JP2004067444A - PROCESS FOR PREPARING LOW-LOSS MnZn FERRITE AND CALCINED POWDER - Google Patents

PROCESS FOR PREPARING LOW-LOSS MnZn FERRITE AND CALCINED POWDER Download PDF

Info

Publication number
JP2004067444A
JP2004067444A JP2002228735A JP2002228735A JP2004067444A JP 2004067444 A JP2004067444 A JP 2004067444A JP 2002228735 A JP2002228735 A JP 2002228735A JP 2002228735 A JP2002228735 A JP 2002228735A JP 2004067444 A JP2004067444 A JP 2004067444A
Authority
JP
Japan
Prior art keywords
mol
oxide
mnzn ferrite
calcined
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002228735A
Other languages
Japanese (ja)
Inventor
Osamu Kobayashi
小林 修
Hiroshi Shinmen
新免 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2002228735A priority Critical patent/JP2004067444A/en
Publication of JP2004067444A publication Critical patent/JP2004067444A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for preparing low-loss MnZn ferrite which can be stably used under severe conditions where it is subjected to vibration or repetitive thermal shock, wherein no strict management of sintering condition is required and a low loss is achieved by controlling the timing of oxygen release instead of increasing resistance of crystal grain boundary by adding accessory constituents. <P>SOLUTION: A mixed powder of raw material powders wherein <50.0 mol% Fe<SB>2</SB>O<SB>3</SB>is compounded is calcined while sufficiently promoting oxygen release through reductive reaction of Mn to reduce the amount of oxygen released in a later sintering step. After calcining, a calcined powder is obtained through pulverizing, and an Fe oxide powder is added to this for compositional adjustment. Then, granulation, molding and sintering are successively performed to obtain the original MnZn ferrite containing 52.5-57.0 mol% Fe oxide calculated in terms of Fe<SB>2</SB>O<SB>3</SB>, 32.0-40.0 mol% Mn oxide calculated in terms of MnO and the balance being ZnO. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、各種電子部品に使用される低損失MnZnフェライトの製造方法に係り、さらに詳しくはスイッチング電源、DC−DCコンバータ等の電源トランスやチョークコイルなどのコアに用いて好適な低損失MnZnフェライトを製造する方法とこの方法の実施に用いる仮焼成粉末とに関する。
【0002】
【従来の技術】
例えば、スイッチング電源におけるスイッチング周波数は、小型化、高性能化のために、より高周波化される傾向にあり、電源トランスに用いられるMnZnフェライトには、高周波において低損失であることが要求されている。ところで、フェライトの損失には、主にヒステリシス損失と渦電流損失とがあることが知られており、従来、例えば、渦電流損失の低減を図るため、副成分としてV 、ZrO2 、TaOなどを添加し、焼成条件を最適化することにより、これら添加物を結晶粒界付近に偏析させて、結晶粒界を高抵抗化することが既に行われている。
【0003】
【発明が解決しようとする課題】
しかし、上記したように副成分添加により結晶粒界を高抵抗化する方策によれば、100kHz程度までの高周波域での渦電流損失は低下するが、結晶粒内の抵抗値に変わりがないため、結晶粒内と結晶粒界との抵抗差が大きく、例えば、数百kHzかそれより大きい高周波の交流磁界を印加した場合に、フェライトが一種のキャパシタンスのような挙動を示し、渦電流損失が急激に大きくなって、もはや実用に耐えないものとなる。
また、結晶粒内と結晶粒界との組織的な差異により、外部から加わる応力や熱応力により内部歪が生じ易くなり、振動や繰返し熱衝撃に対する耐性が悪化して、最近、需要が増大しつつある自動車向けとして利用した場合に、信頼性に劣る、という問題もあった。
【0004】
ところで、MnZnフェライトの一般的な製造プロセスは、所定の組成となるように配合した原料粉末の混合物を仮焼成した後、微粉砕し、しかる後に造粒、成形および本焼成を順に行って最終生成物(焼成体)とする。このような製造プロセスにおいて、Feを50mol%以上含む従来の一般的な混合粉末を大気中で仮焼成すると、Mn酸化物はMnの形態となり、このMnは本焼成における昇温時、800〜1000℃の温度域で、下記(1)式および(2)式で表わされる二段階の還元反応により酸素を放出する。そして、この酸素放出に伴い、その後の焼成温度(1250〜1400℃)でMnOと他の酸化物(Fe、ZnO)との固溶体化が進み、緻密化も進んで所望の軟磁気特性と低損失とを有するMnZnフェライトが得られるようになる。
3Mn→2Mn+(1/2)O↑ …(1)
Mn→3MnO+(1/2)O↑  …(2)
この場合、上記した酸素放出は、本焼成時の雰囲気の酸素濃度(酸素分圧)が低いほど促進されるが、実際には、例えば窒素を流すことにより雰囲気の酸素濃度を下げても、前記放出酸素によりワーク(成形体)付近の酸素濃度があまり下がらないという現象が起き、特に連続炉にて大量処理(焼成)する場合には、温度や酸素濃度の変動要因も大きいため、ワーク付近の酸素濃度を下げることはきわめて困難となり、結果として、酸化物同士の固溶体化、緻密化が十分に進まず、上記したV、ZrO2 、TaOなどの副成分を添加しても、高初透磁率を有しかつ低損失を有するMnZnフェライトを安定的に得ることは困難である、いう問題があった。
なお、Mnは、最終生成物であるMnZnフェライトのスピネル結晶構造において、Mn2+およびMn3+として存在するが、Mn3+はスピネル結晶構造を歪ませ、軟磁気特性を劣化させてしまうため、これを極力少なくする必要があり、このためにも、上記した(1)式および(2)式による酸素放出は重要である。
【0005】
本発明は、上記した従来の問題点に鑑みてなされたもので、その課題とするところは、副成分添加により結晶粒界を高抵抗化する方策によらずに酸素放出の時期を制御することにより低損失化を図り、もって振動や繰返し熱衝撃が加わる過酷な使用条件下でも安定的に使用でき、しかも焼成条件の厳密な管理をも不要とする低損失MnZnフェライトの製造方法を提供し、併せてこの製造方法の実施に用いて好適な仮焼成粉末を提供することにある。
【0006】
【課題を解決するための手段】
本発明者等は、Feが50.0 mol%未満となるように配合した原料粉末の混合物を仮焼成することで、この時点で十分に酸素を放出させることができ、これにより本焼成時における酸素放出を大幅に抑制することができることを見出した。本発明は、上記した知見に基づいてなされたもので、本発明に係る低損失MnZnフェライトの製造方法は、Feが50.0 mol%未満となるように配合した原料粉末の混合物を仮焼成した後、微粉砕して仮焼成粉末を得、次に、前記仮焼成粉末にFe酸化物の粉末を加えて成分調整し、しかる後、造粒、成形および本焼成を順に行って、Fe酸化物をFe3 換算で52.5 〜57.0 mol%、Mn酸化物をMnO 換算で32.0 〜40.0 mol%、残部ZnO を含む焼成体を得ることを特徴とする。本製造方法において、上記焼成体は、副成分としてSnOおよびTiOのうちの少なくとも一種を50〜2000 ppm含むようにしても、あるいは副成分としてNb3 およびMoOのうちの少なくとも一種を50〜1000 ppm含むようにしてもよいものである。
