JP4125479B2 - Low flying magnetoresistive sensor reader - Google Patents

Low flying magnetoresistive sensor reader Download PDF

Info

Publication number
JP4125479B2
JP4125479B2 JP2000511155A JP2000511155A JP4125479B2 JP 4125479 B2 JP4125479 B2 JP 4125479B2 JP 2000511155 A JP2000511155 A JP 2000511155A JP 2000511155 A JP2000511155 A JP 2000511155A JP 4125479 B2 JP4125479 B2 JP 4125479B2
Authority
JP
Japan
Prior art keywords
magnetoresistive
read
nonmagnetic
disk
reading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000511155A
Other languages
Japanese (ja)
Other versions
JP2001516119A (en
Inventor
シガー、ピーター、アール
ナガラジャン、スブラハマンヤン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seagate Technology LLC
Original Assignee
Seagate Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seagate Technology LLC filed Critical Seagate Technology LLC
Publication of JP2001516119A publication Critical patent/JP2001516119A/en
Application granted granted Critical
Publication of JP4125479B2 publication Critical patent/JP4125479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3945Heads comprising more than one sensitive element
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3945Heads comprising more than one sensitive element
    • G11B5/3948Heads comprising more than one sensitive element the sensitive elements being active read-out elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/488Disposition of heads
    • G11B5/4886Disposition of heads relative to rotating disc
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/49Fixed mounting or arrangements, e.g. one head per track
    • G11B5/4907Details for scanning
    • G11B5/4915Structure of specially adapted heads
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/10Indicating arrangements; Warning arrangements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/012Recording on, or reproducing or erasing from, magnetic disks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor

Description

【0001】
本発明は、一般的には、磁気抵抗読取装置に使用する磁気抵抗ヘッドに関する。特に、本発明は、熱的凹凸(asperities)の識別と読取作業中の熱的凹凸の影響の消去との両方を行う磁気抵抗読取装置である。
【0002】
磁気読取ヘッドの磁気抵抗読取装置部は、磁気媒体であるディスク上に記憶した、磁気的に符号化した情報を検索する。この磁気抵抗読取装置は、典型的には、上面シールド、底面シールド、読取素子、バイアス層、およびスペーサ層を含む幾つかの層から成る。読取素子、バイアス層、およびスペーサ層が上面シールドと底面シールドの間に位置づけられている。読取素子は、磁気抵抗性組成物、典型的にはニッケル鉄(NiFe)のような強磁性体から製作する。バイアス層は、該読取素子を低飽和保磁力の磁化容易軸(easy axis)に沿って適切に偏倚し、スペーサ層は、読取素子とバイアス層の間に必要な分離をもたらす。
【0003】
読取素子は、磁化容易軸がディスク回転方向に直角でディスク平面と平行であるように、読取りヘッド上に組み立てる。ディスク表面からの磁束が読取素子の磁化ベクトルを回転させ、次にそれが読取素子の電気抵抗率を変える。読取素子の抵抗率の変化は、読取素子に検知電流を流し、該読取素子を横切る電圧を測定することによって検出できる。次に、外部回路装置が電圧情報を適切なフォーマットに変換し、該情報を必要に応じて処理する。
【0004】
読取ヘッドの低飛翔性のため、即ち、読取ヘッドが回転ディスクに非常に接近して位置づけられているため、磁気抵抗読取装置がディスクの突起または機械的凹凸に影響されやすく、それが読取作業を妨害する。ディスク上の凹凸は、磁気抵抗読取素子と直接接触するようになる。磁気抵抗読取素子がディスク上の機械的凹凸と接触するとき、読取素子は摩擦加熱を受け、それによってこの磁気抵抗センサの抵抗が変る。この現象を“熱的凹凸(thermal asperity)”と呼んでいる。1〜3μsecの持続時間を有する信号スパイクが生じる。この期間中、読取素子は、読み取りが出来ない。
【0005】
磁気抵抗読取装置がディスク上に記憶された情報を適切に読み取るのを妨げまたは変える別の状況は、表面が完全に平坦というよりはむしろ、反った表面(warped disk)を有するディスクから生じる。磁気抵抗読取素子が偏倚され、それをその周辺に対して熱くする。センサは、大きなヒートシンクとして作用するディスクに非常に接近して飛翔する。読取素子のディスクへの近接が該読取素子の冷却速度を変え、それによって読取素子の抵抗特性を変える。飛翔高さの動的変化、ディスクとヘッドの変調、および凹凸との近接触の全てが読取素子の抵抗のベースラインの変位(shift)へ繋がり、それによってその読取性能を抑制する。
【0006】
ディスク上の何れかの機械的凹凸を精密に図示するために、全ディスク表面を比較的急速に走査してこれらの欠陥領域にデータを書き込まないようにそれらの欠陥部位の位置を記録することと、読取作業中何れかの熱的凹凸の影響を効果的に相殺することの両方が出来る、磁気抵抗読取ヘッドに対する要求がある。
【0007】
(発明の簡単な概要)
本発明は、磁気抵抗ヘッドの読取装置である。読取装置は、磁気媒体から情報を読取るための磁気抵抗読取素子および非磁性素子を有する複式ストリップセンサを含む。スペーサは磁気抵抗読取素子と非磁性素子の間に位置づけられる。複数の電気接触子が磁気抵抗読取素子および非磁性素子を外部回路装置へ接続する。
【0008】
一好適実施例では、非磁性素子が磁気抵抗読取素子に等価な寸法および形状を有する。非磁性センサは高熱抵抗率を有する材料から作る。そこで、読取作業中、非磁性素子信号を磁気抵抗読取素子信号から引く。これを実行することにより、非磁性センサの抵抗および磁気特性を特に制御する必要がない。
【0009】
もう一つの好適実施例では、非磁性素子が広域検出素子である。広域検出素子を備えることによって、機械的凹凸のために幾つかのトラックを走査でき、これら機械的凹凸の位置を精密に図示してそれらの位置に情報を記憶しないようにできる。その上、非磁性素子が磁気抵抗素子よりも物理的に突出する。従って、この読取素子と物理的に接触しないが、磁気抵抗読取素子に近接しているために、読取プロセスに熱的に影響する機械的凹凸の位置でさえも識別することが出来る。
【0010】
(詳細な説明)
図1は、従来技術の読取装置50の、該読取り装置の空気軸受面から見た層状線図である。従来技術の読取装置50は、底面シールド52、絶縁層である半間隙54、磁気抵抗層56、スペーサ58、バイアス層60、永久磁石62および64、電気接触子66および68、絶縁層である半間隙70、並びに上面シールド72を含む。
【0011】
磁気抵抗層56は、活性領域56Cによって分離された受動領域56Aおよび56Bを含む複数の領域を有する。活性領域56Cは、永久磁石62と64の間の磁気抵抗層56の領域として形成される。活性領域56Cは、磁気記憶媒体であるディスクのトラックから情報を読み取る、磁気抵抗層56の領域である。
【0012】
読取作業中、従来技術の読取装置50は、回転するディスクに隣接して配置される。ディスク上の情報が磁気抵抗層56の活性領域56Cの抵抗率に変化を引き起こす。電気接触子66および68を介して磁気抵抗層56に電流を流し、磁気抵抗層56を横切る電圧を測定する。次に、外部回路装置が該情報を必要に応じて処理する。
【0013】
従来技術の読取装置50は、それがディスク上に記憶された情報を適正に読み取るのを妨げまたは変える、二つの特定の状況により損なわれていた。第1の状況は、従来技術の読取装置50を組込んだ読取ヘッドの低飛翔性による。この読取ヘッドは、回転ディスクに極めて近接して位置づけられる。それで、従来技術の読取装置50は、ディスクの突起または機械的凹凸に影響されやすく、それが読取作業を妨害する。ディスク上の凹凸が磁気抵抗層56の活性領域56Cと直接接触するようになる。活性領域56Cがディスク上の機械的凹凸と接触するとき、活性領域56Cは、摩擦加熱を受け、従って磁気抵抗センサの抵抗が変る。この現象を“熱的凹凸(thermal asperity)”と呼ぶ。1〜3μsecの持続時間を有する信号スパイクが生じる。この期間中、従来技術の読取装置50は、ディスクから情報の読み取りが出来ない。
【0014】
ディスクから情報を適正に読み取るのを変えまたは妨げる、第2の状況は、表面が完全に平坦というよりはむしろ反った(warped)表面を有するディスクから生じる。磁気抵抗層56が偏倚され、それをその周辺に対して熱くする。従来技術の読取装置50は、大きなヒートシンクとして作用するディスクに非常に接近して浮動する。活性領域56Cのディスクへの近接が磁気抵抗層56の冷却速度を変え、それによって磁気抵抗層56の抵抗特性を変える。飛翔高さの動的変化、ディスクとヘッドの変調、および凹凸との近接触の全てが読取素子の抵抗の望ましくないベースライン変位に繋がり、それによってその読取性能に影響する。
【0015】
図2は、図1の従来技術の読取装置50から読み取った信号74を描くグラフである。信号74は、波部74Aとスパイク部74Bを含む、典型的信号である。波部74Aは、従来技術の読取装置50が表面が完全に平坦というよりはむしろ反った表面を有するディスクに近接して位置づけられたことを示す。波部74Aのピークは、ディスクの反った表面が従来技術の読取装置50と殆ど接触するようになったときに相当する。同様に、スパイク部74Bは、従来技術の読取装置50が、おそらくはディスクの突起または機械的凹凸のために、ディスクの一部と直接接触するようになったときに相当する。スパイク部74Bは、熱的凹凸を表す。
【0016】
波部74Aとスパイク部74Bは、それぞれ、読取信号が不正確かまたは読めないかのいずれかである場合の読取信号の部分を表す。波部74Aとスパイク部74Bは、従来技術の読取装置50の読取性能の汚点を表す。本発明は、ディスクから情報を不適切に読み取るというこれらの問題を扱う。
【0017】
図3は、本発明を具体化した読取装置150の、空気軸受面から見た層状線図である。読取装置150は、底面シールド152、絶縁層154、非磁性層153、スペーサ155、磁気抵抗層156、スペーサ158、バイアス層160、永久磁石162および164、電気接触子166、167および168、絶縁層170、並びに上面シールド172を含む。絶縁層154および170は、半間隙としてもまた知られる。
【0018】
従来技術の読取装置50の素子である層に類似する、読取装置150の素子である層は、数字の前に1を付けて、同様に表示する。例えば、読取装置150の底面シールド152は、従来技術の読取装置50の底面シールド52と同じである。
【0019】
図3の読取装置150は、熱的補償および熱的凹凸消去を達成するという利点をもたらす、複式ストリップ磁気抵抗読取装置である。非磁性層153および磁気抵抗素子156は、各々0.1μmないし4.0μmの範囲の活性領域幅を有する。非磁性層153は、ニッケルまたはアルミのような、高熱抵抗率(high thermal coefficient of resistivity)を有する材料から作る。スペーサ層155は、磁気抵抗層156と非磁性層153の間を分離する。
【0020】
従来技術の複式ストリップ磁気抵抗ヘッドは、磁気抵抗性を有する材料から作った各センサで製作していた。これらの複式ストリップ磁気抵抗ヘッドは、これらのセンサが与えられた時間の何時でもほぼ同じ温度であるので、熱的凹凸の影響を効果的に相殺することを示した。しかし、この更に複雑な設計では、二つの磁気抵抗センサを注意深く整合し、且つ適正な機能を達成するべく、抵抗および磁気応答が等しく合致しなければならないので、組み立ておよび歩留りの問題が無視できない。
【0021】
図3に示す本発明の設計では、熱的補償および熱的凹凸消去を、上に議論した厳しい公差問題に関連するペナルティなしに達成できる。この消去は、磁気抵抗層156の信号から非磁性層153からの信号を単純に引算することによって行う。非磁性層153を磁気抵抗材料からは作らず、非磁性層153の抵抗および磁気特性を精密に制御する必要がないので、製作問題は単純化される。
【0022】
図4は、本発明を具体化した読取装置150の一部の層状線図である。図4は、読取装置150の複式ストリップ的性質に焦点を合せ、非磁性層153、スペーサ155、磁気抵抗層156、並びに電気接触子166、167および168を含む。磁気抵抗層156に隣接して作ったスペーサ158およびバイアス層160のような、隣接層は、明瞭化のために除去した。これは、読取装置150の空気軸受面から見た図であるので、回転するディスクのトラックは、磁気抵抗層156および非磁性層153を実質的に同時に且つ同一数で通過する。それで、磁気抵抗層156および非磁性層153から読み取った信号は、ディスクが磁気抵抗層156および非磁性層153と接触したら、各信号がスパイク部を含み、読取装置150とディスクの間の距離が変動するとき、各信号が波部を含む点に於いて類似している。しかし、磁気抵抗層156からの信号は、ディスク上に記憶する情報に関する付加的情報を含む。非磁性層153は、この情報を読み取らない。
【0023】
図5Aおよび図5Bは、それぞれ、磁気抵抗層156および非磁性層153から読み取った典型的信号を表す。見て分るように、図5Aに示す信号は、図2に示す従来技術の読取装置50が読み取った信号と同じである。図5Bに示す非磁性層153の信号は、ディスク上に記憶した情報を表す信号を含まないことを除いて、図5Aに示す磁気抵抗層156の信号に倣う。
【0024】
図5Cは、読取装置150からの所望の出力信号を表す信号である。この出力信号の読取装置は、図5Aに示す磁気抵抗層156の信号から図5Bに示す非磁性層153の信号を単純に削除することによって得られる。図5Cに示す信号によって例示するように、不要な熱的凹凸および熱的補償の出現を除去し、それによってディスク上に記憶した情報を表す所望の出力信号を作る。
【0025】
本発明が扱うもう一つの問題は、ディスクにデータを書込む前に、ディスク上の機械的突起または凹凸を精密に図示する問題である。ディスクの機械的突起または凹凸の位置が記録され、これらの欠陥部位または領域にデータを再書込みしないように記録することが望ましい。従来技術で、そのようなアプローチを実行することは、各データヘッドが全ディスク表面を走査するために長時間を要する。これは、完全にするためには四分の一トラック幅で行わねばならず、ディスクを半径方向に40〜50μmのステップで走査する。
【0026】
磁気抵抗読取素子は、幅が1.0μmないし4.0μmでばらつき、成熟製品で2.5μm、現行または将来製品で2μm以下である。これらの素子の幅のために、欠陥を探すためには、ドライブがかなりの時間、例えば8〜12時間費やすことが必要であろう。その上、既存の磁気抵抗読取素子は、素子に少量の電流を供給するときに最も信頼性が良い。しかし、素子へ流す電流が多ければ多い程、凹凸を検出する確率が高い。それで、信頼し得る読み取りと凹凸の適当な検出の間に従来技術の磁気抵抗ヘッドのトレードオフ(trade−off)がある。
