JP2005005528A - Module for mounting semiconductor element - Google Patents

Module for mounting semiconductor element Download PDF

Info

Publication number
JP2005005528A
JP2005005528A JP2003168112A JP2003168112A JP2005005528A JP 2005005528 A JP2005005528 A JP 2005005528A JP 2003168112 A JP2003168112 A JP 2003168112A JP 2003168112 A JP2003168112 A JP 2003168112A JP 2005005528 A JP2005005528 A JP 2005005528A
Authority
JP
Japan
Prior art keywords
ppm
heat dissipation
semiconductor element
module
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003168112A
Other languages
Japanese (ja)
Inventor
Hideko Fukushima
英子 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003168112A priority Critical patent/JP2005005528A/en
Publication of JP2005005528A publication Critical patent/JP2005005528A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Abstract

<P>PROBLEM TO BE SOLVED: To provide a module for mounting a semiconductor element having small thermal conductivity and the small anisotropy of a coefficient of thermal expansion, and capable of satisfactorily conducting a large amount of heat generated from the semiconductor element to the lower side without causing an erroneous operation and thermal destruction, and satisfactorily keeping airtightness. <P>SOLUTION: The module has a base 4a having a mounting part of a semiconductor element 2 on its upper surface, and a box fixed so as to surround the mounting part. The base 4a is a decomplex base material comprising graphite and metal having a thermal conductivity in a thickness direction of not less than 250 W/mK, a thermal expansion coefficient of not less than 0.1 ppm/K nor more than 4 ppm/K, thermal conductivity in a surface direction of not less than 150 W/mK, and a thermal expansion coefficient in the surface direction of not less than 4 ppm/K nor more than 10 ppm/K. A metal layer is formed around the base material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、IC,LSI等の半導体集積回路基板、電界効果型トランジスター(FET)、光半導体パッケージなどの半導体素子を搭載する半導体素子搭載用モジュールに関する。
【0002】
【従来の技術】
従来の半導体素子搭載用モジュール(以下、半導体モジュールという)を図1、2、3に示す。
【0003】
半導体モジュールには、図1のように絶縁基板1aと接合された半導体素子2の上面に伝熱部材3を介して放熱基板4aが戴置された半導体モジュール、図2のように半導体素子2が放熱基板4b上に直接戴置された半導体モジュール、図3のように半導体素子2が戴置されたセラミック回路基板のような絶縁基板1bを介して放熱基板1aが接合されている半導体モジュールなどがある。
また、半導体モジュールとしては、特許文献1に銅と第一酸化銅からなる複合体を放熱基板に用いた半導体モジュールが提案されている。これらは、熱伝導率を300W/mK以上とすると、熱膨張係数は10ppm/Kより大きくなり、熱膨張係数を10ppm/K以下とすると、熱伝導率が120W/mKと小さくなり、半導体素子の放熱性と熱サイクル負荷時の信頼性の両者を満足するものではなかった。
【0004】
また、特許文献2には、本発明の複合体とほぼ同等の熱伝導率を有する複合体が提案されているが、前記複合材料の充填材は、主としてモリブデン、あるいはタングステンの硬質粒子からなり、所望の形状に加工する際に加工性に劣るという問題があった。
【0005】
また、特許文献3に炭素繊維を炭素で結合した一方向性炭素繊維基体を用いた半導体パッケージが提案されている。この発明に用いられた複合材料の特性は不明であるが、通常、炭素繊維を炭素で結合した一方向性複合材料の場合、繊維方向の熱伝導率は300W/mK以上となっているとしても、それと直交する方向の熱伝導率は50W/mK以下と非常に小さく、熱伝導率の異方性が大きく、熱を四方八方に拡散させて放熱させる用途に対しては不適であった。
【0006】
また、特許文献4に炭素繊維と銅、アルミニウム、銀および金からなる群から選ばれた少なくとも1種類の金属とからなる複合体が提案されている。この発明の複合材の熱伝導率は炭素繊維方向だけであり、それと直交する方向の熱伝導率は不明であるが、一般に、繊維方向の熱伝導率が300W/mKの場合、それと直交する方向の熱伝導率は100W/mK未満である。よって、この例も半導体素子が発する熱を放熱するには十分ではなく、搭載された半導体素子を長期間にわたり正常かつ安定に作動させることはできなかった。
【0007】
【特許文献1】
特開2001−339020
【特許文献2】
特開2002−121639
【特許文献3】
特開2000−150745
【特許文献4】
特開2000−247758
【0008】
【発明が解決しようとする課題】
しかしながら、半導体素子の高集積化、かつ同素子の大型化が急速に進むにつれ発熱量が増大するため、放熱基板に対しては放熱効率の向上が求められ、より高い熱伝導率で、かつ半導体モジュールとしての信頼性を向上させるために、半導体素子あるいはセラミック回路基板のような周辺部材との熱膨張係数差をより小さくすることも同時に求められている。上述のような熱伝導率と熱膨張係数からなる放熱基板では、放熱効率と半導体モジュールの信頼性を同時に満足させることができないという問題が発生していた。
また、気密封止が必要なモジュールの場合、炭素系材料と金属からなる複合材料を用いたモジュールでは、特に十分な気密封止が達成されないという問題が発生していた。
【0009】
本発明は、このような問題点に鑑みなされたものであり、その目的は、半導体素子が発する熱を放熱板を介して効率よく半導体モジュールの外部に放散し、よって半導体モジュール内部に搭載される半導体素子を長期間に亘り正常かつ安定に動作させるとともに、半導体モジュールの気密性が必要な場合には、十分な気密性が得られる半導体素子搭載用モジュールを提供することにある。
【0010】
【課題を解決するための手段】
本発明は、半導体素子搭載用モジュールにおいて、一方向の熱伝導率が250W/mK以上、熱膨張係数が0.1ppm/K以上、4ppm/K未満、前記一方向と直交する熱伝導率が150W/mK以上、熱膨張係数が4ppm/K以上、10ppm/K以下の黒鉛と金属からなる複合体を放熱基板とし、当該放熱基板の一方向面側あるいは直交面側に半導体素子を搭載する半導体素子搭載用モジュールである。
【0011】
本発明は、半導体素子搭載用モジュールにおいて、厚み方向の熱伝導率が250W/mK以上、熱膨張係数が0.1ppm/K以上、4ppm/K未満、前記厚み方向と直交する熱伝導率が150W/mK以上、熱膨張係数が4ppm/K以上、10ppm/K以下の黒鉛と金属からなる複合体を放熱基板とし、当該放熱基板の直交面側に半導体素子を搭載する半導体素子搭載用モジュールである。
【0012】
本発明は、押出成形、焼成、黒鉛化処理された多孔質黒鉛化押出成形体にAl又はCuから選ばれた金属または該金属を1種以上含む合金を溶湯鍛造し、前記多孔質黒鉛化押出成形体内部に前記金属によるランダムな放熱経路を形成した黒鉛と金属からなる複合体を放熱基板とし、前記多孔質黒鉛化押出成形体の押出方向を前記放熱基板の厚み方向に一致させ、もって厚み方向の熱伝導率が250W/mK以上、熱膨張係数が0.1ppm/K以上、4ppm/K未満、前記厚み方向と直交する方向の熱伝導率が150W/mK以上、熱膨張係数が4ppm/K以上、10ppm/K以下としており、当該放熱基板の直交面側に半導体素子を搭載する半導体素子搭載用モジュールである。
【0013】
本発明の半導体素子搭載用モジュールにおいて、前記熱伝導率が250W/mK以上、熱膨張係数が0.1ppm/K以上、4ppm/K未満となる方向が、放熱基板の厚み方向側面に対し略45°傾いたものとすることができる。
本発明の半導体素子搭載用モジュールにおいて、前記半導体素子を搭載した放熱基板の少なくとも受熱側の面に、NiあるいはCu、Alのうち少なくとも1種を含む金属層を形成することは望ましい。また、前記放熱基板の放熱側がフィン形状となっているか、あるいは、放熱基板と水冷ジャケットを一体化した構造体であることは望ましい構造である。
【0014】
【発明の実施の形態】
