher temperature coefficient of resistance is used as the projection detecting element, the lower limit value of the detectable projection height can be further reduced, for example, the expected maximum limit value of 7000 ppm / ° C. It is considered that the lower limit of the height of the protrusion that can be detected can be set to the minimum limit value when the height is reduced to the degree. On the other hand, in the conventional piezoelectric element, the lower limit of the detectable protrusion dimension range is a protrusion height of 10 × 10 −9 m or more and an average diameter of about 0.5 × 10 −6 m. In the case of the piezoelectric element, the detection reproducibility is 50% or less for a projection having an average diameter of about 0.5 × 10 −6 m to 2.0 × 10 −6 m, and the reliability of detection is low. . The detection recall it 90% or more, the case of the projections with an average diameter of about 1.0 × 10 -6 m~2.0 × 10 -6 m. This is because the piezoelectric effect of the piezoelectric element due to the contact with the projection is reduced, and the voltage value becomes close to the noise level. In the case of conventional GMR (Giant MagnetoResistive) element (MR element), an average diameter of about 0.5 × 10 -6 m~2.0 × 10 -6 detection recall even if the projections of m 90% or more Can be. However, when the average diameter is about 0.5 × 10 −6 m or less, the detection sensitivity is sharply reduced. When the average diameter is about 0.1 × 10 −6 m, the detection reproducibility is reduced to about 30%. .
[0012]
As described above, according to the configuration of the above-described embodiment, it is possible to detect a protrusion having a height of 10 × 10 −9 m or less and an average diameter of 0.1 × 10 −6 m or less as the protrusion on the magnetic disk surface. Can be. Detection can be performed in a state where the signal level is at least twice the noise level or more. Variation in detection sensitivity is small, and high reliability of detection can be secured. As a result, it is possible to improve the reliability of detecting protrusions on the magnetic disk for high-density magnetic recording and disc selection based on the detection.
Although the above embodiment is an example in the case of a magnetic disk, the present invention is not limited to this, and the protrusion to be detected may be a protrusion of a disk of a recording medium other than the magnetic disk.
[0013]
【The invention's effect】
According to the present invention, it is possible to detect a projection having a height of 10 × 10 −9 m or less and an average diameter of 0.1 × 10 −6 m or less. As a result, it is possible to improve reliability in selecting a disk for high-density recording.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration example of a protrusion detection head according to the present invention.
FIG. 2 is a diagram showing a configuration example of a projection inspection device using the projection detection head of FIG.
FIG. 3 is a diagram illustrating an example of an output voltage characteristic of the protrusion detection head of FIG. 1;
FIG. 4 is a diagram illustrating a protrusion dimension range that can be detected by the protrusion detection head of FIG. 1;
[Explanation of symbols]
1 ... magnetic disk, 2 ... spindle, 3 ... motor, 4 ... head assembly, 4a ... projection detection head, 4b ... head supporting member, 4c ... base plate, 4a 1 ... projection detecting elements, 4a 11 ... device body unit, 4a 12 4a 13 ... element electrode part, i ... electric current, 4a 2 ... slider, 4a 21 ... first convex surface part, 4a 22 ... second convex surface part, 4a 23 ... plane part, A 1 ... protrusion detection element installation 5, amplifying unit, 6 A / D converter, 7 memory, 8 driving circuit, 9 control unit, 10 microprocessor, 11 personal computer.

Claims (4)