【0027】
表面カバー範囲の問題を解決するためには、幅広く検出できる素子を使いたいものである。凹凸高さの問題を解決するためには、回転するディスクへ磁気抵抗センサよりも物理的に近く突出するセンサを使いたいものである。図示作業中の媒体磁性からの雑音を克服するためには、磁性に鈍感なセンサを使いたいものである。最後に、高バイアス電流を使うことによって図示作業中の凹凸への感度を改善したいものである。
【0028】
図6は、本発明の第1代替実施例の磁気抵抗素子202および非磁性素子204を描く、磁気抵抗センサ200の層状線図である。この議論に関連しない幾つかの層を、明瞭にするために除去した。図6に示すように、磁気抵抗センサ200は、磁気抵抗素子202、非磁性素子204、書込み間隙206、センダスト層208、並びにシールド210、212、214、および216を含む。図6は、磁気抵抗センサ200の下で回転するディスク218も示す。図7は、図6に示す磁気抵抗センサ200の、空気軸受面から見た層状線図である。
【0029】
図6および図7に示すように、非磁性素子204は、ニッケルまたはアルミのような、熱伝達を受けやすい非磁性材料から作った、幅広い抵抗性のある素子である。
【0030】
図6および図7に示す磁気抵抗センサ200の設計は、凹凸センサとしての非磁性素子204に対して、磁気抵抗素子202に比べて幅広い抵抗性のある素子を利用する。非磁性素子204用に使用する幅広い抵抗性のある素子は、ディスクの全トラックの位置を走査し且つ全ての熱的凹凸を検出して精密に図示するために使用する時間をかなり節減する。その上、非磁性材料の使用は、この磁気媒体を直流消去したかどうかに関係なく使える。これらの場所には、情報が何も記憶されない。その上、高バイアス電流を非磁性素子204に供給することが出来、それが図示作業中の凹凸に対する感度を改善する。非磁性素子204の幅は、磁性素子に比べて、10〜100μmの範囲内にあり、それがディスク表面を非常に迅速に走査できるようにする。比べて、磁気抵抗素子202の幅は、0.1ないし4.0μmの範囲内にある。
【0031】
図8および図9は、本発明の第2代替実施例を描く層状線図を表す。図8および図9は、シールド210および212の間に位置づけられた、磁気抵抗素子202および非磁性素子204を描く。このアプローチの利点は、追加のシールドが必要ないことである。
【0032】
図10は、本発明の第3代替実施例を示す層状線図を描く。この磁気抵抗センサの第3代替実施例は、図6および図7に示すものに非常に似ているが、磁気抵抗素子202は、凹所(recession)220上に位置づけられる。従って、磁気抵抗素子202よりも非磁正素子204の方がディスク218近くに配置されている。これにより、非磁性素子204は、熱伝達による読取性能に影響する機械的凹凸を検出する性能が向上される。
【0033】
図6ないし図10に示す全ての実施例で、磁気抵抗素子および非磁性層または素子は、接触子166、167、および168のような電気接触子を介して外部回路装置に接続する。しかし、例えば、二つの別々の接触子の組のような、他の電気的構成がこれらの素子を外部回路装置に接続出来ると理解される。
【0034】
本発明は、読取作業中に影響する何れの熱的凹凸を効果的に相殺し、およびディスク上の何れの機械的凹凸を精密に図示するために全ディスク表面を比較的迅速に走査でき且つこれらの欠陥部位の位置を記録してこれらの領域にデータを書込まないようにするという二つの目的に叶う、磁気抵抗読取りヘッドである。
【0035】
好適実施例を参照して本発明を説明したが、当業者は、本発明の精神および範囲から逸脱することなく、形式および細部に於いて変更をなし得ることが分るだろう。
【図面の簡単な説明】
【図1】 従来技術の読取装置の層状線図である。
【図2】 図1の従来技術の読取装置から読み取った信号を表すグラフである。
【図3】 本発明を具体化した読取装置の層状線図である。
【図4】 本発明を具体化した読取装置の一部の層状線図である。
【図5A】 図3の磁気抵抗層から読み取った信号を表すグラフである。
【図5B】 図3の非磁性素子から読み取った信号を表すグラフである。
【図5C】 図3の読取装置の出力信号を表すグラフである。
【図6】 本発明の第1実施例の磁気抵抗素子および非磁性素子を描く層状線図である。
【図7】 本発明の第1実施例の、空気軸受面から見た層状線図である。
【図8】 本発明の第2実施例の磁気抵抗素子および非磁性素子を描く層状線図である。
【図9】 本発明の第2実施例の、空気軸受面から見た層状線図である。
【図10】 本発明の第3実施例の磁気抵抗素子および非磁性素子を描く層状線図である。
[0001]
The present invention generally relates to magnetoresistive heads used in magnetoresistive readers. In particular, the present invention is a magnetoresistive reader that performs both identification of thermal irregularities and erasure of the effects of thermal irregularities during the reading operation.
[0002]
The magnetoresistive reader unit of the magnetic read head retrieves magnetically encoded information stored on a disk that is a magnetic medium. The magnetoresistive reader typically consists of several layers including a top shield, a bottom shield, a read element, a bias layer, and a spacer layer. A read element, bias layer, and spacer layer are positioned between the top and bottom shields. The read element is fabricated from a magnetoresistive composition, typically a ferromagnetic material such as nickel iron (NiFe). The bias layer suitably biases the read element along a low coercivity easy axis, and the spacer layer provides the necessary separation between the read element and the bias layer.
[0003]
The read element is assembled on the read head so that the easy axis of magnetization is perpendicular to the disk rotation direction and parallel to the disk plane. Magnetic flux from the disk surface rotates the magnetization vector of the read element, which in turn changes the electrical resistivity of the read element. The change in resistivity of the reading element can be detected by passing a sensing current through the reading element and measuring a voltage across the reading element. Next, the external circuit device converts the voltage information into an appropriate format and processes the information as necessary.
[0004]
Due to the low flying performance of the read head, i.e. the read head is positioned very close to the rotating disk, the magnetoresistive reader is susceptible to disk protrusions or mechanical irregularities, which to disturb. The irregularities on the disk come into direct contact with the magnetoresistive read element. When the magnetoresistive read element contacts mechanical irregularities on the disk, the read element is subjected to frictional heating, thereby changing the resistance of the magnetoresistive sensor. This phenomenon is called “thermal asperity”. A signal spike with a duration of 1-3 μsec occurs. During this period, the reading element cannot read.
[0005]
Another situation that prevents or alters the magnetoresistive reader to properly read the information stored on the disk arises from a disk having a warped disk rather than a completely flat surface. The magnetoresistive read element is biased and makes it hot against its periphery. The sensor flies very close to a disk that acts as a large heat sink. The proximity of the read element to the disk changes the cooling rate of the read element, thereby changing the resistance characteristic of the read element. Dynamic changes in flying height, modulation of the disk and head, and close contact with the irregularities all lead to a baseline shift of the resistance of the reading element, thereby suppressing its reading performance.
[0006]
In order to accurately depict any mechanical irregularities on the disk, the entire disk surface is scanned relatively quickly to record the location of those defect sites so that no data is written to these defect areas; There is a need for a magnetoresistive read head that can both effectively offset the effects of any thermal irregularities during the read operation.
