JP2004185783A - Protrusion inspection head and protrusion inspection method for magnetic recording medium - Google Patents

Protrusion inspection head and protrusion inspection method for magnetic recording medium Download PDF

Info

Publication number
JP2004185783A
JP2004185783A JP2002355125A JP2002355125A JP2004185783A JP 2004185783 A JP2004185783 A JP 2004185783A JP 2002355125 A JP2002355125 A JP 2002355125A JP 2002355125 A JP2002355125 A JP 2002355125A JP 2004185783 A JP2004185783 A JP 2004185783A
Authority
JP
Japan
Prior art keywords
head
inspection
flying height
recording medium
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002355125A
Other languages
Japanese (ja)
Inventor
Takanori Nagano
貴範 永野
Satoshi Tabata
敏 田畑
Fuminobu Maruyama
文信 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002355125A priority Critical patent/JP2004185783A/en
Publication of JP2004185783A publication Critical patent/JP2004185783A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a protrusion inspection head which assures highly accurate floating height, used without performing floating height selection and avoiding adjustment of a floating height which affects an inspection period. <P>SOLUTION: A thermal floating height adjusting element formed by using a material having a thermal expansion coefficient different from that of a slider and generating thermal protrusion caused by difference between the thermal expansion coefficients by heat production is provided on the slider of the inspection head. Thereby, the floating height can be optionally set in the range which can be covered by the thermal protrusion and initial floating fluctuation of the inspection head can be adjusted by the thermal floating height adjusting element. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高記録密度磁気記録に好適な磁気記録媒体に係わり、特に磁気記録媒体に存在する浮上阻害要因となる突起欠陥個所の有無を検出する検査方法及び検査用ヘッドに関する。
【0002】
【従来の技術】
近年、コンピュータ周辺機器をはじめ情報家電の記憶装置としての磁気ディスク装置には、高記録密度磁気記録の実現による大容量化に対する要求が高まっている。磁気ディスク装置は、磁気ヘッド及び磁気記録媒体等から構成され、磁気記録媒体は高速回転し、磁気ヘッドはサブミクロンオーダの隙間(スペーシング)で磁気記録媒体表面上を高速浮上もしくは走行している。
【0003】
磁気ディスク装置の記録密度はb/in2(bits per square inch)で記述されることが一般的である。b/in2は1平方インチ当りのビット数で、磁気記録媒体の円周方向に対する記録密度である線記録密度と、磁気記録媒体のトラック(半径)方向に対する記録密度であるトラック密度の積である。1b/in2は645.2b/mm2(bits per square millimeter)に相当する。線記録密度はBPI(bits per inch)やFCI(flux changes per inch)で記述される。BPIは1インチ当りのビット数、FCIは1インチ当りの磁束反転数である。
【0004】
BPIとFCIの関係は符号変換方式により異なるが、例えば最近主流である16−17変換方式では、FCIの16/17倍がBPIとなる。1BPIは25.4BPM(bits per millimeter)に相当し、1FCIは25.4FCM(flux changes per millimeter)に相当する。トラック密度はTPI(tracks perinch)で記述される。TPIは1インチ当りに存在するトラック数である。1TPIは25.4TPM(tracks per millimeter)に相当する。磁気ディスク装置の高記録密度磁気記録化は、線記録密度とトラック密度の増加により実現されてきた。
【0005】
磁気ディスク装置に使用される磁気記録媒体は、主にNi−Pメッキを施したAl合金基板、もしくは非磁性の中間膜を施したガラス基板などの非磁性基板上に、蒸着法やスパッタ法などで、Crなどの下地膜を介して、主にCoCrPt、CoNiCr、CoCrTaなどの一軸磁気異方性を有するCo基合金磁性膜を形成し、更に耐摺動性、耐腐食性に優れた保護膜及び潤滑膜を構成した金属薄膜型磁気記録媒体が用いられている。
【0006】
磁気ディスク装置で更なる高記録密度磁気記録を実現する一手法として、磁気ディスク装置に使用される磁気ヘッドと磁気記録媒体のスペーシングを低減する策がある。磁気記録媒体に記録される磁化遷移領域は、磁気ヘッドの素子部から発生している磁束の広がりに依存する。磁束の広がりは、磁気ヘッドと磁気記録媒体とのスペーシングが近くなるほど縮小する。このため磁気ヘッドと磁気記録媒体のスペーシングを低減することにより、磁気記録媒体に記録される磁化遷移領域が微細化され、高記録密度磁気記録が可能となる。
【0007】
従来の磁気ディスク装置は、磁気ヘッドが常に磁気記録媒体上に存在し、非稼動時には磁気ヘッドが磁気記録媒体上に静止するContact Start Stop(CSS)方式が採用されていた。しかし最近の磁気ディスク装置では、耐衝撃性とスペーシング低減を理由に、非稼動時に磁気ヘッドが磁気記録媒体上から退避するLoad/Unload方式が採用されるようになっている。
【0008】
Load/Unload方式では、CSS方式のように磁気記録媒体上に磁気ヘッドが静止することがないため、磁気記録媒体の表面に磁気ヘッドの吸着防止のための表面形状が必要ない。
【0009】
このLoad/Unload方式の採用により、磁気記録媒体及び前記磁気記録媒体に使用する磁気記録媒体用ガラス基板に要求される性能として、表面に磁気ヘッドの浮上を阻害する突起が存在せず、表面形状が平滑であればあるほど、磁気ヘッドと磁気記録媒体のスペーシング低減に有利であるという認識が定着化している。
【0010】
スペーシングを低減するためには、磁気ヘッドが磁気記録媒体上で、安定して浮上もしくは走行している必要がある。スペーシングが狭小化した場合、磁気ヘッドが磁気記録媒体上で安定に浮上しない場合には、磁気ディスク装置において磁気ヘッドが突起に衝突し磁気ヘッド自身の位置がずれる現象や、振動によるランナウトという現象として不具合が生じる。このため磁気記録媒体に要求される特性として、スペーシング低減のため浮上阻害要因となる欠陥個所が存在しないことが望ましい。しかし実際には磁気ディスクの製造工程において、様々な要因から欠陥が発生する可能性があるため、製造後の磁気記録媒体は、浮上特性を検査する必要がある。
