JP2003318316A - Ceramic circuit substrate - Google Patents

Ceramic circuit substrate

Info

Publication number
JP2003318316A
JP2003318316A JP2002123911A JP2002123911A JP2003318316A JP 2003318316 A JP2003318316 A JP 2003318316A JP 2002123911 A JP2002123911 A JP 2002123911A JP 2002123911 A JP2002123911 A JP 2002123911A JP 2003318316 A JP2003318316 A JP 2003318316A
Authority
JP
Japan
Prior art keywords
heat dissipation
pin
aluminum
sic
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002123911A
Other languages
Japanese (ja)
Inventor
Satoshi Fukui
福井  聡
Masahiko Oshima
昌彦 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002123911A priority Critical patent/JP2003318316A/en
Publication of JP2003318316A publication Critical patent/JP2003318316A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic circuit substrate in which, when an Al-SiC composite is drawn from an invading mold, the composite is easily drawn from the mold and a heat sink pin is not bent in the substrate in which a heat sink component made of the Al-Sic composite having the ceramic substrate and the heat sink pin is metallic-connected via aluminum. <P>SOLUTION: The ceramic circuit substrate comprises a ceramic substrate metallic-connected to one main surface of the Al-SiC composite via aluminum; and the heat sink pin made of aluminum impregnated into the Al-SiC composite and formed integrally with the other main surface of the Al-SiC composite. In this substrate, the height of the base of the pin to the distal end is four times or less as large as the diameter of the base of the pin. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主に炭化ケイ素
(SiC)からなる多孔体に、アルミニウム(Al)を
主成分とする金属を含浸して形成したアルミニウムと炭
化ケイ素の複合体(Al−SiC系複合体)からなる放
熱部品を具備するセラミックス回路基板に関する。本発
明のAl−SiC系複合体は、低熱膨張、高熱伝導特性
を有し、放熱基板、ヒートシンク、パッケージなど半導
体装置に用いられる放熱部品に好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite of aluminum and silicon carbide (Al-) formed by impregnating a porous body mainly composed of silicon carbide (SiC) with a metal containing aluminum (Al) as a main component. The present invention relates to a ceramic circuit board including a heat dissipation component made of a SiC-based composite. INDUSTRIAL APPLICABILITY The Al-SiC composite of the present invention has low thermal expansion and high thermal conductivity characteristics, and is suitable for a heat dissipation component used for a semiconductor device such as a heat dissipation substrate, a heat sink, a package.

【0002】[0002]

【従来の技術】近年、産業機器の分野では、半導体スイ
ッチングデバイスを用いて大きな電力を最適な電力に効
率よく交換制御する大電力モジュール装置の開発が進ん
でいる。例えば、電動車輌用インバータとして高電圧、
大電流動作が可能なIGBTモジュールがある。このよ
うな大電力モジュール化に伴い、半導体チップから発生
する熱も増大している。半導体チップは熱に弱く、発熱
が大きくなれば半導体回路の誤動作や破壊を招くことに
なる。そこで、半導体チップなど電子部品を搭載するた
めの回路基板の裏面にヒートシンクなどの放熱部品を設
けて、放熱部品を介して半導体チップから発生した熱を
外部に発散させ、半導体回路の動作を安定にすることが
行われている。電子部品を搭載するための回路基板とし
ては、窒化ケイ素(Si34)、窒化アルミニウム(A
lN)、酸化アルミニウム(Al23)などの絶縁性を
有するセラミックス基板が主に用いられている。
2. Description of the Related Art In recent years, in the field of industrial equipment, development of a high power module device for efficiently exchanging and controlling a large power to an optimum power by using a semiconductor switching device has been advanced. For example, high voltage as an inverter for electric vehicles,
There is an IGBT module capable of high current operation. The heat generated from the semiconductor chip is also increasing in accordance with such a high power module. The semiconductor chip is vulnerable to heat, and if the heat generation increases, malfunction or destruction of the semiconductor circuit will be caused. Therefore, a heat dissipation component such as a heat sink is provided on the back surface of a circuit board for mounting electronic components such as semiconductor chips, and the heat generated from the semiconductor chip is radiated to the outside through the heat dissipation component to stabilize the operation of the semiconductor circuit. Is being done. Circuit boards for mounting electronic components include silicon nitride (Si 3 N 4 ) and aluminum nitride (A
Insulating ceramic substrates such as 1N) and aluminum oxide (Al 2 O 3 ) are mainly used.

【0003】従来の放熱部品用材料として、銅(C
u)、モリブデン(Mo)、タングステン(W)などが
ある。モリブデンやタングステンからなる放熱部品は高
価であり、また金属の比重が大きいため放熱部品の重量
が重くなり、放熱部品の軽量化が望まれる用途には好ま
しくない。
As a conventional material for heat dissipation parts, copper (C
u), molybdenum (Mo), tungsten (W), and the like. The heat dissipation component made of molybdenum or tungsten is expensive, and since the specific gravity of metal is large, the weight of the heat dissipation component becomes heavy, which is not preferable for applications in which weight reduction of the heat dissipation component is desired.

【0004】また、銅からなる放熱部品は、放熱部品と
接合されるセラミックス基板との熱膨張係数の差が大き
いので、放熱部品とセラミックス基板との加熱接合時
や、使用中の熱サイクルにより、はんだ層の破壊、熱流
路の遮断、セラミックス基板の割れを生じやすい。
Further, since the heat dissipation component made of copper has a large difference in coefficient of thermal expansion between the heat dissipation component and the ceramics substrate to be joined, the heat dissipation component and the ceramics substrate may be heat-bonded to each other or due to a thermal cycle during use. Destruction of the solder layer, interruption of the heat flow path, and cracking of the ceramic substrate are likely to occur.

