JP2004003611A - Sleeve bearing for underwater and its application - Google Patents

Sleeve bearing for underwater and its application Download PDF

Info

Publication number
JP2004003611A
JP2004003611A JP2003052432A JP2003052432A JP2004003611A JP 2004003611 A JP2004003611 A JP 2004003611A JP 2003052432 A JP2003052432 A JP 2003052432A JP 2003052432 A JP2003052432 A JP 2003052432A JP 2004003611 A JP2004003611 A JP 2004003611A
Authority
JP
Japan
Prior art keywords
sleeve bearing
synthetic resin
underwater
rbc
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003052432A
Other languages
Japanese (ja)
Other versions
JP2004003611A5 (en
Inventor
Kazuo Horikirigawa
堀切川 一男
Motoharu Akiyama
秋山 元治
Meiten Kawamura
河村 名展
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2003052432A priority Critical patent/JP2004003611A/en
Publication of JP2004003611A publication Critical patent/JP2004003611A/en
Priority to US10/789,163 priority patent/US20040258334A1/en
Priority to EP04251136A priority patent/EP1452751A3/en
Publication of JP2004003611A5 publication Critical patent/JP2004003611A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber reinforced sleeve bearing for underwater demonstrating an excellent friction characteristic. <P>SOLUTION: The sleeve bearing consists of a shaft and a sleeve fundamentally. The sleeve bearing for underwater is made from the synthetic resin composition which uniformly distributes fine powder of RBC or CRBC into the synthetic resin, and is made from the synthetic resin composition which blends inorganic fiber and/or organic fiber. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、水中での摩擦係数が小さい水中で用いる水中用スリーブ軸受に関する。
日本において90万トン/年、世界中で3300万トン/年も排出されている米ぬかを利用して、多孔質炭素材料を得ようとすることは、本件の第一発明者である堀切川 一男の研究により知られている。(非特許文献1参照)
ここには、米ぬかから得られる脱脂ぬかと、熱硬化性樹脂を混合して混錬し、加圧成型した成型体を乾燥させた後、乾燥成型体を不活性ガス雰囲気中で焼成した炭素材料であるRBセラミックス(以下RBCという)及びその製造方法が示されている。熱硬化性樹脂は、熱硬化しさえすればどのようなものでも良く、代表的にはフェノール系樹脂、ジアリールフタレート系樹脂、不飽和ポリエステル系樹脂、エポキシ系樹脂、ポリイミド系樹脂、トリアジン系樹脂が挙げられる。とくにフェノール系樹脂が好適に用いられる。 脱脂ぬかと熱硬化性樹脂の混合割合は、質量比で、50〜90:50〜10であるが、好適には75:25 が用いられる。
焼成温度は、700℃〜1000℃であり、通常はロータリーキルンが用いられ、焼成時間は約40分から120分である。
RBセラミックスをさらに改良した炭素材料であるCRBセラミックス(以下CRBCという)は、米ぬかから得られる脱脂ぬかと、熱硬化性樹脂とから得られるRBセラミックスの改良材であって、米ぬかから得られる脱脂ぬかと、熱硬化性樹脂を混合して混錬し、不活性ガス中700℃〜1000℃で一次焼成した後、100メッシュ程度以下に粉砕して炭化粉末とし、該炭化粉末と熱硬化性樹脂を混合して混錬し、圧力20MPa〜30MPaで加圧成型した後、成型体を不活性ガス雰囲気中で再び500℃〜1100℃で熱処理して得られる黒色樹脂ないし多孔質セラミックスである。
【0002】
RBC及びCRBCは、次のような優れた特徴を持っている。
・硬度が高い。
・粒子にしても形状がいびつ。
・膨張係数が非常に小さい。
・組織構造がポーラスである。
・電気伝導性を有する。
・比重が小さく軽い。
・摩擦係数が非常に小さい。
・耐摩耗性に優れる。
・材料が米ぬかで地球環境への悪影響が少なく、省資源に繋がる。
本発明は、RBC及びCRBCを平均粒子径300μm以下、好ましくは10〜100μmとくに好ましくは、10〜50μmに微粉末化して用い、合成樹脂と混合することにより得られる合成樹脂組成物を利用した水中用のスリーブ軸受に関する。
【0003】
【従来技術】
従来、水冷式エンジンを冷却するウオータポンプなど液体中で使われるポンプの軸受には、軸受に液体が浸入しないように、シールドが施されていた。
また、液体中で使われるポンプの軸受として、シールドしないで液体中で用いるスリーブ軸受を構成する材料の摩擦特性は、これまで実用化されていないこともあって、液体中で好ましい特性を発揮するものは殆んど知られていない。
【非特許文献1】
機能材料 1997年 5月号 Vol.17 No.5 p24〜28
【0004】
【発明が解決しようとする課題】
従来の水中用スリーブ軸受の材料として用いられている窒化珪素、アルミナ等のセラミックスやPPS等のスーパーエンプラは、水中用スリーブ軸受に要求される機械的性質、化学的性質、物理的性質を兼ね備えているが、摩擦特性、摩耗特性、生産効率、コストの点で改善の余地が残されていた。
本発明は、摩擦特性、摩耗特性、生産効率、コストを改善した水冷式エンジンの冷却水循環ポンプを提供することを課題とする。さらに、機械的性質を同時に向上させた水中用スリーブ軸受を提供することを課題とする。
また、シールドを施さずそのまま液体中、たとえば水―エチレングリコール混合物である水冷式エンジンの冷却水中で用いたとき優れた防錆性の摩擦特性を発揮する水中用スリーブ軸受を提供することを目的としている。
【0005】
【課題を解決するための手段】
本発明者は、RBC(RBセラミックス)又はCRBC(CRBセラミックス)の水中における優れた摩擦特性、摩耗特性に着目し、鋭意研究した結果、以下の手段により課題が解決されることを見出した。
すなわち、合成樹脂にRBC又はCRBCの微粉末を組成物全体の10〜50質量%加えて混錬した樹脂組成物を成型することにより、摩擦特性、摩耗特性、生産効率、コストが改善された水中用スリーブ軸受を得た。
さらに、本発明者は、合成樹脂に繊維材料を加えた繊維強化合成樹脂に、RBC又はCRBCの微粉末を組成物全体の10〜50質量%混錬した樹脂組成物を成型することにより、摩擦特性、摩耗特性が維持され、かつ、機械的性質が改善された水中用スリーブ軸受を得た。
また、本発明者は、この水中用スリーブ軸受を用いて摩擦特性、摩耗特性だけでなく機械的性質も改善された水冷式エンジンの冷却水循環ポンプが得られることを見出した。
RBC(RBセラミックス)又はCRBC(CRBセラミックス)の特異性に着目し、鋭意研究した結果驚くべきことには、RBC又はCRBCの微粉末を均一に分散し、とくに、RBC又はCRBCの微粉末:合成樹脂の質量比が、10〜70:90〜30とした樹脂組成物が、水、アルコール、エチレングリコール及びこれらの混合物の液体中において、防錆性および驚異的な摩擦特性を発揮する樹脂成型物となることを見いだし、本発明を完成させるに至った。
すなわち本発明は、軸とスリーブから基本的に構成され、スリーブ又は軸が、RBC又はCRBCの微粉末を合成樹脂中に均一に分散した合成樹脂組成物で作られている水中用スリーブ軸受を提供するものである。
本発明の水中用スリーブ軸受に用いる樹脂組成物の典型的な製造方法は、RBC又はCRBCの微粉末を合成樹脂の融点付近の温度で混錬することにより、RBC又はCRBCの微粉末を均一に分散することにより簡単に得られる。
【0006】
【本発明の実施の形態】
本発明の典型的な例を図1に示す。スリーブ軸受は、軸1とスリーブ2からなる。RBC又はCRBCの微粉末を合成樹脂中に均一に分散した合成樹脂組成物を成型して、軸またはスリーブを作製する。
本発明においては通常、軸にはステンレス鋼系の合金が用いられる。硬い軸を必要とするときは、焼入れを行う。図3に示すように、必要により、軸の一部に硬質の防錆合金を圧入して用いても良い。さらに、前記の合成樹脂組成物で軸を作製しても良い。
スリーブ軸受2の形状は、図1ないし図4に示したもののほか、鍔付きスリーブなど周知の形状のスリーブであっても良い。