【0011】
磁気記録媒体の浮上特性検査としては、磁気ディスクに要求される所望の浮上量で、検出素子を備えた検査用ヘッドを浮上させ、浮上阻害要因となる欠陥が磁気ディスクに存在した場合に、欠陥と検出素子の接触により生じる信号を検出することで、欠陥の有無を判定する方法が用いられている。検出素子としては、例えば音響効果素子もしくはピエゾ素子のような衝撃音波(アコースティックエミッション波、以下AE波)を電気エネルギーに変換する素子を検査用ヘッドのスライダに装着し、検査用ヘッドと欠陥が接触した際に生じる衝撃音波を電気エネルギーに変換することで欠陥検出を実現している。
【0012】
また他には、例えば特開平8−167121(特許文献1)に開示されているように、磁気ディスク装置に使用されている磁気ヘッドと同じように、磁気抵抗効果を利用した磁気抵抗素子(Magneto Resistive Element、以下MRと称する)を構成した薄膜磁気ヘッドを検査用ヘッドとして用い、検査用ヘッドと欠陥が接触した際に生じる接触熱による磁気抵抗素子の抵抗変化(サーマルアスピリティ)を検出することで、欠陥検出を実現している。
【0013】
前記のように、磁気記録媒体上に存在する浮上阻害要因となる欠陥との接触を検出素子により感知する浮上特性検査では、検査用ヘッドの浮上量を磁気ディスクに要求される所望の浮上特性を満足するような浮上量に制御することが重要である。磁気記録媒体の内周部から外周部にかけて同一回転数で検査用ヘッドを浮上させた場合、内周部と外周部では周速が異なる。このため検査ヘッドの浮上量が周速によって変化が小さいヘッドスライダ形状を採用し制御性を向上させたり、他には例えば特開平5−29963(特許文献2)に開示されているように、検査する磁気記録媒体の回転数を段階的に変化させることにより、検査用ヘッドの浮上量を所望の浮上量に制御する方法が提案されている。
【0014】
また、磁気ディスク装置を装置稼動時の温度よりも高い温度環境となるよう加熱した状態で回転する磁気ディスク上の所定摺動領域にヘッドスライダを摺動させて、該ヘッドスライダの記録媒体対向面に露出するヘッド素子保護膜を平坦面に研磨する方法が特開平5−36047(特許文献3)に開示されている。しかし、本開示例は磁気記録媒体の突起検査用ヘッドに関する技術を開示したものではない。
【0015】
【特許文献1】
「特開平8−167121号公報」
【特許文献2】
「特開平5−299963号公報」
【特許文献3】
「特開平5−36047号公報」
【0016】
【発明が解決しようとする課題】
上述した従来技術により、磁気記録媒体に存在する浮上阻害要因となる欠陥個所の有無を検出する検査が実施されてきた。ところが、更なる高記録密度磁気記録を達成するためスペーシングの狭小化が加速されており、このため磁気記録媒体の浮上特性の保証に関して、今まで以上に高精度な保証が要求されている。
【0017】
従来の技術では、検査用ヘッドの浮上量の周速依存性が小さいスライダ形状の採用や、検査回転数の段階的設定により、検査用ヘッドの浮上量を制御することで浮上保証の精度を確保していたが、検査用ヘッド個体差による浮上量のばらつきが依然として問題となっていた。検査用ヘッド個体差による浮上量のばらつきを抑制するため、例えば所望浮上量となる検査用ヘッドのみを選別し使用する方法が採られた。しかし検査用ヘッドの浮上量産別は、使用可能な検査用ヘッド員数の減少から、検査コストが増加するという問題が生じた。
【0018】
他の解決策として、検査用ヘッド個体差による浮上量のばらつきを抑制するため、検査回転数を検査用ヘッド個別に設定する方法が採られた。この方法ではほとんどの検査用ヘッドが使用可能であるが、検査用ヘッド毎に検査回転数が異なるため、検査時間にばらつきが生じてしまい、回転数が低い検査用ヘッドでは検査時間が増加するという問題が生じた。
【0019】
また磁気ディスク装置が複数の機種である場合、機種毎に所望とする浮上量が異なるケースが存在する。磁気ディスク装置の機種別に検査用ヘッドを個別に準備したり、検査用ヘッドの浮上選別実施により、所望される浮上量別に検査用ヘッドを確保するのは、必要となる検査用ヘッドの員数が膨大となり、検査コストの増加につながる。一方、同一の検査用ヘッドを用いて異なった所望浮上量を設定するには、回転数の変更等の手法が取られるが、ヘッド浮上量の個体差のばらつきが大きい場合、高精度な浮上保証が望めないという問題が残る。
【0020】
本発明の目的は、スペーシングの狭小化に対して高精度な浮上量保証での対応が可能で、且つ検査用ヘッドの浮上選別等を実施することなくほとんどの検査用ヘッドが使用可能となり、且つ検査用ヘッド毎に回転数設定を変化させるような検査時間に影響が出る浮上量調整を回避可能な磁気記録媒体の浮上阻害要因となる欠陥検査方法及び検査用ヘッドを提供することにある。
【0021】
【課題を解決するための手段】
上記目的を達成するために、本発明では、スライダを有して回転する磁気記録媒体上に浮上させた状態で磁気記録媒体の突起検査を行う突起検査用ヘッドにおいて、温度変化により該検査用ヘッドの浮上量を変化させる熱式浮上量可変素子が該ヘッドのスライダに形成されているようにし、該ヘッドを磁気記録媒体の突起検査に用いるようにした。
【0022】
また、前記熱式浮上量可変素子は、該検査用ヘッドの浮上最下点付近に、少なくとも熱膨張係数が異なる材料を近接させた部位として形成され、加熱部と加熱による体積が増加する体積可変部とを含むようにした。
【0023】
【発明の実施の形態】
まず、本発明の実施の形態の概要を述べる。本発明では、検査用ヘッドの浮上最下点付近に、少なくとも2種類以上の熱膨張係数が異なる材料を近接させた部位を形成した。この熱膨張係数が異なる材料を近接させた部位に熱を供給して、熱膨張係数差により一方の材料において体積の増加による熱膨張突出(サーマルプロトリュージョン)を生じさせた。この熱膨張突出により、検査用ヘッドの浮上最下点の浮上量が変化する。この少なくとも2種類以上の熱膨張係数が異なる材料を近接させた部位を、以下、熱式浮上量調整素子部と呼ぶ。
【0024】
熱式浮上量調整素子部はその体積をもたらす熱の供給を行う部分を含んでおり、薄膜型磁気ヘッドに採用されているように、コイルのような線路を施し、電流の通電によりコイル抵抗損(銅損)やコイル渦電流損、磁気コアのヒステリシス損、磁気コア渦電流損等による発熱を利用するものである。
【0025】
熱式浮上量調整素子の熱膨張突出量により検査用ヘッドの浮上最下点の浮上量を変化させるため、従来技術で問題となっていた検査回転数変化による浮上量制御のように検査時間が変わることが無く、検査時間に影響無く浮上量制御が可能となった。熱式浮上量調整素子は、使用する材料の組合せ、すなわち熱膨張係数差により熱膨張突出量の制御が可能である。また電流の通電量により、発熱の程度が制御可能であり、発熱量の制御により熱式浮上量調整素子の熱膨張突出量が制御可能である。従って従来技術では所望する浮上量の検査用ヘッドの選定が必要であったが、熱式浮上量調整素子により浮上量の設定が熱膨張突出でカバーできる範囲で任意に設定可能となる。
【0026】
このため検査用ヘッドのイニシャルな浮上ばらつきが熱式浮上量調整素子により調整可能となるため、浮上選別等の実施することなくほとんどの検査用ヘッドが使用可能となった。更に、電流通電量の制御を行うことで、検査用ヘッドの浮上量が容易に変化可能なため、検査用ヘッド毎に回転数設定を変化させるような検査時間に影響が出る浮上量調整が回避可能となった。
【0027】
以下、本発明の実施例について、図面を参照しさらに詳細に説明する。
<実施例1>
図1は本発明の突起検査用ヘッドの一実施例の形態のヘッドスライダ図である。スライダ11のサイズはピコスライダとした。スライダ11の材料はアルミナ(熱膨張係数7.5〜8.5[10−6K−1])を用いた。スライダ11は、2レールとセンターパッドにより構成されるスライダ形状とした。このスライダ形状では、浮上最下点はセンターパッドの流出端寄りとなっている。スライダ11の背面にはピエゾ素子12が搭載されている。ピエゾ素子12からは、検査用ヘッドスライダに欠陥が接触した際に生じる衝撃音波を電気エネルギーに変換し検出するための信号線13が接続されている。