本発明の半導体素子搭載用モジュールによれば、放熱基板は黒鉛と金属からなる複合体からなり、この複合体は多孔質黒鉛化押出成形体内部にランダムな方向で分散含浸された金属を含有する黒鉛質金属複合体である。よって、半導体素子から放熱基板に伝わった熱は、黒鉛質金属複合体の内部においてランダムな方向に熱が伝達されながら放熱基板の放熱面側全体に伝わることになる。このとき、多孔質黒鉛化押出成形体の押出し方向と一致する方向の熱伝導率が250W/mK以上、熱膨張係数が0.1ppm/K以上、4ppm/K未満を満足し、同時に前記押出し方向と直交する方向の熱伝導率が150W/mK以上、熱膨張係数が4ppm/K以上、10ppm/K以下を満足することを見出した。即ち、熱伝導率と熱膨張率は放熱基板の一方向面とそれに直交する面とで異方性を有している。ここで熱伝導率は高い熱伝導率レベルにも関わらず、その異方性自体は小さく、その為半導体素子等の搭載面に自由度があり、しかも非搭載面に設けたヒートシンクを含む不特定の放熱面への熱の伝わりが早く放熱特性に優れている。一方、熱膨脹率は数値的に低いレベルに収まっているが、その異方性は熱伝導率に比較して大きい。よって、半導体素子やヒートシンク等の熱膨張率に応じて適宜その搭載面を選択することにより過大な熱応力による弊害を効果的に回避することができる。このように本発明では方向に寄らず高い熱伝導率と熱膨脹率の異方性を利用して半導体素子等の搭載面を選択的に設定したモジュールであることに特徴がある。
【0015】
以下、本発明の半導体素子搭載用モジュールの構成について説明を加える。
先ず、一方向の熱伝導率が250W/mK以上、熱膨張係数が0.1ppm/K以上、4ppm/K未満、前記一方向と直交する熱伝導率が150W/mK以上、熱膨張係数が4ppm/K以上、10ppm/K以下の黒鉛と金属からなる複合体を放熱基板とし、当該放熱基板の一方向面側あるいは直交面側に半導体素子を搭載するとしたのは、基板の半導体素子搭載面を選択できることを意図している。例えば、図2に示された半導体素子搭載用モジュールでは、放熱基板4aと半導体素子との間に第2の放熱基板4bを設けているが、この場合、放熱基板4aは下面の放熱性を優先するため、熱伝導率が250W/mK以上、熱膨張係数が0.1ppm/K以上、4ppm/K未満の一方向面を厚み方向に一致させて用いる(矢印の押出し方向を厚み方向に一致)。一方、放熱台4bは半導体素子との接合性、熱応力緩和性を重視するため、半導体素子の熱膨脹係数により近い方向を選択する。例えばSi系半導体の場合は、図2のように熱伝導率が250W/mK以上、熱膨張係数が0.1ppm/K以上、4ppm/K未満の一方向面を素子搭載面に一致させて用いる(矢印の押出し方向を平面方向に一致)。他方GaAs系半導体の場合では、熱伝導率が150W/mK以上、熱膨張係数が4ppm/K以上、10ppm/K以下の直交面側を素子搭載面に一致させて用いるのが好ましい。このように熱伝導率と熱膨脹率の異方性を利用して個々のモジュールに適した方向を選択できることを特徴としている。
【0016】
本発明の黒鉛質金属複合体の一構成として、押出成形によって得た多孔質黒鉛化押出成形体の押出方向を放熱基板の厚み方向とし、放熱基板の厚み方向の熱伝導率が250W/mK以上、熱膨張係数が0.1ppm/K以上、4ppm/K未満、厚み方向と直交する熱伝導率が150W/mK以上、熱膨張係数が4ppm/K以上、10ppm/K以下とした半導体素子搭載用モジュールがある。このものは、シリコン半導体素子が接合する面が押出方向に対して直交する放熱基板となり、放熱基板の熱伝導率は厚さ方向の方が面方向より大きいので、半導体素子の熱は素早く放熱基板の他面に接合されたヒートシンクに伝達される。一方、放熱基板の熱膨張率は面方向の方が厚さ方向より大きいので、放熱基板面方向における熱膨張率は半導体素子の熱膨張率とヒートシンクの熱膨張率の両方に近い。そのため、半導体素子の動作時に放熱基板との接合面とヒートシンクの接合面の両方において熱応力を緩和することができる。
【0017】
また、黒鉛質金属複合体からなる放熱基板を、熱伝導率が250W/mK以上、熱膨張係数が0.1ppm/K以上、4ppm/K未満となる方向が、放熱基板の厚み方向側面に対し略45°傾いたもので形成することもできる。これは図6に示すように黒鉛質金属複合体の基材から放熱基板を切り出す際に、多孔質黒鉛化押出成形体の押出方向(→方向)に対し略45°となるように切り出して用いることを意味している。これにより、放熱基板1eの熱伝導率、熱膨張係数の異方性が実質的になくなり、四方八方への良好な放熱が可能となり放熱設計が容易になる。
【0018】
本発明の放熱基板を構成する黒鉛質金属複合体は、実質的に当該複合体を構成する多孔質黒鉛化押出成形体の押出方向と直交する方向の熱膨張係数が4ppm/K以上、10ppm/K以下である。よって、この面を半導体素子搭載面に一致させると、通常、半導体素子として用いられるシリコン、ガリウム砒素、インジウムリン等の熱膨張係数が、それぞれ、4.2×10−6/K、6.5×10−6/K、4.5×10−6/K程度、さらに、セラミック回路基板などの周辺部材として用いられる窒化珪素、窒化アルミニウム、アルミナの絶縁基板の熱膨張係数が4〜7×10−6/Kであるため、熱膨張係数の整合も良く、ろう接等の金属接合を行うモジュール組み立て工程や、繰り返し熱が加わり、接合部で熱応力が発生する環境などにおいても放熱基板と半導体素子や周辺部材との熱膨張係数の整合が良好なため、接合部は高い信頼性を得ることができる。さらに、このとき放熱基板の熱膨張率は面方向より厚さ方向の方が半分以下と小さいので、パッケージ作製時の加熱時に、高さ方向の膨張率が小さくなり組み立て工程において、位置決めしやすく好ましい。
【0019】
さて、本発明で用いる黒鉛質金属複合体は、50〜90体積%の黒鉛質の間を銅、銅合金、アルミ、アルミ合金、マグネシウム、マグネシウム合金、真鍮、黄銅、シリコン、亜鉛、銀、ニッケル、マグネシウムなどからなる金属によって埋められた組織を有する。このような基材は例えば次の工程のようにして作製される。
純度99.7%以上のコークスなどの炭素粒子用い、それらをピッチとともに混合し、押し出し成形した成形体を2000℃以上の温度にて焼成したのち、必要であれば更にピッチを含浸し、2500℃以上の温度にて黒鉛化処理を行って得られた黒鉛質材料(プリフォーム)に銅、銅合金、アルミ、アルミ合金、マグネシウム、マグネシウム合金、真鍮、黄銅、シリコン、亜鉛、銀などを1種以上含む金属を含浸してなるものである。含浸方法は、減圧鋳造法、加圧鋳造法、溶湯鍛造法などでよいが溶湯鍛造法であることが好ましい。含浸させる金属としては、上記したような可能な限り高熱伝導率を有する金属が好ましいが、使用される環境、特にそれらが曝される温度により決定される。また、含浸は融点より10℃以上高い温度及び10 MPa以上の圧力で行うことが必要とされる。曝される最高温度が500℃の場合、アルミやアルミ合金が好ましく、900℃の場合は、銅や銅合金、銀が好ましい。得られた黒鉛質金属複合体には熱処理を施すことが必要である。この熱処理は、(融点−10℃)以下であって、かつアルミやアルミ合金の場合200℃以上の温度、銅や銅合金の場合は300℃以上の温度において、それぞれ昇温速度30℃/分以下、冷却速度20℃/分以下の条件で行う。
【0020】
さらに、本発明の半導体搭載用モジュールは、一方向の熱伝導率が250W/mK以上、熱膨張係数が0.1ppm/K以上、4ppm/K未満、なおかつ一方向と直交する方向の熱伝導率が150W/mK以上、熱膨張係数が4ppm/K以上10ppm/K以下の黒鉛と金属からなる複合体を用い、その半導体素子戴置面の裏面側にフィン形状を設けることにより放熱性がより向上し、あるいは、放熱基板と水冷ジャケットを一体化した構造体とすることによりさらに放熱性が向上し、かつ従来、放熱基板とは別に銅等の高比重の金属により水冷ジャケットを設けたのに比較し、接合工程が不要になり、構造がシンプルで、かつ軽量化を図ることができる。これは、放熱基板のヤング率が5GPa以上100GPa以下、好ましくは5〜30GPaであり、げ強さが5MPa以上100MPa以下、好ましくは5〜50MPaの特性を有していることにより、容易に基材の裏面にフィン形状を一体形成することができる。ただし、フィンの厚みは0.5mm以上が好ましい。
【0021】
また、半導体素子搭載用モジュールでは気密性を必要とする場合が多いが、この様な場合、黒鉛質金属複合体だけで気密性を確保することは十分ではない。従って、黒鉛質金属複合体の周囲、特に半導体素子が戴置される面、より好ましくは全周囲に金属層を形成した放熱基板とすることにより、必要とする気密性が確保される。基材の周囲に金属層を形成する方法は、蒸着、スパッタ等の乾式法、あるいはめっきなどの湿式法、銀ペースト、銅ペースト等を用いた印刷焼成法でもよい。なかでも、無電解めっきによれば、容易に基材の全周囲に均一な厚さの金属層を形成することができる。金属層としてはNi−P、Ni−B、Cu、Alなどでよいが、これらに限定されるものではない。
【0022】
【実施例】
はじめに、図1、図3、図4を用いて、本発明の半導体素子搭載用モジュールの実施形態を説明する。図1は半導体素子から発生した熱を直接放熱する断面構造を示し、図3、図4はパワー半導体モジュール冷却構造断面図を示している。これらの図では、主に半導体素子と半導体素子から発生した熱を放熱するための放熱構造を示している。
最初に本実施形態の構成を説明する。図1に示した半導体素子の直接放熱では、半導体素子2の裏面に熱伝導グリスなどの伝熱部材3を介し、銅あるいは銅合金と黒鉛、アルミニウムあるいはアルミ合金と黒鉛、真鍮と黒鉛の何れかからなる複合材料の放熱基板4aが設置されている(矢印方向は押出し方向を示す。以下同様。)。また、本発明によれば、半導体素子と前記金属と黒鉛からなる複合体の熱膨張係数差が小さいので、熱伝導グリスを介した接触のかわりに、銀ろうやはんだを用いたろう接などの金属接合を行うことも可能であり、熱伝導グリスによる場合よりろう接の方がより熱抵抗を低減でき、半導体モジュールとしての信頼性も向上する。一方、図3に示したパワー半導体モジュールは、半導体素子2の裏面にセラミックス絶縁基板1bを取り付け、さらにこの絶縁基板1bの裏面に、銅あるいは銅合金と黒鉛、アルミニウムあるいはアルミ合金と黒鉛、真鍮と黒鉛の何れかからなる複合材の放熱基板4aを取り付けて構成されている。ここで放熱基板4aの平面方向の熱膨張係数は10ppm/以下なので、隣接配置される半導体素子ならびに周辺部材との間での熱歪が生じにくく、低い熱抵抗が維持される。その上、平面方向の熱伝導率150W/mk以上と高熱伝導率であるため平面方向の放熱性も良好となる。
【0023】