本発明において用いるRBC又はCRBCの微粉末は、平均粒子径300μm以下のものが用いられる。特に平均粒子径10〜100μmより好ましくは10〜50μmのものが、摩擦係数の良い表面状態を作り出し、水中用スリーブ軸受の材料として適している。
【0007】
本発明において用いることが出来る合成樹脂としては、ポリアミド、ポリエステル、ポリオレフィン等の熱可塑性樹脂が挙げられる。具体的には、ナイロン66(ポリヘキサメチレンアジポアミド)、ナイロン6(ポリカプラミド)、ナイロン11(ポリウンデカンアミド)、ナイロン12、ポリフタールアミドなど芳香族ナイロン、ポリアセタール、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、ポリフェニレンサルファイド等の熱可塑性樹脂が挙げられる。とくに、ナイロン66、ナイロン11、ポリフタールアミド、ポリブチレンテレフタレート、ポリプロピレン、POM等が好ましく用いられる。これら熱可塑性樹脂は、1種でも2種以上を混合して用いても良い。
【0008】
さらに、本発明の趣旨を逸脱しない範囲において、熱硬化性樹脂を併用することも出来る。このような熱硬化性樹脂としては、フェノール系樹脂、ジアリールフタレート系樹脂、不飽和ポリエステル系樹脂、エポキシ系樹脂、ポリイミド系樹脂、トリアジン系樹脂などが挙げられる。
本発明において、合成樹脂の添加割合は、RBC又はCRBCの微粉末:合成樹脂の質量比が、10〜70:90〜30であることが必要である。合成樹脂の添加割合が90質量%を超えると、摩擦特性が悪くなり、30質量%以下では、成型が難しくなる。
さらに、本発明の水中用軸受に用いる合成樹脂組成物中に、硝子繊維、ロックウール、炭素繊維等の無機質繊維、ポリエステル、レーヨン、ポリビニルアルコール、ポリアミド、ポリオレフイン、アクリル、アラミド等の合成繊維又は木材パルプ、マニラ麻等の天然パルプ繊維を添加して、成型物の強度を高めることが出来る。
また、繊維は市販のもので、長繊維でも短繊維でも同様に用いることができる。
これらの繊維の配合量は、組成物全体の0.1〜70質量%配合することができるが、強度及び摩擦特性から1〜30質量%であることが好ましい。
【0009】
成型は、通常、押出成型または射出成型で行われる。
また、金型の温度をやや低めに設定すると良いことが解っている。基本的には合成樹脂のガラス転移点ないし融点の範囲の温度が良い。さらに、金型は、急冷するよりも徐冷する方が、良い摩擦特性の成型物が得られることがわかっている。
本発明において、軸ないしスリーブ軸受として用いるスチール系金属としては、主として鉄とニッケル、クロム、モリブデン等のステンレス系合金であり、硬くて錆びにくい合金ならどのようなものでも良い。
【0010】
本発明の実施の形態をまとめると、以下のとおりである。
(1) 軸とスリーブから基本的に構成され、スリーブ又は軸が、RBC又はCRBCの微粉末を合成樹脂中に均一に分散した合成樹脂組成物で作られている水中用スリーブ軸受。
(2) 合成樹脂組成物が、RBC又はCRBCの微粉末:合成樹脂の質量比が、10〜70:90〜30である上記1に記載した水中用スリーブ軸受。
(3) 合成樹脂が、ナイロン66、ナイロン6、ナイロン11、ナイロン12、ポリフタールアミド、ポリアセタール、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、ポリフェニレンサルファイドから選ばれる樹脂の1種又は2種以上である上記1又は上記2に記載した水中用スリーブ軸受。
(4) 合成樹脂組成物に、さらに、無機繊維及び/又は有機繊維を配合した合成樹脂組成物で作られている上記1ないし上記3のいずれかひとつに記載した水中用スリーブ軸受。
(5) 無機繊維及び/又は有機繊維が、短繊維であり、配合量が組成物全体の1〜30質量%である上記4に記載した水中用スリーブ軸受。
(6) 無機繊維が硝子繊維である上記4又は上記5に記載した水中用スリーブ軸受。
(7) RBC又はCRBCの微粉末の平均径が、300μm以下である上記1ないし上記6のいずれかひとつに記載した水中用スリーブ軸受。
(8) RBC又はCRBCの微粉末の平均径が、10〜50μmである上記7に記載した水中用スリーブ軸受。
(9) 軸が防錆スチール系金属であり、スリーブが上記2ないし上記8のいずれかひとつに記載した合成樹脂組成物で作られている水中用スリーブ軸受。
(10) 軸が上記2ないし上記8のいずれかひとつに記載された合成樹脂組成物で作られている上記1記載の水中用スリーブ軸受。
(11) 軸またはスリーブ内面に、螺旋状の溝を設けた上記1ないし上記10のいずれかひとつに記載した水中用スリーブ軸受。
(12) 上記1ないし上記11のいずれかひとつに記載された水中用スリーブ軸受を水冷式エンジンの冷却水循環ポンプの軸受に用いること。
【0011】
(実施例)
本発明を実施例に基づいてさらに詳細に説明する。
実施例1
(RBC微粉末の製造例1)
米ぬかから得られる脱脂ぬか750gと液体状のフェノール樹脂(レゾール)250gを、50℃〜60℃に加熱しながら、混合して混錬した。可塑性を有する均質な混合物が得られた。
混合物を、ロータリーキルンを使って窒素雰囲気中900℃で100分焼き上げ、得られた炭化焼成物を、さらに粉砕機を用いて粉砕し、ついで150メッシュの篩にかけて、平均粒径が140〜160μmであるRBC微粉末を得た。
(RBC微粉末と合成樹脂の組成物の作製例1)
得られたRBC微粉末500g、ナイロン66粉末500gを240℃〜290℃に加熱しながら、混合して混錬した。可塑性を有する均質な混合物が得られた。RBC微粉末の含有量は50質量%であった。
(スリーブ軸受の作製)
RBC微粉末とナイロン66を溶融混合して得られた樹脂組成物を、射出成形して、外径が22mm内径8mm長さ120mmのスリーブを作製し、一方、SUS303ステンレス合金製の外径7.95mm長さ200mmの軸を挿入し、図1に示すようなスリーブ軸受を作製した。
【0012】
実施例2
実施例1に記載した方法を用いて、平均粒径が140〜160μmであるRBC微粉末を得た。
(RBC微粉末と合成樹脂の組成物の作製例2)
得られたRBC微粉末700g、ナイロン66粉末300gを240℃〜290℃に加熱しながら、混合して混錬した。可塑性を有する均質な混合物が得られた。RBC微粉末の含有量は70質量%であった。
(スリーブ軸受の作製)
RBC微粉末とナイロン66を溶融混合して得られた樹脂組成物を、射出成形して、外径が22mm内径8mm長さ20mmのスリーブを作製し、一方、SUS304ステンレス合金製の外径7.95mm長さ200mmの軸を挿入し、図2に示すようなスリーブ軸受を作製した。
【0013】
実施例3
(RBC微粉末の製造例3)
米ぬかから得られる脱脂ぬか750gと液体状のフェノール樹脂(レゾール)250gを、50℃〜60℃に加熱しながら、混合して混錬した。可塑性を有する均質な混合物が得られた。
混合物を、ロータリーキルンを使って窒素雰囲気中1000℃で100分焼き上げ、得られた炭化焼成物を、さらに粉砕機を用いて粉砕し、ついで400メッシュの篩にかけて、平均粒径が30〜50μmであるRBC微粉末を得た。
(RBC微粉末と合成樹脂の組成物の作製例3)
得られたRBC微粉末700g、ナイロン66粉末300gを240℃〜290℃に加熱しながら、混合して混錬した。可塑性を有する均質な混合物が得られた。RBC微粉末の含有量は70質量%であった。
(スリーブ軸受の作製)
RBC微粉末とナイロン66を溶融混合して得られた樹脂組成物を、射出成形して、外径が22mm内径8mm長さ120mmのスリーブを作製し、一方、SUSベアリング鋼製の外径7.95mm長さ200mmの軸を挿入し、図1に示すようなスリーブ軸受を作製した。
【0014】
実施例4
(CRBC微粉末の製造例)
米ぬかから得られる脱脂ぬか750gと液体状のフェノール樹脂(レゾール)250gを、50℃〜60℃に加熱しながら、混合して混錬した。可塑性を有する均質な混合物が得られた。
混合物を、ロータリーキルンを使って窒素雰囲気中で900℃で60分焼き上げた。得られた炭化焼成物を、粉砕機を用いて粉砕し、ついで200メッシュの篩にかけて、平均粒径が100〜120μmであるRBC微粉末を得た。
得られたRBC微粉末750gと固体状のフェノール樹脂(レゾール)500gを100℃〜150℃に加熱しながら、混合して混錬した。可塑性を有する均質な混合物が得られた。
次いで、可塑物を圧力22MPaで直径約1cmの球形に加圧成型した。金型の温度は150℃であった。
金型から成型体を取り出し、窒素雰囲気中で500℃までは1℃/分の昇温速度で温度を上げ、500℃で60分間保持し、900℃で約120分焼結した。次いで500℃までは2〜3℃/分の冷却速度で、温度を下げ、500℃以下になると自然放冷した。
得られたCRBC成型物を、粉砕機を用いて粉砕し、ついで500メッシュの篩にかけて、平均粒径が20〜30μmであるCRBC微粉末を得た。
(CRBC微粉末と合成樹脂の組成物の作製例)
得られたCRBC微粉末500g、ナイロン66粉末500gを240℃〜290℃に加熱しながら、混合して混錬した。可塑性を有する均質な混合物が得られた。CRBC微粉末の含有量は50質量%であった。
(スリーブ軸受の作製)
RBC微粉末とナイロン66を溶融混合して得られた樹脂組成物を、射出成形して、外径が22mm内径8mm長さ20mmのスリーブを作製し、一方、SUS304ステンレス合金製の外径7.95mm内径5.00mm長さ20mmの円筒形部品を長さ200mmのスチール製軸の両端に圧入した軸を挿入し、図3に示すような、スリーブ軸受を作製した。
【0015】
実施例5〜10で用いたRBCまたはCRBC微粉末と合成樹脂の組成物を、実施例1〜4で製造したと同じ、RBCまたはCRBC微粉末を用いて、表1に示すような条件でRBC又はCRBCの微粉末を合成樹脂中に均一に分散して作製した。また、比較のために、市販の水中ポンプ用PPS樹脂(出光石油化学株式会社製)および窒化珪素を用いた。
【表1】