【0028】
従来技術の突起検査用ヘッドは、スライダ11、ピエゾ素子12及び信号線13により構成されていた。しかし本発明の突起検査用ヘッドには、浮上最下点近傍に熱的浮上量調整素子14を形成した。熱的浮上量調整素子14の材料はCu(熱膨張係数17〜18[10−6K−1])を用いた。熱的浮上量調整素子14は、コイル状部分を有し、電流の通電によりコイル抵抗損(銅損)やコイル渦電流損、磁気コアのヒステリシス損、磁気コア渦電流損等による発熱を利用した加熱が可能である。該熱式浮上量調整素子には電流供給線15(Cu)が接続されている。
【0029】
図2はヘッドスライダをサスペンションに組立てた一実施例の形態の検査用ヘッド図である。図1で詳細を説明したヘッドスライダ21は、サスペンション22に取付けられており、ピエゾ素子からの信号線と熱的浮上量調整素子への電流供給線の配線23がまとめられている。検査用ヘッドの浮上量ばらつきを抑制するため、サスペンション22の加重は、センターパッドの流出端寄りの浮上最下点での浮上量が10nmとなるように2.5gから3.5gの範囲で調整した。浮上量は、ザイゴ社製ペガサス2000FHT浮上測定機を用いて、測定周速を15m/s、スキュー角0度の設定で測定した。
【0030】
図3は本発明の一実施例の検査用ヘッドによる突起検出のモデル図である。検査用ヘッドのスライダ31が、回転している磁気記録媒体32上を浮上もしくは走行している。磁気記録媒体32の表面に突起33が存在する場合には、スライダ31と突起33が衝突した際に発生する衝撃音波を装着されたピエゾ素子が電気エネルギーに変換することで欠陥検出を実現している。本発明の一実施例では、検査用ヘッドの浮上量を8nmとした。イニシャルの状態で、検査用ヘッドはヘッド組立て時に浮上量が10nmとなるように調整されているが、実際には浮上量のヘッド個体差が発生しており、数nmのばらつきを持っている。
【0031】
この数nmのばらつきを補正するため、熱式浮上量調整素子35に電流供給配線34から電流を供給し、浮上量調整素子35はこの電流の通電によるコイル抵抗損(銅損)やコイル渦電流損、磁気コアのヒステリシス損、磁気コア渦電流損等による発熱で、熱式浮上量調整素子35とヘッドスライダ31との熱膨張係数差(各々の熱膨張係数は上記)により、体積の増加による熱膨張突出(サーマルプロトリュージョン)を生じる。この熱膨張突出により、検査用ヘッドの浮上最下点の浮上量が変化する。電流供給配線34を介して熱式浮上量調整素子35に供給する電流量を調整することで、使用する突起検査用ヘッドの浮上量のばらつきを補正することが可能となる。
【0032】
突起検査用ヘッドの浮上量のばらつきを補正は、あらかじめ突起高さが8nmと概知であるバンプディスクを使用し、浮上量調整を実施した。浮上量調整は、まず突起検査用ヘッドを回転している磁気記録媒体上に浮上させ、周速を15m/s、スキュー角0度の設定でバンプにヒットさせる。この状態である一定レベル範囲のピエゾ出力が得られた場合には、突起検査用ヘッドの浮上量が8nmであることを意味する。ピエゾ出力が得られない、もしくはある一定レベル以下である場合には、突起検査用ヘッドの浮上量が高く8nm以上で、スライダと突起が衝突していないことを意味する。
【0033】
その場合に、ある一定レベル範囲のピエゾ出力が得られるまで、電流供給配線35を介して熱式浮上量調整素子34に電流を供給し、熱膨張突出(サーマルプロトリュージョン)させることで浮上量調整を実施する。ここで、浮上量調整を実施する前に、ピエゾ出力がある一定レベル以上であることは、イニシャルの状態で検査用ヘッド浮上量が10nmとなるように調整されているためあり得ない。
【0034】
図4に本発明の一実施例の熱式浮上量調整素子の熱膨張突出量と通電電流量の関係図、図5に熱膨張突出量とヘッド浮上量変化量の関係図を示す。図4から分かるように、通電電流量に比例して熱式浮上量調整素子の熱膨張突出量が増加し、熱膨張突出量の増加とともにヘッド浮上量変化量ヘッが負の量で増加、すなわちヘッド浮上量が低下している事が分かる。熱膨張突出量の測定には、デジタルインスツルメンツ社製走査型プローブ顕微鏡(SPM)ナノスコープIIIを用いた。測定範囲は50μm×50μm、スキャンライン数は256本、スキャン速度は1本/秒である。
【0035】
図6は本発明の一実施例の検査用ヘッドを用いた検査方法及び検査設備の構成図である。図6に示すように検査設備は検査用ヘッド51を、高速回転する磁気記録媒体52上に浮上もしくは走行させる。検査用ヘッド51と磁気記録媒体52はスピンドル制御機構53により制御される。検査用ヘッド51からの検出信号は、突起検出機構59として処理される増幅回路54、フィルタ回路55、スライス比較回路56、検出回路57及びこれらを制御するパーソナルコンピュータ58により構成される。スピンドル制御機構53はスピンドルモータとスピンドルモータを駆動する駆動回路と、磁気記録媒体52の回転数、回転方向及び角度位置を検出するロータリーエンコーダ、検査用ヘッド51を取付けるためのヘッド取付け部、磁気記録媒体51との相対角度及び高さを設定するためのヘッド取付け機構、また検査用ヘッド51を磁気記録媒体52上で半径位置を変化させながら高速浮上もしくは走行させるための制御回路からなる。
【0036】
突起検出機構59において検査用ヘッド51からの出力処理は、検査用ヘッド出力を増幅回路54により増幅し、ノイズ除去等を目的としたフィルタ回路55を通過させた後に、スライス比較回路56で検査用ヘッド出力と定常時の電圧レベルを比較し、検出回路57においてスライスレベルを超えた出力レベルのものを突起欠陥等の情報として検出する。
【0037】
またスライスレベルはパーソナルコンピュータ58により、スライス比較回路56の設定を変更することにより変化可能である。スピンドル制御機構53とパーソナルコンピュータ58を連動して操作することにより、パーソナルコンピュータ58において検査用ヘッド51からの検出出力の大きさや時間変化のデータを蓄積し、突起等の高さ情報及び大きさを類推するような突起欠陥検査が可能となる。またパーソナルコンピュータ58に熱式浮上量調整素子電流制御60を連動することにより、突起検出機構59の結果をフィードバックしながら、所望の浮上量となるように検査用ヘッド51に供給する電流量を制御することが可能となる。
<実施例2>
図7は本発明の突起検査用ヘッドの一実施例の形態のヘッドスライダ図である。スライダ61のサイズはピコスライダとした。スライダ61の材料はアルミナを用いた。スライダ11は、2レールとセンターパッドにより構成されるスライダ形状とした。このスライダ形状では、浮上最下点はセンターパッドの流出端寄りとなっている。スライダ61には、実際に磁気ディスク装置に使用される磁気ヘッドと同じく薄膜型磁気ヘッドの素子が形成されている。磁気抵抗効果素子62を突起検査用素子として用い、検査用ヘッドと欠陥が接触した際に生じる接触熱による磁気抵抗素子の抵抗変化(サーマルアスピリティ)を検出することで、欠陥検出を実現している。
【0038】
磁気抵抗素子の抵抗変化は信号線63を介して図6に示した突起検出機構にて処理される。磁気抵抗効果素子62の部位は、浮上最下点となるようにリセス量3nmとなるような構造となっており、材料にはパーマロイ系アモルファス材料を使用した。浮上最下点近傍の磁気抵抗効果素子62に近接して熱式浮上量調整素子64を構成した。熱的浮上量調整素子64の材料はCuを用いた。
【0039】
熱的浮上量調整素子64は、コイル状部分を有し、電流の通電によりコイル抵抗損(銅損)やコイル渦電流損、磁気コアのヒステリシス損、磁気コア渦電流損等による発熱を利用した加熱が可能である。該熱式浮上量調整素子には電流供給線65(Cu)が接続されている。電流の通電によるコイル抵抗損(銅損)やコイル渦電流損、磁気コアのヒステリシス損、磁気コア渦電流損等による発熱で、熱式浮上量調整素子64が、ヘッドスライダ61との熱膨張係数差により、体積の増加による熱膨張突出(サーマルプロトリュージョン)が生じる。この熱膨張突出により、検査用ヘッドの浮上最下点の浮上量が変化する。電流供給配線65を介して熱的浮上量調整素子64に供給する電流量を調整することで、使用する突起検査用ヘッドの浮上量のばらつきを補正することが可能となる。
【0040】
実施例2においても、図4及び図5に前述したような結果、すなわち通電電流量に比例して熱式浮上量調整素子の熱膨張突出量が増加し、ヘッド浮上量が低下する結果が得られた。