本発明に係るMnZnフェライト用仮焼成粉末は、上記MnZnフェライトの製造方法の実施過程で得られるもので、Feを50.0 mol%未満含むことを特徴とする。
本仮焼成粉末は、副成分としてSnO、TiO、NbおよびMoOのうちの少なくとも一種を含むようにしてもよいものである。
【0007】
【発明の実施の形態】
本発明に係る低損失MnZnフェライトの製造方法は、Feが50.0 mol%未満となるように配合した原料粉末の混合物を仮焼成することを特徴とするが、この仮焼成により、前記(1)式および(2)式に示したMnの還元反応が進行し、仮焼成後のMn酸化物は、大部分がMnO(一部、Mnを含む)の形態となる。つまり、従来本焼成において放出されていた酸素の大部分がこの仮焼成の時点で放出されることになる。したがって、この仮焼成粉末にFe酸化物を加えて成分調整して、Fe酸化物をFe3 換算で52.5 〜57.0 mol%、Mn酸化物をMnO 換算で32.0 〜40.0 mol%、残部ZnO を含む本来的なMnZnフェライト組成にした後、造粒、成形および本焼成を行えば、本焼成の昇温時における酸素放出が著しく低減することから、本焼成の昇温時における雰囲気の酸素濃度をそれほど下げなくても、あるいは大気雰囲気としても、酸化物同士の固溶体化および緻密化が十分に進み、結晶組織も均一になる。
この結果、焼結密度が上がることにより高い飽和磁束密度が得られる。同じく焼結密度が上がり、ポアなど交流磁場中において反磁界を生じさせる要因が少なくなることや、結晶組織が均一になることなどから、良好な初透磁率が得られる。特に、MnZnフェライトの初透磁率は結晶磁気異方性と磁歪とに逆比例することが知られているが、本MnZnフェライトのようにFe酸化物をFe3 換算で52.5 〜57.0 mol%の範囲とした場合は、結晶磁気異方性と磁歪を小さく抑えることができて、高い初透磁率を確保することができる。また、MnZnフェライトの飽和磁束密度は、Fe酸化物とMn酸化物との含有量に依存するが、上記理由で決めたFe酸化物に対してMn酸化物をMnO の換算で32.0 〜40.0 mol%の範囲とすることで、高い飽和磁束密度が得られるようになる。
磁心損失は、主にヒステリシス損と渦電流損失とからなるが、本発明の方法により製造されるMnZnフェライトは、上記したように高い密度を有しかつ高い飽和磁束密度と初透磁率とを有していることから、ヒステリシス損失および渦電流損失が小さくなる。
【0008】
本発明において、成分調整のために仮焼成粉末に加えるFe酸化物としては、Feを用いてもよいが、これよりも酸化度の低いFeまたはFeO を用いるのが望ましい。FeまたはFeO を用いた場合は、これらFe酸化物がMn酸化物からの放出酸素を吸収してFeに酸化されるので、焼成時における雰囲気の酸素濃度の制御は容易となる。
【0009】
本発明の方法で得られる最終生成物としてのMnZnフェライトは、副成分としてSnOおよびTiOのうちの少なくとも一種を50〜2000 ppm含むようにしてもよいものである。これらSnOおよびTiOを添加する目的は、Sn4+またはTi4+によりFe3+を還元してFe2+を生成させること並びにMn3+を還元してMn2+を生成させることにある。本発明者等は、これらの還元反応が、Fe3 50 mol%未満の組成にて仮焼成した場合に起こることを見い出して本発明をなしたもので、前記副成分としてのSnOまたはTiOは、仮焼成時の酸素放出をより促進させる効果がある。これに対し、Fe3 が50 mol%以上の組成にて仮焼成した場合は、酸素放出はほとんど起こらず、副成分添加の効果はあまり期待できない。ただし、これら副成分の含有量は、50 ppmでは前記効果がほとんど期待できず、逆に2000 ppmを超えると、密度や飽和磁束密度などの低下を招くので、前記範囲50〜2000 ppmとするのが望ましい。なお、これらSnO、TiO2 は、MnZnフェライトを高抵抗化させることも知られており、前記酸素放出と高抵抗化の相乗効果により渦電流損失をより一層小さくすることができる。
【0010】
また、本発明の方法で得られる最終生成物としてのMnZnフェライトは、副成分としてNbおよびMoO のうちの少なくとも一種を50〜1000 ppm含むようにしてもよいものである。Nb5 、MoOを添加する目的は、焼成時の昇温中および焼成中、Nbイオン、Moイオンともに粒界を活発に移動(拡散)することによって、酸素イオンの移動(拡散)を活性化させることにある。本発明者等は、この現象が、Fe3 が50 mol%未満の組成にて仮焼成した場合に起こることを見い出したもので、これによって、上記したSnO やTiO 添加の場合と同様、仮焼成時における酸素放出が促進される。これに対し、Fe3 が50 mol%以上の組成にて仮焼成した場合は、これら。Nb5 、MoOを添加しても酸素放出はほとんど起こらず、副成分添加の効果はあまり期待できない。ただし、これら副成分の含有量は、50 ppmでは前記効果がほとんど期待できず、逆に1000 ppmを超えると、焼成密度の低下による損失の増大が起こるので、前記範囲50〜1000 ppmとするのが望ましい。なお、これらNb5 、MoOは、上記したSnOやTiOと同様、MnZnフェライトを高抵抗化させることも知られており、前記酸素放出と高抵抗化の相乗効果により渦電流損失をより一層小さくすることができる。
【0011】
低損失MnZnフェライトの製造に際しては、予め主成分としてのFe 、MnO 、ZnO の各原料粉末を所定の比率となるように配合し、必要に応じて、副成分としてのSnO、TiO、Nb、MoO等の各原料粉末を必要量加えて、これらの混合粉末を空気中、800〜1000℃で仮焼し、その後、微粉砕して仮焼成粉末を得る。次に、Fe、Fe、FeO等のFe酸化物を加えて目標組成となるように成分調整を行い、その後は、通常のフェライト製造プロセスに従って造粒、成形を行い、最終的に焼成炉中で、窒素ガス等の不活性ガスを流すことにより酸素濃度を制御した雰囲気にて、1250〜1400℃で焼成を行う。
【0012】
本製造方法において、Feとしての酸化鉄原料には、主に天然の硫化鉄を精製して得られるものと製鉄所において鋼板の酸洗い工程で発生するもの(鉄錆)とがあるが、いずれの酸化鉄原料とも、Ca、Si、Cl、S、P等を不純物として含んでいる。これら不純物のうち、Cl、S、Pの大半はフェライト製造プロセス中の仮焼成工程および本焼成工程にておよそ800℃以上に加熱されることで飛散するが、Ca、Siはそのまま不純物として残る。しかし、CaOは800ppm以下、SiOは50ppm以下であれば、磁気特性や機械的強度に対する悪影響は少ないので、本発明の最終生成物は、前記した範囲内でCaO およびSiOを含有してもかまわない。
また、鉄鋼材料において鉄と格子定数の近いMn、Cr、Ni、V等は、製鉄所の精錬工程を経た後において、鉄鋼中に含まれており、したがって酸化鉄原料経由でMnZnフェライト中に混入してくる。しかし、これらMn、Cr、Ni、V等は微量であれば、磁気特性や機械的強度に対する悪影響はほとんどないので、本発明の最終生成物は、これら金属を微量含有してもかまわない。
【0013】
【実施例】
Feが49.5 mol%、Mn酸化物がMnO 換算で38.4 mol%、ZnO が12.1 mol%となるように各原料粉末を配合し、必要によりさらにSnO、TiO、Nb、MoOを所定量添加し、ボールミルにてよく混合した後、この混合物を、空気中にて900℃で2時間仮焼成し、さらにボールミルにて20時間微粉砕して仮焼成粉末を得た。
次に、この仮焼成粉末にFe酸化物(Fe 、Fe 、FeO)を加えて、Fe酸化物がFe換算で54.0 mol%、Mn酸化物がMnO 換算で35.0 mol%、ZnO が11.0 mol%となるように成分調整し、ボールミルにて1時間混合した後、仮焼成粉末にポリビニルアルコールを加えて造粒し、80 MPa の圧力で外径25.0mm、内径15.0mm,高さ(厚さ)5.0 mmのトロイダル状コア(成形体)を成形した。その後、この成形体を焼成炉に入れ、窒素を流すことにより酸素濃度を下げた雰囲気中にて、1350℃で3時間本焼成を行い、表1に示すような試料(焼成体)1〜10を得た。ただし、焼成に際しては、昇温時、焼成時、冷却時ともに窒素雰囲気とする条件と焼成時および冷却時は窒素雰囲気として、昇温時に大気とする条件との2通りのうち、何れかの条件を選択した。なお、表1中には、前者の条件を窒素中、後者の条件を大気中としてそれぞれ記している。
また、これとは別に、Fe酸化物がFe 換算で54.0 mol%、Mn酸化物がMnO 換算で35.0 mol%、ZnO が11.0 mol%となるように各原料粉末を配合し、ボールミルにてよく混合した後、この混合物を、空気中にて900℃で2時間仮焼成し、さらにボールミルにて20時間微粉砕して仮焼成粉末を得た。その後は、上記したと同様の条件で造粒、成形および本焼成を行い、表1に示すような試料(焼成体)11、12を得た。なお、焼成時には、上記した2通りの条件(窒素中、大気中)のうちの何れかを選択した。
【0014】
そして、上記のようにして得た各試料1〜12について、蛍光エックス線にて定量分析を行って成分を確認し、焼成体密度dsを測定した。
また、各試料1〜12について磁気特性の試験を行い、100kHzにおける初透磁率μi、1194A/mにおける飽和磁束密度Bs、100kHz−200mT並びに200kHz−200mTにおける磁心損失Pcvを測定した。
さらに、各試料1〜12について、三点曲げ試験を行って曲げ強度TAを測定するとともに、各試料1〜12を、100℃と0℃との間で数回、急激に温度変化させて熱衝撃を加え、その後に前記同様の三点曲げ試験を行って曲げ強度(熱履歴強度)TBを測定した。
これらの結果を表1および表2に一括して示す。
【0015】
【表1】