Figure 2004003611
【0016】
実施例1〜10の水中用スリーブ軸受に用いたRBCまたはCRBC微粉末と合成樹脂の組成物及びPPS樹脂、窒化珪素の特性を表2にまとめる。
【表2】
Figure 2004003611
【0017】
実施例5
表1の組成物5を用いて、射出成形により、スリーブの内側に深さ0.1mmの螺旋溝を有する外径が22mm内径8mm長さ120mmのスリーブを作製し、一方、SUSベアリング鋼製の外径7.95mm長さ200mmの軸を挿入し、スリーブ軸受を作製した。
【0018】
実施例6
表1の組成物6を用いて、射出成形により、外径7.95mm長さ200mmの軸を作製した。一方、SUSベアリング鋼製の外径が22mm内径8mm長さ120mmのスリーブを作製し、両者を組み合わせて、図1に示すようなスリーブ軸受を作製した。
【0019】
実施例7
表1の組成物7を用いて、射出成形により、深さ0.1mmの螺旋溝を有する外径7.95mm長さ200mmの軸を作製した。一方、SUSベアリング鋼製の外径が22mm内径8mm長さ120mmのスリーブを作製し、両者を組み合わせて、図4に示すようなスリーブ軸受を作製した。
【0020】
実施例8
表1の組成物8を用いて、射出成形により、外径が22mm内径8mm長さ120mmのスリーブを作製し、一方、深さ0.1mmの螺旋溝を有するSUSベアリング鋼製の外径7.95mm長さ200mmの軸を挿入し、図4に示すようなスリーブ軸受を作製した。
【0021】
実施例9
表1の組成物9を用いて、射出成形により、深さ0.1mmの螺旋溝を有する外径7.95mm長さ200mmの軸を作製した。一方、SUSベアリング鋼製の外径が22mm内径8mm長さ120mmのスリーブを作製し、両者を組み合わせて、図4に示すようなスリーブ軸受を作製した。
【0022】
実施例10
(スリーブ軸受の作製)
平均粒径が150μmRBC微粉末10gと市販の短繊維硝子繊維23g及びナイロン66ペレット77gを均一に溶融混合して樹脂組成物90gを溶融混合して得られた樹脂組成物が表1の組成物10である。この組成物10を原料樹脂とし射出成型して、外径が22mm内径8mm長さ120mmのスリーブを作製し、一方、SUS303ステンレス合金製の外径7.95mm長さ200mmの軸を挿入し、図1に示すようなスリーブ軸受を作製した。
比較例
市販の水中ポンプ用PPS樹脂(出光石油化学株式会社製)を用いて、射出成形により、外径が22mm内径8mm長さ120mmのスリーブを作製し、一方、SUS303ステンレス合金製の外径7.95mm長さ200mmの軸を挿入し、図1に示すようなスリーブ軸受を作製した。
比較例2
外径が22mm内径8mm長さ120mmのスリーブを作製し、一方、SUS303ステンレス合金製の外径7.95mm長さ200mmの軸を挿入し、図1に示すような窒化珪素製スリーブ軸受を作製した。
実施例1〜10及び比較例で得られた水中用スリーブ軸受の水中での摩擦特性を表3にまとめる。
【表3】
Figure 2004003611
表中A〜Fの数値は以下の条件で測定した。
A:すべり速度(m/s−1)0.001の条件下で測定
B:すべり速度(m/s−1)0.005の条件下で測定
C:すべり速度(m/s−1)0.01の条件下で測定
D:すべり速度(m/s−1)0.1の条件下で測定
E:すべり速度(m/s−1)0.5の条件下で測定
F:すべり速度(m/s−1)1.0の条件下で測定
【0023】
実施例1で得られた平均粒子径150μmRBC微粉末及び実施例3で得られた平均粒径が30μmのCRBC微粉末を用いて、ナイロン6、ナイロン11、ナイロン12、ポリフタールアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、ポリアセタール(POM)と配合して合成樹脂組成物を製造し、試験片を作製して同様の実験を行った。
表3の結果とほぼ同様の傾向が見られた。
【0024】
【本発明の効果】
表3の結果からも明らかなように、本発明のRBC又はCRBCの微粉末及び合成樹脂又は繊維強化合成樹脂で作られた水中用スリーブ軸受は、以下の効果を奏することが判明した。
1.摩擦係数を低下させることができる。
2.低すべり速度域と高すべり速度域での摩擦係数の差を、小さくすることができる。
3.繊維強化合成樹脂を用いた場合、前記1.〜2.に加えて、機械的性質も同時に向上させることが出来る。
4.射出成形できるので、生産効率に優れる。
5.低コストである。
また、本発明のRBC又はCRBCの微粉末及び合成樹脂からなる水中用スリーブ軸受は、水中での摩擦特性が際立って優れており、水冷式エンジンの冷却水循環ポンプなど、液体中で使われるポンプの軸受として、シールドしないで液体中で用いるスリーブ軸受構造など直接液体に触れるに軸受を構成する材料として有望である。
【図面の簡単な説明】
【図1】スリーブ軸受の概略図
【図2】スリーブ軸受の応用例
【図3】スリーブ軸受の軸の一例
【図4】軸に螺旋溝を設けたスリーブ軸受の一例
【符号の説明】
1 軸
2 スリーブ
3 硬質材
4 螺旋溝[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an underwater sleeve bearing used in water having a small coefficient of friction in water.
It is Kazuo Horikirikawa, the first inventor of the present invention, to try to obtain a porous carbon material using rice bran, which emits 900,000 tons / year in Japan and 33 million tons / year worldwide. Is known by the study of (See Non-Patent Document 1)
Here, a carbon material obtained by mixing and kneading a degreased bran obtained from rice bran and a thermosetting resin, drying the molded body pressed and then firing the dried molded body in an inert gas atmosphere. (Hereinafter referred to as RBC) and a method for producing the same. The thermosetting resin may be of any type as long as it is thermally cured, and typically includes a phenolic resin, a diarylphthalate resin, an unsaturated polyester resin, an epoxy resin, a polyimide resin, and a triazine resin. No. In particular, a phenolic resin is preferably used. The mixing ratio of the degreased bran and the thermosetting resin is from 50 to 90:50 to 10 by mass, but preferably 75:25.
The firing temperature is from 700 ° C. to 1000 ° C., usually a rotary kiln is used, and the firing time is from about 40 minutes to 120 minutes.
CRB ceramics (hereinafter referred to as CRBC), a carbon material obtained by further improving RB ceramics, is a degreased bran obtained from rice bran and an improved material of RB ceramics obtained from thermosetting resin, and is a degreased bran obtained from rice bran. And a thermosetting resin are mixed and kneaded, and after primary baking at 700 ° C. to 1000 ° C. in an inert gas, pulverized to about 100 mesh or less to obtain a carbonized powder. It is a black resin or a porous ceramic obtained by mixing and kneading, press-molding at a pressure of 20 MPa to 30 MPa, and heat-treating the molded body again at 500 ° C. to 1100 ° C. in an inert gas atmosphere.
[0002]
RBC and CRBC have the following excellent features.
・ High hardness.
・ The shape of the particles is distorted.
-Very low expansion coefficient.
・ The organizational structure is porous.
-It has electrical conductivity.
・ Light and low specific gravity.
-Very low coefficient of friction.
・ Excellent wear resistance.
-If the material is rice bran, there is little adverse effect on the global environment, leading to resource saving.
The present invention uses RBC and CRBC in an average particle diameter of 300 μm or less, preferably 10 to 100 μm, and more preferably 10 to 50 μm, and uses the synthetic resin composition obtained by mixing with the synthetic resin. To a sleeve bearing for a vehicle.
[0003]
[Prior art]
Conventionally, a bearing of a pump used in a liquid such as a water pump for cooling a water-cooled engine is provided with a shield so that the liquid does not enter the bearing.
Also, as a bearing for a pump used in a liquid, the friction characteristics of a material constituting a sleeve bearing used in a liquid without being shielded exhibit favorable characteristics in a liquid, because they have not been put to practical use until now. Little is known.
[Non-patent document 1]
Functional Materials May 1997 Vol. 17 No. 5 p24-28
[0004]
[Problems to be solved by the invention]
Ceramics such as silicon nitride and alumina and super engineering plastics such as PPS, which are used as materials for conventional underwater sleeve bearings, have the mechanical, chemical, and physical properties required for underwater sleeve bearings. However, there was room for improvement in terms of friction characteristics, wear characteristics, production efficiency, and cost.
An object of the present invention is to provide a cooling water circulation pump for a water-cooled engine with improved friction characteristics, wear characteristics, production efficiency, and cost. It is another object of the present invention to provide a submerged sleeve bearing having improved mechanical properties at the same time.
Another object of the present invention is to provide an underwater sleeve bearing that exhibits excellent rustproof friction characteristics when used in a liquid without shielding, for example, in water-cooled water of a water-cooled engine that is a mixture of water and ethylene glycol. I have.
[0005]
[Means for Solving the Problems]
The inventor of the present invention focused on excellent friction and wear characteristics of RBC (RB ceramics) or CRBC (CRB ceramics) in water, and as a result of diligent research, they found that the following means would solve the problem.