【0041】
【発明の効果】
以上説明したように、本発明の突起検査用ヘッドでは、検査用ヘッドのスライダに熱膨張係数が異なる材料を塔載し、発熱による熱膨張係数差による熱膨張突出(サーマルプロトリュージョン)を生じる熱式浮上量調整素子を設けることにより、浮上量の設定が熱膨張突出でカバーできる範囲で任意に設定可能となった。このため検査用ヘッドのイニシャルな浮上ばらつきが熱式浮上量調整素子により調整可能となるため、浮上選別等の実施することなくほとんどの検査用ヘッドが使用可能となった。更に、電流通電量の制御を行うことで、検査用ヘッドの浮上量が容易に変化可能なため、検査用ヘッド毎に回転数設定を変化させるような検査時間に影響が出る浮上量調整が回避可能となった。
【図面の簡単な説明】
【図1】本発明の突起検査用ヘッドの一実施例の形態のヘッドスライダ図である。
【図2】ヘッドスライダをサスペンションに組立てた一実施例の形態の検査用ヘッド図である。
【図3】本発明の一実施例の検査用ヘッドによる突起検出のモデル図である。
【図4】本発明の一実施例の熱式浮上量調整素子の熱膨張突出量と通電電流量の関係図である。
【図5】本発明の一実施例の熱式浮上量調整素子の熱膨張突出量とヘッド浮上量変化量の関係図である。
【図6】本発明の一実施例の検査用ヘッドを用いた検査方法及び検査設備の構成図である。
【図7】本発明の突起検査用ヘッドの一実施例の形態のヘッドスライダ図である。
【符号の説明】
11…スライダ、12…ピエゾ素子、13…信号線、14…熱式浮上量調整素子、15…電流供給線、21…ヘッドスライダ、22…サスペンション、23…配線、31…スライダ、32…磁気記録媒体、33…突起、34…熱式浮上量調整素子、35…電流供給配線、51…検査用ヘッド、52…磁気記録媒体、53…スピンドル制御機構、54…増幅回路、55…フィルタ回路、56…スライス比較回路、57…検出回路、58…パーソナルコンピュータ、59…突起検出機構、60…熱式浮上量調整素子電流制御、61…スライダ、62…磁気抵抗効果素子、63…信号線、64…熱式浮上量調整素子、65…電流供給線。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic recording medium suitable for high-density magnetic recording, and more particularly to an inspection method and an inspection head for detecting the presence or absence of a protrusion defect existing on a magnetic recording medium and causing a flying hindrance.
[0002]
[Prior art]
2. Description of the Related Art In recent years, there has been an increasing demand for a magnetic disk device as a storage device of information home appliances such as computer peripherals to achieve a large capacity by realizing high recording density magnetic recording. A magnetic disk drive is composed of a magnetic head, a magnetic recording medium, and the like. The magnetic recording medium rotates at high speed, and the magnetic head flies or runs at high speed over the surface of the magnetic recording medium with a submicron-order gap (spacing). .
[0003]
In general, the recording density of a magnetic disk device is described in b / in2 (bits per square inch). b / in2 is the number of bits per square inch, and is the product of the linear recording density, which is the recording density in the circumferential direction of the magnetic recording medium, and the track density, which is the recording density in the track (radius) direction of the magnetic recording medium. . 1b / in2 corresponds to 645.2b / mm2 (bits per square millimeter). The linear recording density is described by BPI (bits per inch) or FCI (flux changes per inch). BPI is the number of bits per inch, and FCI is the number of flux reversals per inch.
[0004]
The relationship between BPI and FCI differs depending on the code conversion method. For example, in the 16-17 conversion method, which is currently mainstream, the BPI is 16/17 times the FCI. One BPI corresponds to 25.4 BPM (bits per millimeter) and one FCI corresponds to 25.4 FCM (flux changes per millimeter). The track density is described by TPI (tracks perinch). TPI is the number of tracks existing per inch. One TPI corresponds to 25.4 TPM (tracks per millimeter). High recording density magnetic recording of a magnetic disk drive has been realized by increasing linear recording density and track density.
[0005]
Magnetic recording media used in magnetic disk drives are mainly deposited on non-magnetic substrates such as Al-alloy substrates with Ni-P plating or glass substrates with non-magnetic intermediate films, by evaporation or sputtering. Then, a Co-based alloy magnetic film having a uniaxial magnetic anisotropy such as CoCrPt, CoNiCr, or CoCrTa is formed via a base film such as Cr, and a protective film having excellent sliding resistance and corrosion resistance. In addition, a metal thin film type magnetic recording medium having a lubricating film is used.