また、図4に示すように、銅あるいは銅合金と黒鉛、アルミニウムあるいはアルミ合金と黒鉛、真鍮と黒鉛の何れかからなる複合材の放熱基板4cは加工性に優れるため、機械加工により、放熱基板4cの半導体素子戴置面の裏面側に冷却媒体との接触面積を増大させて冷却能力を向上させる放熱フィンを冷却媒体の流れ方向に対して平行となるように形成した一体構造とすることにより、より放熱効率を向上させることができ、かつ構造がシンプルになることにより低背化が図られる。あるいは、また、本発明の半導体素子搭載用モジュールに用いられる放熱基板は、黒鉛質金属複合体からなる易加工性材料のため放熱基板と水冷ジャケットを一体化した構造体としてもよい。従来、放熱基板と放熱フィン、あるいは水冷ジャケットとはんだ、グリース、高熱伝導性シートなどの伝熱部材により接触させ、放熱しているため界面での熱抵抗が上昇し放熱効率が悪化していたが、図4、図5に示した実施例は、放熱板の裏面に複数のフィン形状を形成させた一体構造、また、方熱板4dの裏面に水冷ジャケットを形成した一体構造であり放熱基板と放熱構造体との間の熱抵抗の上昇が全くなく、より放熱性を向上させる効果がある。
【0024】
以下、本発明の半導体素子搭載用モジュールをパワー半導体モジュールに用いた図3の実施例により詳細に説明する。
放熱基板4aとして縦×横×厚さが30×30×2mmである黒鉛質アルミ複合体及び黒鉛質銅複合体と、絶縁基板1bとして縦×横×厚さが30×30×0.8mmの窒化アルミニウム基板、窒化珪素基板及びアルミナ基板を用意した。絶縁基板1bと放熱基板4aはろう付けされ、半導体素子2と絶縁基板1bははんだ付け、放熱基板4aとヒートシンク5は高熱伝導グリースを介して接触させ、熱抵抗を低減させている。
【0025】
さらに、放熱基板4aとして、縦×横×厚さが50×50×2mmのSiを含むアルミ合金が20〜30%含浸された黒鉛質アルミ複合体とCuが20〜30%含浸された黒鉛質銅複合体、さらに上記基板に縦×横×厚さが50×50×5mmのフィン付の黒鉛質アルミ複合体、及び黒鉛質銅複合体(フィンの溝深さ3mm)を用意し、それぞれ表1に示す実施例とした。その際、放熱基板4aの厚み方向の熱伝導率が250W/mK以上、熱膨張係数が0.1ppm/Kより大きく4ppm/K未満、直交する平面方向(素子搭載面側)の熱伝導率が150W/mK以上、熱膨張係数が4ppm/K以上、10ppm/K以下となるように構成した。
さらに、比較のために放熱基板として、同じ形状サイズのAl:SiCが30体積%:70体積%の複合材、Cu:Wが15体積%:85体積%、Cu:Moが40体積%:60体積%の複合材も用意し、それぞれ比較例とした。なお、Cu−WとCu−Mo以外の材料については表面にNiめっきを施した。
【0026】
次に、製造方法について説明を加える。多孔質黒鉛化押出成形体は、以下のように製造した。
コークス等の炭素原料粉末を平均粒径は50μm以上、50μm〜3mm程度に粉砕し分級した後、バインダーとしてピッチを添加し、混練する。混練物を所定の形状の押出口を有するダイから押し出し、所定の長さに切断後焼成し、黒鉛化させる。ここで押出成形後700〜1000℃により焼成しているが焼成後の成形体には多数の気孔があるので、嵩密度1.65 g/cm以上とするために焼成後の成形体の気孔内へピッチを含浸し再焼成する。この後、黒鉛化成形体とするために2600〜3000℃の温度で熱処理することにより、炭素質から黒鉛質に変化し多孔質黒鉛化押出成形体とする。尚、高熱伝導率及び低熱膨張率を有する多孔質黒鉛化押出成形体を得るためには、多孔質黒鉛化押出成形体を燃焼させたときに残る不燃性の鉱物質(灰分)は0.5質量%以下とし、純度の高い黒鉛質となすことが好ましい。
【0027】
多孔質黒鉛化押出成形体への溶融金属の含浸は溶湯鍛造法で行った。溶湯鍛造法を行うのに好ましい金型装置の一例を図7に示す。図7(a) に示すように、金型装置10は、中央にキャビティ11aを有する上型11と、上型11の下に配置され、中央に開口部12aを有する下型12と、上型11のキャビティ11a内に配置された下パンチ13と、下パンチ13の底部に連結して下型12の開口部12aを貫通するシャフト14と、上型11のキャビティ11a内に進入する上パンチ15と、上パンチ15の上面に連結したプランジャーシャフト16とを有する。
図7(a) に示すように、まず上パンチ15を取り外し、かつ多孔質黒鉛化押出成形体20を載置した下パンチ13を上型11のキャビティ11a内の最下部まで降下させた状態で、取鍋200より溶融金属Mをキャビティ11a内に注入する。溶湯鍛造温度は溶融金属の種類により異なるが、一般に溶融金属の融点より10℃以上高い温度であるのが好ましい。このとき上下型11、12等を所定の温度に加熱しておくとともに、含浸中に凝固しないように十分な量の溶融金属Mをキャビティ11a内に注入する。また、多孔質黒鉛化押出成形体の温度を溶融金属の融点と同等か、好ましくは溶融金属の融点以上に予め加熱しておくと、成形体の空孔中への溶融金属の十分な浸入が達成されるので好ましい。そして溶融金属を注入した時に、多孔質黒鉛化押出成体20が浮上するのを防止するために、鉄製材料などの重しをするとより好ましい。
【0028】
図7(b) に示すように、上パンチ15をキャビティ11a内に進入させ、プランジャーシャフト16を介して高圧で上パンチ15を押圧すると、高圧になった溶融金属Mは多孔質黒鉛化押出成形体20の空孔内に浸入する。溶湯鍛造圧力は溶融金属の種類によらず10 MPa以上必要で、より好ましくは50 MPa以上である。また、加圧時間は溶融金属の種類、温度及び圧力によらず、1分〜30分もあれば良い。そして多孔質黒鉛化押出成形体20に浸入した溶融金属Mが凝固した後、図7(c) に示すように、上パンチ15を除去し、次いで下パンチ13を上昇させて、得られた金属含浸多孔質黒鉛化押出成形体21を取り出す。最後に図7(d) に示すように、金属含浸多孔質黒鉛化押出成形体21を凝固金属M’から切り出す。なお溶融金属Mが多孔質黒鉛化押出成形体20の空孔に十分に加圧浸入しないうちに凝固するのを防止するために、溶湯鍛造の間上下の金型11、12及びパンチ13、15を所定の温度に加熱している。
【0029】
次に、多孔質黒鉛化押出成形体に熱処理を施した。昇温速度は30℃/分以下、保持温度は、(融点−10℃)以下で、かつアルミニウム系は200℃以上、銅系は300℃以上とし、保持時間は1〜120分程度であれば良い。保持温度が各金属の(融点−10℃)超であると、金属が軟化又は溶融して、多孔質黒鉛化押出成形体から滲出する恐れがある。また保持温度が200℃未満では、熱処理効果が十分に得られない。保持した後は徐冷を行う。その冷却速度は20℃/分以下で行い、10℃/分以下が好ましい。冷却速度が20℃/分超であると、含浸した金属の熱履歴が残るので好ましくない。尚、昇温速度の下限および冷却速度の下限は、熱処理効率を考慮して0.5℃/分程度であれば良い。
【0030】
パワー半導体モジュールは、以下のように作製した。
始めに、絶縁基板1bの上下面にろう材にてアルミニウム板を0.2MPaの圧力を加え、真空中で580℃に加熱し、積層接着後、アルミニウム板をエッチング法により所定のパターンに回路形成し、絶縁基板を絶縁性回路基板1bとした。次に放熱基板4aの上にパターン形成のないアルミニウム板を下側にした絶縁性回路基板1bをはんだ接合した。
次に、セラミック回路基板1bのアルミニウム板上にNiめっきを施し、このNiめっき上にはんだを用いて半導体チップ2の10×10mmを接合し、セラミック回路基板上に半導体チップを搭載した。これらを半導体素子搭載用モジュールとした。
なお、前記アルミニウム板を銅板として回路形成した絶縁性回路基板も作製した。
【0031】
表1に本実施例のパワー半導体モジュールの放熱特性の評価結果を示す。放熱特性は、通電時の半導体チップの表面温度と半導体チップとヒートシンク裏面との間の熱抵抗(℃/W)を測定し、さらに−40℃〜125℃までの昇降温試験を3000サイクルした後の半導体チップと放熱基板裏面との間の熱抵抗を測定した。なお、3000サイクルの温度サイクル試験後の熱抵抗は温度サイクル試験前の熱抵抗からの上昇率で示した。
【0032】
【表1】

Figure 2005005528
【0033】
比較例のAl−SiC、Cu−Mo、Cu−Wに比較して、実施例は厚み方向の熱伝導率が250W/mK以上と高く、平面方向の熱膨張係数が4以上、10以下と半導体素子、および絶縁基板との熱膨張率の整合がとれているため、比較例に比べて、半導体素子の表面温度および熱抵抗は総じて低くなり、サイクル試験後の上昇率も小さくなった。
【0034】
次に、光通信用の半導体素子収納用モジュールに用いた実施例を以下に説明する。図2は半導体素子収納用モジュールの断面図である。
図2において、2は半導体素子、4a、4bは放熱基板、31は気密性を確保するための箱体、32は光ファイバー、33は光ファイバーを通し、ガラス封止するための貫通孔である。
放熱基板4a、4bは上述の実施例と同様の製造法で作成したものでその説明は省略するが、表1の黒鉛質銅複合体(実施例1相当)である。
図2で半導体素子は、放熱基板4bにろう接等で直接金属接合されている。ここで放熱基板4aと4bを一体構造としても良いが、4bの放熱基板は、搭載面方向の熱伝導率が250W/mK以上、熱膨張係数が0.1ppm/K以上、4ppm/K未満となるように用い、3〜4ppm/Kの半導体素子とより近い熱伝導率となるようにし、4aの放熱基板は厚み方向の熱伝導率が250W/mK以上、熱膨張係数が0.1ppm/K以上、4ppm/K未満、直交する面方向を熱伝導率が150W/mK以上、熱膨張係数が4ppm/K以上、10ppm/K以下とした放熱基板を用いている。このように厚み方向と平面方向の特性が異なる放熱基板を組み合わせて使用することも可能である。そうすることにより、半導体素子との熱膨張係数差が小さくなり、半導体素子への熱応力負荷が低減され半導体素子が搭載されたモジュールの信頼性が向上する。
【0035】
更に、図2を詳細に説明する。黒鉛質銅複合体を、厚み方向の熱伝導率が250W/m・K以上となる方向に板状に切り出して4a、4bが一体化した放熱基板4aを作製する。板の寸法は、例えば厚いところで5mm、薄いところで2mm程度である。
さらに、この板の上下面、あるいは全周囲に例えばNi−Bの金属層6をめっきによって形成し、次に金めっき層7を形成する。
放熱基板4aの熱膨張係数は含浸される金属の性質や量によって異なるが、例えば銅が分散されていると平面方向で5〜7ppm/Kとなり、また銅が分散されていることによって放熱基板4aのネジ止め時の潰れが大きく軽減される。よって、半導体パッケージを外部装置にネジで締め付けることにより密着固定する場合に強固に締め付けることができる。
【0036】
金めっき層は、半導体素子2との接合に利用されるろう材との濡れを良好にする。ろう材によっては金めっき層が必要ない場合もある。そして、箱体31の下面に、放熱基板4aの上面の金属層を半田や銀ロウ等のロウ材を介してロウ付けすることにより、放熱基板4aが箱体31枠体3の下面に取り付けられる。