Figure 2004067444
【0016】
【表2】
Figure 2004067444
【0017】
表1および表2に示す結果より、Feの配合量が50 mol%未満(49.5 mol%)である混合粉末を用いて仮焼成を行った場合は、試料1および試料2に見られるように、十分に密度dsが上がり、しかも高い初透磁率μiと飽和磁束密度Bsとが得られており、これに応じて磁心損失Pcvも、100kHzで450kW/m以下、200kHzで1450 kW/m以下の低い値となっている。また、曲げ強度TAおよび熱履歴強度TBについては、両者の間でそれほどの差がなく、熱衝撃に対する耐性も十分であることが明らかである。さらに、試料1と試料2との比較より、焼成時に大気中で昇温した試料1でも、密度ds、初透磁率μiおよび飽和磁束密度Bsを始め、磁心損失Pcv、曲げ強度TA、熱履歴強度TBがともに、窒素中で焼成を行った試料2とほとんど差がない値が得られており、焼成時に厳密に雰囲気管理を行わなくても、所望の品質が確保されることが明らかである。
一方、Fe 、FeOを成分調整に用いた試料3、4とFeを成分調整に用いた試料1との比較より、熱衝撃を加えた熱履歴強度TBの、曲げ強度TAに対する低下程度は、試料3、4の方が試料1より小さくなっている。
さらに、副成分としてのSnO、TiO、Nb、MoOを適量添加した試料5、6、8、9と副成分を含まない上記試料1、2との比較より、副成分の適量添加により磁心損失Pcvが、100kHz で390kW/m以下、200kHzで1390 kW/m以下と、より一層低下しており、低損失材としてきわめて有用であることが明らかとなった。
【0018】
これに対し、一般のMnZnフェライト製造プロセスと同様に、Feを50 mol%以上(54.0 mol%)含む混合粉末を用いて仮焼成を行った場合は、試料11および試料12に見られるように、密度dsがそれほど上がらず、初透磁率μiおよび飽和磁束密度Bsともに低い値となっており、これに応じて磁心損失Pcvは、100kHz で580kW/m以上、200kHzで2480 kW/m以上の高いレベルにある。また、曲げ強度TAおよび熱履歴強度TBについては、熱履歴強度TBの方が曲げ強度TAに対して大幅に低下しており、熱衝撃に対する耐性に著しく劣ることが明らかである。さらに、試料11と試料12との比較より、焼成時に大気中で昇温した試料11の方が窒素中で焼成を行った試料12よりも、密度dsを始め、初透磁率μi、曲げ強度TA、熱履歴強度TB等がかなり低い値となる一方で、磁心損失Pcvが高くなっており、窒素雰囲気中での焼成が絶対的に必要であることが明らかである。
また、副成分としてのTiO、MoOが適量を超えて加えられた場合は、試料7、10に見られるように、密度ds、初透磁率μiおよび飽和磁束密度Bsを始め、磁心損失Pcv、曲げ強度TA、熱履歴強度TB等の各特性値が、Fe を50 mol%以上含む混合粉末を用いて仮焼成を行った試料11、12のレベルまで低下しており、副成分を添加する場合は、その適量添加に十分に配慮する必要があることが分った。
【0019】
【発明の効果】
以上、説明したように、本発明に係る低損失MnZnフェライトの製造方法によれば、Feを50 mol%未満に抑えた混合粉末を用いて仮焼成するようにしたので、仮焼成時に酸素放出が進んで本焼成時における酸素放出が大幅に低減し、本焼成時の雰囲気管理を厳密にしなくても、緻密化および固溶体化が十分に進み、軟磁気特性が十分で、しかも低い損失を有するMnZnフェライトを安定的に得ることができるようになる。また、副成分添加により結晶粒界を高抵抗化する方策と違って、結晶組織的な均一性が確保されるので、得られたMnZnフェライトは、振動や繰返し熱衝撃に対する耐性も十分優れたものとなり、自動車向けとしても好適となる。さらに、本焼成時の雰囲気管理を厳密にする必要がない分、製造は容易となり、連続炉による大量処理も可能になって、製造コストの低減を達成できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a low-loss MnZn ferrite used for various electronic components, and more particularly to a low-loss MnZn ferrite suitable for use in a core of a power transformer such as a switching power supply or a DC-DC converter or a choke coil. And a calcined powder used for carrying out this method.
[0002]
[Prior art]
For example, the switching frequency of a switching power supply tends to be higher for downsizing and higher performance, and MnZn ferrite used for a power transformer is required to have low loss at high frequencies. . It is known that ferrite loss mainly includes hysteresis loss and eddy current loss. Conventionally, for example, in order to reduce eddy current loss, V 2 O 5 , ZrO 2 , By adding TaO 2 or the like and optimizing the firing conditions, these additives are already segregated in the vicinity of the crystal grain boundaries to increase the resistance of the crystal grain boundaries.
[0003]
[Problems to be solved by the invention]
However, according to the method of increasing the resistance of the crystal grain boundary by adding the sub-component as described above, the eddy current loss in a high frequency range up to about 100 kHz is reduced, but the resistance value in the crystal grain remains unchanged. When a high-frequency alternating magnetic field of several hundred kHz or more is applied, for example, when a high-frequency alternating magnetic field is applied, the ferrite exhibits a kind of capacitance-like behavior and the eddy current loss is reduced. It grows rapidly and is no longer practical.
In addition, due to the structural difference between the inside of the crystal grain and the crystal grain boundary, internal stress is easily generated due to externally applied stress and thermal stress, and the resistance to vibration and repeated thermal shock is deteriorated. There is also a problem that reliability is poor when used for a growing automobile.
[0004]
By the way, a general production process of MnZn ferrite is that a mixture of raw material powders blended so as to have a predetermined composition is preliminarily baked, finely pulverized, and then granulation, molding and main calcination are sequentially performed to finally produce a final product. (Fired body). In such a manufacturing process, when the conventional general mixed powder containing Fe 2 O 3 more than 50 mol% to calcined in air, Mn oxide becomes a form of Mn 2 O 3, the Mn 2 O 3 is present At the time of temperature rise in firing, oxygen is released by a two-stage reduction reaction represented by the following formulas (1) and (2) in a temperature range of 800 to 1000 ° C. With the release of oxygen, the solid solution of MnO and other oxides (Fe 2 O 3 , ZnO) progresses at the subsequent firing temperature (1250 to 1400 ° C.), and the densification progresses, and the desired soft magnetic characteristics are obtained. And MnZn ferrite having low loss can be obtained.
3Mn 2 O 3 → 2Mn 3 O 4 + (1 /) O 2 … (1)
Mn 3 O 4 → 3MnO + (1/2) O 2 … (2)
In this case, the above-described oxygen release is promoted as the oxygen concentration (oxygen partial pressure) in the atmosphere during the main firing is lower. However, in practice, even if the oxygen concentration in the atmosphere is lowered by flowing nitrogen, for example, The phenomenon that the oxygen concentration in the vicinity of the work (molded body) does not decrease so much due to the released oxygen occurs. Particularly, in the case of mass processing (firing) in a continuous furnace, the fluctuation factors of the temperature and the oxygen concentration are large. It is extremely difficult to lower the oxygen concentration. As a result, solid solution formation and densification of the oxides do not sufficiently proceed, and even if the above-described auxiliary components such as V 2 O 5 , ZrO 2 , and TaO 2 are added, There is a problem that it is difficult to stably obtain MnZn ferrite having high initial permeability and low loss.
Note that Mn exists as Mn 2+ and Mn 3+ in the spinel crystal structure of MnZn ferrite, which is the final product. However, Mn 3+ distorts the spinel crystal structure and deteriorates soft magnetic characteristics. It is necessary to reduce as much as possible. For this reason, oxygen release according to the above-described equations (1) and (2) is important.