[0007]
(Summary of the invention)
The present invention is a magnetoresistive head reader. The reader includes a dual strip sensor having a magnetoresistive read element and a nonmagnetic element for reading information from a magnetic medium. The spacer is positioned between the magnetoresistive read element and the nonmagnetic element. A plurality of electrical contacts connect the magnetoresistive read element and the non-magnetic element to the external circuit device.
[0008]
In one preferred embodiment, the non-magnetic element has a size and shape equivalent to a magnetoresistive read element. Non-magnetic sensors are made from materials with high thermal resistivity. Thus, during the reading operation, the non-magnetic element signal is subtracted from the magnetoresistive reading element signal. By doing this, there is no need to specifically control the resistance and magnetic properties of the non-magnetic sensor.
[0009]
In another preferred embodiment, the non-magnetic element is a wide area detection element. By providing a wide-area detection element, several tracks can be scanned for mechanical irregularities, and the positions of these mechanical irregularities can be precisely illustrated so that no information is stored at those positions. In addition, the nonmagnetic element protrudes more physically than the magnetoresistive element. Thus, even though the mechanical irregularities that do not make physical contact with the reading element but are in close proximity to the magnetoresistive reading element and that thermally affect the reading process can be identified.
[0010]
(Detailed explanation)
FIG. 1 is a layered diagram of a prior art reader 50 viewed from the air bearing surface of the reader. The prior art reader 50 includes a bottom shield 52, a semi-gap 54 that is an insulating layer, a magnetoresistive layer 56, a spacer 58, a bias layer 60, permanent magnets 62 and 64, electrical contacts 66 and 68, and a half that is an insulating layer. A gap 70 is included as well as a top shield 72.
[0011]
The magnetoresistive layer 56 has a plurality of regions including passive regions 56A and 56B separated by an active region 56C. The active region 56 </ b> C is formed as a region of the magnetoresistive layer 56 between the permanent magnets 62 and 64. The active region 56C is a region of the magnetoresistive layer 56 that reads information from a track of a disk that is a magnetic storage medium.
[0012]
During the reading operation, the prior art reader 50 is placed adjacent to the rotating disk. Information on the disk causes a change in the resistivity of the active region 56C of the magnetoresistive layer 56. A current is passed through the magnetoresistive layer 56 via the electrical contacts 66 and 68 and the voltage across the magnetoresistive layer 56 is measured. Next, the external circuit device processes the information as necessary.
[0013]
The prior art reader 50 has been compromised by two specific situations that prevent or alter it from properly reading the information stored on the disk. The first situation is due to the low flying characteristics of a read head incorporating a prior art reader 50. This read head is positioned very close to the rotating disk. Thus, the prior art reader 50 is susceptible to disc protrusion or mechanical irregularities, which interferes with the reading operation. The unevenness on the disk comes into direct contact with the active region 56C of the magnetoresistive layer 56. When the active area 56C comes into contact with the mechanical irregularities on the disk, the active area 56C is subjected to frictional heating, thus changing the resistance of the magnetoresistive sensor. This phenomenon is called “thermal asperity”. A signal spike with a duration of 1-3 μsec occurs. During this period, the prior art reader 50 is unable to read information from the disc.
[0014]
A second situation that alters or prevents proper reading of information from the disc results from a disc having a warped surface rather than being completely flat. The magnetoresistive layer 56 is biased and makes it hot against its periphery. The prior art reader 50 floats very close to a disk that acts as a large heat sink. The proximity of the active region 56C to the disk changes the cooling rate of the magnetoresistive layer 56, thereby changing the resistance characteristics of the magnetoresistive layer 56. Dynamic changes in flight height, disk-to-head modulation, and close contact with the irregularities all lead to undesirable baseline displacement of the resistance of the read element, thereby affecting its read performance.
[0015]
FIG. 2 is a graph depicting the signal 74 read from the prior art reader 50 of FIG. Signal 74 is a typical signal including wave portion 74A and spike portion 74B. The corrugation 74A indicates that the prior art reader 50 is positioned in close proximity to a disk having a curved surface rather than a completely flat surface. The peak of the corrugation 74A corresponds to when the warped surface of the disk comes into almost contact with the prior art reader 50. Similarly, spike 74B corresponds to when prior art reader 50 comes into direct contact with a portion of the disc, possibly due to disc protrusion or mechanical irregularities. The spike portion 74B represents a thermal unevenness.
[0016]
Wave portion 74A and spike portion 74B each represent a portion of the read signal when the read signal is either inaccurate or unreadable. The wave portion 74A and the spike portion 74B represent the smears of the reading performance of the reading device 50 of the prior art. The present invention addresses these problems of improperly reading information from the disc.