記録媒体としてのディスクの面上の突起を検出する突起検出ヘッドであって、抵抗温度係数が約3000ppm/゜Cから約7000ppm/゜Cの範囲にある検出素子と、
該検出素子をディスク対向面側に保持し該検出素子をディスク面上に所定距離浮上させるスライダと、
を備え、上記ディスクの回転時に、該ディスクの面上の突起が上記検出素子に接触したとき、該接触による発熱で該検出素子を温度上昇させ該検出素子の抵抗値を増大させ、これに基づく電圧変化分を上記突起の検出信号として出力する構成としたことを特徴とする突起検出ヘッド。
A protrusion detection head for detecting protrusions on a surface of a disk as a recording medium, wherein the detection element has a temperature coefficient of resistance in a range of about 3000 ppm / ° C to about 7000 ppm / ° C;
A slider that holds the detection element on the side facing the disk and floats the detection element a predetermined distance above the disk surface;
When a protrusion on the surface of the disk comes into contact with the detection element during rotation of the disk, the heat generated by the contact increases the temperature of the detection element and increases the resistance value of the detection element. A protrusion detection head, wherein a voltage change is output as a detection signal of the protrusion.
記録媒体としてのディスクの面上の突起を検出する突起検出ヘッドであって、白金、白金合金、タングステンまたはタングステン合金から成る検出素子と、該検出素子をディスク対向面側に保持し該検出素子をディスク面上に所定距離浮上させるスライダと、
を備え、上記ディスクの回転時に、該ディスクの面上の突起が上記検出素子に接触したとき、該接触による発熱で該検出素子を温度上昇させ該検出素子の抵抗値を増大させ、これに基づく電圧変化分を上記突起の検出信号として出力する構成としたことを特徴とする突起検出ヘッド。
A projection detection head for detecting a projection on a surface of a disk as a recording medium, comprising: a detection element made of platinum, a platinum alloy, tungsten or a tungsten alloy; and A slider for floating a predetermined distance above the disk surface,
When a protrusion on the surface of the disk comes into contact with the detection element during rotation of the disk, the heat generated by the contact increases the temperature of the detection element and increases the resistance value of the detection element. A protrusion detection head, wherein a voltage change is output as a detection signal of the protrusion.
記録媒体としてのディスクの面上の突起を検査する突起検査装置であって、
抵抗温度係数が約3000ppm/゜Cから約7000ppm/゜Cの範囲にある検出素子をディスク対向面側に備え、上記ディスクの回転時に、該ディスクの面上の突起が上記検出素子に接触したとき、該接触による該検出素子の温度変化に基づく抵抗値変化を、該突起に対応した電圧信号に変え検出信号として出力する突起検出ヘッドと、
該突起検出ヘッドからの検出信号を処理する信号処理回路と、
該信号処理結果を記憶するメモリと、
該信号処理結果に基づく表示を行う表示部と、
上記ディスクを回転駆動するディスク回転駆動手段と、
を備え、上記ディスクを所定速度で回転させ、上記検出素子をディスク面から所定距離浮上させた状態で、該ディスクの面上の突起を検査可能にした構成を特徴とする突起検査装置。
A projection inspection device for inspecting a projection on a surface of a disk as a recording medium,
A detecting element having a temperature coefficient of resistance in the range of about 3000 ppm / ° C to about 7000 ppm / ° C, provided on the disk-facing surface side, when a protrusion on the surface of the disk comes into contact with the detecting element during rotation of the disk; A projection detection head that changes a resistance value change based on a temperature change of the detection element due to the contact into a voltage signal corresponding to the projection and outputs the detection signal as a detection signal;
A signal processing circuit for processing a detection signal from the protrusion detection head;
A memory for storing the signal processing result;
A display unit that performs display based on the signal processing result;
Disk rotation driving means for driving the disk to rotate,
A projection inspection apparatus characterized in that the disk is rotated at a predetermined speed, and the projection on the surface of the disk can be inspected in a state where the detection element is floated from the disk surface by a predetermined distance.
記録媒体としてのディスクの面上の突起を検査する突起検査装置であって、
白金、白金合金、タングステンまたはタングステン合金から成る検出素子と、該検出素子をディスク対向面側に保持し該検出素子をディスク面上に所定距離浮上させるスライダとを備え、上記ディスクの回転時に、該ディスクの面上の突起が上記検出素子に接触したとき、該接触による該検出素子の温度変化に基づく抵抗値変化を、該突起に対応した電圧信号に変え検出信号として出力する突起検出ヘッドと、
該突起検出ヘッドからの検出信号を処理する信号処理回路と、
該信号処理結果を記憶するメモリと、
該信号処理結果に基づく表示を行う表示部と、
上記ディスクを回転駆動するディスク回転駆動手段と、
装置全体を制御する制御手段と、
を備え、上記ディスクを所定速度で回転させた状態で、該ディスクの面上の突起を検査可能にした構成を特徴とする突起検査装置。
A projection inspection device for inspecting a projection on a surface of a disk as a recording medium,
A detection element made of platinum, a platinum alloy, tungsten or a tungsten alloy, and a slider that holds the detection element on the disk-facing surface side and floats the detection element on the disk surface by a predetermined distance. A projection detection head that, when a projection on the surface of the disk contacts the detection element, changes a resistance value change based on a temperature change of the detection element due to the contact into a voltage signal corresponding to the projection and outputs it as a detection signal;
A signal processing circuit for processing a detection signal from the protrusion detection head;
A memory for storing the signal processing result;
A display unit that performs display based on the signal processing result;
Disk rotation driving means for driving the disk to rotate,
Control means for controlling the entire device;
And a projection inspection device characterized in that projections on the surface of the disk can be inspected while the disk is rotated at a predetermined speed.
JP2002332210A 2002-11-15 2002-11-15 Projection detection head and projection test equipment using the same Pending JP2004164797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002332210A JP2004164797A (en) 2002-11-15 2002-11-15 Projection detection head and projection test equipment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002332210A JP2004164797A (en) 2002-11-15 2002-11-15 Projection detection head and projection test equipment using the same