【0005】銅などの従来材に替わる放熱部品用材料と
して、アルミニウムまたはアルミニウム合金中に炭化ケ
イ素を分散させた低熱膨張・高熱伝導特性を有するAl
−SiC系複合体が注目されている(特公平7−261
74号、特開昭64−83634号等参照)。Al−S
iC系複合体は、粉末冶金法、高圧鋳造法、真空鋳造
法、溶融金属含浸法などにより製造される。Al−Si
C系複合体の熱膨張係数をセラミックス基板の熱膨張係
数に近づけようとすると、熱膨張係数の低い炭化ケイ素
の含有比率を上げることが必要である。しかしながら、
粉末冶金法、高圧鋳造法、真空鋳造法では、その製造法
の特質上、炭化ケイ素の含有量を40体積%以上にする
ことが困難である。また、ネットシェイプ成形すること
が難しい、大型の加圧装置を必要とするため製造コスト
が高くなるという欠点がある。
As a material for heat dissipation parts replacing conventional materials such as copper, Al having low thermal expansion and high heat conduction characteristics in which silicon carbide is dispersed in aluminum or aluminum alloy.
-SiC-based composites are receiving attention (Japanese Patent Publication No. 7-261).
74, JP-A-64-83634 and the like). Al-S
The iC-based composite is manufactured by a powder metallurgy method, a high pressure casting method, a vacuum casting method, a molten metal impregnation method, or the like. Al-Si
In order to bring the thermal expansion coefficient of the C-based composite close to that of the ceramic substrate, it is necessary to increase the content ratio of silicon carbide having a low thermal expansion coefficient. However,
In the powder metallurgy method, the high-pressure casting method, and the vacuum casting method, it is difficult to set the content of silicon carbide to 40% by volume or more due to the characteristics of the manufacturing method. Further, there are drawbacks that it is difficult to perform net shape molding and a large pressure device is required, resulting in high manufacturing cost.

【0006】溶融金属含浸法は、炭化ケイ素粉末あるい
は炭化ケイ素繊維で形成された多孔体(プリフォーム)
を用い、この多孔体を型内の空間に配置し、アルミニウ
ムインゴットを接触させて、窒素雰囲気中で加圧もしく
は非加圧で加熱溶融したアルミニウムを型内の空間に流
し込むことによって、炭化ケイ素の多孔体に含浸させ、
冷却して作製するものである。この製造方法によれば、
炭化ケイ素の含有量を20〜90体積%の範囲で選択で
きる。また、炭化ケイ素多孔体の形状の自由度が高く、
複雑な形状の製品をネットシェイプ成形できる利点を有
する。
The molten metal impregnation method is a porous body (preform) formed of silicon carbide powder or silicon carbide fibers.
This porous body is placed in a space inside the mold, an aluminum ingot is brought into contact with the aluminum ingot, and aluminum which is heated and melted under pressure or without pressure in a nitrogen atmosphere is poured into the space inside the mold to obtain silicon carbide. Impregnate the porous body,
It is manufactured by cooling. According to this manufacturing method,
The content of silicon carbide can be selected within the range of 20 to 90% by volume. Further, the degree of freedom of the shape of the silicon carbide porous body is high,
It has an advantage that a product having a complicated shape can be net-shape molded.

【0007】[0007]

【発明が解決しようとする課題】冷却効率を高めるため
の放熱ピンまたは放熱フィンを具備させた放熱基板が用
いられている。図4は従来のIGBTモジュールの一例
を示す断面図である。図4において、1は窒化ケイ素か
らなるセラミックス基板であり、その上面に銅からなる
回路板2、下面に銅板3をろう付けなどにより接着し
て、セラミックス回路基板4が構成される。セラミック
ス基板1の回路板2には複数の半導体チップ5をはんだ
により実装しワイヤーで配線する。
A heat dissipation board provided with heat dissipation pins or heat dissipation fins for enhancing cooling efficiency is used. FIG. 4 is a sectional view showing an example of a conventional IGBT module. In FIG. 4, reference numeral 1 denotes a ceramic substrate made of silicon nitride, and a circuit board 2 made of copper is bonded to the upper surface of the ceramic substrate, and a copper plate 3 is bonded to the lower surface thereof by brazing or the like to form a ceramic circuit board 4. A plurality of semiconductor chips 5 are mounted on the circuit board 2 of the ceramic substrate 1 by soldering and wired by wires.

【0008】6はAl−SiC系複合体からなる放熱基
板であり、その上面にめっきを施し、はんだ7によりセ
ラミックス回路基板4を接着する。8は放熱ピン9を有
するヒートシンクでありアルミニウムなどで製作され
る。そして、放熱基板6とヒートシンク8とをグリス1
0で接着して、両部品をねじ11により締結固定する。
Reference numeral 6 denotes a heat dissipation board made of an Al-SiC composite, plating is applied to the upper surface of the heat dissipation board, and the ceramics circuit board 4 is bonded with solder 7. Reference numeral 8 is a heat sink having a radiation pin 9, which is made of aluminum or the like. Then, the heat dissipation board 6 and the heat sink 8 are connected to the grease 1
0 parts are bonded and both parts are fastened and fixed with screws 11.

【0009】この種のIGBTモジュールでは、熱伝導
率が比較的低いグリス10を放熱基板6とヒートシンク
8との間に介在させるため、熱抵抗が増加し、回路基板
全体の放熱効率が低下する。また、放熱基板6とヒート
シンク8を別々に製作し、さらにグリス10を必要とす
るため、モジュールの製作が煩雑となり製造コストを高
めてしまうという問題があった。
In this type of IGBT module, since the grease 10 having a relatively low thermal conductivity is interposed between the heat dissipation board 6 and the heat sink 8, the heat resistance increases and the heat dissipation efficiency of the entire circuit board decreases. Further, since the heat dissipation board 6 and the heat sink 8 are manufactured separately and the grease 10 is further required, the manufacturing of the module becomes complicated and the manufacturing cost is increased.

【0010】そこで、この問題を解決する公知例とし
て、例えば特開2000−336438号公報には、気
孔径7〜50μmである多孔質セラミックス焼結体の気
孔内にマトリックスとなる金属の溶湯を加圧含浸するこ
とにより形成された、セラミックス焼結体である骨格構
造体とマトリックス金属とからなる複合構造を有する金
属−セラミックス複合材料であって、複合材料の片側の
板面に、マトリックス金属と同一材種の金属からなる放
熱フィンを一体的に形成することが開示されている。
As a known example for solving this problem, for example, in Japanese Unexamined Patent Publication No. 2000-336438, a molten metal of a metal serving as a matrix is added into the pores of a porous ceramics sintered body having a pore diameter of 7 to 50 μm. A metal-ceramic composite material having a composite structure composed of a skeleton structure, which is a ceramics sintered body, and a matrix metal formed by pressure impregnation, wherein one plate surface of the composite material is the same as the matrix metal. It is disclosed that a radiation fin made of metal of a material type is integrally formed.

【0011】また、本発明者等も特開2000−277
953号公報に、セラミックス基板とAl−SiC複合
材料からなる放熱部品をはんだで接合した従来のセラミ
ックス回路基板における課題、すなわち熱膨張差により
はんだ接合面が剥離する、はんだ介在によって熱抵抗が
増加するといった課題を解決するものとして、セラミッ
クス基板と放熱フィンを有するAl−SiC複合材料か
らなるヒートシンクを、アルミニウムを介して金属的接
合させたセラミックス回路基板を提案した。
The inventors of the present invention have also disclosed Japanese Patent Laid-Open No. 2000-277.
In Japanese Patent Publication No. 953, there is a problem in a conventional ceramic circuit board in which a ceramic substrate and a heat dissipation component made of an Al-SiC composite material are joined by solder, that is, a solder joint surface is separated due to a difference in thermal expansion, and thermal resistance increases due to solder interposition. As a solution to the above problem, a ceramic circuit board has been proposed in which a ceramic substrate and a heat sink made of an Al-SiC composite material having a radiation fin are metallically joined via aluminum.

【0012】前記従来のセラミックス回路基板におい
て、溶融金属含浸法によりAl−SiC系複合体の片方
の主面に、Al−SiC系複合体に含浸されたアルミニ
ウムと実質的に同種のアルミニウムからなる放熱ピンを
一体的に形成した場合、Al−SiC系複合体を溶浸用
の型から抜き出すとき、型から抜け難い、放熱ピンが曲
がりやすい、溶浸用の型が破損する等の問題があった。
したがって、本発明はこれらの課題を解決することを目
的とする。
In the above-mentioned conventional ceramics circuit board, the heat radiation consisting of aluminum of substantially the same type as the aluminum impregnated in the Al-SiC composite is formed on one main surface of the Al-SiC composite by the molten metal impregnation method. When the pins are integrally formed, when the Al-SiC-based composite is extracted from the mold for infiltration, there are problems that it is difficult to remove from the mold, the radiating pin is easily bent, and the mold for infiltration is damaged. .
Therefore, the present invention aims to solve these problems.

【0013】[0013]

【課題を解決するための手段】本発明のセラミックス回
路基板は、Al−SiC系複合体の一方の主面に、アル
ミニウムを介してセラミックス基板が金属的接合された
セラミックス回路基板であって、Al−SiC系複合体
の他方の主面に、Al−SiC系複合体に含浸されたア
ルミニウムからなる放熱ピンを一体的に形成してなり、
該放熱ピンの基部から先端部までの高さが、放熱ピンの
基部の直径の4倍以下であることを特徴とする。
A ceramic circuit board of the present invention is a ceramic circuit board in which a ceramic substrate is metallically joined to one main surface of an Al--SiC composite through aluminum. A heat dissipation pin made of aluminum impregnated in the Al-SiC composite is integrally formed on the other main surface of the -SiC composite,
It is characterized in that the height from the base of the heat dissipation pin to the tip is not more than 4 times the diameter of the base of the heat dissipation pin.

【0014】前記本発明において、放熱ピンの基部から
先端部までの勾配が1°〜15°であることを特徴とす
る。また、相隣合う放熱ピン同士の最短間隔が、放熱ピ
ンの基部の直径の0.5〜2倍であることを特徴とす
る。また、放熱ピンの表面およびAl−SiC系複合体
の放熱ピンを設けた側の主面の表面に耐食性被膜を施し
たことを特徴とする。
In the present invention, the slope from the base to the tip of the heat dissipation pin is 1 ° to 15 °. Further, the shortest distance between adjacent heat radiation pins is 0.5 to 2 times the diameter of the base of the heat radiation pin. Further, it is characterized in that a corrosion resistant coating is applied to the surface of the heat dissipation pin and the surface of the main surface of the Al-SiC-based composite on the side where the heat dissipation pin is provided.

【0015】本発明のセラミックス回路基板は、セラミ
ックス基板とAl−SiC系複合体とをアルミニウムを
介して金属的接合させたので、従来のはんだ付けによっ
て接合したセラミックス回路基板に比べ、セラミックス
基板とAl−SiC系複合体の熱膨張差によりはんだ接
合面が剥離するといった問題を避けることができ接合信
頼性が向上する。また、アルミニウムを介して金属的接
合させたので、従来のはんだを介して接合させるのに比
べ、セラミックス基板とAl−SiC系複合体の接合界
面の熱抵抗を抑えることができ、セラミックス回路基板
の熱サイクル寿命が長くなる。
In the ceramic circuit board of the present invention, the ceramic board and the Al-SiC composite are metallically bonded through aluminum, so that the ceramic circuit board and the Al board are made of aluminum as compared with the conventional ceramic circuit board which is bonded by soldering. The problem of peeling of the solder joint surface due to the difference in thermal expansion of the SiC-based composite can be avoided, and the joint reliability is improved. In addition, since the metallic bonding is performed via aluminum, the thermal resistance at the bonding interface between the ceramic substrate and the Al-SiC composite can be suppressed as compared with the conventional solder bonding, and the ceramic circuit board Increases thermal cycle life.

【0016】図2は本発明のセラミックス回路基板にお
ける放熱ピンの拡大図を示す。図2において、上側は放
熱ピンの概略断面図、下側はその概略底面図を示す。本
発明のセラミックス回路基板では、放熱ピン12の基部
13から先端部14までの高さHが、放熱ピン12の基
部13の直径Dの4倍以下であることが好ましい。Al
−SiC系複合体の溶浸用の型からの抜き出しを種々試
した結果、放熱ピン12の高さHが放熱ピン基部13の
直径Dの4倍以下であれば、Al−SiC系複合体を溶
浸用の型からスムースに抜き出しやすく、Al−SiC
系複合体の溶浸用の型に対する離型性が良好になる。こ
のため、Al−SiC系複合体を溶浸用の型から抜き出
すとき、放熱ピン12に余計な外力を与えないため、放
熱ピン12に曲がりなど変形が発生せず、相隣合う放熱
ピン同士の間隔が所定の距離に確保されるので期待する
放熱特性が得られる。また、放熱ピン12の曲がりによ
る溶浸用の型の破損も生じない。
FIG. 2 shows an enlarged view of the heat dissipation pin in the ceramic circuit board of the present invention. In FIG. 2, the upper side shows a schematic sectional view of the heat dissipation pin, and the lower side shows a schematic bottom view thereof. In the ceramic circuit board of the present invention, the height H from the base 13 to the tip 14 of the heat dissipation pin 12 is preferably 4 times or less the diameter D of the base 13 of the heat dissipation pin 12. Al
As a result of various attempts to extract the —SiC-based composite from the mold for infiltration, if the height H of the radiation pin 12 is 4 times or less the diameter D of the radiation pin base 13, the Al—SiC-based composite is selected. Easy to extract smoothly from the infiltration mold, Al-SiC
The releasability of the system composite from the infiltration mold is improved. Therefore, when the Al-SiC-based composite is taken out from the mold for infiltration, an unnecessary external force is not applied to the heat dissipation pin 12, so that the heat dissipation pin 12 is not deformed such as bent, and the heat dissipation pins 12 adjacent to each other are not deformed. Since the space is secured at a predetermined distance, expected heat dissipation characteristics can be obtained. Further, the mold for infiltration does not break due to the bending of the heat dissipation pin 12.

【0017】放熱ピン12の基部13から先端部14ま
での勾配θが、1°〜15°であることが好ましい。放
熱ピン12の勾配θが1°未満であるとAl−SiC系
複合体の溶浸用の型に対する離型性が悪化する。このた
め、Al−SiC系複合体を溶浸用の型から抜き出すと
き、放熱ピン12に余計な外力が加わりやすく、放熱ピ
ン12が曲がり、相隣合う放熱ピン同士の間隔が所定の
距離に確保されず所定の放熱特性が得られない。また、
勾配θが15°を超えると単位面積当たりの放熱ピン1
2の数量が減少し、所定の放熱特性が得られない。より
好ましい放熱ピンの勾配θは3°〜7°である。
The gradient θ from the base 13 to the tip 14 of the heat dissipation pin 12 is preferably 1 ° to 15 °. When the gradient θ of the heat dissipation pin 12 is less than 1 °, the releasability of the Al—SiC based composite from the mold for infiltration deteriorates. Therefore, when the Al-SiC-based composite is extracted from the mold for infiltration, an excessive external force is easily applied to the heat dissipation pin 12, the heat dissipation pin 12 bends, and the distance between adjacent heat dissipation pins is ensured at a predetermined distance. As a result, the prescribed heat dissipation characteristics cannot be obtained. Also,
When the gradient θ exceeds 15 °, the heat dissipation pin 1 per unit area
The quantity of 2 decreases, and the desired heat dissipation characteristics cannot be obtained. A more preferable gradient θ of the heat dissipation pin is 3 ° to 7 °.

【0018】相隣合う放熱ピン12同士の最短間隔W
が、放熱ピン12の基部13の直径Dの0.5〜2倍で
あることが好ましい。間隔Wが0.5倍未満であると、
Al−SiC系複合体を溶浸用の型から抜き出すときに
溶浸用の型の破損を招きやすい。また、2倍を超えると
単位面積当たりの放熱ピン12の数量が減少し、所定の
放熱特性が得られない。
The shortest distance W between adjacent heat radiation pins 12
Is preferably 0.5 to 2 times the diameter D of the base 13 of the heat dissipation pin 12. If the interval W is less than 0.5 times,
When the Al-SiC composite is extracted from the infiltration mold, the infiltration mold is likely to be damaged. On the other hand, if it exceeds 2 times, the number of the heat dissipation pins 12 per unit area decreases, and a predetermined heat dissipation characteristic cannot be obtained.

【0019】Al−SiC系複合体の放熱ピン12およ
び放熱ピン12を設けた側の主面15は、水冷構造の場
合、水に曝されて腐食しやすいため、表面に耐食性被膜
を施すことが望ましい。耐食性被膜として、無電解Ni
−Pメッキ等のメッキ被膜、アルマイト処理による被膜
が適している。
In the case of a water-cooled structure, the heat dissipating pins 12 of the Al-SiC composite and the main surface 15 on the side where the heat dissipating pins 12 are provided are easily exposed to water and corroded, so that a surface having a corrosion resistant coating should be applied. desirable. Electroless Ni as a corrosion resistant coating
A plating film such as P plating and a film formed by alumite treatment are suitable.

【0020】[0020]

【発明の実施の形態】本発明の実施の形態を図面に基づ
いて説明する。図1に本発明実施例のセラミックス回路
基板を示す。図1において、上側はセラミックス回路基
板の概略断面図、下側はその概略底面図を示す。21は
窒化ケイ素からなるセラミックス基板である。22はセ
ラミックス基板21の表面に形成したアルミニウム回路
部である。アルミニウム回路部22の上面には複数の半
導体チップ23をはんだにより接着する。24はAl−
SiC系複合体からなる放熱部品(ヒートシンク)であ
り、含浸されたアルミニウムと実質的に同種のアルミニ
ウムからなる放熱ピン25が一体的に形成されている。
セラミックス基板21の下面と放熱部品24の上面と
が、放熱部品24に含浸させたアルミニウム26により
接合されている。セラミックス基板21と放熱部品24
の接合面間に介在するアルミニウム26の厚さは30μ
mであった。放熱ピン25は図1に示すように等間隔に
配列するほか、ちどり状に配列してもよい。また、放熱
が特に要求される部位に限って放熱ピン25を局部的に
配置してもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a ceramic circuit board according to an embodiment of the present invention. In FIG. 1, the upper side is a schematic cross-sectional view of the ceramic circuit board, and the lower side is a schematic bottom view thereof. Reference numeral 21 is a ceramic substrate made of silicon nitride. Reference numeral 22 is an aluminum circuit portion formed on the surface of the ceramic substrate 21. A plurality of semiconductor chips 23 are bonded to the upper surface of the aluminum circuit portion 22 by soldering. 24 is Al-
A heat dissipation component (heat sink) made of a SiC-based composite, and a heat dissipation pin 25 made of aluminum of substantially the same type as impregnated aluminum is integrally formed.
The lower surface of the ceramic substrate 21 and the upper surface of the heat dissipation component 24 are joined by aluminum 26 with which the heat dissipation component 24 is impregnated. Ceramic substrate 21 and heat dissipation component 24
The thickness of the aluminum 26 interposed between the joint surfaces is 30μ
It was m. The heat radiation pins 25 may be arranged at equal intervals as shown in FIG. 1, or may be arranged in a small pattern. Further, the heat radiation pin 25 may be locally arranged only in a portion where heat radiation is particularly required.

【0021】このように構成したセラミックス回路基板
の製造方法について説明する。まず、平均粒径60μ
m、純度98%以上の炭化ケイ素粉末に結合剤、保形剤
の溶媒を加え、これを攪拌機で混合して炭化ケイ素のス
ラリーを得た。このスラリーを金型に注入して成形後、
冷却して脱型した。これを乾燥して炭化ケイ素の含有量
が60体積%となる炭化ケイ素の多孔体を作製した。
A method of manufacturing the ceramic circuit board thus configured will be described. First, the average particle size is 60μ
m, a solvent of a binder and a shape-retaining agent was added to silicon carbide powder having a purity of 98% or more, and this was mixed with a stirrer to obtain a slurry of silicon carbide. After injecting this slurry into the mold and molding,
It was cooled and demolded. This was dried to prepare a silicon carbide porous body having a silicon carbide content of 60% by volume.

【0022】ついで、図3に示すように、この炭化ケイ
素の多孔体27の上にセラミックス基板21を積み重ね
た状態で溶浸用の型28に装入した。このとき、多孔体
27およびセラミックス基板21と型28の内壁との間
には所定の隙間を確保した。この型28には、多孔体2
7が装入される空間部に連通した放熱ピン形成用の空間
部29が、多孔体27の主面と直交する向きに形成され
ている。
Then, as shown in FIG. 3, the ceramic substrate 21 was stacked on the porous body 27 of silicon carbide and loaded into the infiltration mold 28. At this time, a predetermined gap was secured between the porous body 27 and the ceramic substrate 21 and the inner wall of the mold 28. The mold 28 has a porous body 2
A space 29 for forming a heat dissipation pin, which communicates with a space into which 7 is inserted, is formed in a direction orthogonal to the main surface of the porous body 27.

【0023】放熱ピン形成用の空間部29は、放熱ピン
の基部から先端部までの高さが放熱ピンの基部の直径の
3倍、放熱ピンの勾配が12°、相隣合う放熱ピン同士
の最短間隔が放熱ピンの基部の直径の1.2倍になるよ
うに形成した。
The space 29 for forming the radiating pin has a height from the base of the radiating pin to the tip thereof is three times the diameter of the base of the radiating pin, and the gradient of the radiating pin is 12 °. The shortest distance was formed to be 1.2 times the diameter of the base of the heat dissipation pin.

【0024】そして、型28内にAl−7重量%Siの
アルミニウム溶湯を圧入した。アルミニウム溶湯が、多
孔体27と型28の内壁との隙間を通り、また多孔体2
7中を含浸して通り、Al−SiC系複合体が形成され
るとともに、Al−SiC系複合体とセラミックス基板
21との接合界面にアルミニウムが介在して両者が金属
的接合された。
Then, a molten aluminum of Al-7 wt% Si was press-fitted into the mold 28. The molten aluminum passes through the gap between the porous body 27 and the inner wall of the mold 28, and the porous body 2
7 was impregnated and passed through to form an Al-SiC based composite, and aluminum was interposed at the bonding interface between the Al-SiC based composite and the ceramic substrate 21 for metal bonding.

【0025】また、アルミニウム溶湯の含浸と同時に、
アルミニウム溶湯が放熱ピン形成用の空間部29内にも
充満される。これにより、Al−SiC系複合体と連続
一体的に放熱ピンを形成させた。
At the same time as the impregnation of the molten aluminum,
The molten aluminum also fills the space portion 29 for forming the radiation pin. Thereby, the radiating pin was formed continuously and integrally with the Al-SiC composite.

【0026】さらに、アルミニウム溶湯の含浸と同時
に、アルミニウム溶湯が多孔体27およびセラミックス
基板21と型28の内壁との隙間を通り、Al−SiC
系複合体の表面およびセラミックス基板21の上面にア
ルミニウム被覆層を形成させた。
Further, at the same time as the impregnation of the molten aluminum, the molten aluminum passes through the gap between the porous body 27 and the ceramic substrate 21 and the inner wall of the mold 28, and passes through the Al-SiC.
An aluminum coating layer was formed on the surface of the ceramic composite and the upper surface of the ceramic substrate 21.

【0027】含浸完了、冷却後、型28を解体して型2
8から抜き出して、セラミックス基板が接合されたAl
−SiC系複合体を作製した。
After completion of impregnation and cooling, the mold 28 is disassembled and the mold 2
Al from which the ceramic substrate was joined
-A SiC-based composite was prepared.

【0028】放熱ピンが一体的に形成されたAl−Si
C系複合体を型28から抜き出す際に、容易に型28か
ら抜き出すことができた。すなわち、Al−SiC系複
合体の溶浸用の型に対する離型性が良好であった。この
ため、抜き出した放熱ピンに曲りなど発生しておらず、
また型に破損は生じなかった。
Al-Si integrally formed with a radiation pin
When the C-based composite was extracted from the mold 28, it could be easily extracted from the mold 28. That is, the releasability of the Al-SiC composite from the infiltration mold was good. Therefore, the extracted heat dissipation pin does not bend,
Moreover, the mold was not damaged.

【0029】このように、Al−SiC系複合体の一方
の主面に、アルミニウムを介してセラミックス基板を金
属的接合して、Al−SiC系複合体の他方の主面に、
Al−SiC系複合体に含浸されたアルミニウムからな
る放熱ピンを一体的に形成した場合、放熱ピンの形状を
最適化することにより、Al−SiC系複合体を溶浸用
の型から抜き出すとき、容易に型から抜け、放熱ピンの
曲がりや溶浸用の型の破損を防止できた。
As described above, the ceramic substrate is metallically bonded to one main surface of the Al-SiC composite by aluminum, and the other main surface of the Al-SiC composite is bonded to the other main surface.
When the heat dissipation pin made of aluminum impregnated in the Al-SiC composite is integrally formed, the shape of the heat dissipation pin is optimized to extract the Al-SiC composite from the infiltration mold. It was easy to remove from the mold, and it was possible to prevent bending of the heat dissipation pin and damage to the mold for infiltration.

【0030】セラミックス基板が接合されたAl−Si
C系複合体を作製した後、セラミックス基板21の上面
のアルミニウム被覆層をエッチングすることにより所定
パターンのアルミニウム回路部を作製した。
Al-Si bonded to a ceramic substrate
After the C-based composite was produced, the aluminum coating layer on the upper surface of the ceramic substrate 21 was etched to produce an aluminum circuit portion having a predetermined pattern.

【0031】他のアルミニウム回路部の作製方法とし
て、第1に予め上面にアルミニウム回路部を接着させた
セラミックス基板を炭化ケイ素の多孔体に隣接させ、多
孔体にアルミニウム溶湯を含浸することにより両者を接
合させてもよいし、第2にセラミックス基板と炭化ケイ
素の多孔体をアルミニウム含浸により接合させた後、所
定パターンのアルミニウム回路部を接着してもよい。
As another method for producing an aluminum circuit portion, firstly, a ceramic substrate having an aluminum circuit portion adhered to the upper surface in advance is placed adjacent to a porous body of silicon carbide, and the porous body is impregnated with molten aluminum to form both. Second, the ceramic substrate and the porous body of silicon carbide may be joined by impregnating aluminum, and then the aluminum circuit portion having a predetermined pattern may be adhered.

【0032】このようにして得られたAl−SiC系複
合体のAl−SiC複合本体部からサンプルを切り出
し、特性を調べたところ、熱膨張係数は8×10-6
K、熱伝導率は190W/(m・K)であり、良好な低
熱膨張・高熱伝導特性を有していた。
A sample was cut out from the Al-SiC composite body of the Al-SiC composite body thus obtained, and its characteristics were examined. The coefficient of thermal expansion was 8 x 10 -6 /
K, thermal conductivity was 190 W / (m · K), and had good low thermal expansion and high thermal conductivity properties.

【0033】また、本発明のAl−SiC系複合体から
なる放熱部品をセラミックス回路基板に接合したモジュ
ールを、−40℃〜室温〜+125℃を1サイクルとし
て1000サイクルの冷熱サイクル試験にかけた結果、
放熱部品とセラミックス基板の接合面が剥離することが
なく、熱抵抗を抑えられることを確認できた。
Further, the module in which the heat dissipation component made of the Al--SiC composite of the present invention was joined to the ceramic circuit board was subjected to a 1000-cycle cooling / heating cycle test with -40 ° C. to room temperature to + 125 ° C. as one cycle.
It was confirmed that the joint surface between the heat-dissipating component and the ceramic substrate did not peel off and the thermal resistance could be suppressed.

【0034】[0034]

【発明の効果】本発明によれば、セラミックス基板とA
l−SiC系複合体とをアルミニウムを介して金属的接
合させたので接合信頼性が向上するとともに、セラミッ
クス基板とAl−SiC系複合体の接合界面の熱抵抗を
抑えることができる。また、他方の主面に放熱ピンを一
体的に形成させたAl−SiC系複合体を溶浸用の型か
ら抜き出すとき、容易に型から抜け、放熱ピンの曲がり
や溶浸用の型の破損を防止できる。
According to the present invention, the ceramic substrate and A
Since the 1-SiC composite is metallically bonded via aluminum, the bonding reliability is improved and the thermal resistance at the bonding interface between the ceramic substrate and the Al-SiC composite can be suppressed. Further, when the Al-SiC composite having the radiation pin integrally formed on the other main surface is extracted from the mold for infiltration, it is easily removed from the mold, and the radiation pin is bent or the mold for infiltration is damaged. Can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例のセラミックス回路基板を示す。FIG. 1 shows a ceramic circuit board according to an embodiment of the present invention.

【図2】本発明のセラミックス回路基板における放熱ピ
ンの拡大図を示す。
FIG. 2 shows an enlarged view of heat dissipation pins in the ceramic circuit board of the present invention.

【図3】本発明のセラミックス回路基板の製造方法を説
明するための断面図を示す。
FIG. 3 is a sectional view for explaining the method for manufacturing a ceramics circuit board according to the present invention.

【図4】従来のIGBTモジュールの一例の断面図を示
す。
FIG. 4 is a sectional view showing an example of a conventional IGBT module.

【符号の説明】[Explanation of symbols]

1 セラミックス基板、 2 回路板、 3 銅板、4
セラミックス回路基板、 5 半導体チップ、 6
放熱基板、 7 はんだ、8 ヒートシンク、 9 放
熱ピン、 10 グリス、 11 ねじ、12 放熱ピ
ン、 13 基部、 14 先端部、15 放熱ピンを
設けた側の主面、20 セラミックス回路基板、 21
セラミックス基板、22 アルミニウム回路部、 2
3 半導体チップ、 24 放熱部品、25 放熱ピ
ン、 26 アルミニウム、 27 炭化ケイ素の多孔
体、28 溶浸用の型、 29 放熱ピン形成用の空間
1 ceramics board, 2 circuit board, 3 copper board, 4
Ceramic circuit board, 5 semiconductor chips, 6
Heat dissipation board, 7 solder, 8 heat sink, 9 heat dissipation pin, 10 grease, 11 screw, 12 heat dissipation pin, 13 base, 14 tip, 15 main surface on which heat dissipation pin is provided, 20 ceramics circuit board, 21
Ceramics substrate, 22 Aluminum circuit part, 2
3 semiconductor chips, 24 heat dissipation parts, 25 heat dissipation pins, 26 aluminum, 27 porous silicon carbide body, 28 infiltration mold, 29 space for forming heat dissipation pins