[0017]
FIG. 3 is a layered diagram of the reading device 150 embodying the present invention as seen from the air bearing surface. The reader 150 includes a bottom shield 152, an insulating layer 154, a nonmagnetic layer 153, a spacer 155, a magnetoresistive layer 156, a spacer 158, a bias layer 160, permanent magnets 162 and 164, electrical contacts 166, 167 and 168, and an insulating layer. 170, as well as top shield 172. Insulating layers 154 and 170 are also known as half gaps.
[0018]
Layers that are elements of the reader 150, similar to layers that are elements of the reader 50 of the prior art, are similarly displayed with a 1 in front of the number. For example, the bottom shield 152 of the reader 150 is the same as the bottom shield 52 of the prior art reader 50.
[0019]
The reader 150 of FIG. 3 is a dual strip magnetoresistive reader that provides the advantage of achieving thermal compensation and thermal relief. The nonmagnetic layer 153 and the magnetoresistive element 156 each have an active region width in the range of 0.1 μm to 4.0 μm. The nonmagnetic layer 153 is made of a material having a high thermal coefficient of resilience, such as nickel or aluminum. The spacer layer 155 separates the magnetoresistive layer 156 and the nonmagnetic layer 153.
[0020]
Prior art dual strip magnetoresistive heads were fabricated with sensors made from materials having magnetoresistance. These dual strip magnetoresistive heads have been shown to effectively offset the effects of thermal irregularities because these sensors are at approximately the same temperature at any given time. However, in this more complex design, the assembly and yield issues are not negligible because the resistance and magnetic response must match equally in order to carefully match the two magnetoresistive sensors and achieve proper function.
[0021]
In the design of the invention shown in FIG. 3, thermal compensation and thermal relief removal can be achieved without the penalty associated with the tight tolerance issues discussed above. This erasing is performed by simply subtracting the signal from the nonmagnetic layer 153 from the signal from the magnetoresistive layer 156. Since the nonmagnetic layer 153 is not made of a magnetoresistive material and the resistance and magnetic properties of the nonmagnetic layer 153 need not be precisely controlled, the fabrication problem is simplified.
[0022]
FIG. 4 is a partial layer diagram of a reader 150 embodying the present invention. FIG. 4 focuses on the dual strip nature of the reader 150 and includes a non-magnetic layer 153, a spacer 155, a magnetoresistive layer 156, and electrical contacts 166, 167 and 168. Adjacent layers, such as spacer 158 and bias layer 160 made adjacent to magnetoresistive layer 156, were removed for clarity. Since this is a view from the air bearing surface of the reader 150, the tracks of the rotating disk pass through the magnetoresistive layer 156 and the nonmagnetic layer 153 substantially simultaneously and in the same number. Thus, the signals read from the magnetoresistive layer 156 and the nonmagnetic layer 153 are such that when the disk contacts the magnetoresistive layer 156 and the nonmagnetic layer 153, each signal includes a spike portion, and the distance between the reader 150 and the disk is When fluctuating, each signal is similar in that it includes a wave portion. However, the signal from magnetoresistive layer 156 includes additional information regarding the information stored on the disk. The nonmagnetic layer 153 does not read this information.
[0023]
5A and 5B represent typical signals read from magnetoresistive layer 156 and nonmagnetic layer 153, respectively. As can be seen, the signal shown in FIG. 5A is the same as the signal read by the prior art reader 50 shown in FIG. The signal of the nonmagnetic layer 153 shown in FIG. 5B follows the signal of the magnetoresistive layer 156 shown in FIG. 5A except that it does not include a signal representing information stored on the disk.
[0024]
FIG. 5C is a signal representing a desired output signal from the reading device 150. This output signal reader is obtained by simply deleting the signal of the nonmagnetic layer 153 shown in FIG. 5B from the signal of the magnetoresistive layer 156 shown in FIG. 5A. As illustrated by the signal shown in FIG. 5C, the appearance of unwanted thermal irregularities and thermal compensation is removed, thereby creating the desired output signal that represents the information stored on the disk.
[0025]
Another problem addressed by the present invention is the precise depiction of mechanical protrusions or irregularities on the disk before writing data to the disk. It is desirable to record the position of the mechanical protrusions or irregularities on the disk and not to rewrite the data in these defective sites or areas. In the prior art, performing such an approach takes a long time for each data head to scan the entire disk surface. This must be done with a quarter track width to complete, and the disk is scanned radially in steps of 40-50 μm.
[0026]
The magnetoresistive read element varies in width from 1.0 μm to 4.0 μm, is 2.5 μm for mature products, and 2 μm or less for current or future products. Due to the width of these elements, it may be necessary for the drive to spend a significant amount of time, for example 8-12 hours, to look for defects. Moreover, existing magnetoresistive read elements are most reliable when supplying a small amount of current to the element. However, the more current that flows to the element, the higher the probability of detecting irregularities. Thus, there is a trade-off of prior art magnetoresistive heads between reliable reading and proper detection of irregularities.