That is, by adding 10 to 50% by mass of RBC or CRBC fine powder to a synthetic resin and kneading the resin composition to form a kneaded resin composition, the friction characteristics, wear characteristics, production efficiency, and cost are improved. Sleeve bearing was obtained.
Furthermore, the present inventor frictionally molds a resin composition obtained by kneading 10 to 50% by mass of a fine powder of RBC or CRBC into a fiber-reinforced synthetic resin obtained by adding a fiber material to a synthetic resin. An underwater sleeve bearing having improved properties and wear characteristics and improved mechanical properties was obtained.
The inventor has also found that a cooling water circulation pump for a water-cooled engine having improved mechanical properties as well as friction and wear properties can be obtained by using the underwater sleeve bearing.
Focusing on the specificity of RBC (RB ceramics) or CRBC (CRB ceramics), as a result of intensive research, it is surprising that the fine powder of RBC or CRBC is uniformly dispersed, especially the fine powder of RBC or CRBC: synthesis A resin composition in which a resin composition having a resin mass ratio of 10 to 70:90 to 30 exhibits rust prevention and surprising friction characteristics in a liquid of water, alcohol, ethylene glycol and a mixture thereof. And completed the present invention.
That is, the present invention provides an underwater sleeve bearing which is basically composed of a shaft and a sleeve, wherein the sleeve or the shaft is made of a synthetic resin composition in which fine powder of RBC or CRBC is uniformly dispersed in a synthetic resin. Is what you do.
A typical method for producing the resin composition used for the underwater sleeve bearing of the present invention is to uniformly knead the RBC or CRBC fine powder by kneading the RBC or CRBC fine powder at a temperature near the melting point of the synthetic resin. It is easily obtained by dispersing.
[0006]
[Embodiment of the present invention]
A typical example of the present invention is shown in FIG. The sleeve bearing includes a shaft 1 and a sleeve 2. A shaft or sleeve is produced by molding a synthetic resin composition in which fine powder of RBC or CRBC is uniformly dispersed in a synthetic resin.
In the present invention, a stainless steel alloy is usually used for the shaft. When a hard shaft is required, quenching is performed. As shown in FIG. 3, if necessary, a hard rustproof alloy may be press-fitted into a part of the shaft. Further, the shaft may be made of the synthetic resin composition.
The shape of the sleeve bearing 2 may be a sleeve having a known shape such as a flanged sleeve in addition to those shown in FIGS.
The fine powder of RBC or CRBC used in the present invention has an average particle size of 300 μm or less. In particular, those having an average particle diameter of 10 to 100 μm, more preferably 10 to 50 μm, create a surface state having a good friction coefficient and are suitable as a material for a submerged sleeve bearing.
[0007]
Examples of the synthetic resin that can be used in the present invention include thermoplastic resins such as polyamide, polyester, and polyolefin. Specifically, aromatic nylons such as nylon 66 (polyhexamethylene adipamide), nylon 6 (polycapramide), nylon 11 (polyundecaneamide), nylon 12, and polyphthalamide, polyacetal, polybutylene terephthalate, polyethylene terephthalate, Thermoplastic resins such as polypropylene, polyethylene, and polyphenylene sulfide are exemplified. In particular, nylon 66, nylon 11, polyphthalamide, polybutylene terephthalate, polypropylene, POM and the like are preferably used. These thermoplastic resins may be used alone or in combination of two or more.
[0008]
Further, a thermosetting resin may be used in combination without departing from the spirit of the present invention. Examples of such a thermosetting resin include a phenol resin, a diaryl phthalate resin, an unsaturated polyester resin, an epoxy resin, a polyimide resin, and a triazine resin.
In the present invention, the mass ratio of fine powder of RBC or CRBC: synthetic resin is required to be 10 to 70:90 to 30 for the addition ratio of the synthetic resin. If the addition ratio of the synthetic resin exceeds 90% by mass, the friction characteristics deteriorate, and if it is 30% by mass or less, molding becomes difficult.
Furthermore, in the synthetic resin composition used for the underwater bearing of the present invention, glass fiber, rock wool, inorganic fiber such as carbon fiber, polyester, rayon, polyvinyl alcohol, polyamide, polyolefin, acrylic, aramid or the like synthetic fiber or wood. The strength of the molded product can be increased by adding natural pulp fibers such as pulp and manila hemp.
The fibers are commercially available, and either long fibers or short fibers can be used in the same manner.
The compounding amount of these fibers can be 0.1 to 70% by mass of the whole composition, but is preferably 1 to 30% by mass from the viewpoint of strength and friction characteristics.
[0009]
Molding is usually performed by extrusion molding or injection molding.
Also, it has been found that it is better to set the temperature of the mold a little lower. Basically, a temperature in the range of the glass transition point or the melting point of the synthetic resin is good. Further, it has been found that a mold having good friction characteristics can be obtained by gradually cooling the mold rather than by rapidly cooling.
In the present invention, the steel-based metal used as the shaft or sleeve bearing is mainly a stainless steel-based alloy such as iron and nickel, chromium, and molybdenum, and may be any hard and rust-resistant alloy.
[0010]
The embodiments of the present invention are summarized as follows.
(1) An underwater sleeve bearing which basically comprises a shaft and a sleeve, wherein the sleeve or the shaft is made of a synthetic resin composition in which fine powder of RBC or CRBC is uniformly dispersed in a synthetic resin.
(2) The underwater sleeve bearing according to the above 1, wherein the synthetic resin composition has a mass ratio of fine powder of RBC or CRBC: synthetic resin of 10 to 70:90 to 30.
(3) The synthetic resin is one or more resins selected from nylon 66, nylon 6, nylon 11, nylon 12, polyphthalamide, polyacetal, polybutylene terephthalate, polyethylene terephthalate, polypropylene, polyethylene, and polyphenylene sulfide. 3. The underwater sleeve bearing according to the above 1 or 2.
(4) The underwater sleeve bearing according to any one of (1) to (3) above, wherein the underwater sleeve bearing is made of a synthetic resin composition obtained by further blending an inorganic fiber and / or an organic fiber with the synthetic resin composition.