[0006]
As a technique for realizing higher recording density magnetic recording in a magnetic disk device, there is a measure to reduce the spacing between a magnetic head and a magnetic recording medium used in the magnetic disk device. The magnetization transition region recorded on the magnetic recording medium depends on the spread of the magnetic flux generated from the element portion of the magnetic head. The spread of the magnetic flux decreases as the spacing between the magnetic head and the magnetic recording medium decreases. Therefore, by reducing the spacing between the magnetic head and the magnetic recording medium, the magnetization transition region recorded on the magnetic recording medium is miniaturized, and high-density magnetic recording becomes possible.
[0007]
A conventional magnetic disk device employs a Contact Start Stop (CSS) system in which a magnetic head is always present on a magnetic recording medium and the magnetic head is stationary on the magnetic recording medium when not operating. However, in recent magnetic disk devices, a Load / Unload method in which a magnetic head is retracted from above a magnetic recording medium during non-operation due to impact resistance and reduced spacing has been adopted.
[0008]
In the Load / Unload method, since the magnetic head does not stand still on the magnetic recording medium unlike the CSS method, a surface shape for preventing the magnetic head from being attracted is not required on the surface of the magnetic recording medium.
[0009]
By adopting the Load / Unload method, the performance required for the magnetic recording medium and the glass substrate for the magnetic recording medium used for the magnetic recording medium is such that there are no protrusions on the surface that hinder the floating of the magnetic head, It has been established that the smoother the surface, the more advantageous it is in reducing the spacing between the magnetic head and the magnetic recording medium.
[0010]
In order to reduce the spacing, it is necessary that the magnetic head flies or runs stably on the magnetic recording medium. If the spacing is narrowed, and if the magnetic head does not float stably on the magnetic recording medium, the magnetic head collides with a protrusion in the magnetic disk drive, causing the magnetic head to shift its position or run out due to vibration As a problem. For this reason, as a characteristic required for the magnetic recording medium, it is desirable that there be no defective portions that cause flying hindrance to reduce spacing. However, in the manufacturing process of the magnetic disk, defects may occur due to various factors, and therefore, it is necessary to inspect the flying characteristics of the manufactured magnetic recording medium.
[0011]
As a flying characteristic inspection of the magnetic recording medium, the inspection head provided with the detecting element is floated at a desired flying height required for the magnetic disk. A method is used to determine the presence or absence of a defect by detecting a signal generated by contact between the sensor and a detection element. As a detecting element, for example, an element for converting an impact sound wave (acoustic emission wave, hereinafter referred to as AE wave) into electric energy, such as an acoustic effect element or a piezo element, is mounted on the slider of the inspection head. The defect detection is realized by converting the impact sound wave generated at the time of the conversion into electric energy.
[0012]
In addition, as disclosed in, for example, Japanese Patent Application Laid-Open No. 8-167121 (Patent Document 1), like a magnetic head used in a magnetic disk drive, a magnetoresistive element (Magneto) using a magnetoresistive effect is used. Using a thin-film magnetic head constituting a resistive element (hereinafter referred to as MR) as an inspection head, and detecting a change in resistance (thermal aspirity) of the magnetoresistive element due to contact heat generated when the inspection head comes into contact with a defect. With this, defect detection is realized.
[0013]
As described above, in the flying characteristics inspection in which the detection element detects contact with a defect which is a cause of flying hindrance existing on the magnetic recording medium, the flying height of the inspection head is adjusted to the desired flying characteristics required for the magnetic disk. It is important to control the flying height to be satisfactory. When the inspection head flies at the same rotational speed from the inner peripheral portion to the outer peripheral portion of the magnetic recording medium, the peripheral speed differs between the inner peripheral portion and the outer peripheral portion. For this reason, a head slider shape in which the flying height of the inspection head changes little depending on the peripheral speed is adopted to improve controllability. In addition, as disclosed in, for example, Japanese Patent Application Laid-Open No. 5-29963 (Patent Document 2), inspection is performed. There has been proposed a method of controlling the flying height of a test head to a desired flying height by changing the rotation speed of a magnetic recording medium in a stepwise manner.
[0014]
Further, the head slider is slid over a predetermined sliding area on the rotating magnetic disk in a state where the magnetic disk device is heated to a temperature environment higher than the temperature at which the device operates, and the recording medium facing surface of the head slider is moved. Japanese Patent Laid-Open No. 5-36047 (Patent Document 3) discloses a method for polishing a head element protective film exposed to a flat surface to a flat surface. However, the present disclosure does not disclose a technique relating to a projection inspection head of a magnetic recording medium.
[0015]
[Patent Document 1]
"JP-A-8-167121"
[Patent Document 2]
"Japanese Patent Laid-Open No. 5-29963"
[Patent Document 3]
"JP-A-5-36047"
[0016]
[Problems to be solved by the invention]
According to the above-described conventional technology, an inspection for detecting the presence or absence of a defect existing on a magnetic recording medium and causing a flying hindrance has been performed. However, the narrowing of the spacing has been accelerated in order to achieve higher recording density magnetic recording, and therefore, assurance of the flying characteristics of the magnetic recording medium has been required to be more accurate than ever.
[0017]
With the conventional technology, the flying height of the inspection head is controlled by controlling the flying height of the inspection head by adopting a slider shape that has a small dependence of the flying height of the inspection head on the peripheral speed, and by setting the inspection rotation speed stepwise to ensure the accuracy of the flying guarantee However, variations in the flying height due to individual differences in the inspection head still remained a problem. In order to suppress variations in the flying height due to individual differences in the testing head, for example, a method of selecting and using only the testing head having a desired flying height has been adopted. However, in the case of mass production of test heads, there is a problem that the cost of test increases due to a decrease in the number of usable test heads.
[0018]
As another solution, a method has been adopted in which the number of inspection rotations is set individually for each inspection head in order to suppress variations in the flying height due to individual differences in the inspection head. In this method, most inspection heads can be used, but since the inspection rotation speed differs for each inspection head, the inspection time varies, and the inspection time increases when the inspection head has a low rotation speed. A problem arose.
[0019]
Further, when the magnetic disk device is a plurality of models, there is a case where a desired flying height differs for each model. Preparing inspection heads individually for each type of magnetic disk drive, or securing inspection heads for each desired flying height by performing inspection head levitation sorting, requires a large number of inspection heads. This leads to an increase in inspection cost. On the other hand, in order to set different desired flying heights using the same inspection head, a technique such as changing the number of rotations is employed. The problem remains that you can't hope.
[0020]
An object of the present invention is to be able to cope with narrowing of the spacing with a high-precision flying height guarantee, and to be able to use most of the inspection heads without performing the inspection head floating selection and the like, It is another object of the present invention to provide a defect inspection method and an inspection head that can prevent flying height adjustment of a magnetic recording medium, which can prevent the adjustment of the flying height that affects the inspection time such that the rotation speed setting is changed for each inspection head.
[0021]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, there is provided a projection inspection head for inspecting a projection of a magnetic recording medium while being floated on a rotating magnetic recording medium having a slider. The flying height variable element for changing the flying height is formed on the slider of the head, and the head is used for the projection inspection of the magnetic recording medium.