[0027]
In order to solve the problem of the surface coverage, we would like to use elements that can be detected widely. In order to solve the uneven height problem, it is desirable to use a sensor that protrudes physically closer to the rotating disk than the magnetoresistive sensor. In order to overcome the noise from the medium magnetism during the illustrated work, we would like to use a sensor insensitive to magnetism. Finally, we would like to improve the sensitivity to irregularities during the drawing work by using a high bias current.
[0028]
FIG. 6 is a layered diagram of a magnetoresistive sensor 200 depicting a magnetoresistive element 202 and a nonmagnetic element 204 of a first alternative embodiment of the present invention. Some layers not relevant to this discussion were removed for clarity. As shown in FIG. 6, the magnetoresistive sensor 200 includes a magnetoresistive element 202, a nonmagnetic element 204, a write gap 206, a sendust layer 208, and shields 210, 212, 214, and 216. FIG. 6 also shows a disk 218 that rotates under the magnetoresistive sensor 200. FIG. 7 is a layered diagram of the magnetoresistive sensor 200 shown in FIG. 6 as viewed from the air bearing surface.
[0029]
As shown in FIGS. 6 and 7, the nonmagnetic element 204 is a wide resistive element made from a nonmagnetic material susceptible to heat transfer, such as nickel or aluminum.
[0030]
The design of the magnetoresistive sensor 200 shown in FIGS. 6 and 7 uses an element having a wider resistance than the magnetoresistive element 202 with respect to the nonmagnetic element 204 as the uneven sensor. The wide range of resistive elements used for the non-magnetic element 204 saves a considerable amount of time used to scan the position of all tracks on the disk and detect and accurately depict all thermal irregularities. In addition, the use of non-magnetic materials can be used regardless of whether the magnetic medium is DC erased. No information is stored in these places. In addition, a high bias current can be supplied to the non-magnetic element 204, which improves sensitivity to irregularities during the illustrated operation. The width of the non-magnetic element 204 is in the range of 10-100 μm compared to the magnetic element, which allows it to scan the disk surface very quickly. In comparison, the width of the magnetoresistive element 202 is in the range of 0.1 to 4.0 μm.
[0031]
8 and 9 represent layered diagrams depicting a second alternative embodiment of the present invention. FIGS. 8 and 9 depict the magnetoresistive element 202 and the non-magnetic element 204 positioned between the shields 210 and 212. The advantage of this approach is that no additional shielding is required.
[0032]
FIG. 10 depicts a layered diagram illustrating a third alternative embodiment of the present invention. This third alternative embodiment of the magnetoresistive sensor is very similar to that shown in FIGS. 6 and 7, but the magnetoresistive element 202 is positioned on the recess 220. Therefore, the non-magnet positive element 204 is disposed closer to the disk 218 than the magnetoresistive element 202. Thus, nonmagnetic element 204, the performance of detecting the mechanical irregularities affecting the reading performance due to heat transfer Ru is improved.
[0033]
In all of the embodiments shown in FIGS. 6-10, the magnetoresistive element and the non-magnetic layer or element are connected to an external circuit device via electrical contacts such as contacts 166, 167, and 168. However, it is understood that other electrical configurations, such as two separate contact sets, can connect these elements to external circuit devices.
[0034]
The present invention effectively cancels any thermal irregularities affecting the reading operation, and can scan the entire disk surface relatively quickly to accurately illustrate any mechanical irregularities on the disk and these This is a magnetoresistive read head that serves the two purposes of recording the position of the defective portion of the disk and preventing data from being written in these areas.
[0035]
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
[Brief description of the drawings]
FIG. 1 is a layered diagram of a prior art reader.
FIG. 2 is a graph showing a signal read from the prior art reading device of FIG. 1;
FIG. 3 is a layered diagram of a reading apparatus embodying the present invention.
FIG. 4 is a layered diagram of a part of a reader embodying the present invention.
5A is a graph showing a signal read from the magnetoresistive layer of FIG. 3. FIG.
5B is a graph showing a signal read from the nonmagnetic element of FIG. 3. FIG.
5C is a graph showing an output signal of the reading device of FIG. 3. FIG.
FIG. 6 is a layered diagram depicting the magnetoresistive element and the nonmagnetic element of the first embodiment of the present invention.
FIG. 7 is a layered diagram of the first embodiment of the present invention viewed from the air bearing surface.
FIG. 8 is a layered diagram depicting a magnetoresistive element and a nonmagnetic element of a second embodiment of the present invention.
FIG. 9 is a layered diagram of the second embodiment of the present invention viewed from the air bearing surface.
FIG. 10 is a layered diagram depicting a magnetoresistive element and a nonmagnetic element of a third embodiment of the present invention.