[0005]
The present invention has been made in view of the above-described conventional problems, and an object thereof is to control the timing of oxygen release without depending on a method of increasing the resistance of a crystal grain boundary by adding an auxiliary component. By providing a method for producing low-loss MnZn ferrite, which can be used stably even under severe use conditions in which vibration and repeated thermal shock are applied, and which does not require strict control of firing conditions, Another object of the present invention is to provide a calcined powder suitable for use in the production method.
[0006]
[Means for Solving the Problems]
The present inventors preliminarily calcined the mixture of the raw material powders blended so that the content of Fe 2 O 3 is less than 50.0 mol%, so that sufficient oxygen can be released at this time, and thereby the present invention is improved. It has been found that oxygen release during firing can be significantly suppressed. The present invention has been made based on the above-described findings. The method for producing a low-loss MnZn ferrite according to the present invention includes a method of mixing a mixture of raw material powders mixed so that Fe 2 O 3 is less than 50.0 mol%. After calcination, finely pulverized to obtain a calcination powder, then adjust the components by adding Fe oxide powder to the calcination powder, and thereafter, granulation, molding and main calcination are sequentially performed, 52.5 ~57.0 mol% of Fe oxide in terms of Fe 2 O 3, 32.0 40.0 mol% of Mn oxide calculated as MnO, and wherein the obtaining a sintered body comprising the remainder ZnO . In the present production method, the fired body may contain 50 to 2000 ppm of at least one of SnO 2 and TiO 2 as an auxiliary component, or may contain at least one of Nb 2 O 3 and MoO 3 as an auxiliary component. To 1000 ppm.
The calcined powder for MnZn ferrite according to the present invention is obtained in the course of the method for producing MnZn ferrite, and is characterized by containing less than 50.0 mol% of Fe 2 O 3 .
The calcined powder may include at least one of SnO 2 , TiO 2 , Nb 2 O 3, and MoO 3 as accessory components.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for producing a low-loss MnZn ferrite according to the present invention is characterized in that a mixture of raw material powders mixed so that Fe 2 O 3 is less than 50.0 mol% is temporarily calcined. The reduction reaction of Mn shown in the above formulas (1) and (2) proceeds, and the Mn oxide after calcination is mostly in the form of MnO (partially containing Mn 3 O 4 ). That is, most of the oxygen released in the main firing is released at the time of the preliminary firing. Therefore, the Fe oxide is added to this calcined powder to adjust the components, and the Fe oxide is 52.5 to 57.0 mol% in terms of Fe 2 O 3 , and the Mn oxide is 32.0 to 40 in terms of MnO 2. If an original MnZn ferrite composition containing 0.0 mol% and a balance of ZnO 2 is formed, and then granulation, molding, and main firing are performed, oxygen release at the time of raising the main firing is significantly reduced. Even if the oxygen concentration of the atmosphere at the time of the temperature is not so lowered or the atmosphere is an air atmosphere, the solid solution formation and densification of the oxides sufficiently proceed and the crystal structure becomes uniform.
As a result, a high saturation magnetic flux density can be obtained by increasing the sintering density. Similarly, a good initial magnetic permeability can be obtained because the sintering density is increased, the factors causing a demagnetizing field in an alternating magnetic field such as pores are reduced, and the crystal structure becomes uniform. In particular, it is known that the initial magnetic permeability of MnZn ferrite is inversely proportional to the magnetocrystalline anisotropy and the magnetostriction. However, as in the case of the present MnZn ferrite, Fe oxides are converted to 52.5 to 57 in terms of Fe 2 O 3. When the content is in the range of 0.0 mol%, crystal magnetic anisotropy and magnetostriction can be suppressed small, and a high initial magnetic permeability can be secured. The saturation magnetic flux density of the MnZn ferrite depends on the contents of the Fe oxide and the Mn oxide, but the Mn oxide is 32.0 to 40 in terms of MnO 2 with respect to the Fe oxide determined for the above reason. By setting it in the range of 0.0 mol%, a high saturation magnetic flux density can be obtained.
The magnetic core loss mainly consists of hysteresis loss and eddy current loss, but the MnZn ferrite produced by the method of the present invention has a high density as described above and has a high saturation magnetic flux density and an initial magnetic permeability. Therefore, the hysteresis loss and the eddy current loss are reduced.
[0008]
In the present invention, Fe 2 O 3 may be used as the Fe oxide added to the calcined powder for component adjustment, but it is preferable to use Fe 3 O 4 or FeO 2 having a lower oxidation degree. When Fe 3 O 4 or FeO 2 is used, since these Fe oxides absorb oxygen released from the Mn oxide and are oxidized to Fe 2 O 3 , it is easy to control the oxygen concentration in the atmosphere during firing. Become.
[0009]
MnZn ferrite as the final product obtained by the process of the present invention is at least one of SnO 2 and TiO 2 as an auxiliary component may include 50 to 2000 ppm. The purpose of adding SnO 2 and TiO 2 is to reduce Fe 3+ with Sn 4+ or Ti 4+ to form Fe 2+ and to reduce Mn 3+ to form Mn 2+ . The present inventors have found that these reducing reactions, and found to occur when calcined at Fe 2 O 3 of less than 50 mol% composition which was without the present invention, the SnO 2 or of a subcomponent TiO 2 has the effect of further promoting oxygen release during calcination. On the other hand, when calcined at a composition of 50 mol% or more of Fe 2 O 3 , oxygen release hardly occurs, and the effect of the addition of the auxiliary component cannot be expected much. However, when the content of these subcomponents is 50 ppm, the above effect can hardly be expected. On the other hand, when the content exceeds 2000 ppm, the density and the saturation magnetic flux density are reduced. Is desirable. It is also known that SnO 2 and TiO 2 increase the resistance of MnZn ferrite, and eddy current loss can be further reduced by the synergistic effect of the oxygen release and the increase in resistance.
[0010]
Further, the MnZn ferrite as a final product obtained by the method of the present invention may contain at least one of Nb 2 O 3 and MoO 3 as a subcomponent in an amount of 50 to 1000 ppm. The purpose of adding Nb 2 O 5 and MoO 3 is to move (diffusion) oxygen ions by actively moving (diffusing) both Nb ions and Mo ions through grain boundaries during heating and during firing. To activate it. The present inventors have found that this phenomenon occurs when calcination is performed with Fe 2 O 3 having a composition of less than 50 mol%, which is different from the case where SnO 2 or TiO 2 is added. Similarly, oxygen release during pre-firing is promoted. On the other hand, when calcined at a composition of 50 mol% or more of Fe 2 O 3 , these are obtained. Oxygen release hardly occurs even when Nb 2 O 5 or MoO 3 is added, and the effect of the addition of subcomponents cannot be expected much. However, when the content of these subcomponents is 50 ppm, the above effect can hardly be expected. On the contrary, when the content exceeds 1000 ppm, loss increases due to a decrease in firing density. Is desirable. It is also known that Nb 2 O 5 and MoO 3 increase the resistance of MnZn ferrite similarly to the above-mentioned SnO 2 and TiO 2, and the eddy current loss is caused by a synergistic effect of the oxygen release and the increase in resistance. Can be further reduced.
[0011]
When producing the low-loss MnZn ferrite, raw material powders of Fe 2 O 3 , MnO 2 , and ZnO 2 as main components are previously blended at a predetermined ratio, and if necessary, SnO 2 and TiO 2 as subcomponents are mixed. 2 , Nb 2 O 5 , MoO 3, etc. are added in necessary amounts, and the mixed powder is calcined in air at 800 to 1000 ° C., and then finely pulverized to obtain a calcined powder. Next, Fe oxides such as Fe 2 O 3 , Fe 3 O 4 , and FeO are added to adjust the components so that the target composition is obtained. After that, granulation and molding are performed according to a normal ferrite manufacturing process. The firing is performed at 1250 to 1400 ° C. in an atmosphere in which the oxygen concentration is controlled by flowing an inert gas such as nitrogen gas in a firing furnace.
[0012]
In the present production method, the iron oxide raw material as Fe 2 O 3 mainly includes a material obtained by refining natural iron sulfide and a material (iron rust) generated in a pickling process of a steel sheet in an ironworks. However, any of the iron oxide raw materials contains Ca, Si, Cl, S, P, and the like as impurities. Among these impurities, most of Cl, S, and P are scattered by being heated to about 800 ° C. or more in the preliminary firing step and the main firing step in the ferrite manufacturing process, but Ca and Si remain as impurities. However, if CaO is 800 ppm or less and SiO 2 is 50 ppm or less, there is little adverse effect on magnetic properties and mechanical strength. Therefore, the final product of the present invention contains CaO 2 and SiO 2 within the above range. I don't care.
In steel materials, Mn, Cr, Ni, V, etc., which have a lattice constant close to that of iron, are contained in steel after passing through a refining process of an ironworks, and are therefore mixed into MnZn ferrite via an iron oxide raw material. Will come. However, if these Mn, Cr, Ni, V, etc. are trace amounts, there is almost no adverse effect on magnetic properties and mechanical strength, so the final product of the present invention may contain trace amounts of these metals.
[0013]
【Example】
Each raw material powder was blended so that Fe 2 O 3 was 49.5 mol%, Mn oxide was 38.4 mol% in terms of MnO, and ZnO was 12.1 mol%. If necessary, SnO 2 and TiO 2 were further added. , Nb 2 O 5 , and MoO 3 are added in predetermined amounts and mixed well in a ball mill. The mixture is temporarily calcined in air at 900 ° C. for 2 hours, and further finely ground in a ball mill for 20 hours. A fired powder was obtained.
Next, Fe oxides (Fe 2 O 3 , Fe 3 O 4 , FeO) are added to the pre-fired powder, so that the Fe oxide is 54.0 mol% in terms of Fe 2 O 3 and the Mn oxide is in terms of MnO. And 31.0 mol% of ZnO 2 at 11.0 mol%, mixed with a ball mill for 1 hour, and then granulated by adding polyvinyl alcohol to the calcined powder, and then pressurized at a pressure of 80 MPa. A toroidal core (molded body) having a diameter of 25.0 mm, an inner diameter of 15.0 mm, and a height (thickness) of 5.0 mm was formed. Thereafter, the formed body was placed in a firing furnace, and main firing was performed at 1350 ° C. for 3 hours in an atmosphere in which the oxygen concentration was reduced by flowing nitrogen, and samples (fired bodies) 1 to 10 shown in Table 1 were obtained. Got. However, at the time of firing, any one of the following two conditions is adopted: a condition in which a nitrogen atmosphere is used during heating, firing, and cooling; and a condition in which a nitrogen atmosphere is used during firing and cooling, and the atmosphere is used when heating. Was selected. In Table 1, the former condition is described in nitrogen and the latter condition is described in air.
Separately, each raw material powder was prepared such that the Fe oxide was 54.0 mol% in terms of Fe 2 O 3 , the Mn oxide was 35.0 mol% in terms of MnO, and ZnO was 11.0 mol%. Was mixed well in a ball mill, and the mixture was calcined in air at 900 ° C. for 2 hours, and further finely pulverized in a ball mill for 20 hours to obtain a calcined powder. Thereafter, granulation, molding, and main firing were performed under the same conditions as described above, and samples (fired bodies) 11 and 12 as shown in Table 1 were obtained. At the time of firing, one of the above two conditions (in nitrogen and in air) was selected.
[0014]
Then, for each of the samples 1 to 12 obtained as described above, quantitative analysis was performed with a fluorescent X-ray to confirm the components, and the fired body density ds was measured.
The magnetic properties of each of the samples 1 to 12 were tested, and the initial magnetic permeability μi at 100 kHz, the saturation magnetic flux density Bs at 1194 A / m, and the core loss Pcv at 100 kHz to 200 mT and 200 kHz to 200 mT were measured.
Furthermore, a three-point bending test is performed on each of the samples 1 to 12 to measure the bending strength TA, and the temperature of each of the samples 1 to 12 is rapidly changed several times between 100 ° C. and 0 ° C. After applying an impact, the same three-point bending test as described above was performed to measure the bending strength (thermal hysteresis strength) TB.
These results are collectively shown in Tables 1 and 2.
[0015]
[Table 1]
Figure 2004067444
[0016]
[Table 2]
Figure 2004067444
[0017]
From the results shown in Tables 1 and 2, when calcining was performed using a mixed powder containing less than 50 mol% (49.5 mol%) of Fe 2 O 3 , samples 1 and 2 As can be seen, the density ds is sufficiently increased, and a high initial magnetic permeability μi and a saturated magnetic flux density Bs are obtained. Accordingly, the core loss Pcv is 450 kW / m 3 or less at 100 kHz and 1450 at 200 kHz. It is a low value of kW / m 3 or less. Further, it is clear that there is no significant difference between the bending strength TA and the thermal hysteresis strength TB, and the resistance to thermal shock is sufficient. Further, from the comparison between Sample 1 and Sample 2, even in Sample 1, which was heated in the air during firing, the density ds, initial permeability μi, saturation magnetic flux density Bs, magnetic core loss Pcv, bending strength TA, thermal hysteresis strength Both values of TB were almost the same as those of Sample 2 fired in nitrogen, and it is clear that the desired quality can be secured without strictly controlling the atmosphere during firing.
On the other hand, from the comparison between Samples 3 and 4 using Fe 3 O 4 and FeO for component adjustment and Sample 1 using Fe 2 O 3 for component adjustment, the bending strength TA of the thermal hysteresis strength TB to which a thermal shock was applied was obtained. Is smaller in Samples 3 and 4 than in Sample 1.
Further, from a comparison between Samples 5 , 6 , 8, and 9 to which SnO 2 , TiO 2 , Nb 2 O 5 , and MoO 3 were added in appropriate amounts as sub-components and Samples 1 and 2 containing no sub-components, By adding an appropriate amount, the core loss Pcv is further reduced to 390 kW / m 3 or less at 100 kHz and 1390 kW / m 3 or less at 200 kHz, and it is clear that the core loss Pcv is extremely useful as a low-loss material.
[0018]
On the other hand, as in the case of a general MnZn ferrite manufacturing process, when calcining was performed using a mixed powder containing 50 mol% or more (54.0 mol%) of Fe 2 O 3 , samples 11 and 12 were obtained. As can be seen, the density ds does not increase so much, and both the initial permeability μi and the saturation magnetic flux density Bs have low values. Accordingly, the core loss Pcv is 580 kW / m 3 or more at 100 kHz and 2480 kW at 200 kHz. / M 3 or higher. Further, regarding the bending strength TA and the thermal hysteresis strength TB, the thermal hysteresis strength TB is much lower than the bending strength TA, and it is clear that the thermal hysteresis strength TB is significantly inferior in resistance to thermal shock. Further, from the comparison between Sample 11 and Sample 12, Sample 11 heated in the air during firing has a higher density ds, initial magnetic permeability μi, and bending strength TA than Sample 12 fired in nitrogen. In addition, while the thermal hysteresis strength TB and the like are considerably low values, the core loss Pcv is high, and it is clear that firing in a nitrogen atmosphere is absolutely necessary.
In addition, when TiO 2 and MoO 3 as sub-components are added in an appropriate amount, as shown in Samples 7 and 10, the density ds, initial magnetic permeability μi, saturation magnetic flux density Bs, and magnetic core loss Pcv , Bending strength TA, thermal hysteresis strength TB, etc., have decreased to the levels of samples 11 and 12, which were calcined using a mixed powder containing 50 mol% or more of Fe 2 O 3. It was found that when adding, it is necessary to give due consideration to the addition of an appropriate amount.
[0019]
【The invention's effect】
As described above, according to the method for producing a low-loss MnZn ferrite according to the present invention, the preliminary firing is performed using the mixed powder in which Fe 2 O 3 is suppressed to less than 50 mol%. Oxygen release progresses and oxygen release at the time of main firing is greatly reduced, and even if the atmosphere management at the time of main firing is not strictly controlled, densification and solid solution progress sufficiently, soft magnetic properties are sufficient, and low loss is achieved. Can be stably obtained. In addition, unlike the method of increasing the resistance of the crystal grain boundaries by adding subcomponents, the uniformity of the crystal structure is secured, and thus the obtained MnZn ferrite has sufficiently excellent resistance to vibration and repeated thermal shock. It becomes suitable for automobiles. Further, since there is no need to strictly control the atmosphere during the main firing, the production becomes easy, and a large amount of treatment can be performed by a continuous furnace, so that the production cost can be reduced.