また、放熱基板4aの上下面に金属層と金めっき層が形成されていることから、放熱基板4aが表面に気孔が存在する多孔質であるとしても、その気孔は金属層によって完全に塞がれる。しかし、側面に金属層が形成されていないと十分な気密性が得られない。その場合は金属層を全周囲にほどこすことにより、半導体モジュール内部の気密封止の信頼性が高いものとなる。
本発明において、金属層を予め放熱基板4aに形成することにより、半導体素子と接合しにくい黒鉛質金属複合体を金属層を介して放熱基板4aに強固に接合するためにも好ましい。
また、半導体素子2の載置面(接合面)に平行な方向(平面方向)の熱膨張係数は4〜10ppm/Kであり、箱体31との熱膨張係数の整合もよく熱応力が発生せず高信頼性のモジュールとなることが明らかになった。
【0037】
箱体31は、放熱基板4aの上面の外周部に載置部を取り囲むようにしてロウ材、ガラスまたは樹脂等の接着剤を介して取り付けられており、放熱基板4aと箱体31とで半導体素子2を収容する為の空所が内部に形成される。
箱体31はFe−Ni−Co合金やFe−Ni合金からなり、例えば、Fe−Ni−Co合金のインゴット(塊)に従来周知のプレス成型法等の金属加工法により所定の枠状に成型することによって製作される。
Fe−Ni−Co合金またはFe−Ni合金からなる箱体31は、その熱膨張係数が4〜6ppm/Kであり、放熱基板4aの熱膨張係数4〜10ppm/Kとほとんど同じである。よって、放熱基板4aと箱体31との間に発生する熱応力は小さく、半導体モジュールとしての高い信頼性が確保される。
また、半導体素子の熱膨張係数も3〜6ppmであり、基体1と半導体素子2との間に発生する熱応力は小さく、半導体モジュールとしての高い信頼性が確保される。
なお、本発明は上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。
【0038】
表2に上記実施例で示した光半導体モジュールの気密封止性試験の結果を示す。
金属層の有無と気密性との相関を評価するために、JIS C 7021 A−6に基づき、日本真空製のヘリウムリークディテクターDLMS−33型を用い、放熱基板を貫通するヘリウムガスの量を測定した。放熱基板を貫通するヘリウムガスの量をリーク量として、気密性のパラメータとした。結果を表2に示す。
【0039】
【表2】
Figure 2005005528
【0040】
Al−黒鉛、Cu−黒鉛のいずれも、金属層を形成することにより気密性が著しく向上することが分かった。なお金属層の厚さは0.5μm未満だと十分な気密性が得られない。また20μmを超えると金属層の残留応力の増大により、金属層が剥離する。また黒鉛/Cu複合体等は、AgペーストやCuペーストを印刷したのち、900℃で焼成した膜を形成しても良い。この場合、膜応力が低いので、膜厚は20μm以上でも良好な気密性が得られる。さらに、金属層が上下面だけの場合より、全周囲に形成されている方が高い高い気密性が得られる。
【0041】
【発明の効果】
本発明の半導体素子収納用モジュールによれば、一方向の熱伝導率が250W/mK以上、熱膨張係数が0.1ppm/K以上、4ppm/K未満、前記一方向と直交する熱伝導率が150W/mK以上、熱膨張係数が4ppm/K以上、10ppm/K以下の黒鉛と金属からなる黒鉛質金属複合体を放熱基板としたものであり、放熱基板の一方向側を基板の厚み方向に一致させて用いる場合と、またあるいは一方向側を半導体素子搭載面方向に一致させて用いる場合と、またこれらを組合せて用いる場合とがある。これにより高熱伝導性と低熱膨張性の異方性の特徴を選択的に構成した半導体素子収納用モジュールとなる。よって、半導体素子が発する熱を効率良くモジュール外部に放散し、半導体モジュール内部に搭載される半導体素子を長期間に亘り正常かつ安定に動作させることができる。
また、基体の周囲に金属層を形成しているので気密性が保たれる。
【図面の簡単な説明】
【図1】本発明の半導体素子搭載用モジュールについて一実施形態を示す断面図である。
【図2】本発明の半導体素子搭載用モジュールの一実施形態を示す大断面図である。
【図3】本発明の半導体素子搭載用モジュールの一実施形態を示す断面図である。
【図4】本発明の半導体素子搭載用モジュールの一実施形態を示す断面図である。
【図5】本発明の半導体素子搭載用モジュールの一実施形態を示す断面図である。
【図6】炭素質金属複合体を45°方向に切り出す例を示す説明図である。
【図7】溶湯鍛造法により炭素質金属複合体を製造する過程を示す説明図である。
【符号の説明】
1a、1b:絶縁基板
2:半導体素子
3:伝熱部材
4a、4b、4c、4d、4e:放熱基板
5:放熱構造体
6:配線
7:接続端子
8:熱硬化性樹脂
9:はんだ
10:接着剤
31:箱体
32:光ファイバー
33:貫通孔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor element mounting module on which a semiconductor element such as a semiconductor integrated circuit substrate such as an IC or LSI, a field effect transistor (FET), or an optical semiconductor package is mounted.
[0002]
[Prior art]
A conventional semiconductor element mounting module (hereinafter referred to as a semiconductor module) is shown in FIGS.
[0003]
The semiconductor module includes a semiconductor module in which a heat dissipation substrate 4a is placed on the upper surface of a semiconductor element 2 joined to an insulating substrate 1a as shown in FIG. 1 via a heat transfer member 3, and the semiconductor element 2 as shown in FIG. A semiconductor module directly mounted on the heat dissipation substrate 4b, a semiconductor module in which the heat dissipation substrate 1a is bonded via an insulating substrate 1b such as a ceramic circuit substrate on which the semiconductor element 2 is mounted as shown in FIG. is there.
As a semiconductor module, Patent Document 1 proposes a semiconductor module using a composite made of copper and cuprous oxide as a heat dissipation substrate. When the thermal conductivity is 300 W / mK or more, the thermal expansion coefficient is larger than 10 ppm / K, and when the thermal expansion coefficient is 10 ppm / K or less, the thermal conductivity is as small as 120 W / mK. It did not satisfy both heat dissipation and reliability during thermal cycle loading.
[0004]
Further, Patent Document 2 proposes a composite having substantially the same thermal conductivity as the composite of the present invention, but the filler of the composite material is mainly composed of hard particles of molybdenum or tungsten, When processing into a desired shape, there was a problem that the processability was inferior.
[0005]
Patent Document 3 proposes a semiconductor package using a unidirectional carbon fiber substrate in which carbon fibers are bonded with carbon. Although the characteristics of the composite material used in this invention are unknown, normally, in the case of a unidirectional composite material in which carbon fibers are bonded with carbon, the thermal conductivity in the fiber direction may be 300 W / mK or more. The thermal conductivity in the direction perpendicular to it is as small as 50 W / mK or less, the thermal conductivity is highly anisotropic, and it is unsuitable for applications in which heat is diffused in all directions.
[0006]