Claims (9)

磁気媒体から情報を読取るための磁気抵抗読取素子、
磁気媒体の表面特性に関する情報を読取る非磁性素子、
前記磁気抵抗読取素子と前記非磁性素子との間に位置づけられたスペーサ、ならびに
前記磁気抵抗読取素子が読取った情報から前記非磁性素子が読取った情報を消去し磁気媒体に記録された情報を得る手段、
を含む磁気抵抗ヘッドの読取装置において、
前記磁気抵抗ヘッドの磁気媒体の表面に対向する空気軸受面で、前記非磁性素子の幅は、磁気抵抗読取素子の幅より大きいことを特徴とする磁気抵抗ヘッドの読取装置。
A magnetoresistive read element for reading information from a magnetic medium;
A non-magnetic element for reading information on the surface characteristics of the magnetic medium,
A spacer positioned between the magnetoresistive read element and the nonmagnetic element, and information read by the nonmagnetic element is erased from information read by the magnetoresistive read element to obtain information recorded on a magnetic medium. means,
In a magnetoresistive head reader comprising:
An apparatus for reading a magnetoresistive head , wherein a width of the nonmagnetic element is larger than a width of the magnetoresistive read element on an air bearing surface facing a surface of a magnetic medium of the magnetoresistive head.
前記スペーサが、絶縁体である請求項1に記載の読取装置。  The reading device according to claim 1, wherein the spacer is an insulator. 前記非磁性素子が、金属材料製である請求項1に記載の読取装置。  The reading device according to claim 1, wherein the nonmagnetic element is made of a metal material. 前記非磁性素子が、ニッケル製である請求項3に記載の読取装置。  The reading device according to claim 3, wherein the nonmagnetic element is made of nickel. 前記磁気抵抗読取素子が、0.1μmから4.0μmの範囲内に活性領域幅を有する請求項1に記載の装置。  The apparatus of claim 1, wherein the magnetoresistive read element has an active region width in a range of 0.1 μm to 4.0 μm. 前記非磁性素子が、0.1μmから4.0μmの範囲内の幅を有する請求項1に記載の装置。  The apparatus of claim 1, wherein the non-magnetic element has a width in the range of 0.1 μm to 4.0 μm. 前記非磁性素子が、0.1μmから100μmの範囲内の幅を有する請求項1に記載の装置。  The apparatus of claim 1, wherein the non-magnetic element has a width in the range of 0.1 μm to 100 μm. 前記磁気抵抗読取素子と前記非磁性素子との間に設けられ、複数のギャップ層により分離された複数のニッケル鉄層をさらに有する請求項1に記載の装置。  The apparatus according to claim 1, further comprising a plurality of nickel iron layers provided between the magnetoresistive read element and the nonmagnetic element and separated by a plurality of gap layers. 磁気媒体から情報を読取るための磁気抵抗読取素子、
磁気媒体の表面特性に関する情報を読取る非磁性素子、
前記磁気抵抗読取素子と前記非磁性素子との間に位置づけられたスペーサ、ならびに
前記磁気抵抗読取素子が読取った情報から前記非磁性素子が読取った情報を消去し磁気媒体に記録された情報を得る手段、
を含む磁気抵抗ヘッドの読取装置において、
前記磁気抵抗ヘッドの前記磁気媒体の表面に対向する空気軸受面に凹所が設けられ、該凹所の内側に前記磁気抵抗読取素子が設けられ、もって前記非磁性素子が、前記磁気抵抗読取素子よりもさらに磁気媒体近くに配置されていることを特徴とする磁気抵抗ヘッドの読取装置。
A magnetoresistive read element for reading information from a magnetic medium;
A non-magnetic element for reading information on the surface characteristics of the magnetic medium,
A spacer positioned between the magnetoresistive read element and the nonmagnetic element, and information read by the nonmagnetic element is erased from information read by the magnetoresistive read element to obtain information recorded on a magnetic medium. means,
In a magnetoresistive head reader comprising:
A recess is provided in the air bearing surface of the magnetoresistive head that faces the surface of the magnetic medium, the magnetoresistive read element is provided inside the recess, and the nonmagnetic element is the magnetoresistive read element. A reading device for a magnetoresistive head, characterized in that the reading device is arranged closer to the magnetic medium than the magnetic medium.
JP2000511155A 1997-09-08 1998-09-04 Low flying magnetoresistive sensor reader Expired - Fee Related JP4125479B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US5823797P 1997-09-08 1997-09-08
US60/058,237 1997-09-08
PCT/US1998/018385 WO1999013459A1 (en) 1997-09-08 1998-09-04 Reader for a low-flying magnetoresistive sensor