[0022]
Further, the thermal flying height variable element is formed near the lowest point of flying of the inspection head as a portion where at least materials having different thermal expansion coefficients are brought close to each other, and the volume of the heating portion is increased by heating. Department and included.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
First, an outline of an embodiment of the present invention will be described. In the present invention, at least two or more kinds of materials having different thermal expansion coefficients are formed in the vicinity of the lowest flying point of the inspection head. Heat is supplied to a portion where materials having different thermal expansion coefficients are brought close to each other, and thermal expansion protrusion (thermal protrusion) due to an increase in volume occurs in one of the materials due to the difference in thermal expansion coefficient. Due to this thermal expansion protrusion, the flying height of the lowest point of flying of the inspection head changes. A portion where at least two or more materials having different thermal expansion coefficients are brought close to each other is hereinafter referred to as a thermal flying height adjustment element portion.
[0024]
The thermal flying height adjustment element section includes a part that supplies heat that brings its volume, and as in the thin-film magnetic head, a line such as a coil is provided, and a coil resistance loss is caused by current supply. (Copper loss), coil eddy current loss, hysteresis loss of the magnetic core, heat generation due to magnetic core eddy current loss, and the like.
[0025]
In order to change the flying height at the lowest point of flying of the inspection head by the thermal expansion protrusion of the thermal flying height adjusting element, the inspection time is reduced as with the flying height control by changing the inspection speed, which is a problem in the prior art. The flying height can be controlled without changing the inspection time. The thermal type flying height adjusting element can control the thermal expansion protrusion amount by a combination of materials used, that is, a difference in thermal expansion coefficient. Also, the degree of heat generation can be controlled by the amount of current supplied, and the amount of thermal expansion protrusion of the thermal type flying height adjustment element can be controlled by controlling the amount of heat generation. Therefore, in the related art, it is necessary to select an inspection head having a desired flying height. However, the flying height can be arbitrarily set by the thermal flying height adjusting element within a range that can be covered by the thermal expansion protrusion.
[0026]
For this reason, the initial floating variation of the inspection head can be adjusted by the thermal flying height adjusting element, so that most of the inspection heads can be used without performing the floating selection or the like. Further, by controlling the amount of current flow, the flying height of the inspection head can be easily changed, so that the flying height adjustment that affects the inspection time, such as changing the rotation speed setting for each inspection head, is avoided. It has become possible.
[0027]
Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.
<Example 1>
FIG. 1 is a head slider diagram of an embodiment of a projection inspection head according to the present invention. The size of the slider 11 was a pico slider. The slider 11 was made of alumina (coefficient of thermal expansion 7.5 to 8.5 [10-6K-1]). The slider 11 had a slider shape composed of two rails and a center pad. In this slider shape, the lowest point of flying is near the outflow end of the center pad. A piezo element 12 is mounted on the back surface of the slider 11. The piezo element 12 is connected to a signal line 13 for converting an impact sound wave generated when a defect comes into contact with the inspection head slider into electric energy for detection.
[0028]
The conventional projection inspection head includes a slider 11, a piezo element 12, and a signal line 13. However, in the protrusion inspection head of the present invention, the thermal flying height adjusting element 14 was formed near the lowermost point of the flying height. The material of the thermal levitation adjusting element 14 was Cu (coefficient of thermal expansion 17 to 18 [10-6K-1]). The thermal levitation amount adjusting element 14 has a coil-shaped portion, and utilizes heat generated by coil resistance loss (copper loss), coil eddy current loss, hysteresis loss of a magnetic core, eddy current loss of a magnetic core, and the like when current is supplied. Heating is possible. A current supply line 15 (Cu) is connected to the thermal flying height adjusting element.
[0029]
FIG. 2 is an inspection head diagram of an embodiment in which a head slider is assembled to a suspension. The head slider 21 described in detail with reference to FIG. 1 is attached to a suspension 22, and a signal line from a piezo element and a wiring 23 for a current supply line to a thermal flying height adjustment element are put together. In order to suppress the variation in the flying height of the inspection head, the weight of the suspension 22 is adjusted in the range of 2.5 g to 3.5 g so that the flying height at the lowermost floating point near the outflow end of the center pad is 10 nm. did. The flying height was measured using a Pegasus 2000FHT levitation measuring instrument manufactured by Zigo Corporation at a measurement peripheral speed of 15 m / s and a skew angle of 0 degree.
[0030]
FIG. 3 is a model diagram of protrusion detection by the inspection head according to one embodiment of the present invention. A slider 31 of the inspection head floats or runs on a rotating magnetic recording medium 32. When the protrusions 33 are present on the surface of the magnetic recording medium 32, defect detection is realized by converting the impulsive sound waves generated when the sliders 31 and the protrusions 33 collide into electric energy by the attached piezo element. I have. In one embodiment of the present invention, the flying height of the inspection head is 8 nm. In the initial state, the inspection head is adjusted to have a flying height of 10 nm when the head is assembled. However, in practice, individual head differences occur in the flying height, and the head has a variation of several nm.
[0031]
In order to correct the variation of several nm, a current is supplied from the current supply wiring 34 to the thermal flying height adjusting element 35, and the flying height adjusting element 35 causes the coil resistance loss (copper loss) and the coil eddy current due to the current flow. Loss due to heat loss, hysteresis loss of the magnetic core, eddy current loss of the magnetic core, etc., resulting in an increase in volume due to the difference in thermal expansion coefficient between the thermal flying height adjustment element 35 and the head slider 31 (the respective thermal expansion coefficients are as described above). Thermal expansion protrusion occurs. Due to this thermal expansion protrusion, the flying height of the lowest point of flying of the inspection head changes. By adjusting the amount of current supplied to the thermal flying height adjusting element 35 via the current supply wiring 34, it is possible to correct variations in the flying height of the projection inspection head to be used.
[0032]
In order to correct the variation in the flying height of the projection inspection head, the flying height was adjusted in advance using a bump disk having a projection height of approximately 8 nm. To adjust the flying height, first, the projection inspection head is floated on the rotating magnetic recording medium, and the bump is hit at a peripheral speed of 15 m / s and a skew angle of 0 degree. When a piezo output in a certain level range in this state is obtained, it means that the flying height of the projection inspection head is 8 nm. If the piezo output is not obtained or is less than a certain level, it means that the flying height of the projection inspection head is high and 8 nm or more, and the slider and the projection do not collide.
[0033]
In this case, a current is supplied to the thermal type flying height adjusting element 34 via the current supply wiring 35 until a piezo output in a certain level range is obtained to cause thermal expansion protrusion (thermal protrusion), thereby increasing the flying height. Make adjustments. Here, before the flying height adjustment is performed, it is impossible that the piezo output is higher than a certain level because the inspection head flying height is adjusted to 10 nm in the initial state.