Patent Document 4 proposes a composite made of carbon fiber and at least one metal selected from the group consisting of copper, aluminum, silver and gold. The thermal conductivity of the composite material of the present invention is only in the carbon fiber direction, and the thermal conductivity in the direction perpendicular to the carbon fiber direction is unknown, but generally, when the thermal conductivity in the fiber direction is 300 W / mK, the direction perpendicular to it. The thermal conductivity of is less than 100 W / mK. Therefore, this example is not sufficient to dissipate the heat generated by the semiconductor element, and the mounted semiconductor element cannot be operated normally and stably over a long period of time.
[0007]
[Patent Document 1]
JP2001-339020A
[Patent Document 2]
JP-A-2002-121639
[Patent Document 3]
JP 2000-150745 A
[Patent Document 4]
JP 2000-247758 A
[0008]
[Problems to be solved by the invention]
However, as the integration of semiconductor elements increases and the size of the elements increases rapidly, the amount of heat generation increases. Therefore, the heat dissipation substrate is required to have improved heat dissipation efficiency, higher thermal conductivity, and the semiconductor In order to improve the reliability as a module, it is simultaneously required to further reduce the difference in thermal expansion coefficient from a peripheral member such as a semiconductor element or a ceramic circuit board. In the heat dissipation substrate having the above-described thermal conductivity and thermal expansion coefficient, there has been a problem that the heat dissipation efficiency and the reliability of the semiconductor module cannot be satisfied at the same time.
In addition, in the case of a module that needs to be hermetically sealed, there has been a problem in that sufficient hermetic sealing cannot be achieved particularly in a module using a composite material composed of a carbon-based material and a metal.
[0009]
The present invention has been made in view of such problems, and an object of the present invention is to efficiently dissipate heat generated by a semiconductor element to the outside of the semiconductor module through a heat dissipation plate, and is thus mounted inside the semiconductor module. An object of the present invention is to provide a module for mounting a semiconductor element, which allows a semiconductor element to operate normally and stably for a long period of time, and when the airtightness of the semiconductor module is required, sufficient airtightness can be obtained.
[0010]
[Means for Solving the Problems]
The present invention provides a module for mounting a semiconductor element, wherein the thermal conductivity in one direction is 250 W / mK or more, the thermal expansion coefficient is 0.1 ppm / K or more and less than 4 ppm / K, and the thermal conductivity orthogonal to the one direction is 150 W. / MK or more and a thermal expansion coefficient of 4 ppm / K or more and 10 ppm / K or less as a heat dissipation substrate, and a semiconductor element on which a semiconductor element is mounted on one side or orthogonal side of the heat dissipation substrate This is a module for mounting.
[0011]
In the module for mounting a semiconductor element, the present invention has a thermal conductivity in the thickness direction of 250 W / mK or more, a thermal expansion coefficient of 0.1 ppm / K or more and less than 4 ppm / K, and a thermal conductivity orthogonal to the thickness direction of 150 W. / MK or more and a thermal expansion coefficient of 4 ppm / K or more and 10 ppm / K or less as a heat dissipation substrate, and a semiconductor element mounting module in which a semiconductor element is mounted on the orthogonal surface side of the heat dissipation substrate. .
[0012]
In the present invention, a porous graphitized extruded product obtained by extruding, firing, and graphitizing is melt-forged with a metal selected from Al or Cu or an alloy containing one or more of the metals, and the porous graphitized extrusion A composite comprising graphite and metal in which a random heat dissipation path is formed by the metal inside the molded body is used as a heat dissipation substrate, and the extrusion direction of the porous graphitized extrudate is matched with the thickness direction of the heat dissipation substrate. The thermal conductivity in the direction is 250 W / mK or more, the thermal expansion coefficient is 0.1 ppm / K or more and less than 4 ppm / K, the thermal conductivity in the direction orthogonal to the thickness direction is 150 W / mK or more, and the thermal expansion coefficient is 4 ppm / The module is a semiconductor element mounting module in which a semiconductor element is mounted on the orthogonal surface side of the heat dissipation board.
[0013]
In the semiconductor element mounting module of the present invention, the direction in which the thermal conductivity is 250 W / mK or more and the thermal expansion coefficient is 0.1 ppm / K or more and less than 4 ppm / K is approximately 45 with respect to the side surface in the thickness direction of the heat dissipation board. ° Can be tilted.
In the semiconductor element mounting module of the present invention, it is desirable to form a metal layer containing at least one of Ni, Cu, and Al on at least the heat receiving surface of the heat dissipation board on which the semiconductor element is mounted. In addition, it is desirable that the heat dissipation side of the heat dissipation substrate has a fin shape or that the heat dissipation substrate and the water cooling jacket are integrated.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
According to the module for mounting a semiconductor element of the present invention, the heat dissipation substrate is made of a composite made of graphite and metal, and this composite contains a metal that is dispersed and impregnated in a random direction inside the porous graphitized extruded product. Graphite metal composite. Therefore, the heat transmitted from the semiconductor element to the heat dissipation substrate is transmitted to the entire heat dissipation surface side of the heat dissipation substrate while the heat is transmitted in a random direction inside the graphite metal composite. At this time, the thermal conductivity in the direction coinciding with the extruding direction of the porous graphitized extrudate is 250 W / mK or more and the thermal expansion coefficient is 0.1 ppm / K or more and less than 4 ppm / K, and at the same time, the extruding direction. It was found that the thermal conductivity in the direction perpendicular to the graph satisfies 150 W / mK or more and the thermal expansion coefficient satisfies 4 ppm / K or more and 10 ppm / K or less. That is, the thermal conductivity and the coefficient of thermal expansion have anisotropy between one direction surface of the heat dissipation substrate and a surface orthogonal thereto. Despite the high thermal conductivity level, the anisotropy itself is small here, so the mounting surface of the semiconductor element etc. is flexible, and the heat sink provided on the non-mounting surface is unspecified Heat transfer to the heat radiating surface is fast and has excellent heat dissipation characteristics. On the other hand, the thermal expansion coefficient is numerically low, but its anisotropy is large compared to the thermal conductivity. Therefore, adverse effects due to excessive thermal stress can be effectively avoided by appropriately selecting the mounting surface according to the thermal expansion coefficient of the semiconductor element, the heat sink or the like. As described above, the present invention is characterized in that it is a module in which a mounting surface of a semiconductor element or the like is selectively set by utilizing the high thermal conductivity and the anisotropy of the thermal expansion coefficient regardless of the direction.
[0015]
The configuration of the semiconductor element mounting module of the present invention will be described below.
First, the thermal conductivity in one direction is 250 W / mK or more, the thermal expansion coefficient is 0.1 ppm / K or more and less than 4 ppm / K, the thermal conductivity orthogonal to the one direction is 150 W / mK or more, and the thermal expansion coefficient is 4 ppm. / K or more and 10 ppm / K or less of a composite of graphite and metal is used as a heat dissipation substrate, and a semiconductor element is mounted on one side or orthogonal side of the heat dissipation substrate. Intended to be selectable. For example, in the module for mounting a semiconductor element shown in FIG. 2, the second heat radiating board 4b is provided between the heat radiating board 4a and the semiconductor element. In this case, the heat radiating board 4a gives priority to the heat radiation of the lower surface. Therefore, a unidirectional surface with a thermal conductivity of 250 W / mK or more and a thermal expansion coefficient of 0.1 ppm / K or more and less than 4 ppm / K is used in accordance with the thickness direction (the extrusion direction of the arrow matches the thickness direction). . On the other hand, since the heat sink 4b places importance on the bonding property with the semiconductor element and the thermal stress relaxation property, the direction closer to the thermal expansion coefficient of the semiconductor element is selected. For example, in the case of a Si-based semiconductor, a unidirectional surface having a thermal conductivity of 250 W / mK or more and a thermal expansion coefficient of 0.1 ppm / K or more and less than 4 ppm / K is used as shown in FIG. (The arrow extrusion direction matches the plane direction). On the other hand, in the case of a GaAs-based semiconductor, it is preferable to use an orthogonal plane side having a thermal conductivity of 150 W / mK or more and a thermal expansion coefficient of 4 ppm / K or more and 10 ppm / K or less in alignment with the element mounting surface. Thus, it is characterized in that a direction suitable for each module can be selected using the anisotropy of the thermal conductivity and the thermal expansion coefficient.
[0016]
As one configuration of the graphitic metal composite of the present invention, the extrusion direction of the porous graphitized extrudate obtained by extrusion is the thickness direction of the heat dissipation substrate, and the heat conductivity in the thickness direction of the heat dissipation substrate is 250 W / mK or more. For mounting a semiconductor element having a thermal expansion coefficient of 0.1 ppm / K or more and less than 4 ppm / K, a thermal conductivity orthogonal to the thickness direction of 150 W / mK or more, and a thermal expansion coefficient of 4 ppm / K or more and 10 ppm / K or less. There is a module. This is a heat dissipation substrate in which the surface to which the silicon semiconductor element is bonded is orthogonal to the extrusion direction, and the heat conductivity of the heat dissipation substrate is greater in the thickness direction than in the surface direction, so the heat of the semiconductor element is quickly dissipated. It is transmitted to a heat sink joined to the other surface. On the other hand, since the thermal expansion coefficient of the heat dissipation substrate is larger in the thickness direction in the surface direction, the thermal expansion coefficient in the heat dissipation substrate surface direction is close to both the thermal expansion coefficient of the semiconductor element and the heat expansion coefficient of the heat sink. Therefore, thermal stress can be relieved at both the bonding surface with the heat dissipation substrate and the bonding surface of the heat sink during the operation of the semiconductor element.
[0017]
Further, in the heat dissipation substrate made of the graphite metal composite, the direction in which the thermal conductivity is 250 W / mK or more and the thermal expansion coefficient is 0.1 ppm / K or more and less than 4 ppm / K is relative to the thickness direction side surface of the heat dissipation substrate. It can also be formed with an inclination of about 45 °. As shown in FIG. 6, when the heat dissipation substrate is cut out from the base material of the graphitic metal composite, it is cut out so as to be approximately 45 ° with respect to the extrusion direction (→ direction) of the porous graphitized extruded product. It means that. This substantially eliminates the anisotropy of the thermal conductivity and the thermal expansion coefficient of the heat dissipation board 1e, enables good heat dissipation in all directions, and facilitates heat dissipation design.
[0018]
The graphitic metal composite constituting the heat dissipation substrate of the present invention has a coefficient of thermal expansion of 4 ppm / K or more and 10 ppm / K in a direction substantially perpendicular to the extrusion direction of the porous graphitized extrusion-molded article constituting the composite. K or less. Therefore, when this surface is made to coincide with the semiconductor element mounting surface, the thermal expansion coefficients of silicon, gallium arsenide, indium phosphide, etc., which are usually used as semiconductor elements, are 4.2 × 10 4 respectively. -6 / K, 6.5 × 10 -6 / K, 4.5 × 10 -6 In addition, the thermal expansion coefficient of an insulating substrate of silicon nitride, aluminum nitride, or alumina used as a peripheral member such as a ceramic circuit board is 4 to 7 × 10 -6 / K, the coefficient of thermal expansion is well matched, and the module assembly process for metal joining such as brazing and the environment where heat is repeatedly applied and thermal stress is generated at the joint, etc. Since the matching of the thermal expansion coefficient with the peripheral member is good, the joint can have high reliability. Further, at this time, the thermal expansion coefficient of the heat dissipation substrate is less than half in the thickness direction than in the plane direction. Therefore, the expansion coefficient in the height direction is small during heating during package fabrication, and it is easy to position in the assembly process. .
[0019]
By the way, the graphite metal composite used in the present invention is made of copper, copper alloy, aluminum, aluminum alloy, magnesium, magnesium alloy, brass, brass, silicon, zinc, silver, nickel between 50 to 90 volume% of graphite. And a structure filled with a metal made of magnesium or the like. Such a substrate is produced, for example, by the following process.
Using carbon particles such as coke having a purity of 99.7% or more, mixing them with pitch, firing the extruded molded body at a temperature of 2000 ° C. or higher, and then impregnating the pitch if necessary, and then 2500 ° C. One type of copper, copper alloy, aluminum, aluminum alloy, magnesium, magnesium alloy, brass, brass, silicon, zinc, silver, etc. is added to the graphitic material (preform) obtained by performing graphitization at the above temperature. It is formed by impregnating the above-described metal. The impregnation method may be a vacuum casting method, a pressure casting method, a molten metal forging method or the like, but is preferably a molten metal forging method. The metal to be impregnated is preferably a metal having the highest possible thermal conductivity as described above, but is determined by the environment in which it is used, particularly the temperature to which it is exposed. Further, the impregnation is required to be performed at a temperature higher than the melting point by 10 ° C. or higher and a pressure of 10 MPa or higher. When the maximum temperature to be exposed is 500 ° C., aluminum or an aluminum alloy is preferable, and when it is 900 ° C., copper, a copper alloy, or silver is preferable. The obtained graphitic metal composite must be heat-treated. This heat treatment is (melting point−10 ° C.) or lower, and in the case of aluminum or aluminum alloy, at a temperature of 200 ° C. or higher, and in the case of copper or copper alloy, at a temperature of 300 ° C. or higher, the heating rate is 30 ° C./minute Hereinafter, the cooling rate is 20 ° C./min or less.
[0020]
Furthermore, the module for mounting a semiconductor of the present invention has a thermal conductivity in one direction of 250 W / mK or more, a thermal expansion coefficient of 0.1 ppm / K or more and less than 4 ppm / K, and a direction perpendicular to the one direction. Heat dissipation is improved by using a composite of graphite and metal with a thermal expansion coefficient of 4 ppm / K or more and 10 ppm / K or less and providing a fin shape on the back side of the semiconductor element mounting surface. Alternatively, heat dissipation is further improved by making the heat sink and water-cooling jacket integrated into a structure, and compared to the conventional case where a water-cooling jacket is provided with a high specific gravity metal such as copper, separately from the heat sink. In addition, the joining process is unnecessary, the structure is simple, and the weight can be reduced. This is because the Young's modulus of the heat dissipation substrate is 5 GPa or more and 100 GPa or less, preferably 5 to 30 GPa, and the bending strength is 5 MPa or more and 100 MPa or less, preferably 5 to 50 MPa. A fin shape can be integrally formed on the back surface of the substrate. However, the thickness of the fin is preferably 0.5 mm or more.
[0021]
In addition, the semiconductor element mounting module often requires airtightness. In such a case, it is not sufficient to ensure airtightness only with the graphite metal composite. Therefore, the required airtightness is ensured by using a heat dissipation substrate in which a metal layer is formed around the graphite metal composite, particularly the surface on which the semiconductor element is placed, more preferably the entire circumference. The method for forming the metal layer around the substrate may be a dry method such as vapor deposition or sputtering, a wet method such as plating, or a printing and firing method using silver paste, copper paste, or the like. Especially, according to electroless plating, a metal layer having a uniform thickness can be easily formed on the entire periphery of the substrate. The metal layer may be Ni-P, Ni-B, Cu, Al or the like, but is not limited thereto.
[0022]
【Example】
First, an embodiment of a module for mounting a semiconductor element of the present invention will be described with reference to FIGS. 1, 3, and 4. FIG. 1 shows a cross-sectional structure for directly radiating heat generated from a semiconductor element, and FIGS. 3 and 4 show cross-sectional views of a power semiconductor module cooling structure. These drawings mainly show a semiconductor element and a heat dissipation structure for radiating heat generated from the semiconductor element.
First, the configuration of the present embodiment will be described. In the direct heat dissipation of the semiconductor element shown in FIG. 1, any one of copper or copper alloy and graphite, aluminum or aluminum alloy and graphite, or brass and graphite is passed through a heat transfer member 3 such as heat conductive grease on the back surface of the semiconductor element 2. The heat dissipation board 4a of the composite material which consists of is installed (the arrow direction shows an extrusion direction. The same applies hereafter). In addition, according to the present invention, since the thermal expansion coefficient difference between the semiconductor element and the composite made of the metal and graphite is small, a metal such as brazing using silver solder or solder instead of contact via thermal conductive grease. It is also possible to perform bonding, and brazing can reduce thermal resistance more than the case of using thermal conductive grease, and the reliability as a semiconductor module is also improved. On the other hand, in the power semiconductor module shown in FIG. 3, a ceramic insulating substrate 1b is attached to the back surface of the semiconductor element 2, and copper or copper alloy and graphite, aluminum or aluminum alloy and graphite, brass are attached to the back surface of the insulating substrate 1b. A composite heat dissipation substrate 4a made of any one of graphite is attached. Here, since the thermal expansion coefficient in the planar direction of the heat radiating substrate 4a is 10 ppm / or less, thermal distortion between the adjacent semiconductor elements and peripheral members hardly occurs, and low thermal resistance is maintained. In addition, since the thermal conductivity in the planar direction is 150 W / mk or higher and the thermal conductivity is high, the heat dissipation in the planar direction is also good.
[0023]
Also, as shown in FIG. 4, a composite heat dissipation board 4c made of copper or copper alloy and graphite, aluminum or aluminum alloy and graphite, or brass and graphite is excellent in workability. By adopting an integrated structure in which the radiation fins that increase the contact area with the cooling medium and improve the cooling capacity are formed on the back side of the semiconductor element mounting surface of 4c so as to be parallel to the flow direction of the cooling medium. Therefore, the heat radiation efficiency can be further improved, and the height can be reduced by simplifying the structure. Alternatively, the heat dissipation substrate used in the module for mounting a semiconductor element according to the present invention may be a structure in which the heat dissipation substrate and the water cooling jacket are integrated because of an easily processable material made of a graphite metal composite. Conventionally, the heat radiation board and heat radiation fins, or the water cooling jacket and the heat transfer member such as solder, grease, and high thermal conductivity sheet are used to dissipate heat. The embodiment shown in FIGS. 4 and 5 has an integrated structure in which a plurality of fin shapes are formed on the back surface of the heat radiating plate, and an integrated structure in which a water cooling jacket is formed on the back surface of the heat sink 4d. There is no increase in thermal resistance between the heat dissipation structure and the effect of further improving heat dissipation.
[0024]
Hereinafter, a semiconductor device mounting module of the present invention will be described in detail with reference to the embodiment of FIG.
Graphite aluminum composite and graphite copper composite having a length × width × thickness of 30 × 30 × 2 mm as the heat dissipation substrate 4a, and length × width × thickness of 30 × 30 × 0.8 mm as the insulating substrate 1b An aluminum nitride substrate, a silicon nitride substrate, and an alumina substrate were prepared. The insulating substrate 1b and the heat radiating substrate 4a are brazed, the semiconductor element 2 and the insulating substrate 1b are soldered, and the heat radiating substrate 4a and the heat sink 5 are brought into contact with each other through high thermal conductive grease to reduce the thermal resistance.
[0025]
Furthermore, as the heat dissipation substrate 4a, a graphite aluminum composite impregnated with 20 to 30% of an aluminum alloy containing Si having a length × width × thickness of 50 × 50 × 2 mm and a graphite material impregnated with 20 to 30% of Cu. Prepare a copper composite, and a graphite aluminum composite with fins of length × width × thickness of 50 × 50 × 5 mm and graphite copper composite (fin groove depth of 3 mm) on the substrate, respectively. The example shown in FIG. At that time, the thermal conductivity in the thickness direction of the heat dissipation substrate 4a is 250 W / mK or more, the thermal expansion coefficient is greater than 0.1 ppm / K and less than 4 ppm / K, and the thermal conductivity in the orthogonal plane direction (element mounting surface side) is The thermal expansion coefficient was configured to be 150 W / mK or more and 4 ppm / K or more and 10 ppm / K or less.
For comparison, as a heat dissipation substrate, a composite material having the same shape size of Al: SiC of 30% by volume: 70% by volume, Cu: W of 15% by volume: 85% by volume, and Cu: Mo of 40% by volume: 60. A volume% composite material was also prepared and used as a comparative example. In addition, Ni plating was given to the surface about materials other than Cu-W and Cu-Mo.
[0026]
Next, the manufacturing method will be described. The porous graphitized extrudate was produced as follows.