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Al−SiC系複合体の一方の主面に、
アルミニウムを介してセラミックス基板が金属的接合さ
れたセラミックス回路基板であって、Al−SiC系複
合体の他方の主面に、Al−SiC系複合体に含浸され
たアルミニウムからなる放熱ピンを一体的に形成してな
り、該放熱ピンの基部から先端部までの高さが、放熱ピ
ンの基部の直径の4倍以下であることを特徴とするセラ
ミックス回路基板。
1. An Al-SiC based composite on one main surface,
A ceramic circuit board in which a ceramics substrate is metallically joined via aluminum, and a radiation pin made of aluminum impregnated in the Al-SiC composite is integrally formed on the other main surface of the Al-SiC composite. And a height from the base to the tip of the heat dissipation pin is 4 times or less the diameter of the base of the heat dissipation pin.
【請求項2】 放熱ピンの基部から先端部までの勾配が
1°〜15°であることを特徴とする請求項1に記載の
セラミックス回路基板。
2. The ceramic circuit board according to claim 1, wherein the inclination from the base to the tip of the heat dissipation pin is 1 ° to 15 °.
【請求項3】 相隣合う放熱ピン同士の最短間隔が、放
熱ピンの基部の直径の0.5〜2倍であることを特徴と
する請求項1または2に記載のセラミックス回路基板。
3. The ceramic circuit board according to claim 1, wherein the shortest distance between adjacent heat radiation pins is 0.5 to 2 times the diameter of the base of the heat radiation pin.
【請求項4】 放熱ピンの表面およびAl−SiC系複
合体の放熱ピンを設けた側の主面の表面に耐食性被膜を
施したことを特徴とする請求項1〜3のいずれかに記載
のセラミックス回路基板。
4. The corrosion resistant coating is applied to the surface of the heat dissipation pin and the surface of the main surface of the Al—SiC-based composite on the side where the heat dissipation pin is provided, according to any one of claims 1 to 3. Ceramic circuit board.
JP2002123911A 2002-04-25 2002-04-25 Ceramic circuit substrate Pending JP2003318316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002123911A JP2003318316A (en) 2002-04-25 2002-04-25 Ceramic circuit substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002123911A JP2003318316A (en) 2002-04-25 2002-04-25 Ceramic circuit substrate

Publications (1)

Publication Number Publication Date
JP2003318316A true JP2003318316A (en) 2003-11-07

Family

ID=29539065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002123911A Pending JP2003318316A (en) 2002-04-25 2002-04-25 Ceramic circuit substrate

Country Status (1)

Country Link
JP (1) JP2003318316A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100917841B1 (en) 2008-07-25 2009-09-18 코아셈(주) Metal substrate for electronic components module and electronic components module using it and method of manufacturing metal substrate for electronic components module
KR100934476B1 (en) * 2009-03-30 2009-12-30 코아셈(주) Circuit board and method of manufacturing the same
KR101125752B1 (en) * 2009-03-03 2012-03-27 코아셈(주) Printed circuit board and method of manufacturing the same
CN109309062A (en) * 2017-07-27 2019-02-05 比亚迪股份有限公司 A kind of heat dissipation element and preparation method thereof and IGBT mould group

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100917841B1 (en) 2008-07-25 2009-09-18 코아셈(주) Metal substrate for electronic components module and electronic components module using it and method of manufacturing metal substrate for electronic components module
WO2010011009A1 (en) * 2008-07-25 2010-01-28 코아셈(주) Metal substrate for an electronic component module, module comprising same, and method for manufacturing a metal substrate for an electronic component module
KR101125752B1 (en) * 2009-03-03 2012-03-27 코아셈(주) Printed circuit board and method of manufacturing the same
KR100934476B1 (en) * 2009-03-30 2009-12-30 코아셈(주) Circuit board and method of manufacturing the same
WO2010114238A2 (en) * 2009-03-30 2010-10-07 코아셈㈜ Circuit board, and method for manufacturing same
WO2010114238A3 (en) * 2009-03-30 2010-12-23 코아셈㈜ Circuit board, and method for manufacturing same
CN109309062A (en) * 2017-07-27 2019-02-05 比亚迪股份有限公司 A kind of heat dissipation element and preparation method thereof and IGBT mould group

Similar Documents

Publication Publication Date Title
JP5520815B2 (en) Insulating substrate and base for power module
US20060263584A1 (en) Composite material, electrical circuit or electric module
JP2004022973A (en) Ceramic circuit board and semiconductor module
JP2012074591A (en) Circuit board and electronic divice
JP4404602B2 (en) Ceramics-metal composite and high heat conduction heat dissipation substrate using the same
JP3449683B2 (en) Ceramic circuit board and method of manufacturing the same
JP2007096252A (en) Liquid-cooling circuit substrate and liquid cooling electronic device
JP2003318316A (en) Ceramic circuit substrate
JP3793562B2 (en) Ceramic circuit board
JP2003133662A (en) Ceramic circuit board
JP2005005528A (en) Module for mounting semiconductor element
JP2000277953A (en) Ceramic circuit board
JP2004022964A (en) Al-SiC COMPOSITE BODY, HEAT SINK COMPONENT USING THE SAME, AND SEMICONDUCTOR MODULE DEVICE
JP2004087927A (en) Ceramic substrate
JP2003283063A (en) Ceramic circuit board
JP2009188366A (en) Integral semiconductor heat dissipating substrate and its manufacturing method
JP2004064050A (en) Module structure and circuit board suitable for it
JP2002057256A (en) Composite material
JP2003306730A (en) Al-SiC-BASED COMPOSITE AND HEAT-DISSIPATING COMPONENT
JP2005019875A (en) Heat radiating plate, heat radiating module, semiconductor mounted module, and semiconductor device
JP2004022885A (en) Al-SiC COMPOSITE BODY AND HEAT RADIATING COMPONENT
JP2967065B2 (en) Semiconductor module
JP3180100B2 (en) Semiconductor module
JP2004221328A (en) Semiconductor element housing package and semiconductor device
JP2005183942A (en) Heat spreader, isolation circuit substrate and power module structure