[0034]
FIG. 4 is a diagram showing the relationship between the amount of thermal expansion protrusion and the amount of energizing current of the thermal flying height adjusting element according to one embodiment of the present invention, and FIG. As can be seen from FIG. 4, the amount of thermal expansion protrusion of the thermal flying height adjusting element increases in proportion to the amount of current supplied, and the amount of change in head flying height increases with a negative amount as the amount of thermal expansion protrusion increases, that is, It can be seen that the head flying height has decreased. The measurement of the thermal expansion protrusion amount was performed using a scanning probe microscope (SPM) Nanoscope III manufactured by Digital Instruments. The measurement range is 50 μm × 50 μm, the number of scan lines is 256, and the scan speed is 1 / sec.
[0035]
FIG. 6 is a configuration diagram of an inspection method and inspection equipment using an inspection head according to one embodiment of the present invention. As shown in FIG. 6, the inspection equipment causes the inspection head 51 to float or run on the magnetic recording medium 52 rotating at high speed. The inspection head 51 and the magnetic recording medium 52 are controlled by a spindle control mechanism 53. The detection signal from the inspection head 51 is constituted by an amplification circuit 54 processed as a protrusion detection mechanism 59, a filter circuit 55, a slice comparison circuit 56, a detection circuit 57, and a personal computer 58 for controlling these. The spindle control mechanism 53 includes a spindle motor, a driving circuit that drives the spindle motor, a rotary encoder that detects the number of rotations, a rotation direction, and an angular position of the magnetic recording medium 52, a head mounting portion for mounting the inspection head 51, and magnetic recording. It comprises a head mounting mechanism for setting the relative angle and height with respect to the medium 51, and a control circuit for causing the inspection head 51 to levitate or run at high speed while changing the radial position on the magnetic recording medium 52.
[0036]
The output processing from the inspection head 51 in the protrusion detection mechanism 59 is performed by amplifying the output of the inspection head by the amplifier circuit 54 and passing the amplified signal through a filter circuit 55 for noise removal or the like. The head output is compared with the steady-state voltage level, and a detection circuit 57 detects an output level exceeding the slice level as information such as a projection defect.
[0037]
The slice level can be changed by changing the setting of the slice comparison circuit 56 by the personal computer 58. By operating the spindle control mechanism 53 and the personal computer 58 in cooperation with each other, the personal computer 58 accumulates data of the magnitude of detection output from the inspection head 51 and data of time change, and obtains height information and size of protrusions and the like. It is possible to perform a projection defect inspection like analogy. By linking the thermal flying height adjustment element current control 60 to the personal computer 58, the amount of current supplied to the inspection head 51 is controlled so as to obtain a desired flying height while feeding back the result of the protrusion detection mechanism 59. It is possible to do.
<Example 2>
FIG. 7 is a head slider diagram of an embodiment of a projection inspection head according to the present invention. The size of the slider 61 was a pico slider. The slider 61 was made of alumina. The slider 11 had a slider shape composed of two rails and a center pad. In this slider shape, the lowest point of flying is near the outflow end of the center pad. The slider 61 is formed with a thin-film magnetic head element similar to a magnetic head actually used in a magnetic disk drive. The defect detection is realized by using the magnetoresistive effect element 62 as a projection inspection element and detecting a resistance change (thermal aspirity) of the magnetoresistive element due to contact heat generated when the inspection head comes into contact with the defect. I have.
[0038]
The change in the resistance of the magnetoresistive element is processed by the projection detection mechanism shown in FIG. The portion of the magnetoresistive element 62 has a structure in which the recess amount is 3 nm so as to be the lowest point of flying, and a permalloy-based amorphous material is used as a material. A thermal flying height adjusting element 64 was formed close to the magnetoresistive element 62 near the lowest point of flying. Cu was used as the material of the thermal flying height adjustment element 64.
[0039]
The thermal levitation adjusting element 64 has a coil-shaped portion, and utilizes heat generated by coil resistance loss (copper loss), coil eddy current loss, hysteresis loss of the magnetic core, eddy current loss of the magnetic core, and the like when current is supplied. Heating is possible. A current supply line 65 (Cu) is connected to the thermal flying height adjusting element. Heat generation due to coil resistance loss (copper loss), coil eddy current loss, magnetic core hysteresis loss, magnetic core eddy current loss, etc., due to current flow, causes the thermal flying height adjustment element 64 to have a thermal expansion coefficient with the head slider 61. The difference causes thermal expansion protrusion due to the increase in volume. Due to this thermal expansion protrusion, the flying height of the lowest point of flying of the inspection head changes. By adjusting the amount of current supplied to the thermal flying height adjusting element 64 via the current supply wiring 65, it is possible to correct variations in the flying height of the projection inspection head to be used.
[0040]
Also in the second embodiment, the results as described above with reference to FIGS. 4 and 5, that is, the result that the thermal expansion protrusion amount of the thermal flying height adjusting element increases and the head flying height decreases in proportion to the supplied current amount are obtained. Was done.
[0041]
【The invention's effect】
As described above, in the protrusion inspection head according to the present invention, a material having a different thermal expansion coefficient is mounted on the slider of the inspection head, and thermal expansion protrusion (thermal protrusion) occurs due to a difference in thermal expansion coefficient due to heat generation. By providing the thermal-type flying height adjusting element, the flying height can be arbitrarily set within a range that can be covered by the thermal expansion protrusion. For this reason, the initial floating variation of the inspection head can be adjusted by the thermal flying height adjusting element, so that most of the inspection heads can be used without performing the floating selection or the like. Further, by controlling the amount of current flow, the flying height of the inspection head can be easily changed, so that the flying height adjustment that affects the inspection time, such as changing the rotation speed setting for each inspection head, is avoided. It has become possible.
[Brief description of the drawings]
FIG. 1 is a head slider diagram of an embodiment of a projection inspection head according to the present invention.
FIG. 2 is an inspection head diagram of an embodiment in which a head slider is assembled to a suspension.
FIG. 3 is a model diagram of protrusion detection by an inspection head according to an embodiment of the present invention.
FIG. 4 is a diagram showing the relationship between the amount of thermal expansion protrusion and the amount of current flow of the thermal flying height adjusting element according to one embodiment of the present invention.
FIG. 5 is a diagram showing a relationship between a thermal expansion protrusion amount and a head floating amount change amount of the thermal flying height adjusting element according to one embodiment of the present invention.
FIG. 6 is a configuration diagram of an inspection method and inspection equipment using an inspection head according to an embodiment of the present invention.
FIG. 7 is a head slider diagram of an embodiment of a projection inspection head according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Slider, 12 ... Piezo element, 13 ... Signal line, 14 ... Thermal flying height adjustment element, 15 ... Current supply line, 21 ... Head slider, 22 ... Suspension, 23 ... Wiring, 31 ... Slider, 32 ... Magnetic recording Medium: 33 Projection, 34: Thermal flying height adjustment element, 35: Current supply wiring, 51: Test head, 52: Magnetic recording medium, 53: Spindle control mechanism, 54: Amplifier circuit, 55: Filter circuit, 56 ... Slice comparison circuit, 57 ... Detection circuit, 58 ... Personal computer, 59 ... Protrusion detection mechanism, 60 ... Current control of thermal flying height adjustment element, 61 ... Slider, 62 ... Magnetoresistance effect element, 63 ... Signal line, 64 ... Thermal flying height adjusting element, 65 ... current supply line.