(5) The underwater sleeve bearing according to the above item 4, wherein the inorganic fibers and / or the organic fibers are short fibers, and the compounding amount is 1 to 30% by mass of the whole composition.
(6) The underwater sleeve bearing according to (4) or (5) above, wherein the inorganic fibers are glass fibers.
(7) The underwater sleeve bearing according to any one of (1) to (6) above, wherein the average diameter of the fine powder of RBC or CRBC is 300 μm or less.
(8) The underwater sleeve bearing described in (7) above, wherein the average diameter of the fine powder of RBC or CRBC is 10 to 50 μm.
(9) An underwater sleeve bearing in which the shaft is made of a rust-proof steel-based metal and the sleeve is made of the synthetic resin composition described in any one of (2) to (8) above.
(10) The underwater sleeve bearing according to (1), wherein the shaft is made of the synthetic resin composition described in any one of (2) to (8) above.
(11) The underwater sleeve bearing according to any one of the above (1) to (10), wherein a spiral groove is provided on a shaft or an inner surface of the sleeve.
(12) The underwater sleeve bearing described in any one of 1 to 11 above is used for a bearing of a cooling water circulation pump of a water-cooled engine.
[0011]
(Example)
The present invention will be described in more detail based on examples.
Example 1
(Production Example 1 of RBC Fine Powder)
750 g of defatted bran obtained from rice bran and 250 g of a liquid phenol resin (resole) were mixed and kneaded while heating to 50 ° C to 60 ° C. A homogeneous mixture with plasticity was obtained.
The mixture is baked at 900 ° C. for 100 minutes in a nitrogen atmosphere using a rotary kiln, and the obtained carbonized product is further pulverized using a pulverizer and then passed through a 150-mesh sieve to have an average particle size of 140 to 160 μm. RBC fine powder was obtained.
(Production Example 1 of Composition of RBC Fine Powder and Synthetic Resin)
500 g of the obtained RBC fine powder and 500 g of nylon 66 powder were mixed and kneaded while being heated to 240 to 290 ° C. A homogeneous mixture with plasticity was obtained. The content of the RBC fine powder was 50% by mass.
(Production of sleeve bearing)
The resin composition obtained by melting and mixing the RBC fine powder and nylon 66 was injection-molded to produce a sleeve having an outer diameter of 22 mm, an inner diameter of 8 mm, and a length of 120 mm. A shaft having a length of 95 mm and a length of 200 mm was inserted to produce a sleeve bearing as shown in FIG.
[0012]
Example 2
Using the method described in Example 1, RBC fine powder having an average particle size of 140 to 160 μm was obtained.
(Production Example 2 of Composition of RBC Fine Powder and Synthetic Resin)
700 g of the obtained RBC fine powder and 300 g of nylon 66 powder were mixed and kneaded while heating to 240 to 290 ° C. A homogeneous mixture with plasticity was obtained. The content of the RBC fine powder was 70% by mass.
(Production of sleeve bearing)
The resin composition obtained by melting and mixing the RBC fine powder and nylon 66 is injection-molded to produce a sleeve having an outer diameter of 22 mm, an inner diameter of 8 mm, and a length of 20 mm. A shaft having a length of 95 mm and a length of 200 mm was inserted to produce a sleeve bearing as shown in FIG.
[0013]
Example 3
(Production Example 3 of RBC fine powder)
750 g of defatted bran obtained from rice bran and 250 g of a liquid phenol resin (resole) were mixed and kneaded while heating to 50 ° C to 60 ° C. A homogeneous mixture with plasticity was obtained.
The mixture is baked at 1000 ° C. for 100 minutes in a nitrogen atmosphere using a rotary kiln, and the obtained carbonized fired product is further pulverized using a pulverizer and then sieved with a 400 mesh sieve to have an average particle size of 30 to 50 μm. RBC fine powder was obtained.
(Production Example 3 of Composition of RBC Fine Powder and Synthetic Resin)
700 g of the obtained RBC fine powder and 300 g of nylon 66 powder were mixed and kneaded while heating to 240 to 290 ° C. A homogeneous mixture with plasticity was obtained. The content of the RBC fine powder was 70% by mass.
(Production of sleeve bearing)
The resin composition obtained by melting and mixing the RBC fine powder and nylon 66 is injection-molded to produce a sleeve having an outer diameter of 22 mm, an inner diameter of 8 mm, and a length of 120 mm. A shaft having a length of 95 mm and a length of 200 mm was inserted to produce a sleeve bearing as shown in FIG.
[0014]
Example 4
(Production example of CRBC fine powder)
750 g of defatted bran obtained from rice bran and 250 g of a liquid phenol resin (resole) were mixed and kneaded while heating to 50 ° C to 60 ° C. A homogeneous mixture with plasticity was obtained.
The mixture was baked at 900 ° C. for 60 minutes in a nitrogen atmosphere using a rotary kiln. The obtained carbonized fired product was pulverized using a pulverizer, and then sieved through a 200-mesh sieve to obtain an RBC fine powder having an average particle size of 100 to 120 µm.
750 g of the obtained RBC fine powder and 500 g of a solid phenol resin (resole) were mixed and kneaded while heating to 100 ° C to 150 ° C. A homogeneous mixture with plasticity was obtained.
Next, the plastic was pressure-molded into a sphere having a diameter of about 1 cm at a pressure of 22 MPa. The mold temperature was 150 ° C.
The molded body was taken out of the mold, and the temperature was increased at a rate of 1 ° C./min up to 500 ° C. in a nitrogen atmosphere, held at 500 ° C. for 60 minutes, and sintered at 900 ° C. for about 120 minutes. Next, the temperature was lowered at a cooling rate of 2 to 3 ° C./min up to 500 ° C., and when the temperature was lowered to 500 ° C. or less, it was naturally cooled.
The obtained CRBC molded product was pulverized using a pulverizer and then sieved through a 500-mesh sieve to obtain a fine CRBC powder having an average particle size of 20 to 30 μm.
(Example of preparing composition of CRBC fine powder and synthetic resin)
500 g of the obtained CRBC fine powder and 500 g of nylon 66 powder were mixed and kneaded while being heated to 240 to 290 ° C. A homogeneous mixture with plasticity was obtained. The content of the CRBC fine powder was 50% by mass.
(Production of sleeve bearing)
The resin composition obtained by melting and mixing the RBC fine powder and nylon 66 is injection-molded to produce a sleeve having an outer diameter of 22 mm, an inner diameter of 8 mm, and a length of 20 mm. A shaft obtained by pressing a cylindrical part having a 95 mm inner diameter of 5.00 mm and a length of 20 mm into both ends of a steel shaft having a length of 200 mm was inserted to produce a sleeve bearing as shown in FIG.
[0015]
The composition of the RBC or CRBC fine powder and the synthetic resin used in Examples 5 to 10 was mixed with the same RBC or CRBC fine powder produced in Examples 1 to 4 under the conditions shown in Table 1 to obtain RBC or CRBC fine powder. Alternatively, it was prepared by uniformly dispersing CRBC fine powder in a synthetic resin. For comparison, a commercially available PPS resin for a submersible pump (manufactured by Idemitsu Petrochemical Co., Ltd.) and silicon nitride were used.
[Table 1]
Figure 2004003611
[0016]
Table 2 summarizes the composition of the RBC or CRBC fine powder, the synthetic resin, the PPS resin, and the silicon nitride used in the underwater sleeve bearings of Examples 1 to 10.
[Table 2]
Figure 2004003611
[0017]
Example 5
Using composition 5 of Table 1, a sleeve having an outer diameter of 22 mm, an inner diameter of 8 mm, and a length of 120 mm having a spiral groove with a depth of 0.1 mm inside the sleeve was produced by injection molding, while a SUS bearing steel was used. A shaft having an outer diameter of 7.95 mm and a length of 200 mm was inserted to produce a sleeve bearing.
[0018]
Example 6
Using composition 6 in Table 1, a shaft having an outer diameter of 7.95 mm and a length of 200 mm was produced by injection molding. On the other hand, a sleeve made of SUS bearing steel having an outer diameter of 22 mm, an inner diameter of 8 mm, and a length of 120 mm was prepared, and a sleeve bearing as shown in FIG. 1 was prepared by combining the two.
[0019]
Example 7
Using composition 7 in Table 1, a shaft having an outer diameter of 7.95 mm and a length of 200 mm having a spiral groove having a depth of 0.1 mm was produced by injection molding. On the other hand, a sleeve made of SUS bearing steel having an outer diameter of 22 mm, an inner diameter of 8 mm, and a length of 120 mm was prepared, and a sleeve bearing as shown in FIG. 4 was prepared by combining the two.
[0020]
Example 8
6. Using composition 8 in Table 1, a sleeve having an outer diameter of 22 mm, an inner diameter of 8 mm, and a length of 120 mm was produced by injection molding, while an outer diameter of a SUS bearing steel having a spiral groove having a depth of 0.1 mm. A shaft having a length of 95 mm and a length of 200 mm was inserted to produce a sleeve bearing as shown in FIG.
[0021]
Example 9
Using composition 9 in Table 1, a shaft having an outer diameter of 7.95 mm and a length of 200 mm having a spiral groove having a depth of 0.1 mm was produced by injection molding. On the other hand, a sleeve made of SUS bearing steel having an outer diameter of 22 mm, an inner diameter of 8 mm, and a length of 120 mm was prepared, and a sleeve bearing as shown in FIG. 4 was prepared by combining the two.
[0022]
Example 10
(Production of sleeve bearing)
The resin composition obtained by uniformly melt-mixing 10 g of RBC fine powder having an average particle diameter of 150 μm, 23 g of commercially available short fiber glass fibers and 77 g of nylon 66 pellets, and melt-mixing 90 g of the resin composition is as follows. It is. This composition 10 was injection-molded as a raw material resin to produce a sleeve having an outer diameter of 22 mm, an inner diameter of 8 mm, and a length of 120 mm, and a SUS303 stainless alloy shaft having an outer diameter of 7.95 mm and a length of 200 mm was inserted. A sleeve bearing as shown in FIG.
Comparative Example A sleeve having an outer diameter of 22 mm, an inner diameter of 8 mm, and a length of 120 mm was prepared by injection molding using a commercially available PPS resin for a submersible pump (manufactured by Idemitsu Petrochemical Co., Ltd.). A shaft having a length of .95 mm and a length of 200 mm was inserted to produce a sleeve bearing as shown in FIG.
Comparative Example 2
A sleeve having an outer diameter of 22 mm, an inner diameter of 8 mm, and a length of 120 mm was prepared. On the other hand, a shaft made of SUS303 stainless steel having an outer diameter of 7.95 mm and a length of 200 mm was inserted to prepare a silicon nitride sleeve bearing as shown in FIG. .
Table 3 summarizes the friction characteristics in water of the underwater sleeve bearings obtained in Examples 1 to 10 and Comparative Example.
[Table 3]
Figure 2004003611
The numerical values of A to F in the table were measured under the following conditions.
A: Measured under conditions of slip speed (m / s -1 ) 0.001 B: Measured under conditions of slip speed (m / s -1 ) 0.005 C: Slip speed (m / s -1 ) 0 0.01: Measured under the condition of 0.1: Slip speed (m / s -1 ) 0.1: Measured under the condition of 0.5: Slip speed (m / s -1 ) F: Measured by the slip speed (m / s -1 ) m / s -1 ) Measured under the condition of 1.0
Using the RBC fine powder having an average particle diameter of 150 μm obtained in Example 1 and the CRBC fine powder having an average particle diameter of 30 μm obtained in Example 3, nylon 6, nylon 11, nylon 12, polyphthalamide, polybutylene terephthalate were used. , Polyethylene terephthalate, polypropylene, polyethylene, and polyacetal (POM) to produce a synthetic resin composition, and a test piece was prepared for the same experiment.
The tendency almost similar to the result of Table 3 was seen.
[0024]
[Effects of the present invention]
As is clear from the results shown in Table 3, it was found that the underwater sleeve bearing made of the fine powder of RBC or CRBC and the synthetic resin or the fiber-reinforced synthetic resin of the present invention has the following effects.
1. The coefficient of friction can be reduced.
2. The difference in the coefficient of friction between the low slip speed range and the high slip speed range can be reduced.
3. When a fiber-reinforced synthetic resin is used, the above-mentioned 1. ~ 2. In addition, the mechanical properties can be improved at the same time.
4. Because it can be injection molded, it has excellent production efficiency.
5. Low cost.
Further, the underwater sleeve bearing made of fine powder of RBC or CRBC of the present invention and a synthetic resin has remarkably excellent friction characteristics in water, and is suitable for pumps used in liquids such as a cooling water circulation pump of a water-cooled engine. As a bearing, it is promising as a material for forming a bearing in direct contact with liquid, such as a sleeve bearing structure used in liquid without shielding.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a sleeve bearing. FIG. 2 is an application example of a sleeve bearing. FIG. 3 is an example of a shaft of a sleeve bearing. FIG. 4 is an example of a sleeve bearing in which a spiral groove is provided on the shaft.
1 shaft 2 sleeve 3 hard material 4 spiral groove

Claims (12)

軸とスリーブから基本的に構成され、スリーブ又は軸が、RBC又はCRBCの微粉末を合成樹脂中に均一に分散した合成樹脂組成物で作られている水中用スリーブ軸受。An underwater sleeve bearing basically comprising a shaft and a sleeve, wherein the sleeve or the shaft is made of a synthetic resin composition in which fine powder of RBC or CRBC is uniformly dispersed in a synthetic resin. 合成樹脂組成物が、RBC又はCRBCの微粉末:合成樹脂の質量比が、10〜70:90〜30である請求項1に記載した水中用スリーブ軸受。The underwater sleeve bearing according to claim 1, wherein the synthetic resin composition has a mass ratio of fine powder of RBC or CRBC: synthetic resin of 10 to 70:90 to 30. 合成樹脂が、ナイロン66、ナイロン6、ナイロン11、ナイロン12、ポリフタールアミド、ポリアセタール、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、ポリフェニレンサルファイドから選ばれる樹脂の1種又は2種以上である請求項1又は請求項2に記載した水中用スリーブ軸受。The synthetic resin is one or more resins selected from nylon 66, nylon 6, nylon 11, nylon 12, polyphthalamide, polyacetal, polybutylene terephthalate, polyethylene terephthalate, polypropylene, polyethylene, and polyphenylene sulfide. The underwater sleeve bearing according to claim 1 or 2. 合成樹脂組成物に、さらに、無機繊維及び/又は有機繊維を配合した合成樹脂組成物で作られている請求項1ないし請求項3のいずれかひとつに記載した水中用スリーブ軸受。The underwater sleeve bearing according to any one of claims 1 to 3, wherein the underwater sleeve bearing is made of a synthetic resin composition obtained by further blending an inorganic fiber and / or an organic fiber with the synthetic resin composition. 無機繊維及び/又は有機繊維が、短繊維であり、配合量が組成物全体の1〜30質量%である請求項4に記載した水中用スリーブ軸受。The underwater sleeve bearing according to claim 4, wherein the inorganic fiber and / or the organic fiber is a short fiber, and the compounding amount is 1 to 30% by mass of the whole composition. 無機繊維が硝子繊維である請求項4又は請求項5に記載した水中用スリーブ軸受。The underwater sleeve bearing according to claim 4 or 5, wherein the inorganic fiber is a glass fiber. RBC又はCRBCの微粉末の平均径が、300μm以下である請求項1ないし請求項6のいずれかひとつに記載した水中用スリーブ軸受。The underwater sleeve bearing according to any one of claims 1 to 6, wherein the average diameter of the fine powder of RBC or CRBC is 300 µm or less. RBC又はCRBCの微粉末の平均径が、10〜50μmである請求項7に記載した水中用スリーブ軸受。The underwater sleeve bearing according to claim 7, wherein the average diameter of the fine powder of RBC or CRBC is 10 to 50 m. 軸が防錆スチール系金属であり、スリーブが請求項2ないし請求項8のいずれかひとつに記載した合成樹脂組成物で作られている水中用スリーブ軸受。An underwater sleeve bearing, wherein the shaft is made of a rust-proof steel-based metal, and the sleeve is made of the synthetic resin composition according to any one of claims 2 to 8. 軸が請求項2ないし請求項8のいずれかひとつに記載された合成樹脂組成物で作られている請求項1記載の水中用スリーブ軸受。An underwater sleeve bearing according to claim 1, wherein the shaft is made of the synthetic resin composition according to any one of claims 2 to 8. 軸またはスリーブ内面に、螺旋状の溝を設けた請求項1ないし請求項10のいずれかひとつに記載した水中用スリーブ軸受。The underwater sleeve bearing according to any one of claims 1 to 10, wherein a spiral groove is provided on the shaft or the inner surface of the sleeve. 請求項1ないし請求項11のいずれかひとつに記載された水中用スリーブ軸受を水冷式エンジンの冷却水循環ポンプの軸受に用いること。Use of the underwater sleeve bearing according to any one of claims 1 to 11 for a bearing of a cooling water circulation pump of a water-cooled engine.
JP2003052432A 2002-03-01 2003-02-28 Sleeve bearing for underwater and its application Pending JP2004003611A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003052432A JP2004003611A (en) 2002-03-01 2003-02-28 Sleeve bearing for underwater and its application
US10/789,163 US20040258334A1 (en) 2003-02-28 2004-02-26 Underwater sleeve bearing and application thereof
EP04251136A EP1452751A3 (en) 2003-02-28 2004-02-27 Underwater sleeve bearing and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002055307 2002-03-01
JP2003052432A JP2004003611A (en) 2002-03-01 2003-02-28 Sleeve bearing for underwater and its application

Publications (2)

Publication Number Publication Date
JP2004003611A true JP2004003611A (en) 2004-01-08
JP2004003611A5 JP2004003611A5 (en) 2006-03-16

Family

ID=30445734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003052432A Pending JP2004003611A (en) 2002-03-01 2003-02-28 Sleeve bearing for underwater and its application

Country Status (1)

Country Link
JP (1) JP2004003611A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1452751A2 (en) * 2003-02-28 2004-09-01 Minebea Co., Ltd. Underwater sleeve bearing and application thereof
JP2005282371A (en) * 2004-03-26 2005-10-13 Minebea Co Ltd Electric pump
JP2009222208A (en) * 2008-03-19 2009-10-01 Kubota Corp Bearing and pump having the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1452751A2 (en) * 2003-02-28 2004-09-01 Minebea Co., Ltd. Underwater sleeve bearing and application thereof
EP1452751A3 (en) * 2003-02-28 2005-12-21 Minebea Co., Ltd. Underwater sleeve bearing and application thereof
JP2005282371A (en) * 2004-03-26 2005-10-13 Minebea Co Ltd Electric pump
JP4565870B2 (en) * 2004-03-26 2010-10-20 ミネベア株式会社 Electric pump
US7896626B2 (en) 2004-03-26 2011-03-01 Minebea Co., Ltd. Electric pump
JP2009222208A (en) * 2008-03-19 2009-10-01 Kubota Corp Bearing and pump having the same

Similar Documents

Publication Publication Date Title
US20030179963A1 (en) Low friction sleeve bearing
US3342667A (en) Dry fluorocarbon bearing material
CN1095050C (en) Composition for use in friction materials and articles formed threrefrom
US8906522B2 (en) Hard non-oxide or oxide ceramic / hard non-oxide or oxide ceramic composite hybrid article
Masuda et al. Additive manufacturing of SiC ceramics with complicated shapes using the FDM type 3D-printer
JP2002187773A (en) Material for bearing retainer
JP4550995B2 (en) Sleeve bearing device
JP2004003611A (en) Sleeve bearing for underwater and its application
EP1452751A2 (en) Underwater sleeve bearing and application thereof
JP2004269567A (en) Conductive composition and its molded product
JP2010110159A (en) Slider of ultrasonic motor and ultrasonic motor
JP4031266B2 (en) Underwater sliding resin composition containing fine powder of RBC or CRBC
JP2009057261A (en) Method for producing carbon molding material
JP4947970B2 (en) Molding material and method for producing molded article
JP2005048009A (en) Phenolic resin molding compound
JP2005036127A (en) Phenol resin molding material and molded product thereof
CN113614397A (en) Sliding bearing for electric water pump
JP2009242176A (en) Carbonaceous structure and its forming process
JP2009057262A (en) Method of manufacturing carbon material
JP5050257B2 (en) Carbon nanofiber-containing resin molding
JP2007138040A (en) Phenol resin molding material for sliding member and resin-made sliding component using the same
JP2007230820A (en) Silicon carbide composite sintered compact and method of manufacturing the same
JP4176184B2 (en) Sliding member for dry gas
JP4973917B2 (en) Carbon material manufacturing method
JPS5849656A (en) Composite seal material containing swellable graphite

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20060125

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20060125

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080711

A131 Notification of reasons for refusal

Effective date: 20080724

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080827

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20080827

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090226