Publications (2)

Publication Number Publication Date
JP2001516119A JP2001516119A (en) 2001-09-25
JP4125479B2 true JP4125479B2 (en) 2008-07-30

Family

ID=22015541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000511155A Expired - Fee Related JP4125479B2 (en) 1997-09-08 1998-09-04 Low flying magnetoresistive sensor reader

Country Status (6)

Country Link
JP (1) JP4125479B2 (en)
KR (1) KR20010023744A (en)
CN (1) CN1197054C (en)
DE (1) DE19882654T1 (en)
GB (1) GB2343055A (en)
WO (2) WO1999013459A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079760U (en) * 1993-07-19 1995-02-10 有限会社大和技研 Unity band

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100652355B1 (en) 1999-03-10 2006-11-30 삼성전자주식회사 Connector and Cable having Transducer and Receiver for Optical Transmission

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270892A (en) * 1992-06-05 1993-12-14 Hewlett-Packard Company Conductor configuration for magnetoresistive transducers
JPH08287444A (en) * 1995-04-18 1996-11-01 Hitachi Ltd Magnetic disk device
US5793207A (en) * 1996-10-09 1998-08-11 International Business Machines Corporation Disk drive with a thermal asperity reduction circuitry using a spin valve sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079760U (en) * 1993-07-19 1995-02-10 有限会社大和技研 Unity band

Also Published As

Publication number Publication date
WO1999013459A1 (en) 1999-03-18
CN1197054C (en) 2005-04-13
JP2001516119A (en) 2001-09-25
DE19882654T1 (en) 2000-08-24
CN1269903A (en) 2000-10-11
GB0001556D0 (en) 2000-03-15
WO1999013457A2 (en) 1999-03-18
GB2343055A (en) 2000-04-26
KR20010023744A (en) 2001-03-26

Similar Documents

Publication Publication Date Title
KR100259429B1 (en) Spin valve sensor with enhanced magnetoresistance
US6258468B1 (en) AMR read sensor structure and method with high magnetoresistive coefficient
US7656619B1 (en) Magnetic head sliders for disk drives having a heating element and pedestal in thick undercoat layer
US6914759B2 (en) Giant magnetoresistive sensor having selfconsistent demagnetization fields
US5375022A (en) Magnetic disk drive with electrical shorting protection
US8040131B2 (en) Method for testing the acceptability of a magnetic read sensor
KR19990036652A (en) Magnetic tunnel junction magnetoresistive read head with sensing layer as magnetic flux guide
US20080102316A1 (en) Magneto-resistive magnetic read head and storage apparatus using the same magnetic read head
US8618793B2 (en) High sensitivity glide sensor using frictional heating
US6930862B2 (en) Shielded extraordinary magnetoresistance head
US8767356B2 (en) Magnetoresistive sensor with funnel-shaped free layer, magnetic head, head gimbal assembly, and disk drive unit with the same
US6995950B2 (en) Transverse biased shields for perpendicular recording to reduce stray field sensitivity
US6222702B1 (en) Magnetic read element shield having dimensions that minimize domain wall movement
US20130279045A1 (en) Magnetic head having a contact detection sensor
US6239954B1 (en) Reader for a low-flying magnetoresistive sensor
JP4467210B2 (en) Magnetic recording apparatus and magnetic head
US6965229B2 (en) Method of detecting polarity reversal in a magnetoresistive sensor
JP4125479B2 (en) Low flying magnetoresistive sensor reader
US7652853B2 (en) Thin shield structure for reduced protrusion in a magnetoresistive head
US7054084B2 (en) Method, apparatus and program storage device for sensing increased resistance changes in an MR element to detect MR sensor events
US7230780B2 (en) Method, apparatus and program storage device for providing protrusion feedback for a read/write element
US7729092B1 (en) Shielded pole writer under reader
US9311945B2 (en) Magnetic head for microwave assisted magnetic recording
US7522380B2 (en) Head to disc interface tunneling giant magnetoresistive sensor
JPH0444610A (en) Composite thin film magnetic head and production of the head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070608

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080214

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080411

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees