JPWO2020189035A1 - MnCoZn-based ferrite and its manufacturing method - Google Patents

MnCoZn-based ferrite and its manufacturing method Download PDF

Info

Publication number
JPWO2020189035A1
JPWO2020189035A1 JP2020524253A JP2020524253A JPWO2020189035A1 JP WO2020189035 A1 JPWO2020189035 A1 JP WO2020189035A1 JP 2020524253 A JP2020524253 A JP 2020524253A JP 2020524253 A JP2020524253 A JP 2020524253A JP WO2020189035 A1 JPWO2020189035 A1 JP WO2020189035A1
Authority
JP
Japan
Prior art keywords
mncozn
less
based ferrite
mass ppm
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020524253A
Other languages
Japanese (ja)
Other versions
JP6732159B1 (en
Inventor
由紀子 中村
由紀子 中村
裕史 吉田
裕史 吉田
多津彦 平谷
多津彦 平谷
哲哉 田川
哲哉 田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Chemical Corp
Original Assignee
JFE Steel Corp
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Chemical Corp filed Critical JFE Steel Corp
Priority claimed from PCT/JP2020/003151 external-priority patent/WO2020189035A1/en
Application granted granted Critical
Publication of JP6732159B1 publication Critical patent/JP6732159B1/en
Publication of JPWO2020189035A1 publication Critical patent/JPWO2020189035A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)
  • Compounds Of Iron (AREA)

Abstract

優れた磁気特性と優れた機械的特性とをそなえ、自動車搭載用電子部品に使用して好適なMnCoZn系フェライトを提供する。本発明のMnCoZn系フェライトでは、基本成分および副成分を適正範囲に調整すると共に、不可避的不純物であるP、BおよびTi量をそれぞれ、P:10massppm未満、B:10massppm未満、Ti:50massppm未満に抑制し、表面残留応力の値を40MPa未満とする。Provided is an MnCoZn-based ferrite that has excellent magnetic properties and excellent mechanical properties and is suitable for use in electronic components mounted on automobiles. In the MnCoZn-based ferrite of the present invention, the basic component and the sub-component are adjusted to an appropriate range, and the amounts of P, B, and Ti, which are unavoidable impurities, are set to less than P: 10 mass ppm, B: less than 10 mass ppm, and Ti: less than 50 mass ppm, respectively. Suppress and set the value of surface residual stress to less than 40 MPa.

Description

本発明は、特に自動車搭載部品の磁心に供して好適なMnCoZn系フェライトおよびその製造方法に関する。 The present invention relates to MnCoZn-based ferrite and a method for producing the same, which are particularly suitable for magnetic cores of automobile-mounted parts.

MnZnフェライトは、スイッチング電源等のノイズフィルタやトランス、アンテナの磁心として幅広く使用されている材料である。MnZnフェライトの特長としては、軟磁性材料の中ではkHz領域において高透磁率、低損失であり、またアモルファス金属等と比較して安価なことが挙げられる。 MnZn ferrite is a material widely used as a magnetic core of noise filters such as switching power supplies, transformers, and antennas. Among the soft magnetic materials, MnZn ferrite has high magnetic permeability and low loss in the kHz region, and is cheaper than amorphous metals and the like.

一方、10MHz領域では、通常のMnZnフェライトの場合、比抵抗が低く、渦電流損失による減衰のためその透磁率の保持は難しい。この対策として、Fe量の含有範囲を50mol%未満に選択し、なおかつ、通常のMnZnフェライトでは正の磁気異方性を有するFe2+イオンの存在により生じる正負の磁気異方性の相殺を、同じく正の磁気異方性を示すCo2+イオンにより代替した、MnCoZn系フェライトが知られている。このMnCoZn系フェライトは、高い比抵抗と共に、10MHz領域まで良好な初透磁率を保持することを特長とする。On the other hand, in the 10 MHz region, in the case of ordinary MnZn ferrite, the specific resistance is low and it is difficult to maintain its magnetic permeability due to attenuation due to eddy current loss. As a countermeasure, the content range of Fe 2 O 3 is selected to be less than 50 mol%, and the positive and negative magnetic anisotropy caused by the presence of Fe 2+ ions having positive magnetic anisotropy in ordinary MnZn ferrite is canceled out. Is replaced by Co 2+ ions, which also exhibit positive magnetic anisotropy, and MnCoZn-based ferrites are known. This MnCoZn-based ferrite is characterized by having a high specific resistance and maintaining a good initial magnetic permeability up to the 10 MHz region.

ところで、近年の自動車のハイブリッド化、電装化に伴いニーズが拡大している自動車搭載用途の電子機器の磁心としては、その使用時に破損しないこと、すなわち特に破壊靭性値(Kic)が高いことが求められる。というのは、MnZnフェライトをはじめとする酸化物磁性材料はセラミックスであり、脆性材料であることから破損しやすいこと、加えて従来の家電製品用途と比較して、自動車搭載用途では絶えず振動を受け、破損されやすい環境下で使用され続けるためである。
しかし、自動車用途では、同時に、軽量化や省スペース化も求められる。したがって、MnZnフェライト及びMnCoZnフェライトは、高い破壊靭性値に加え、従来用途と同様に好適な磁気特性を併せ持つことが重要である。
By the way, as the magnetic core of electronic devices for automobile mounting applications, whose needs are expanding due to the recent hybridization and electrification of automobiles, it is required that they are not damaged during their use, that is, they have a particularly high fracture toughness value (Kic). Be done. This is because oxide magnetic materials such as MnZn ferrite are ceramics and are easily damaged because they are brittle materials. In addition, they are constantly vibrated in automobile-mounted applications compared to conventional home appliance applications. This is because it will continue to be used in a fragile environment.
However, in automobile applications, weight reduction and space saving are also required at the same time. Therefore, it is important that MnZn ferrite and MnCoZn ferrite have not only high fracture toughness value but also suitable magnetic properties as in the conventional application.

自動車搭載用途向けのMnZnフェライトとしては、過去に様々な開発が進められている。
良好な磁気特性に言及したものとしては、特許文献1および2等が、また破壊靭性値を高めたMnZnフェライトとしては、特許文献3および4等が報告されている。
さらに、10MHz領域でも初透磁率を保持する高抵抗MnCoZn系フェライトとしては、特許文献5および6等が報告されている。
Various developments have been carried out in the past as MnZn ferrites for automobile mounting applications.
Patent Documents 1 and 2 and the like are reported as references to good magnetic properties, and Patent Documents 3 and 4 and the like are reported as MnZn ferrite having an increased fracture toughness value.
Further, Patent Documents 5 and 6 and the like have been reported as high-resistance MnCoZn-based ferrites that maintain the initial magnetic permeability even in the 10 MHz region.

特開2007−51052号公報JP-A-2007-51052 特開2012−76983号公報Japanese Unexamined Patent Publication No. 2012-76983 特開平4−318904号公報Japanese Unexamined Patent Publication No. 4-318904 特開平4−177808号公報Japanese Unexamined Patent Publication No. 4-177808 特許第4508626号公報Japanese Patent No. 4508626 特許第4554959号公報Japanese Patent No. 4554959

一般的に従来のMnZnフェライトの初透磁率を上昇させるためには、磁気異方性と磁歪を小さくすることが有効である。これらの実現のためには、MnZnフェライトの主成分であるFe、ZnOおよびMnOの配合量を、適正な範囲に設定する必要がある。
また、高周波数領域におけるMnZnフェライトの初透磁率を上昇させる手法として、以下の手法がある。すなわち、焼成工程において十分な熱を加え、フェライト内の結晶粒を適度に成長させることで、磁化工程における結晶粒内の磁壁の移動を容易化しつつ、さらに粒界に偏析する成分を添加し、適度で均一な厚みの粒界を生成させる。この手法により、MnZnフェライトの比抵抗を保持させて、初透磁率の周波数上昇に伴う減衰を抑制し、100kHz領域でも高い初透磁率を実現している。
しかし、MnZnフェライトでは、比抵抗が最高でも20Ω・m程度が限度なので、かかる比抵抗では高い初透磁率を10MHzまで維持することは不可能である。そこで、10MHz領域では上述したMnCoZn系フェライトが用いられることがある。
Generally, in order to increase the initial magnetic permeability of conventional MnZn ferrite, it is effective to reduce the magnetic anisotropy and magnetostriction. In order to realize these, it is necessary to set the blending amounts of Fe 2 O 3 , ZnO and MnO, which are the main components of MnZn ferrite, in an appropriate range.
Further, there are the following methods as a method for increasing the initial magnetic permeability of MnZn ferrite in the high frequency region. That is, by applying sufficient heat in the firing step to appropriately grow the crystal grains in the ferrite, the movement of the domain wall in the crystal grains in the magnetization step is facilitated, and a component that segregates at the grain boundaries is further added. Generates grain boundaries of appropriate and uniform thickness. By this method, the specific resistance of MnZn ferrite is maintained, the attenuation due to the frequency increase of the initial magnetic permeability is suppressed, and a high initial magnetic permeability is realized even in the 100 kHz region.
However, since the specific resistance of MnZn ferrite is limited to about 20Ω · m at the maximum, it is impossible to maintain a high initial magnetic permeability up to 10 MHz with such specific resistance. Therefore, the above-mentioned MnCoZn-based ferrite may be used in the 10 MHz region.

一方、自動車車載用電子部品の磁心に関しては、上記の磁気特性に加え、絶えず振動を受ける環境下でも破損しないよう、高い破壊靭性値が求められる。もし、磁心であるMnCoZn系フェライトが破損した場合、インダクタンスが大きく低下することから電子部品は所望の働きができなくなる。そして、その影響で自動車全体が動作不能となる。
以上から、自動車車載用電子部品の磁心には、高い初透磁率に代表される良好な磁気特性および高い破壊靭性値の両者が求められる。具体的な一例としては、比抵抗が30Ω・m以上、23℃、10MHzにおける初透磁率の値が150以上、23℃における保磁力が15.0A/m以下、キュリー温度が100℃以上という優れた磁気特性と、平板状試料のJIS R 1607に基づく破壊靭性測定における破壊靭性値が1.00MPa・m1/2以上という優れた機械的特性とが求められる。
On the other hand, regarding the magnetic core of electronic components for automobiles, in addition to the above magnetic characteristics, a high fracture toughness value is required so as not to be damaged even in an environment subject to constant vibration. If the MnCoZn-based ferrite, which is the magnetic core, is damaged, the inductance is greatly reduced, so that the electronic component cannot perform the desired function. Then, as a result, the entire automobile becomes inoperable.
From the above, the magnetic core of an electronic component for an automobile is required to have both good magnetic properties represented by high initial permeability and high fracture toughness value. As a specific example, the specific resistance is 30Ω ・ m or more, the initial magnetic permeability value at 23 ° C. and 10MHz is 150 or more, the coercive force at 23 ° C. is 15.0A / m or less, and the Curie temperature is 100 ° C. or more. In addition to the magnetic properties, excellent mechanical properties such as a fracture toughness value of 1.00 MPa · m 1/2 or more in the fracture toughness measurement based on JIS R 1607 of a flat plate sample are required.

しかし、特許文献1や特許文献2では、所望の磁気特性を実現するための組成については言及されているものの、破壊靭性値については一切述べられていない。同じく、特許文献5や特許文献6においても、破壊靭性値に関する言及がなく、車載用電子部品の磁心としては不適と考えられる。
一方、特許文献3および特許文献4では、破壊靭性値の改良については言及されているものの、磁気特性が車載用電子部品の磁心としては不十分であり、やはりこの用途には不適といえる。
However, in Patent Document 1 and Patent Document 2, although the composition for realizing the desired magnetic properties is mentioned, the fracture toughness value is not described at all. Similarly, in Patent Document 5 and Patent Document 6, there is no reference to the fracture toughness value, and it is considered unsuitable as a magnetic core of an in-vehicle electronic component.
On the other hand, although Patent Document 3 and Patent Document 4 mention the improvement of the fracture toughness value, the magnetic characteristics are insufficient as the magnetic core of the electronic component for in-vehicle use, and it can be said that it is also unsuitable for this application.

そこで、本発明者らは、まず、トロイダル形状コアの23℃、10MHzにおける高い初透磁率を実現可能なMnCoZn系フェライトの基本成分のうち、鉄(Fe換算)、コバルト(CoO換算)および亜鉛(ZnO換算)の適正量について検討した。
その結果、本発明者らは、電気抵抗低下の原因となるFe2+イオンをほぼ含まないことからある程度高い比抵抗が保持可能であり、また磁気異方性および磁歪が小さいことから、軟磁性材料として重要な低い保磁力、実用上問題とならない高いキュリー温度および10MHz領域での高い初透磁率が保持可能な、基本成分の適正範囲を見出した。
Therefore, the present inventors first, among the basic components of MnCoZn-based ferrite capable of realizing a high initial magnetic permeability at 23 ° C. and 10 MHz of a toroidal-shaped core, iron (Fe 2 O 3 conversion) and cobalt (CoO conversion). And the appropriate amount of zinc (ZnO equivalent) was examined.
As a result, the present inventors can maintain a high specific resistance to some extent because they contain almost no Fe 2+ ions that cause a decrease in electrical resistance, and because magnetic anisotropy and magnetostriction are small, they are soft magnetic materials. We have found an appropriate range of basic components that can maintain a low coercive force, a high Curie temperature that does not pose a problem in practice, and a high initial magnetic permeability in the 10 MHz region.

次に、本発明者らは、粒界に偏析する非磁性成分であるSiOおよびCaOを適量加えると、MnCoZn系フェライトに均一な厚みの粒界が生成できる結果、磁気特性の向上に有効な比抵抗のさらなる上昇に加え、破壊靭性値の向上に有効な結晶組織を整えることが可能となることを見出した。Next, the present inventors can generate grain boundaries having a uniform thickness in MnCoZn-based ferrite by adding appropriate amounts of SiO 2 and CaO, which are non-magnetic components segregating at the grain boundaries, and as a result, are effective in improving the magnetic characteristics. It was found that in addition to further increase in resistivity, it is possible to prepare a crystal structure that is effective in improving the fracture toughness value.

さらに、本発明者らが破壊靭性値の向上に効果的な因子を調査したところ、以下の2つの知見を得ることができた。
まず、本発明者らは、異常粒成長の抑制が必須であることを見出した。本発明にいう異常粒成長とは、不純物の存在等により、焼成時の粒成長のバランスが崩れることで一部に通常の粒子100個分程度の大きさの粗大な粒子(本発明において異常粒ともいう)が出現するものである。そして、この異常粒成長が生じた場合、当該部位は極端に強度が低いため、この部位を起点にフェライトコアが破断し易くなる。そのため、フェライト内の異常粒成長を抑えることが、フェライトの破壊靭性値向上には欠かせない。
Furthermore, when the present inventors investigated factors effective in improving the fracture toughness value, the following two findings could be obtained.
First, the present inventors have found that suppression of abnormal grain growth is essential. Abnormal grain growth referred to in the present invention means coarse particles having a size of about 100 ordinary particles (abnormal particles in the present invention) due to the imbalance of grain growth during firing due to the presence of impurities or the like. Also called) appears. When this abnormal grain growth occurs, the strength of the portion is extremely low, so that the ferrite core is likely to break from this portion as a starting point. Therefore, suppressing the growth of abnormal grains in the ferrite is indispensable for improving the fracture toughness value of the ferrite.

次に、本発明者らは、フェライト表面のX線回折からフェライト材の残留応力を測定し考察した。その結果、本発明者らは、残留応力の値と破壊靭性値の間に相関があることを突き止めた。すなわち、脆性材料は引張応力により破断するものであるが、表面の残留応力が圧縮応力、もしくはある一定値以下の引張応力であれば、破壊時のき裂伝播を抑制することができるので、MnCoZnフェライト材料の破壊靭性値は向上する。 Next, the present inventors measured and considered the residual stress of the ferrite material from the X-ray diffraction of the ferrite surface. As a result, the present inventors have found that there is a correlation between the residual stress value and the fracture toughness value. That is, the brittle material breaks due to tensile stress, but if the residual stress on the surface is compressive stress or tensile stress below a certain value, crack propagation during fracture can be suppressed, so MnCoZn. The fracture toughness value of the ferrite material is improved.

この観点で発明者らは、さらに調査を進めたところ、表面に残留する引張応力を低減させるための手段を見出した。
それは、フェライトコアを製造する過程における焼成後の焼成品を、10N以上の濃度の酸化性液体、例えば、硝酸、硫酸または塩酸などに0.50時間超浸漬する手法である。従来のMnCoZnフェライトの表面は、焼成時の還元反応により若干酸素欠乏状態となっており、これに起因して引張応力が生じている。しかしながら、上述の酸化性液体による化学的酸化を行うと、フェライト表面部に酸素が付与され、フェライト表面部の引張応力を低減することができる。
そして、本発明の製造方法では、この手段を用いることによって、効果的に材料の破壊靭性値を高めることが可能になる。
From this point of view, the inventors further investigated and found a means for reducing the tensile stress remaining on the surface.
It is a method of immersing a fired product after firing in the process of producing a ferrite core in an oxidizing liquid having a concentration of 10 N or more, for example, nitric acid, sulfuric acid, hydrochloric acid, or the like for more than 0.50 hours. The surface of the conventional MnCoZn ferrite is slightly oxygen-deficient due to the reduction reaction during firing, and tensile stress is generated due to this. However, when the above-mentioned chemical oxidation with the oxidizing liquid is performed, oxygen is applied to the ferrite surface portion, and the tensile stress of the ferrite surface portion can be reduced.
Then, in the production method of the present invention, it is possible to effectively increase the fracture toughness value of the material by using this means.

なお、特許文献7と特許文献8にはフェライト焼成品を酸に浸漬するプロセスが開示されている。しかし、特許文献7では酸の濃度が1〜5%(硫酸では0.2〜1.1N程度、硝酸では0.2〜0.8N程度、塩酸では0.3〜1.5N程度に相当)と低く、特許文献8では浸漬時間が6〜30分と短いので、いずれも表面残留応力を十分に下げることができない。また、これらの文献では、フェライトを浸漬する目的が、それぞれCu溶出、インダクタンスL値の調整であり、表面残留応力についてはいずれも述べられていない。 In addition, Patent Document 7 and Patent Document 8 disclose a process of immersing a ferrite fired product in an acid. However, in Patent Document 7, the acid concentration is 1 to 5% (corresponding to about 0.2 to 1.1 N for sulfuric acid, about 0.2 to 0.8 N for nitric acid, and about 0.3 to 1.5 N for hydrochloric acid). In Patent Document 8, the immersion time is as short as 6 to 30 minutes, so that the surface residual stress cannot be sufficiently reduced in any case. Further, in these documents, the purpose of immersing the ferrite is to elute Cu and adjust the inductance L value, respectively, and neither of them describes the surface residual stress.

特開2003−286072号公報Japanese Unexamined Patent Publication No. 2003-286072 特開平9−20554号公報Japanese Unexamined Patent Publication No. 9-20554

先に述べた特許文献1および特許文献2では、破壊靭性値に関する言及がなされておらず、かかる値の改善は不可能といえる。同様に、特許文献5および特許文献6では、23℃、10MHzにおける高い初透磁率のような良好な磁気特性には言及されているものの、破壊靭性値に関しては述べられていない。
また、特許文献3および特許文献4では、靭性は改善されているものの、適切な組成範囲を選択できていないために、所望の磁気特性を実現できていない。
In Patent Document 1 and Patent Document 2 described above, no reference is made to the fracture toughness value, and it can be said that improvement of such a value is impossible. Similarly, Patent Documents 5 and 6 mention good magnetic properties such as high initial permeability at 23 ° C. and 10 MHz, but do not mention fracture toughness values.
Further, in Patent Documents 3 and 4, although the toughness is improved, the desired magnetic properties cannot be realized because an appropriate composition range cannot be selected.

ここで、特許文献9および特許文献10には、残留応力が抗折強度に影響する旨が記載されている。しかし、特許文献9および特許文献10における抗折強度は、特に最表面における強度が重要なものを評価する手段であって、最表面における部位の強度を評価するため予き裂を入れない場合の曲げ強度を評価するものである。
一方、本発明で課題とする破壊靭性の改善は、所定の酸による処理を利用する。そのため、表面からある程度の深さにおける強度を評価する必要がある。よって、本明細書における破壊靭性値は、試験片の表面に予き裂を入れた後に曲げ試験で評価するものである。
このように、本明細書におけるMnCoZn系フェライトでは、上記特許文献9および特許文献10とは異なる部位の強度が重要であって、かかる異なる部位を評価するために特許文献9および特許文献10とは異なる方法で評価している。すなわち、上記特許文献9および特許文献10と本明細書におけるMnCoZn系フェライトとは、強度の評価方法からも技術的に大きな差異があることがわかる。
Here, Patent Document 9 and Patent Document 10 describe that the residual stress affects the bending strength. However, the bending strength in Patent Documents 9 and 10 is a means for evaluating those in which the strength on the outermost surface is particularly important, and is a case where no pre-crack is formed in order to evaluate the strength of the portion on the outermost surface. It evaluates bending strength.
On the other hand, the improvement of fracture toughness, which is a subject of the present invention, utilizes treatment with a predetermined acid. Therefore, it is necessary to evaluate the strength at a certain depth from the surface. Therefore, the fracture toughness value in the present specification is evaluated by a bending test after making a pre-crack on the surface of the test piece.
As described above, in the MnCoZn-based ferrite in the present specification, the strength of a portion different from the above-mentioned Patent Documents 9 and 10 is important, and in order to evaluate such a different portion, Patent Document 9 and Patent Document 10 are different from each other. Evaluating differently. That is, it can be seen that there is a large technical difference between the above-mentioned Patent Documents 9 and 10 and the MnCoZn-based ferrite in the present specification from the strength evaluation method.

特開2015−178442号公報Japanese Unexamined Patent Publication No. 2015-178442 特開2015−178443号公報Japanese Unexamined Patent Publication No. 2015-178443

そのため、これらの既知の技術のみでは実用上有用な自動車搭載部品、特には車載用電子部品の磁心に適したMnCoZn系フェライトを作製することはできない。
本発明は、かかる問題を解決するためになされたものであり、上記の新規知見に立脚するものである。
Therefore, it is not possible to produce MnCoZn-based ferrite suitable for the magnetic cores of automobile-mounted parts, particularly in-vehicle electronic parts, which are practically useful only by these known techniques.
The present invention has been made to solve such a problem, and is based on the above-mentioned new findings.

すなわち、本発明の要旨構成は次のとおりである。
1.基本成分、副成分および不可避的不純物からなるMnCoZn系フェライトであって、
上記基本成分として、
鉄:Fe換算で45.0mol%以上、50.0mol%未満、
亜鉛:ZnO換算で15.5〜24.0mol%、
コバルト:CoO換算で0.5〜4.0mol%および
マンガン:残部
を含み、
上記基本成分に対して、副成分として、
SiO:50〜300massppmおよび
CaO:300〜1300massppm
を含み、
上記不可避的不純物におけるP、BおよびTi量をそれぞれ、
P:10massppm未満、
B:10massppm未満および
Ti:50massppm未満
に抑制し、
上記MnCoZn系フェライトの表面残留応力の値が40MPa未満であるMnCoZn系フェライト。
That is, the gist structure of the present invention is as follows.
1. 1. MnCoZn-based ferrite consisting of basic components, sub-components and unavoidable impurities.
As the above basic ingredients
Iron: 45.0 mol% or more and less than 50.0 mol% in terms of Fe 2 O 3,
Zinc: 15.5 to 24.0 mol% in terms of ZnO,
Cobalt: 0.5-4.0 mol% in terms of CoO and manganese: including the balance
As a sub-ingredient to the above basic ingredient
SiO 2 : 50 to 300 mass ppm and CaO: 300 to 1300 mass ppm
Including
The amounts of P, B, and Ti in the above unavoidable impurities, respectively,
P: less than 10 mass ppm,
B: suppressed to less than 10 mass ppm and Ti: less than 50 mass ppm,
The MnCoZn-based ferrite having a surface residual stress value of less than 40 MPa.

2.前記MnCoZn系フェライトの、
JIS R1607に基づく破壊靭性測定の破壊靭性値が1.00MPa・m1/2以上であり、さらに
23℃、10MHzにおける初透磁率の値が150以上、
比抵抗が30Ω・m以上、
23℃における保磁力が15.0A/m以下、
キュリー温度が100℃以上である前記1に記載のMnCoZn系フェライト。
2. Of the MnCoZn-based ferrite,
The fracture toughness value of the fracture toughness measurement based on JIS R1607 is 1.00 MPa · m 1/2 or more, and the initial magnetic permeability value at 23 ° C. and 10 MHz is 150 or more.
Specific resistance is 30Ω ・ m or more,
Coercive force at 23 ° C is 15.0 A / m or less,
The MnCoZn-based ferrite according to 1 above, wherein the Curie temperature is 100 ° C. or higher.

3.前記基本成分の混合物を仮焼し、冷却して仮焼粉を得る仮焼工程と、
上記仮焼工程で得られた仮焼粉に副成分を添加して、混合、粉砕して粉砕粉を得る混合−粉砕工程と、
上記混合−粉砕工程で得られた粉砕粉にバインダーを添加、混合した後、造粒する造粒工程と、
上記造粒工程で得られた造粒粉を成形後、焼成する焼成工程と、酸に浸漬する浸漬工程とを有する前記1または2に記載のMnCoZn系フェライトを得るMnCoZn系フェライトの製造方法であって、
前記浸漬工程は、前記焼成工程で得られた焼成品を、濃度10N以上の酸化性液体に0.50時間超浸漬するMnCoZn系フェライトの製造方法。
3. 3. A calcination step of calcinating a mixture of the basic components and cooling the mixture to obtain calcination powder.
A mixing-crushing step of adding an auxiliary component to the calcined powder obtained in the above calcining step, mixing and crushing to obtain a crushed powder, and
A granulation step of adding a binder to the crushed powder obtained in the above mixing-crushing step, mixing, and then granulating.
The method for producing MnCoZn-based ferrite according to 1 or 2 above, which comprises a firing step of molding and then firing the granulated powder obtained in the above-mentioned granulation step and a dipping step of immersing the granulated powder in an acid. hand,
The dipping step is a method for producing MnCoZn-based ferrite in which the fired product obtained in the firing step is immersed in an oxidizing liquid having a concentration of 10 N or more for more than 0.50 hours.

4.前記酸化性液体が硝酸、硫酸または塩酸である、前記3に記載のMnCoZn系フェライトの製造方法。 4. The method for producing MnCoZn-based ferrite according to 3, wherein the oxidizing liquid is nitric acid, sulfuric acid, or hydrochloric acid.

本発明のMnCoZn系フェライトは、優れた磁気特性と、従来のMnCoZn系フェライトでは不可能であったレベルの優れた機械的特性とを併せ持ち、特に自動車搭載用電子部品の磁心に用いて好適である。優れた磁気特性としては、例えば、比抵抗が30Ω・m以上、23℃、10MHzにおける初透磁率の値が150以上、23℃における保磁力が15.0A/m以下、キュリー温度が100℃以上である。また、優れた機械的特性としては、例えば、平板状試料のJIS R 1607に基づく破壊靭性測定における破壊靭性値が1.00MPa・m1/2以上である。The MnCoZn-based ferrite of the present invention has both excellent magnetic properties and excellent mechanical properties at a level not possible with conventional MnCoZn-based ferrites, and is particularly suitable for use in the magnetic core of electronic components mounted on automobiles. .. Excellent magnetic characteristics include, for example, a specific resistance of 30 Ω · m or more, an initial magnetic permeability value of 150 or more at 23 ° C. and 10 MHz, a coercive force of 15.0 A / m or less at 23 ° C., and a Curie temperature of 100 ° C. or more. Is. Further, as an excellent mechanical property, for example, the fracture toughness value in the fracture toughness measurement based on JIS R 1607 of a flat plate sample is 1.00 MPa · m 1/2 or more.

以下、本発明を具体的に説明する。
まず、本発明において、MnCoZn系フェライトの組成を上述した範囲に限定した理由について説明する。なお、基本成分として本発明に含まれる鉄、亜鉛、コバルト、マンガンについては、すべてFe、ZnO、CoO、MnOにそれぞれ換算した値で示す。また、これらFe、ZnO、CoO、MnOの含有量についてはmol%で、一方、副成分および不純物成分の含有量については基本成分に対するmassppmで表す。
Hereinafter, the present invention will be specifically described.
First, in the present invention, the reason why the composition of MnCoZn-based ferrite is limited to the above-mentioned range will be described. The iron, zinc, cobalt, and manganese contained in the present invention as basic components are all shown as values converted into Fe 2 O 3 , ZnO, CoO, and MnO, respectively. The contents of Fe 2 O 3 , ZnO, CoO, and MnO are expressed in mol%, while the contents of sub-components and impurity components are expressed in mass ppm with respect to the basic component.

Fe:45.0mol%以上、50.0mol%未満
鉄(Fe)が過剰に含まれた場合、Fe2+量が増加し、それによりMnCoZn系フェライトの比抵抗が低下する。これを避けるために、鉄の量はFe換算で50.0mol%未満に抑える必要がある。一方、鉄の量が少なすぎる場合には、フェライトの保磁力の上昇及びキュリー温度の低下を招来する。かかる問題を防ぐため、最低でも鉄はFe換算で45.0mol%含有させるものとする。好ましくは47.1mol%以上、50.0mol%未満の範囲である。より好ましくは47.1〜49.5mol%の範囲である。Fe量は、47.1mol%以上が好ましく、50.0mol%未満が好ましく、49.5mol%以下がより好ましい。
Fe 2 O 3 : 45.0 mol% or more and less than 50.0 mol% When iron (Fe 2 O 3 ) is excessively contained, the amount of Fe 2+ increases, which lowers the specific resistance of MnCoZn-based ferrite. In order to avoid this, the amount of iron needs to be suppressed to less than 50.0 mol% in terms of Fe 2 O 3. On the other hand, if the amount of iron is too small, the coercive force of ferrite increases and the Curie temperature decreases. In order to prevent such a problem, at least iron shall be contained in an amount of 45.0 mol% in terms of Fe 2 O 3. It is preferably in the range of 47.1 mol% or more and less than 50.0 mol%. More preferably, it is in the range of 47.1 to 49.5 mol%. The amount of Fe 2 O 3 is preferably 47.1 mol% or more, preferably less than 50.0 mol%, and more preferably 49.5 mol% or less.

ZnO:15.5〜24.0mol%
亜鉛は、フェライトの飽和磁化を増加させること、また比較的飽和蒸気圧が低いことから焼結密度を上昇させる働きがあり、保磁力の低下に有効な成分である。そこで、最低でも亜鉛はZnO換算で15.5mol%含有させるものとする。一方、亜鉛含有量が適正な値より多い場合には、キュリー温度の低下を招き、実用上問題がある。そのため、亜鉛はZnO換算で上限を24.0mol%とする。好ましいZnO量の範囲は15.5〜23.0mol%、さらに好ましくは17.0〜23.0mol%である。ZnO量は、17.0mol%以上が好ましく、23.0mol%以下が好ましい。
ZnO: 15.5 to 24.0 mol%
Zinc has a function of increasing the saturation magnetization of ferrite and a function of increasing the sintering density because the saturated vapor pressure is relatively low, and is an effective component for lowering the coercive force. Therefore, it is assumed that at least zinc is contained in 15.5 mol% in terms of ZnO. On the other hand, when the zinc content is higher than the appropriate value, the Curie temperature is lowered, which poses a practical problem. Therefore, the upper limit of zinc is 24.0 mol% in terms of ZnO. The preferred range of ZnO amount is 15.5 to 23.0 mol%, more preferably 17.0 to 23.0 mol%. The amount of ZnO is preferably 17.0 mol% or more, and preferably 23.0 mol% or less.

CoO:0.5〜4.0mol%
コバルト(CoO)におけるCo2+イオンは正の磁気異方性エネルギーをもつイオンであり、このCoOの適量添加に伴い、磁気異方性エネルギーの総和の絶対値が低下する結果、保磁力の低下が得られる。そのためには、CoOを0.5mol%以上添加することが必要である。一方、コバルトの多量の添加は比抵抗の低下、異常粒成長の誘発、また磁気異方性エネルギーの総和が過度に正に傾くことから、保磁力の上昇を招く。これを防ぐために、CoOは最大4.0mol%の添加に止めるものとする。好ましいCoOの範囲は1.0〜3.0mol%である。CoO量は、1.0mol%以上が好ましく、3.0mol%以下が好ましい。
CoO: 0.5-4.0 mol%
Co 2+ ions in cobalt (CoO) are ions with positive magnetic anisotropy energy, and as a result of the addition of an appropriate amount of this CoO, the absolute value of the total magnetic anisotropy energy decreases, and as a result, the coercive force decreases. can get. For that purpose, it is necessary to add 0.5 mol% or more of CoO. On the other hand, the addition of a large amount of cobalt causes a decrease in resistivity, induction of abnormal grain growth, and an excessively positive sum of magnetic anisotropy energies, resulting in an increase in coercive force. In order to prevent this, CoO shall be added only at a maximum of 4.0 mol%. The preferred CoO range is 1.0 to 3.0 mol%. The amount of CoO is preferably 1.0 mol% or more, and preferably 3.0 mol% or less.

MnO:残部
本発明は、MnCoZn系フェライトであり、主成分組成の残部はマンガン(MnO)とする。その理由は、マンガンでなければ、低い保磁力及び10MHzでの高透磁率に代表される良好な磁気特性が得られ難いからである。好ましいMnOの範囲は25.0〜32.0mol%である。より好ましくは26.0〜33.0mol%、さらに好ましくは26.5〜32.0mol%の範囲である。MnO量は、25.0mol%以上が好ましく、26.0mol%以上がより好ましく、26.5mol%以上が更に好ましく、33.0mol%以下が好ましく、32.0mol%以下がより好ましい。
MnO: Remaining portion The present invention is MnCoZn-based ferrite, and the remaining portion of the main component composition is manganese (MnO). The reason is that it is difficult to obtain good magnetic properties represented by low coercive force and high magnetic permeability at 10 MHz unless manganese is used. The preferred range of MnO is 25.0 to 32.0 mol%. It is more preferably in the range of 26.0 to 33.0 mol%, still more preferably in the range of 26.5 to 32.0 mol%. The amount of MnO is preferably 25.0 mol% or more, more preferably 26.0 mol% or more, further preferably 26.5 mol% or more, preferably 33.0 mol% or less, and even more preferably 32.0 mol% or less.

以上、基本成分について説明したが、副成分については次のとおりである。
SiO:50〜300massppm
SiOは、フェライトの結晶組織の均一化に寄与することが知られている。したがって、適量のSiO添加により異常粒成長を抑制し、また比抵抗も高めることから、保磁力を低下させるとともに、破壊靭性値を高めることができる。そのため、最低でもSiOを50massppm含有させることとする。一方、SiOの添加量が過多の場合には反対に異常粒成長を生じる。これは破壊靭性値を著しく低下させると同時に、10MHzにおける初透磁率および保磁力が著しく劣化する。よって、SiOの含有は300massppm以下に制限する必要がある。SiO量は、好ましくは60〜250massppmの範囲であり、60massppm以上が好ましく、250massppm以下が好ましく、190massppm以下がより好ましい。
The basic components have been described above, but the sub-components are as follows.
SiO 2 : 50-300 massppm
SiO 2 is known to contribute to the homogenization of the crystal structure of ferrite. Therefore, by adding an appropriate amount of SiO 2 , abnormal grain growth is suppressed and the specific resistance is also increased, so that the coercive force can be lowered and the fracture toughness value can be increased. Therefore, at least 50 massppm of SiO 2 is used. On the other hand, when the amount of SiO 2 added is excessive, abnormal grain growth occurs on the contrary. This significantly reduces the fracture toughness value and at the same time significantly deteriorates the initial magnetic permeability and coercive force at 10 MHz. Therefore, the content of SiO 2 needs to be limited to 300 mass ppm or less. The amount of SiO 2 is preferably in the range of 60 to 250 mass ppm, preferably 60 mass ppm or more, preferably 250 mass ppm or less, and more preferably 190 mass ppm or less.

CaO:300〜1300massppm
CaOは、MnCoZn系フェライトの結晶粒界に偏析し、結晶粒の成長を抑制する働きを持つ。そのため、適量なCaOの添加に伴い、比抵抗が上昇し、保磁力も下げ、なおかつ破壊靭性値も上昇させることができる。そのため、最低でもCaOを300massppm含有させることとする。一方、CaO添加量過多の場合には異常粒が出現し、破壊靭性値および保磁力を共に劣化させる。よって、CaOの含有は1300massppm以下に制限する必要がある。好ましいCaOの含有量は350〜1200massppm、より好ましくは350〜1000massppmの範囲である。CaO量は、350massppm以上が好ましく、500massppm以上がより好ましく、1200massppm以下が好ましく、1000massppm以下がより好ましい。
CaO: 300-1300 massppm
CaO segregates at the grain boundaries of MnCoZn-based ferrite and has a function of suppressing the growth of crystal grains. Therefore, with the addition of an appropriate amount of CaO, the specific resistance can be increased, the coercive force can be decreased, and the fracture toughness value can be increased. Therefore, it is decided to contain at least 300 massppm of CaO. On the other hand, when the amount of CaO added is excessive, abnormal particles appear, which deteriorates both the fracture toughness value and the coercive force. Therefore, the content of CaO needs to be limited to 1300 mass ppm or less. The preferred CaO content is in the range of 350-1200 massppm, more preferably 350-1000 massppm. The amount of CaO is preferably 350 mass ppm or more, more preferably 500 mass ppm or more, preferably 1200 mass ppm or less, and more preferably 1000 mass ppm or less.

次に、抑制すべき不可避的不純物成分について説明する。
P:10massppm未満、B:10massppm未満、Ti:50massppm未満
これらは、主に原料酸化鉄中に不可避に含まれる成分である。PおよびBの含有がごく微量であれば問題ない。しかし、PおよびBがある一定以上含まれる場合にはフェライトの異常粒成長を誘発し,この部位が破壊の起点となることから破壊靭性値が低下するとともに、保磁力の増大および初透磁率の低下を招き、重大な悪影響を及ぼす。よって、PおよびBの含有量はともに10massppm未満に抑制することとした。好ましくはP、B量とも8massppm以下である。Pの含有量は8massppm以下が好ましく、Bの含有量は8massppm以下が好ましい。
また、Tiの含有量が多いと、破壊靭性のみならず、フェライトの比抵抗や、保磁力、初透磁率の値も悪くなる。よってTiの含有量は50massppm未満に制御する。Tiの含有量は、好ましくは40massppm未満、より好ましくは30massppm未満である。
Next, the unavoidable impurity components to be suppressed will be described.
P: less than 10 mass ppm, B: less than 10 mass ppm, Ti: less than 50 mass ppm These are components inevitably contained mainly in the raw material iron oxide. There is no problem if the content of P and B is very small. However, when P and B are contained above a certain level, abnormal grain growth of ferrite is induced, and since this site becomes the starting point of fracture, the fracture toughness value decreases, the coercive force increases, and the initial magnetic permeability increases. It causes a decline and has a serious adverse effect. Therefore, the contents of P and B were both suppressed to less than 10 mass ppm. Preferably, both the amounts of P and B are 8 mass ppm or less. The content of P is preferably 8 mass ppm or less, and the content of B is preferably 8 mass ppm or less.
Further, when the content of Ti is large, not only the fracture toughness but also the specific resistance of ferrite, the coercive force, and the initial magnetic permeability deteriorate. Therefore, the Ti content is controlled to less than 50 mass ppm. The Ti content is preferably less than 40 mass ppm, more preferably less than 30 mass ppm.

また、組成に限らず種々のパラメータによりMnCoZn系フェライトの諸特性は多大な影響を受ける。そこで、本発明では、より好ましい磁気特性、強度特性を有するために以下に述べる規定を更に設けることができる。
JIS R 1607に基づくファインセラミックスの破壊靭性値:1.00MPa・m1/2以上
MnCoZn系フェライトはセラミックスであり、脆性材料であるためほとんど塑性変形しない。そのため、破壊靭性の評価には、JIS R 1607に規定されたSEPB法を用いる。このSEPB法は、測定物の中心部にビッカース圧痕を打痕し、予き裂を加えた状態で曲げ試験をすることで破壊靭性値(Kic)を測定する。本発明のMnCoZn系フェライトは、高靭性が求められる自動車搭載用を想定しており、SEPB法により求めた破壊靭性値が1.00MPa・m1/2以上であることが望ましい。
Further, various characteristics of MnCoZn-based ferrite are greatly affected by various parameters, not limited to the composition. Therefore, in the present invention, the following provisions can be further provided in order to have more preferable magnetic characteristics and strength characteristics.
Fracture toughness value of fine ceramics based on JIS R 1607: 1.00 MPa · m 1/2 or more MnCoZn-based ferrite is a ceramic and is a brittle material, so it hardly plastically deforms. Therefore, the SEBP method specified in JIS R 1607 is used for the evaluation of fracture toughness. In this SEBP method, the fracture toughness value (Kic) is measured by imprinting a Vickers indentation in the center of the object to be measured and performing a bending test with a pre-crack added. The MnCoZn-based ferrite of the present invention is intended for use in automobiles where high toughness is required, and it is desirable that the fracture toughness value obtained by the SEBP method is 1.00 MPa · m 1/2 or more.

この破壊靭性値の条件を満たすためには、得られたMnCoZn系フェライトの表面残留応力の値が40MPa未満である必要がある。ここで、表面残留応力の値は、MnCoZn系フェライト(フェライトコア)の表面を、MnFeと仮定し、X線回折により、148.40°に出現する(551)面ピークのシフトから微小応力を算出した結果である。
MnCoZn系フェライトは脆性材料であることから、引張応力によって破断する。同様に脆性材料であるガラスでは、この破断を引き起こす引張応力を相殺するために、予め表面に圧縮応力を付与した強化ガラスが知られている。これに着想を得て、MnCoZn系フェライトにおいても表面応力を制御することで破壊靭性値を向上できるのではないか、と本発明者らは考え、鋭意研究を重ねた。その結果、通常のMnCoZn系フェライトの表面には、焼成時の還元反応による若干の酸素欠乏状態によって発生した引張応力が残留しており、この引張応力を低減することにより材料としてのMnCoZn系フェライトの破壊靭性値を高めることができることを突き止めた。そして破壊靭性値と表面残留応力との間には相関があり、1.00MPa・m1/2以上という望ましい破壊靭性値を得るためには、表面残留応力を40MPa未満とする必要があり、38MPa以下とすることが好ましく、36MPa以下とすることがより好ましい。
In order to satisfy the condition of the fracture toughness value, the value of the surface residual stress of the obtained MnCoZn-based ferrite needs to be less than 40 MPa. Here, the value of the surface residual stress is minute from the shift of the (551) plane peak appearing at 148.40 ° by X-ray diffraction, assuming that the surface of the MnCoZn-based ferrite (ferrite core) is MnFe 2 O 4. This is the result of calculating the stress.
Since MnCoZn-based ferrite is a brittle material, it breaks due to tensile stress. Similarly, for glass, which is a brittle material, tempered glass in which compressive stress is previously applied to the surface is known in order to cancel the tensile stress that causes this fracture. Inspired by this, the present inventors thought that the fracture toughness value could be improved by controlling the surface stress even in MnCoZn-based ferrite, and repeated diligent research. As a result, tensile stress generated due to a slight oxygen deficiency due to the reduction reaction during firing remains on the surface of ordinary MnCoZn-based ferrite, and by reducing this tensile stress, MnCoZn-based ferrite as a material can be used. It was found that the fracture toughness value can be increased. There is a correlation between the fracture toughness value and the surface residual stress, and in order to obtain the desired fracture toughness value of 1.00 MPa · m 1/2 or more, the surface residual stress must be less than 40 MPa, and 38 MPa. The value is preferably 36 MPa or less, and more preferably 36 MPa or less.

MnCoZn系フェライトの表面残留応力の値を40MPa未満に保つためには、フェライトコア製造過程における焼成後の焼成品を、10N以上の濃度の酸化性液体に0.50時間超浸漬する必要がある。浸漬温度は20〜60℃の範囲が好ましい。従来のMnCoZn系フェライトの表面は、焼成時の還元作用により若干酸素欠乏状態となるために引張応力が生じており、表面残留応力は40MPa以上となる。そこで、本発明の製造方法では、焼成品としてのフェライトを所定濃度の酸化性液体に浸漬することで化学的に酸化させる。この手法により、フェライト表面部に酸素が付与される結果、表面の引張応力は低減して、残留応力が40MPa未満になる。
ここで、酸化性液体は、入手のし易さ、取り扱い易さ等の点から、硝酸、硫酸または塩酸が好ましい。
In order to keep the surface residual stress value of MnCoZn-based ferrite below 40 MPa, it is necessary to immerse the fired product after firing in the ferrite core manufacturing process in an oxidizing liquid having a concentration of 10 N or more for more than 0.50 hours. The immersion temperature is preferably in the range of 20 to 60 ° C. The surface of the conventional MnCoZn-based ferrite is slightly oxygen-deficient due to the reducing action during firing, so that tensile stress is generated, and the surface residual stress is 40 MPa or more. Therefore, in the production method of the present invention, ferrite as a fired product is chemically oxidized by immersing it in an oxidizing liquid having a predetermined concentration. As a result of oxygen being applied to the ferrite surface portion by this method, the tensile stress on the surface is reduced and the residual stress becomes less than 40 MPa.
Here, the oxidizing liquid is preferably nitric acid, sulfuric acid or hydrochloric acid from the viewpoint of easy availability, ease of handling and the like.

次に、本発明のMnCoZn系フェライトの製造方法について詳細に説明する。
MnCoZn系フェライトの製造については、まず所定の比率となるようFe、ZnO、CoOおよびMnOを秤量し,これらを十分に混合した後に仮焼及び冷却を行い仮焼粉とする(仮焼工程)。Fe、ZnO、CoOおよびMnOは、通常、粉末である。この仮焼粉を粉砕する際に、本発明にて規定された副成分としての添加物を所定の比率で加え、混合し、粉砕粉を得る(混合−粉砕工程)。この工程では、添加した成分の濃度に偏りがないよう粉末が充分に均質化され、かつ仮焼粉を目標の平均粒径の大きさに微細化する。かくして得られた目標組成の粉末状の粉砕粉にポリビニルアルコール等の有機物バインダーを加え、スプレードライ法等による造粒工程を経て造粒粉とし(造粒工程)、必要であればかかる造粒粉を粒度調整のために篩通し等の工程を行った後,成形機にて圧力を加えて成形する。かかる成形を行った後、適した焼成条件の下で焼成を行い(焼成工程)、濃度10N以上の酸化性液体に0.50時間超、すなわち30分超浸漬する(浸漬工程)。その後、必要に応じて水洗して乾燥し、本発明に従うフェライト焼結体すなわちMnCoZn系フェライトとなる。
得られた上記フェライト焼結体は、表面研磨等加工を施しても構わない。
Next, the method for producing MnCoZn-based ferrite of the present invention will be described in detail.
Regarding the production of MnCoZn-based ferrite, Fe 2 O 3 , ZnO, CoO and MnO are first weighed so as to have a predetermined ratio, and after sufficiently mixing these, calcining and cooling are performed to obtain calcined powder (temporary firing). Process). Fe 2 O 3 , ZnO, CoO and MnO are usually powders. When crushing this calcined powder, an additive as an auxiliary component specified in the present invention is added at a predetermined ratio and mixed to obtain a pulverized powder (mixing-crushing step). In this step, the powder is sufficiently homogenized so that the concentration of the added component is not biased, and the calcined powder is refined to the target average particle size. An organic binder such as polyvinyl alcohol is added to the powdered pulverized powder having the target composition thus obtained, and the granulated powder is obtained through a granulation step by a spray-drying method or the like (granulation step), and if necessary, such granulated powder. After performing steps such as sieving to adjust the particle size, pressure is applied with a molding machine to mold. After such molding, firing is performed under suitable firing conditions (calcination step), and the mixture is immersed in an oxidizing liquid having a concentration of 10 N or more for more than 0.50 hours, that is, more than 30 minutes (immersion step). Then, if necessary, it is washed with water and dried to obtain a ferrite sintered body according to the present invention, that is, MnCoZn-based ferrite.
The obtained ferrite sintered body may be subjected to surface polishing or other processing.

かくして得られたMnCoZn系フェライトは、従来のMnCoZn系フェライトでは不可能であった、極めて優れた特性を有している。これらの極めて優れた特性とは、例えば、平板状試料のJIS R1607に基づく破壊靭性測定による破壊靭性値が1.00MPa・m1/2以上(好ましくは1.05MPa・m1/2以上)、比抵抗が30Ω・m以上(好ましくは40Ω・m以上、より好ましくは50Ω・m以上)、キュリー温度が100℃以上、同条件で作製したトロイダル形状コアの23℃における保磁力が15.0A/m以下(好ましくは13.0A/m以下)かつ23℃、10MHzにおける初透磁率の値が150以上という極めて優れた特性である。The MnCoZn-based ferrite thus obtained has extremely excellent properties that were not possible with conventional MnCoZn-based ferrites. These extremely excellent characteristics include, for example, a fracture toughness value measured by a fracture toughness measurement based on JIS R1607 of a flat plate sample of 1.00 MPa · m 1/2 or more (preferably 1.05 MPa · m 1/2 or more). The specific resistance is 30Ω ・ m or more (preferably 40Ω ・ m or more, more preferably 50Ω ・ m or more), the Curie temperature is 100 ° C or more, and the coercive force at 23 ° C of the toroidal-shaped core manufactured under the same conditions is 15.0A / It has extremely excellent characteristics of m or less (preferably 13.0 A / m or less) and an initial magnetic permeability value of 150 or more at 23 ° C. and 10 MHz.

(実施例1)
Fe、ZnO、CoOおよびMnO量が表1に示す比率となるように秤量した各原料粉末を、ボールミルを用いて16時間混合した後、空気中にて900℃で3時間の仮焼を行い、大気中にて1.5時間かけて室温まで冷却し仮焼粉とした。次に、この仮焼粉に対し、SiOおよびCaOをそれぞれ150、700massppm相当分秤量した後に添加し、ボールミルで12時間粉砕した。ついで、かかる粉砕により得られた粉砕粉に、ポリビニルアルコールを加えてスプレードライ造粒し、118MPaの圧力をかけトロイダルコア形状および平板状コア形状に成形し成形体とした。その後、これらの成形体を焼成炉に装入して、最高温度1320℃で2時間、窒素ガスと空気を適宜混合したガス流中で焼成し、これら焼成後の焼成品を23℃の室温下、13.0N(規定)の硝酸に1.00時間浸漬した後取り出し、純水で洗浄して乾燥することで、MnCoZn系フェライトとしての、外径:25mm、内径:15mm、高さ:5mmの焼結体トロイダルコア(以下単にトロイダルコアともいう)と、縦:4mm、横:35mm、厚み:3mmの焼結体平板状コア(以下単に直方体コアともいう)を得た。
なお、原料として高純度原料を用い、かつボールミル等媒体は使用前に十分に洗浄し、他材質からの成分混入を抑制したことから、トロイダルコアおよび直方体コアに含まれる不純物P、BおよびTiの含有量はそれぞれ4、3および15massppmであった。また、P、BおよびTiの含有量は、JIS K 0102(IPC質量分析法)に従って定量した。
(Example 1)
Each raw material powder weighed so that the amounts of Fe 2 O 3 , ZnO, CoO and MnO have the ratios shown in Table 1 are mixed using a ball mill for 16 hours, and then calcined in air at 900 ° C. for 3 hours. Was cooled to room temperature in the air for 1.5 hours to obtain a calcined powder. Next, SiO 2 and CaO were weighed equivalent to 150 and 700 mass ppm, respectively, and then added to the calcined powder, and the mixture was pulverized with a ball mill for 12 hours. Then, polyvinyl alcohol was added to the pulverized powder obtained by such pulverization, spray-dried granulation was applied, and a pressure of 118 MPa was applied to form a toroidal core shape and a flat core shape to obtain a molded product. Then, these molded bodies were charged into a firing furnace and fired at a maximum temperature of 1320 ° C. for 2 hours in a gas stream in which nitrogen gas and air were appropriately mixed, and the fired products after firing were placed at room temperature of 23 ° C. After immersing in 13.0N (specified) nitrate for 1.00 hours, it is taken out, washed with pure water and dried to obtain MnCoZn-based ferrite having an outer diameter of 25 mm, an inner diameter of 15 mm, and a height of 5 mm. A sintered toroidal core (hereinafter, also simply referred to as a toroidal core) and a sintered flat plate-shaped core (hereinafter, simply referred to as a rectangular core) having a length of 4 mm, a width of 35 mm, and a thickness of 3 mm were obtained.
Since a high-purity raw material was used as the raw material and the medium such as a ball mill was thoroughly washed before use to suppress the mixing of components from other materials, impurities P, B and Ti contained in the toroidal core and the rectangular parallelepiped core were contained. The contents were 4, 3 and 15 mass ppm, respectively. The contents of P, B and Ti were quantified according to JIS K 0102 (IPC mass spectrometry).

得られたトロイダルコアの初透磁率は、トロイダルコアに10ターンの巻線を施し、インピーダンスアナライザ(キーサイト社製4294A)を用いて測定したインピーダンスと位相角を元に算出した。
保磁力Hcは、JIS C 2560−2に基づき23℃にて測定し、比抵抗は4端子法にて測定した。
キュリー温度は、LCRメータ(キーサイト社製4980A)を用いて測定したインダクタンスの温度特性測定結果より算出した。
表面残留応力は、微小応力測定装置(リガク製AutoMATE)を使用し、Cr-Kα線を用い、並傾法を用いて計算した。このとき、フェライト表面はMnFeであると仮定し、148.40°に出現する(551)面ピークのシフトを測定し、ポアソン比0.28、弾性定数147GPaの値を用いて算出した。なお、上記並傾法の詳細は、「材料」(J.Soc.Mat.Sci.,Japan),Vol.47,No.11,pp.1189-1194,Nov.1998に記載されている。
直方体コアの破壊靭性値については、JIS R 1607に準じ、ビッカースにより中央部に打痕した試料に予き裂を加えた後に3点曲げ試験で破断し、その破断荷重と試験片の寸法を元に算出した。
得られた結果をそれぞれ表1に併記する。
The initial magnetic permeability of the obtained toroidal core was calculated based on the impedance and the phase angle measured by winding the toroidal core for 10 turns and using an impedance analyzer (4294A manufactured by Keysight Co., Ltd.).
The coercive force Hc was measured at 23 ° C. based on JIS C 2560-1, and the resistivity was measured by the 4-terminal method.
The Curie temperature was calculated from the temperature characteristic measurement result of the inductance measured using an LCR meter (4980A manufactured by Keysight Co., Ltd.).
The surface residual stress was calculated by using a micro stress measuring device (AutoMATE manufactured by Rigaku), using Cr-Kα rays, and using the parallel tilt method. At this time, assuming that the ferrite surface is MnFe 2 O 4 , the shift of the (551) plane peak appearing at 148.40 ° was measured, and calculated using the values of Poisson's ratio 0.28 and elastic constant 147 GPa. .. For details of the above-mentioned parallel tilting method, refer to "Materials" (J. Soc. Mat. Sci., Japan), Vol. 47, No. 11, pp. 1189-1194, Nov. It is described in 1998.
The fracture toughness value of the rectangular parallelepiped core is based on JIS R 1607, which is based on the fracture load and the dimensions of the test piece after pre-cracking the sample dented in the center by Vickers and then breaking it in a three-point bending test. Calculated in.
The obtained results are also shown in Table 1.

Figure 2020189035
Figure 2020189035


同表に示したとおり、発明例である実施例1−1〜1−7では、比抵抗が30Ω・m以上、23℃における保磁力が15.0A/m以下、キュリー温度が100℃以上、23℃、10MHzにおける初透磁率の値が150以上で、かつ破壊靭性値が1.00MPa・m1/2以上という、好適な磁気特性と高靭性が併せて得られている。
これに対し、Feを50.0mol%以上含む比較例1−1および1−2は、比抵抗が大幅に低下しており、渦電流損失の増大に伴い10MHzの初透磁率も大幅に劣化している。一方、Fe量が45.0mol%未満である比較例1−3では、比抵抗は問題ないものの、磁気異方性と磁歪が大きくなったため保磁力が増加し、かつキュリー温度の低下がみられる。
ZnOが過剰である比較例1−4では、キュリー温度が100℃未満まで低下している。反対にZnOが規定範囲より少ない比較例1−5では、保磁力が上昇し、所望の範囲を外れている。
CoOに着目すると、CoOを添加していない比較例1−6では、正と負の磁気異方性の相殺が不十分であるために、保磁力が高くなっている一方で、CoOを過剰に含む比較例1−7では、反対に正の磁気異方性が過剰に高まったために、保磁力が上昇し、10MHzにおける初透磁率も低下している。
As shown in the table, in Examples 1-1 to 1-7, which are examples of the invention, the specific resistance is 30 Ω · m or more, the coercive force at 23 ° C. is 15.0 A / m or less, and the Curie temperature is 100 ° C. or more. The initial magnetic permeability at 23 ° C. and 10 MHz is 150 or more, and the fracture toughness value is 1.00 MPa · m 1/2 or more, which is a combination of suitable magnetic properties and high toughness.
On the other hand, in Comparative Examples 1-1 and 1-2 containing 50.0 mol% or more of Fe 2 O 3 , the specific resistance was significantly reduced, and the initial magnetic permeability at 10 MHz was also significantly reduced as the eddy current loss increased. Has deteriorated. On the other hand, in Comparative Example 1-3 in which the amount of Fe 2 O 3 is less than 45.0 mol%, although there is no problem with the specific resistance, the coercive force increases and the Curie temperature decreases due to the increase in magnetic anisotropy and magnetostriction. Can be seen.
In Comparative Examples 1-4 in which ZnO is excessive, the Curie temperature is lowered to less than 100 ° C. On the contrary, in Comparative Example 1-5 in which ZnO is less than the specified range, the coercive force is increased and the ZnO is out of the desired range.
Focusing on CoO, in Comparative Examples 1-6 to which CoO was not added, the coercive force was high because the cancellation of the positive and negative magnetic anisotropy was insufficient, while the CoO was excessive. In Comparative Example 1-7 including, on the contrary, since the positive magnetic anisotropy was excessively increased, the coercive force was increased and the initial magnetic permeability at 10 MHz was also decreased.

(実施例2)
Feが49.0mol%、CoOが2.0mol%、ZnOが21.0mol%、MnOが28.0mol%となるよう原料を秤量し、ボールミルを用いて16時間混合した後、空気中、900℃で3時間の仮焼を行い、大気中にて1.5時間かけて室温まで冷却し仮焼粉とした。次に、この仮焼粉に表2に示す量の副成分であるSiOおよびCaOを加え、ボールミルで12時間粉砕した。ついで、かかる粉砕により得られた粉砕粉に、ポリビニルアルコールを加えてスプレードライ造粒し、118MPaの圧力をかけトロイダルコア形状および平板状コア形状に成形し成形体とした。その後、これらの成形体を焼成炉に装入して、最高温度1320℃で2時間、窒素ガスと空気を適宜混合したガス流中で焼成し、これら焼成後の焼成品を23℃の室温下、13.0N(規定)の硝酸に1.00時間浸漬した後取り出し、純水で洗浄して乾燥することで、MnCoZn系フェライトとしての、外径:25mm、内径:15mm、高さ:5mmの焼結体トロイダルコアと、縦:4mm、横:35mm、厚み:3mmの焼結体直方体コアを得た。なお、得られたトロイダルコアおよび直方体コアに含まれる不純物P、BおよびTiの含有量はそれぞれ4、3および15massppmであった。
これらの各試料について、実施例1と同じ手法、装置を用いそれぞれの特性を評価した。得られた評価の結果を、前記実施例1−2の結果とともに表2に併記する。
(Example 2)
The raw materials were weighed so that Fe 2 O 3 was 49.0 mol%, CoO was 2.0 mol%, Zn O was 21.0 mol%, and MnO was 28.0 mol%, mixed for 16 hours using a ball mill, and then in the air. , 900 ° C. for 3 hours, and cooled to room temperature in the air for 1.5 hours to obtain a calcined powder. Next, SiO 2 and CaO, which are subcomponents in the amounts shown in Table 2, were added to the calcined powder, and the mixture was pulverized with a ball mill for 12 hours. Then, polyvinyl alcohol was added to the pulverized powder obtained by such pulverization, spray-dried granulation was applied, and a pressure of 118 MPa was applied to form a toroidal core shape and a flat core shape to obtain a molded product. Then, these molded bodies were charged into a firing furnace and fired at a maximum temperature of 1320 ° C. for 2 hours in a gas stream in which nitrogen gas and air were appropriately mixed, and the fired products after firing were placed at room temperature of 23 ° C. After immersing in 13.0N (specified) nitrate for 1.00 hours, it is taken out, washed with pure water and dried to obtain MnCoZn-based ferrite having an outer diameter of 25 mm, an inner diameter of 15 mm, and a height of 5 mm. A sintered toroidal core and a sintered rectangular core having a length of 4 mm, a width of 35 mm, and a thickness of 3 mm were obtained. The contents of impurities P, B and Ti contained in the obtained toroidal core and rectangular parallelepiped core were 4, 3 and 15 mass ppm, respectively.
The characteristics of each of these samples were evaluated using the same method and equipment as in Example 1. The results of the obtained evaluation are also shown in Table 2 together with the results of Example 1-2.

Figure 2020189035
Figure 2020189035


同表に示したとおり、SiOおよびCaO量が規定の範囲内である実施例2−1〜2−4では、比抵抗が30Ω・m以上、23℃における保磁力が15.0A/m以下、キュリー温度が100℃以上、23℃、10MHzにおける初透磁率の値が150以上という良好な磁気特性と、破壊靭性値が1.00MPa・m1/2以上という高い靭性が併せて得られている。
これに対し、SiOおよびCaOの2成分のうち一方が規定量未満しか含まない比較例2−1、2−3では、粒界生成が不十分となることから比抵抗が低下し、かつ結晶粒成長の適度な抑制が不十分であるために低強度な粗大粒が一部出現することから、破壊靭性値が1.00MPa・m1/2よりも低い。反対に、同成分のうち少なくとも一方が過多である比較例2−2、2−4および2−5では、異常粒の出現により23℃、10MHzにおける初透磁率をはじめとした複数の磁気特性が劣化しており、また異常粒が多くなった結果、破壊靭性値も大きく低下している。
As shown in the table, in Examples 2-1 to 2-4 in which the amounts of SiO 2 and CaO are within the specified range, the specific resistance is 30 Ω · m or more and the coercive force at 23 ° C. is 15.0 A / m or less. , Good magnetic properties with a Curie temperature of 100 ° C. or higher, an initial magnetic permeability of 150 ° C. or higher at 23 ° C. and 10 MHz, and high toughness with a fracture toughness value of 1.00 MPa · m 1/2 or higher are obtained together. There is.
On the other hand, in Comparative Examples 2-1 and 2-3 in which one of the two components of SiO 2 and CaO contained less than the specified amount, the grain boundary formation was insufficient, so that the specific resistance was lowered and the crystal was crystallized. The fracture toughness value is lower than 1.00 MPa · m 1/2 because some coarse grains with low strength appear due to insufficient suppression of grain growth. On the contrary, in Comparative Examples 2-2, 2-4 and 2-5 in which at least one of the same components is excessive, a plurality of magnetic characteristics including the initial magnetic permeability at 23 ° C. and 10 MHz are exhibited due to the appearance of abnormal grains. As a result of deterioration and an increase in the number of abnormal grains, the fracture toughness value is also greatly reduced.

(実施例3)
実施例1に示した手法により、基本成分および副成分が実施例1−2と同じ組成となる割合にする一方、含有する不可避的不純物量が表3に示すように種々に異なる原料を用いて得られた造粒粉を、118MPaの圧力をかけトロイダルコア形状および平板状コア形状に成形して成形体とした。その後、これらの成形体を焼成炉に装入して、最高温度1320℃で2時間、窒素ガスと空気を適宜混合したガス流中で焼成し、これら焼成後の焼成品を23℃の室温下、13.0N(規定)の硝酸に1.00時間浸漬した後取り出し、純水で洗浄して乾燥することで、MnCoZn系フェライトとしての、外径:25mm、内径:15mm、高さ:5mmの焼結体トロイダルコアと、縦:4mm、横:35mm、厚み:3mmの焼結体直方体コアを得た。
これらの各試料について、実施例1と同じ手法、装置を用いそれぞれの特性を評価した。得られた評価の結果を前記実施例1−2の結果とともに表3に併記する。
(Example 3)
By the method shown in Example 1, the basic component and the sub-component have the same composition as in Example 1-2, while the amount of unavoidable impurities contained is different as shown in Table 3. The obtained granulated powder was molded into a toroidal core shape and a flat core shape by applying a pressure of 118 MPa to obtain a molded product. Then, these molded bodies were charged into a firing furnace and fired at a maximum temperature of 1320 ° C. for 2 hours in a gas stream in which nitrogen gas and air were appropriately mixed, and the fired products after firing were placed at room temperature of 23 ° C. After immersing in 13.0N (specified) nitrate for 1.00 hours, it is taken out, washed with pure water and dried to obtain MnCoZn-based ferrite having an outer diameter of 25 mm, an inner diameter of 15 mm, and a height of 5 mm. A sintered toroidal core and a sintered rectangular core having a length of 4 mm, a width of 35 mm, and a thickness of 3 mm were obtained.
The characteristics of each of these samples were evaluated using the same method and equipment as in Example 1. The results of the obtained evaluation are also shown in Table 3 together with the results of Example 1-2.

Figure 2020189035
Figure 2020189035


同表に示したとおり、不可避的不純物P、BおよびTi成分が規定の範囲内である実施例3−1では、比抵抗、保磁力および23℃、10MHzにおける初透磁率の全てに優れるだけでなく、1.00MPa・m1/2以上という優れた破壊靭性値も得られている。
これに対し、上記不純物成分のうちいずれか一つ以上が規定値を超えて含まれる比較例3−1〜3−4では、異常粒が出現することから複数の磁気特性が劣化し、同時に破壊靭性値も低下し、ともに所望の値が得られていない。
As shown in the table, in Example 3-1 in which the unavoidable impurities P, B and Ti components are within the specified range, only the specific resistance, the coercive force and the initial magnetic permeability at 23 ° C. and 10 MHz are excellent. However, an excellent fracture toughness value of 1.00 MPa · m 1/2 or more is also obtained.
On the other hand, in Comparative Examples 3-1 to 3-4 in which any one or more of the above impurity components is contained in excess of the specified value, a plurality of magnetic properties are deteriorated due to the appearance of abnormal particles, and the particles are destroyed at the same time. The toughness value is also lowered, and neither of them is obtained as desired.

(実施例4)
実施例1に示した手法により作製した実施例1−2と同じ組成となるようして得られた造粒粉を、118MPaの圧力をかけトロイダルコア形状および平板状コア形状に成形して成形体とした。その後、これらの成形体を焼成炉に装入して、最高温度1320℃で2時間、窒素ガスと空気を適宜混合したガス流中で焼成して得られた焼結品を、表4に示す条件にて、酸化性液体である、硝酸、硫酸または塩酸に浸漬処理した後取り出し、純水で洗浄して乾燥することで、MnCoZn系フェライトとしての、外径:25mm、内径:15mm、高さ:5mmの焼結体トロイダルコアと、縦:4mm、横:35mm、厚み:3mmの焼結体直方体コアを得た。なお、浸漬後のトロイダルコアおよび直方体コアに含有するP、BおよびTi成分の量は、いずれもそれぞれ4、3および15massppmであった。
これらの各試料について、実施例1と同じ手法、装置を用いてそれぞれの特性を評価した。得られた結果を前記実施例1−2の結果とともに表4に併記する。
(Example 4)
The granulated powder obtained so as to have the same composition as that of Example 1-2 produced by the method shown in Example 1 was molded into a toroidal core shape and a flat core shape by applying a pressure of 118 MPa to form a molded product. And said. After that, these molded bodies were charged into a firing furnace and fired at a maximum temperature of 1320 ° C. for 2 hours in a gas stream in which nitrogen gas and air were appropriately mixed, and the sintered products obtained are shown in Table 4. Under the conditions, it is immersed in nitric acid, sulfuric acid or hydrochloric acid, which is an oxidizing liquid, then taken out, washed with pure water and dried to obtain MnCoZn-based ferrite with an outer diameter of 25 mm, an inner diameter of 15 mm, and a height. A 5 mm sintered toroidal core and a sintered rectangular core having a length of 4 mm, a width of 35 mm, and a thickness of 3 mm were obtained. The amounts of P, B and Ti components contained in the toroidal core and the rectangular parallelepiped core after immersion were 4, 3 and 15 mass ppm, respectively.
The characteristics of each of these samples were evaluated using the same method and apparatus as in Example 1. The obtained results are also shown in Table 4 together with the results of Example 1-2.

Figure 2020189035
Figure 2020189035


浸漬工程において
1)浸漬する酸化性液体の濃度が10規定(N)以上で、
2)浸漬時間が0.50時間(Hr)超
の1)、2)の両方を満たす浸漬工程条件下で作製した実施例4−1〜4−8では、MnCoZn系フェライトとしてのコアの表面が化学的に酸化されるため、コアの表面残留応力が40MPa未満となった。その結果、引張応力が低下し、コアの破壊靭性値が1.00MPa・m1/2以上という良好な破壊靭性値が得られている。
これに対し、上記の条件を満足しない浸漬工程を経て作製した比較例4−1〜4−8では、化学的酸化が不十分であることから表面に残留した引張応力の解消も不十分である。その結果、所望の破壊靭性値が得られていない。
In the dipping process 1) When the concentration of the oxidizing liquid to be immersed is 10 specified (N) or more,
2) In Examples 4-1 to 4-8 produced under the immersion step conditions where the immersion time exceeds 0.50 hours (Hr) 1) and 2), the surface of the core as MnCoZn-based ferrite is Due to chemical oxidation, the surface residual stress of the core was less than 40 MPa. As a result, the tensile stress is reduced, and a good fracture toughness value of 1.00 MPa · m 1/2 or more is obtained for the core.
On the other hand, in Comparative Examples 4-1 to 4-8 produced through a dipping step that does not satisfy the above conditions, the tensile stress remaining on the surface is not sufficiently eliminated because the chemical oxidation is insufficient. .. As a result, the desired fracture toughness value has not been obtained.

(実施例1)
Fe23、ZnO、CoOおよびMnO量が表1に示す比率となるように秤量した各原料粉末を、ボールミルを用いて16時間混合した後、空気中にて900℃で3時間の仮焼を行い、大気中にて1.5時間かけて室温まで冷却し仮焼粉とした。次に、この仮焼粉に対し、SiO2およびCaOをそれぞれ150、700massppm相当分秤量した後に添加し、ボールミルで12時間粉砕した。ついで、かかる粉砕により得られた粉砕粉に、ポリビニルアルコールを加えてスプレードライ造粒し、118MPaの圧力をかけトロイダルコア形状および平板状コア形状に成形し成形体とした。その後、これらの成形体を焼成炉に装入して、最高温度1320℃で2時間、窒素ガスと空気を適宜混合したガス流中で焼成し、これら焼成後の焼成品を23℃の室温下、13.0N(規定)の硝酸に1.00時間浸漬した後取り出し、純水で洗浄して乾燥することで、MnCoZn系フェライトとしての、外径:25mm、内径:15mm、高さ:5mmの焼結体トロイダルコア(以下単にトロイダルコアともいう)と、縦:4mm、横:35mm、厚み:3mmの焼結体平板状コア(以下単に直方体コアともいう)を得た。
なお、原料として高純度原料を用い、かつボールミル等媒体は使用前に十分に洗浄し、他材質からの成分混入を抑制したことから、トロイダルコアおよび直方体コアに含まれる不純物P、BおよびTiの含有量はそれぞれ4、3および15massppmであった。また、P、BおよびTiの含有量は、JIS K 0102(ICP質量分析法)に従って定量した。
(Example 1)
Each raw material powder weighed so that the amounts of Fe 2 O 3 , ZnO, CoO and MnO have the ratios shown in Table 1 are mixed using a ball mill for 16 hours, and then calcined in air at 900 ° C. for 3 hours. Was cooled to room temperature in the air for 1.5 hours to obtain a calcined powder. Next, SiO 2 and CaO were weighed equivalent to 150 and 700 mass ppm, respectively, and then added to the calcined powder, and the mixture was pulverized with a ball mill for 12 hours. Then, polyvinyl alcohol was added to the pulverized powder obtained by such pulverization, spray-dried granulation was applied, and a pressure of 118 MPa was applied to form a toroidal core shape and a flat core shape to obtain a molded product. Then, these molded bodies were charged into a firing furnace and fired at a maximum temperature of 1320 ° C. for 2 hours in a gas stream in which nitrogen gas and air were appropriately mixed, and the fired products after firing were placed at room temperature of 23 ° C. After immersing in 13.0N (specified) nitrate for 1.00 hours, it is taken out, washed with pure water and dried to obtain MnCoZn-based ferrite having an outer diameter of 25 mm, an inner diameter of 15 mm, and a height of 5 mm. A sintered toroidal core (hereinafter, also simply referred to as a toroidal core) and a sintered flat plate-shaped core (hereinafter, simply referred to as a rectangular core) having a length of 4 mm, a width of 35 mm, and a thickness of 3 mm were obtained.
Since a high-purity raw material was used as the raw material and the medium such as a ball mill was thoroughly washed before use to suppress the mixing of components from other materials, impurities P, B and Ti contained in the toroidal core and the rectangular parallelepiped core were contained. The contents were 4, 3 and 15 mass ppm, respectively. The contents of P, B and Ti were quantified according to JIS K 0102 (ICP mass spectrometry).

得られたトロイダルコアの初透磁率は、トロイダルコアに10ターンの巻線を施し、インピーダンスアナライザ(キーサイト社製4294A)を用いて測定したインピーダンスと位相角を元に算出した。
保磁力Hcは、JIS C 2560−2に基づき23℃にて測定し、比抵抗は4端子法にて測定した。
キュリー温度は、LCRメータ(キーサイト社製4980A)を用いて測定したインダクタンスの温度特性測定結果より算出した。
表面残留応力は、微小応力測定装置(リガク製AutoMATE)を使用し、Cr-Kα線を用い、並傾法を用いて計算した。このとき、フェライト表面はMnFe24であると仮定し、148.40°に出現する(551)面ピークのシフトを測定し、ポアソン比0.28、弾性定数147GPaの値を用いて算出した。なお、上記並傾法の詳細は、「材料」(J.Soc.Mat.Sci.,Japan),Vol.47,No.11,pp.1189-1194,Nov.1998に記載されている。
直方体コアの破壊靭性値については、JIS R 1607に準じ、ビッカース圧子により中央部に打痕した試料に予き裂を加えた後に3点曲げ試験で破断し、その破断荷重と試験片の寸法を元に算出した。
得られた結果をそれぞれ表1に併記する。

The initial magnetic permeability of the obtained toroidal core was calculated based on the impedance and the phase angle measured by winding the toroidal core for 10 turns and using an impedance analyzer (4294A manufactured by Keysight Co., Ltd.).
The coercive force Hc was measured at 23 ° C. based on JIS C 2560-1, and the resistivity was measured by the 4-terminal method.
The Curie temperature was calculated from the temperature characteristic measurement result of the inductance measured using an LCR meter (4980A manufactured by Keysight Co., Ltd.).
The surface residual stress was calculated by using a micro stress measuring device (AutoMATE manufactured by Rigaku), using Cr-Kα rays, and using the parallel tilt method. At this time, assuming that the ferrite surface is MnFe 2 O 4 , the shift of the (551) plane peak appearing at 148.40 ° was measured and calculated using the values of Poisson's ratio 0.28 and elastic constant 147 GPa. .. For details of the above-mentioned parallel tilting method, refer to "Materials" (J. Soc. Mat. Sci., Japan), Vol. 47, No. 11, pp. 1189-1194, Nov. It is described in 1998.
Regarding the fracture toughness value of the rectangular parallelepiped core, according to JIS R 1607, a sample that was dented in the center by a Vickers indenter was cracked and then fractured by a three-point bending test, and the fracture load and the dimensions of the test piece were determined. Calculated based on.
The obtained results are also shown in Table 1.

Claims (4)

基本成分、副成分および不可避的不純物からなるMnCoZn系フェライトであって、
上記基本成分として、
鉄:Fe換算で45.0mol%以上、50.0mol%未満、
亜鉛:ZnO換算で15.5〜24.0mol%、
コバルト:CoO換算で0.5〜4.0mol%および
マンガン:残部
を含み、
上記基本成分に対して、副成分として、
SiO:50〜300massppmおよび
CaO:300〜1300massppm
を含み、
上記不可避的不純物におけるP、BおよびTi量をそれぞれ、
P:10massppm未満、
B:10massppm未満および
Ti:50massppm未満
に抑制し、
上記MnCoZn系フェライトの表面残留応力の値が40MPa未満であるMnCoZn系フェライト。
MnCoZn-based ferrite consisting of basic components, sub-components and unavoidable impurities.
As the above basic ingredients
Iron: 45.0 mol% or more and less than 50.0 mol% in terms of Fe 2 O 3,
Zinc: 15.5 to 24.0 mol% in terms of ZnO,
Cobalt: 0.5-4.0 mol% in terms of CoO and manganese: including the balance
As a sub-ingredient to the above basic ingredient
SiO 2 : 50 to 300 mass ppm and CaO: 300 to 1300 mass ppm
Including
The amounts of P, B, and Ti in the above unavoidable impurities, respectively,
P: less than 10 mass ppm,
B: suppressed to less than 10 mass ppm and Ti: less than 50 mass ppm,
The MnCoZn-based ferrite having a surface residual stress value of less than 40 MPa.
前記MnCoZn系フェライトの、
JIS R1607に基づく破壊靭性測定の破壊靭性値が1.00MPa・m1/2以上であり、さらに
23℃、10MHzにおける初透磁率の値が150以上、
比抵抗が30Ω・m以上、
23℃における保磁力が15.0A/m以下、
キュリー温度が100℃以上である請求項1に記載のMnCoZn系フェライト。
Of the MnCoZn-based ferrite,
The fracture toughness value of the fracture toughness measurement based on JIS R1607 is 1.00 MPa · m 1/2 or more, and the initial magnetic permeability value at 23 ° C. and 10 MHz is 150 or more.
Specific resistance is 30Ω ・ m or more,
Coercive force at 23 ° C is 15.0 A / m or less,
The MnCoZn-based ferrite according to claim 1, wherein the Curie temperature is 100 ° C. or higher.
前記基本成分の混合物を仮焼し、冷却して仮焼粉を得る仮焼工程と、
上記仮焼工程で得られた仮焼粉に副成分を添加して、混合、粉砕して粉砕粉を得る混合−粉砕工程と、
上記混合−粉砕工程で得られた粉砕粉にバインダーを添加、混合した後、造粒する造粒工程と、
上記造粒工程で得られた造粒粉を成形後、焼成する焼成工程と、
酸に浸漬する浸漬工程と、
を有する請求項1または2に記載のMnCoZn系フェライトを得るMnCoZn系フェライトの製造方法であって、
前記浸漬工程は、前記焼成工程で得られた焼成品を、濃度10N以上の酸化性液体に0.50時間超浸漬するMnCoZn系フェライトの製造方法。
A calcination step of calcinating a mixture of the basic components and cooling the mixture to obtain calcination powder.
A mixing-crushing step of adding an auxiliary component to the calcined powder obtained in the above calcining step, mixing and crushing to obtain a crushed powder, and
A granulation step of adding a binder to the crushed powder obtained in the above mixing-crushing step, mixing, and then granulating.
A firing step in which the granulated powder obtained in the above granulation step is molded and then fired.
The dipping process of dipping in acid and
The method for producing MnCoZn-based ferrite according to claim 1 or 2, wherein the MnCoZn-based ferrite is obtained.
The dipping step is a method for producing MnCoZn-based ferrite in which the fired product obtained in the firing step is immersed in an oxidizing liquid having a concentration of 10 N or more for more than 0.50 hours.
前記酸化性液体が硝酸、硫酸または塩酸である、請求項3に記載のMnCoZn系フェライトの製造方法。 The method for producing MnCoZn-based ferrite according to claim 3, wherein the oxidizing liquid is nitric acid, sulfuric acid or hydrochloric acid.
JP2020524253A 2019-03-18 2020-01-29 MnCoZn ferrite and method for producing the same Active JP6732159B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019049935 2019-03-18
JP2019049935 2019-03-18
PCT/JP2020/003151 WO2020189035A1 (en) 2019-03-18 2020-01-29 MnCoZn FERRITE AND METHOD FOR PRODUCING SAME

Publications (2)

Publication Number Publication Date
JP6732159B1 JP6732159B1 (en) 2020-07-29
JPWO2020189035A1 true JPWO2020189035A1 (en) 2021-04-01

Family

ID=71738601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020524253A Active JP6732159B1 (en) 2019-03-18 2020-01-29 MnCoZn ferrite and method for producing the same

Country Status (1)

Country Link
JP (1) JP6732159B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7182016B2 (en) * 2020-07-14 2022-12-01 Jfeケミカル株式会社 MnCoZn ferrite

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3653625B2 (en) * 1998-07-22 2005-06-02 ミネベア株式会社 High permeability Mn-Zn ferrite
JP5488536B2 (en) * 2011-06-22 2014-05-14 Tdk株式会社 Ferrite core and electronic components
WO2019044060A1 (en) * 2017-08-29 2019-03-07 Jfeケミカル株式会社 Mncozn ferrite and method for producing same

Also Published As

Publication number Publication date
JP6732159B1 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
JP6742440B2 (en) MnCoZn ferrite and method for producing the same
WO2019044060A1 (en) Mncozn ferrite and method for producing same
JP7182016B2 (en) MnCoZn ferrite
WO2020158335A1 (en) Mnzn-based ferrite and method for manufacturing same
JP6732159B1 (en) MnCoZn ferrite and method for producing the same
JP6730546B1 (en) MnCoZn ferrite and method for producing the same
JP6730547B1 (en) MnZn-based ferrite and method for producing the same
JP6730545B1 (en) MnZn-based ferrite and method for producing the same
TWI704122B (en) Manganese-cobalt-zinc fertilizer granular iron and its manufacturing method
JP6553833B1 (en) MnCoZn-based ferrite and method for producing the same
JP6732158B1 (en) MnZn-based ferrite and method for producing the same
JP6732160B1 (en) MnZn-based ferrite and method for producing the same
WO2020189035A1 (en) MnCoZn FERRITE AND METHOD FOR PRODUCING SAME
WO2020189036A1 (en) MnZn-BASED FERRITE AND METHOD FOR MANUFACTURING SAME
WO2020189037A1 (en) MnZn-BASED FERRITE AND METHOD FOR MANUFACTURING SAME
JP6553834B1 (en) MnCoZn-based ferrite and method for producing the same
WO2020158333A1 (en) Mnzn-based ferrite and method for manufacturing same
WO2019167392A1 (en) Mncozn ferrite and production method for same
WO2022014218A1 (en) Manganese-zinc ferrite
WO2019167393A1 (en) Mncozn ferrite and production method for same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200428

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200428

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200707

R150 Certificate of patent or registration of utility model

Ref document number: 6732159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150