Publications (1)

Publication Number Publication Date
JP2004164797A true JP2004164797A (en) 2004-06-10

Family

ID=32809356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002332210A Pending JP2004164797A (en) 2002-11-15 2002-11-15 Projection detection head and projection test equipment using the same

Country Status (1)

Country Link
JP (1) JP2004164797A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8144427B2 (en) 2008-11-20 2012-03-27 Tdk Corporation Magnetic head, head assembly and magnetic recording/reproducing apparatus
US8199431B2 (en) 2010-04-08 2012-06-12 Tdk Corporation Magnetic head including sensor
US8274761B2 (en) 2010-03-05 2012-09-25 Tdk Corporation Magnetic head including a thermal asperity effect element sensor in a stepped-back position from an air bearing surface
US8351157B2 (en) 2010-07-06 2013-01-08 Tdk Corporation Thin film magnetic head having temperature detection mechanism, head gimbals assembly, head arm assembly and magnetic disk device
US8542456B2 (en) 2011-08-25 2013-09-24 Tdk Corporation Magnetic head having a contact sensor
US8547805B1 (en) 2012-03-28 2013-10-01 Tdk Corporation Thermally-assisted magnetic recording head having temperature sensor embedded on dielectric waveguide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8144427B2 (en) 2008-11-20 2012-03-27 Tdk Corporation Magnetic head, head assembly and magnetic recording/reproducing apparatus
US8274761B2 (en) 2010-03-05 2012-09-25 Tdk Corporation Magnetic head including a thermal asperity effect element sensor in a stepped-back position from an air bearing surface
US8199431B2 (en) 2010-04-08 2012-06-12 Tdk Corporation Magnetic head including sensor
US8351157B2 (en) 2010-07-06 2013-01-08 Tdk Corporation Thin film magnetic head having temperature detection mechanism, head gimbals assembly, head arm assembly and magnetic disk device
US8542456B2 (en) 2011-08-25 2013-09-24 Tdk Corporation Magnetic head having a contact sensor
US8547805B1 (en) 2012-03-28 2013-10-01 Tdk Corporation Thermally-assisted magnetic recording head having temperature sensor embedded on dielectric waveguide

Similar Documents

Publication Publication Date Title
US6195219B1 (en) Method and apparatus for improving a thermal response of a magnetoresistive element
KR101496162B1 (en) Head transducer with multiple resistance temperature sensors for head-medium spacing and contact detection
KR100295334B1 (en) Magnetic transducer with wear indicator in a magnetic data storage system
KR100264485B1 (en) Removal of raised irregularities on a magnetic disk with controlled abrasion by a magnetoresistive head
US6674590B2 (en) System and method for estimating a frequency of slider airbearing resonance
US8654618B1 (en) TAMR structure with HDI sensor for head-disk interference and temperature rise sensing
JP2008159241A (en) Non-contact measurement of fly height by electrostatic force
JP2007522603A (en) Current measurement at head / disk interface
US20030058559A1 (en) Gap fly height sensing using thermal load response
JP5698005B2 (en) System and method for detecting head contact
US6956707B2 (en) Method for look-ahead thermal sensing in a data storage device
JP2004164797A (en) Projection detection head and projection test equipment using the same
TW591629B (en) In-situ pressure sensor based on read head resistance
JP4559487B2 (en) Current as a probe for modulation at the head-disk interface
US6820020B2 (en) Method of determining magnitude of sensing current for electromagnetic transducer
JPH06290563A (en) Magnetic head and magnetic recording/reproducing device
CN104034467A (en) Friction Force Measurement Assembly and Method
JP2004185783A (en) Protrusion inspection head and protrusion inspection method for magnetic recording medium
JPH1027342A (en) Method for inspecting magnetic recording medium
JP4125479B2 (en) Low flying magnetoresistive sensor reader
US6466392B1 (en) Head flight characterization using a non-contact voltmeter
JP2005322279A (en) Thin-film magnetic head equipped with heater, head gimbal assembly equipped with the same, and magnetic disk device equipped with the head gimbal assembly
KR20020083945A (en) A novel method to detect junction induced signal instability from GMR/MR heads
JPH11120725A (en) Device for inspecting disk projection defect
JPH09306045A (en) Recording head and information recorder using the same