Claims (4)

スライダを有して回転する磁気記録媒体上に浮上させた状態で磁気記録媒体の突起検査を行う突起検査用ヘッドにおいて、
温度変化により該検査用ヘッドの浮上量を変化させる熱式浮上量調整素子が該ヘッドのスライダに形成されていることを特徴とする磁気記録媒体の突起検査用ヘッド。
In a protrusion inspection head for performing a protrusion inspection of a magnetic recording medium while flying above a rotating magnetic recording medium having a slider,
A magnetic recording medium projection inspection head, characterized in that a thermal flying height adjustment element for changing the flying height of the inspection head according to a temperature change is formed on a slider of the head.
前記熱式浮上量可変素子は、該検査用ヘッドの浮上最下点付近に、少なくとも熱膨張係数が異なる材料を近接させた部位として形成されていることを特徴とする請求項1に記載の磁気記録媒体の突起検査用ヘッド。2. The magnetic device according to claim 1, wherein the thermal flying height variable element is formed near a lowermost point of the flying height of the inspection head as a portion where at least materials having different thermal expansion coefficients are brought close to each other. Head for inspection of projections on recording media. 前記熱式浮上量可変素子は、少なくとも、加熱部と加熱による体積が増加する体積可変部とを含むことを特徴とする請求項1あるいは2に記載の磁気記録媒体の突起検査用ヘッド。3. The head according to claim 1, wherein the thermal flying height variable element includes at least a heating unit and a volume variable unit whose volume is increased by heating. 磁気記録媒体を回転させ、磁気記録媒体上に検査用ヘッドを浮上させた状態で磁気記録媒体の突起検査を行う突起検査方法において、
前記突起検査用ヘッドとして、請求項1〜3のいずれかに記載のヘッドを用いることを特徴とする磁気記録媒体の突起検査方法。
In a projection inspection method of rotating the magnetic recording medium and inspecting the projection of the magnetic recording medium in a state where the inspection head floats above the magnetic recording medium,
A method for inspecting a projection of a magnetic recording medium, comprising using the head according to claim 1 as the projection inspection head.
JP2002355125A 2002-12-06 2002-12-06 Protrusion inspection head and protrusion inspection method for magnetic recording medium Pending JP2004185783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002355125A JP2004185783A (en) 2002-12-06 2002-12-06 Protrusion inspection head and protrusion inspection method for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002355125A JP2004185783A (en) 2002-12-06 2002-12-06 Protrusion inspection head and protrusion inspection method for magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2004185783A true JP2004185783A (en) 2004-07-02

Family

ID=32755906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002355125A Pending JP2004185783A (en) 2002-12-06 2002-12-06 Protrusion inspection head and protrusion inspection method for magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2004185783A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007226881A (en) * 2006-02-22 2007-09-06 Fujitsu Ltd Recording medium checker and its checking method
KR100884002B1 (en) 2007-01-24 2009-02-17 삼성전자주식회사 Head slider, hard disk drive with the same, and method for controlling a flying height of the head slider
US7636217B2 (en) 2006-09-12 2009-12-22 Hitachi Global Storage Technologies Netherlands B.V. Defect inspection method of magnetic disk, device therefor, and magnetic disk drive device
JP2010257502A (en) * 2009-04-21 2010-11-11 Hoya Corp Magnetic disk evaluation method, magnetic disk manufacturing method, and magnetic disk
US7946156B2 (en) 2007-12-26 2011-05-24 Hitachi Global Storage Technologies Netherlands, B.V. Glide test heads using heating elements to form a planar detection surface
US8951652B2 (en) 2011-11-30 2015-02-10 Showa Denko K.K. Substrate for magnetic recording medium, magnetic recording medium, method of manufacturing magnetic recording medium, and method of inspecting surface

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007226881A (en) * 2006-02-22 2007-09-06 Fujitsu Ltd Recording medium checker and its checking method
US7636217B2 (en) 2006-09-12 2009-12-22 Hitachi Global Storage Technologies Netherlands B.V. Defect inspection method of magnetic disk, device therefor, and magnetic disk drive device
KR100884002B1 (en) 2007-01-24 2009-02-17 삼성전자주식회사 Head slider, hard disk drive with the same, and method for controlling a flying height of the head slider
US7946156B2 (en) 2007-12-26 2011-05-24 Hitachi Global Storage Technologies Netherlands, B.V. Glide test heads using heating elements to form a planar detection surface
JP2010257502A (en) * 2009-04-21 2010-11-11 Hoya Corp Magnetic disk evaluation method, magnetic disk manufacturing method, and magnetic disk
US8951652B2 (en) 2011-11-30 2015-02-10 Showa Denko K.K. Substrate for magnetic recording medium, magnetic recording medium, method of manufacturing magnetic recording medium, and method of inspecting surface

Similar Documents

Publication Publication Date Title
US9105279B2 (en) Microwave assisted magnetic recording and magnetic storage device
US7215495B1 (en) System and method for determining head-disk contact in a magnetic recording disk drive
KR100543649B1 (en) Processing method and device of dynamically adjusting the operating parameters of a computer storage device according to environmental conditions
US8149541B2 (en) System for controlling contact location during TFC touchdown and methods thereof
US7124625B1 (en) Glide-height disk-tester and method of operation
US8040131B2 (en) Method for testing the acceptability of a magnetic read sensor
US7154696B2 (en) Tunable fly height using magnetomechanical effect in a magnetic head
JP2007179723A (en) System and method for calibrating and controlling fly-height actuator in magnetic recording disk drive
US7656619B1 (en) Magnetic head sliders for disk drives having a heating element and pedestal in thick undercoat layer
Shimizu et al. Nano-scale defect mapping on a magnetic disk surface using a contact sensor
US6883368B2 (en) Method and apparatus for characterizing the microwaviness of a disk surface
US6867940B2 (en) Method and apparatus for mitigating thermal pole tip protrusion
US7719783B2 (en) Hard disk drive with mechanism for controlling protrusion of head
US7605996B2 (en) Method and system for detecting a change in a rotational velocity of a magnetic disk or a spindle coupled to the magnetic disk
US7064933B2 (en) Structures for pole-tip actuation
US9202495B2 (en) Method and apparatus for detecting proximity contact between a transducer and a medium
US20070096725A1 (en) Measurement method and measurement apparatus for measuring recording magnetic field strength distribution of magnetic head, and manufacturing method for manufacturing the magnetic head
US20070230021A1 (en) Flying height control for read-to-write and write-to-read transitions
JP2004185783A (en) Protrusion inspection head and protrusion inspection method for magnetic recording medium
JP2008181645A (en) Head slider, hard disk drive, and method of controlling flying height of head slider
KR20130132337A (en) Matched cte drive
US10839843B1 (en) TD detection with enhanced HDIs signal
US6686069B1 (en) Magnetic recording medium with improved control layer
JP2005322279A (en) Thin-film magnetic head equipped with heater, head gimbal assembly equipped with the same, and magnetic disk device equipped with the head gimbal assembly
Zhong et al. Head–disk interfacial behavior in glide tests for manufacturing hard disks