Claims (5)

Fe3 が50.0 mol%未満となるように配合した原料粉末の混合物を仮焼成した後、微粉砕して仮焼成粉末を得、次に、前記仮焼成粉末にFe酸化物の粉末を加えて成分調整し、しかる後、造粒、成形および本焼成を順に行って、Fe酸化物をFe3 換算で52.5 〜57.0 mol%、Mn酸化物をMnO 換算で32.0 〜40.0 mol%、残部ZnO を含む焼成体を得ることを特徴とする低損失MnZnフェライトの製造方法。The mixture of the raw material powders blended so that the content of Fe 2 O 3 is less than 50.0 mol% is calcined, then finely pulverized to obtain a calcined powder, and then the Fe oxide powder is added to the calcined powder. After that, the components are adjusted, and then granulation, molding, and main firing are sequentially performed. The Fe oxide is 52.5 to 57.0 mol% in terms of Fe 2 O 3 , and the Mn oxide is 32 in terms of MnO 2. A method for producing a low-loss MnZn ferrite, comprising obtaining a fired body containing 0.04 to 40.0 mol% with the balance being ZnO 2. Fe3 が50.0 mol%未満となるように配合した原料粉末の混合物を仮焼成した後、微粉砕して仮焼成粉末を得、次に、前記仮焼成粉末にFe酸化物の粉末を加えて成分調整し、しかる後、造粒、成形および本焼成を順に行って、主成分としてFe酸化物をFe3 換算で52.5 〜57.0 mol%、Mn酸化物をMnO 換算で32.0 〜40.0 mol%、残部ZnO を含み、かつ副成分としてSnO およびTiO のうちの少なくとも一種を50〜2000 ppm含む焼成体を得ることを特徴とする低損失MnZnフェライトの製造方法。The mixture of the raw material powders blended so that the content of Fe 2 O 3 is less than 50.0 mol% is calcined, then finely pulverized to obtain a calcined powder, and then the Fe oxide powder is added to the calcined powder. After that, granulation, molding, and main firing are sequentially performed, and as a main component, the Fe oxide is 52.5 to 57.0 mol% in terms of Fe 2 O 3 , and the Mn oxide is MnO 2. A low-loss MnZn ferrite comprising a sintered body containing 32.0 to 40.0 mol% in conversion, the balance being ZnO 2, and containing 50 to 2000 ppm of at least one of SnO 2 and TiO 2 as an accessory component. Manufacturing method. Fe3 が50.0 mol%未満となるように配合した原料粉末の混合物を仮焼成した後、微粉砕して仮焼成粉末を得、次に、前記仮焼成粉末にFe酸化物の粉末を加えて成分調整し、しかる後、造粒、成形および本焼成を順に行って、主成分としてFe酸化物をFe3 換算で52.5 〜57.0 mol%、Mn酸化物をMnO 換算で32.0 〜40.0 mol%、残部ZnO を含み、かつ副成分としてNb3 およびMoO のうちの少なくとも一種を50〜1000 ppm含む焼成体を得ることを特徴とする低損失MnZnフェライトの製造方法。The mixture of the raw material powders blended so that the content of Fe 2 O 3 is less than 50.0 mol% is calcined, then finely pulverized to obtain a calcined powder, and then the Fe oxide powder is added to the calcined powder. After that, granulation, molding, and main firing are sequentially performed, and as a main component, the Fe oxide is 52.5 to 57.0 mol% in terms of Fe 2 O 3 , and the Mn oxide is MnO 2. A low loss characterized by obtaining a fired body containing 32.0 to 40.0 mol% in conversion, the balance being ZnO 2 and containing at least one of Nb 2 O 3 and MoO 3 as an auxiliary component in an amount of 50 to 1000 ppm. A method for producing MnZn ferrite. Fe3 を50.0 mol%未満含むことを特徴とするMnZnフェライト用仮焼成粉末。A calcined powder for MnZn ferrite, comprising less than 50.0 mol% of Fe 2 O 3 . 副成分としてSnO 、TiO 、MoO およびNb3 のうちの少なくとも一種を含むことを特徴とする請求項4に記載のMnZnフェライト用仮焼成粉末。MnZn ferrite for calcined powder according to claim 4, characterized in that it comprises at least one of SnO 2, TiO 2, MoO 3 and Nb 2 O 3 as an auxiliary component.
JP2002228735A 2002-08-06 2002-08-06 PROCESS FOR PREPARING LOW-LOSS MnZn FERRITE AND CALCINED POWDER Withdrawn JP2004067444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002228735A JP2004067444A (en) 2002-08-06 2002-08-06 PROCESS FOR PREPARING LOW-LOSS MnZn FERRITE AND CALCINED POWDER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002228735A JP2004067444A (en) 2002-08-06 2002-08-06 PROCESS FOR PREPARING LOW-LOSS MnZn FERRITE AND CALCINED POWDER

Publications (1)

Publication Number Publication Date
JP2004067444A true JP2004067444A (en) 2004-03-04

Family

ID=32015345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002228735A Withdrawn JP2004067444A (en) 2002-08-06 2002-08-06 PROCESS FOR PREPARING LOW-LOSS MnZn FERRITE AND CALCINED POWDER

Country Status (1)

Country Link
JP (1) JP2004067444A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015023275A (en) * 2013-07-19 2015-02-02 サムソン エレクトロ−メカニックス カンパニーリミテッド. Ferrite and inductor including the same
US10236104B2 (en) 2013-07-19 2019-03-19 Samsung Electro-Mechanics Co., Ltd. Ferrite and inductor including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015023275A (en) * 2013-07-19 2015-02-02 サムソン エレクトロ−メカニックス カンパニーリミテッド. Ferrite and inductor including the same
US10236104B2 (en) 2013-07-19 2019-03-19 Samsung Electro-Mechanics Co., Ltd. Ferrite and inductor including the same

Similar Documents

Publication Publication Date Title
JP2009227554A (en) Ferrite sintered compact and method for producing the same
JP3584438B2 (en) Mn-Zn ferrite and method for producing the same
CN106915956A (en) MnZnLi based ferrites, magnetic core and transformer
JP3584439B2 (en) Mn-Zn ferrite and method for producing the same
JP5089970B2 (en) MnCoZn ferrite and transformer core
JP3588693B2 (en) Mn-Zn ferrite and method for producing the same
JP3418827B2 (en) Mn-Zn ferrite and method for producing the same
JP2005330161A (en) Ferrite material
JP2002167272A (en) METHOD OF MANUFACTURING Mn-Zn FERRITE
JP2004247370A (en) MnZn FERRITE
JP2002167271A (en) METHOD OF MANUFACTURING Mn-Zn FERRITE
JP3446082B2 (en) Mn-Zn ferrite and method for producing the same
JP6730545B1 (en) MnZn-based ferrite and method for producing the same
JP2004067444A (en) PROCESS FOR PREPARING LOW-LOSS MnZn FERRITE AND CALCINED POWDER
JP6730547B1 (en) MnZn-based ferrite and method for producing the same
JP6730546B1 (en) MnCoZn ferrite and method for producing the same
JP2005272229A (en) HIGH SATURATION MAGNETIC FLUX DENSITY Mn-Zn-Ni-BASED FERRITE
JP2004247371A (en) MnZn FERRITE
JPWO2020189035A1 (en) MnCoZn-based ferrite and its manufacturing method
JP4739658B2 (en) Mn-Zn ferrite
JP2003267777A (en) Ferrite material and ferrite core using the same
JP7406022B1 (en) MnZnCo ferrite
JP6732158B1 (en) MnZn-based ferrite and method for producing the same
JP3584437B2 (en) Method for producing Mn-Zn ferrite
TWI761760B (en) Manganese-zinc-based fertilizer granulated iron and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070501

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070719