The carbon raw material powder such as coke is pulverized and classified to an average particle diameter of 50 μm or more and about 50 μm to 3 mm, and then pitch is added as a binder and kneaded. The kneaded product is extruded from a die having an extrusion port having a predetermined shape, cut into a predetermined length, fired, and graphitized. Here, after extrusion molding, it is fired at 700 to 1000 ° C. However, since the fired molded body has a large number of pores, the bulk density is 1.65 g / cm. 3 In order to achieve the above, pitch is impregnated into the pores of the fired molded body and refired. Thereafter, heat treatment is performed at a temperature of 2600 to 3000 ° C. in order to obtain a graphitized molded body, thereby changing the carbonaceous material to the graphite material to obtain a porous graphitized extruded body. In order to obtain a porous graphitized extruded product having a high thermal conductivity and a low coefficient of thermal expansion, the non-combustible mineral (ash content) remaining when the porous graphitized extruded product is burned is 0.5. It is preferable that the mass is not more than mass% and the graphite is highly pure.
[0027]
The porous graphitized extruded product was impregnated with molten metal by a melt forging method. An example of a mold apparatus preferable for performing the molten metal forging method is shown in FIG. As shown in FIG. 7A, a mold apparatus 10 includes an upper mold 11 having a cavity 11a at the center, a lower mold 12 disposed below the upper mold 11 and having an opening 12a at the center, and an upper mold. 11, a lower punch 13 disposed in the cavity 11 a, a shaft 14 that is connected to the bottom of the lower punch 13 and penetrates the opening 12 a of the lower mold 12, and an upper punch 15 that enters the cavity 11 a of the upper mold 11. And a plunger shaft 16 connected to the upper surface of the upper punch 15.
As shown in FIG. 7 (a), the upper punch 15 is first removed, and the lower punch 13 on which the porous graphitized extruded product 20 is placed is lowered to the lowermost part in the cavity 11a of the upper die 11. The molten metal M is poured into the cavity 11a from the ladle 200. Although the molten metal forging temperature varies depending on the type of molten metal, it is generally preferable that the molten metal forging temperature is 10 ° C. or higher than the melting point of the molten metal. At this time, the upper and lower molds 11 and 12 are heated to a predetermined temperature, and a sufficient amount of molten metal M is injected into the cavity 11a so as not to solidify during the impregnation. Also, if the temperature of the porous graphitized extruded product is preheated to the melting point of the molten metal, or preferably higher than the melting point of the molten metal, sufficient penetration of the molten metal into the pores of the molded product is achieved. This is preferable because it is achieved. In order to prevent the porous graphitized extruded product 20 from floating when the molten metal is injected, it is more preferable to weight the iron material or the like.
[0028]
As shown in FIG. 7 (b), when the upper punch 15 enters the cavity 11a and the upper punch 15 is pressed at a high pressure via the plunger shaft 16, the molten metal M at a high pressure becomes porous graphitized extrusion. It penetrates into the pores of the molded body 20. The molten forging pressure is required to be 10 MPa or more, more preferably 50 MPa or more, regardless of the type of molten metal. The pressurization time may be 1 to 30 minutes regardless of the type of molten metal, temperature and pressure. Then, after the molten metal M that has entered the porous graphitized extrudate 20 has solidified, the upper punch 15 is removed and then the lower punch 13 is raised as shown in FIG. The impregnated porous graphitized extruded product 21 is taken out. Finally, as shown in FIG. 7 (d), the metal-impregnated porous graphitized extrudate 21 is cut out from the solidified metal M ′. In order to prevent the molten metal M from solidifying before sufficiently entering the pores of the porous graphitized extrudate 20, the upper and lower molds 11, 12 and the punches 13, 15 during the forging of the molten metal. Is heated to a predetermined temperature.
[0029]
Next, the porous graphitized extrudate was subjected to heat treatment. The heating rate is 30 ° C./min or less, the holding temperature is (melting point−10 ° C.) or less, the aluminum system is 200 ° C. or more, the copper system is 300 ° C. or more, and the holding time is about 1 to 120 minutes. good. If the holding temperature is higher than (melting point−10 ° C.) of each metal, the metal may be softened or melted and ooze out from the porous graphitized extruded product. If the holding temperature is less than 200 ° C., the heat treatment effect cannot be obtained sufficiently. After holding, slow cooling is performed. The cooling rate is 20 ° C./min or less, and preferably 10 ° C./min or less. A cooling rate exceeding 20 ° C./min is not preferable because the heat history of the impregnated metal remains. In addition, the lower limit of the heating rate and the lower limit of the cooling rate may be about 0.5 ° C./min in consideration of heat treatment efficiency.
[0030]
The power semiconductor module was produced as follows.
First, a pressure of 0.2 MPa is applied to the upper and lower surfaces of the insulating substrate 1b with a brazing material, heated to 580 ° C. in vacuum, and after laminating and bonding, the aluminum plate is formed into a predetermined pattern by etching. Then, the insulating substrate was the insulating circuit substrate 1b. Next, an insulating circuit board 1b having an aluminum plate without a pattern formed on the heat dissipation board 4a was soldered.
Next, Ni plating was performed on the aluminum plate of the ceramic circuit board 1b, and 10 × 10 mm of the semiconductor chip 2 was joined onto the Ni plating using solder, and the semiconductor chip was mounted on the ceramic circuit board. These were used as modules for mounting semiconductor elements.
An insulating circuit board in which a circuit was formed using the aluminum plate as a copper plate was also produced.
[0031]
Table 1 shows the evaluation results of the heat dissipation characteristics of the power semiconductor module of this example. For heat dissipation characteristics, the surface temperature of the semiconductor chip during energization and the thermal resistance (° C./W) between the semiconductor chip and the back surface of the heat sink were measured, and after 3000 cycles of a temperature increase / decrease test from −40 ° C. to 125 ° C. The thermal resistance between the semiconductor chip and the back surface of the heat dissipation substrate was measured. The thermal resistance after the 3000-cycle temperature cycle test is shown by the rate of increase from the thermal resistance before the temperature cycle test.
[0032]
[Table 1]
Figure 2005005528
[0033]
Compared to Al-SiC, Cu-Mo, and Cu-W of comparative examples, the example has a high thermal conductivity of 250 W / mK or more in the thickness direction and a thermal expansion coefficient of 4 to 10 in the planar direction, which is a semiconductor. Since the thermal expansion coefficients of the device and the insulating substrate are matched, the surface temperature and thermal resistance of the semiconductor device are generally lower than that of the comparative example, and the rate of increase after the cycle test is also reduced.
[0034]
Next, an embodiment used in a module for housing a semiconductor element for optical communication will be described below. FIG. 2 is a sectional view of the module for housing semiconductor elements.
In FIG. 2, 2 is a semiconductor element, 4a and 4b are heat dissipation substrates, 31 is a box for ensuring airtightness, 32 is an optical fiber, and 33 is a through-hole for passing through the optical fiber and sealing with glass.
The heat-radiating substrates 4a and 4b were prepared by the same manufacturing method as in the above-described example, and the description thereof is omitted, but is a graphite copper composite (corresponding to Example 1) in Table 1.
In FIG. 2, the semiconductor element is directly metal-bonded to the heat dissipation substrate 4b by brazing or the like. Here, the heat radiating substrates 4a and 4b may be integrated, but the heat radiating substrate of 4b has a thermal conductivity in the mounting surface direction of 250 W / mK or more and a thermal expansion coefficient of 0.1 ppm / K or more and less than 4 ppm / K. The heat dissipation substrate of 4a has a thermal conductivity in the thickness direction of 250 W / mK or more and a thermal expansion coefficient of 0.1 ppm / K. As described above, a heat dissipation substrate having a thermal conductivity of 150 W / mK or more and a thermal expansion coefficient of 4 ppm / K or more and 10 ppm / K or less in a plane direction orthogonal to less than 4 ppm / K is used. It is also possible to use a combination of heat dissipation substrates having different characteristics in the thickness direction and the planar direction. By doing so, the difference in thermal expansion coefficient with the semiconductor element is reduced, the thermal stress load on the semiconductor element is reduced, and the reliability of the module on which the semiconductor element is mounted is improved.
[0035]
Further, FIG. 2 will be described in detail. The graphite copper composite is cut into a plate shape in a direction in which the thermal conductivity in the thickness direction is 250 W / m · K or more to produce a heat dissipation substrate 4a in which 4a and 4b are integrated. The size of the plate is, for example, about 5 mm at a thick place and about 2 mm at a thin place.
Further, for example, a Ni-B metal layer 6 is formed on the upper and lower surfaces or the entire periphery of this plate by plating, and then a gold plating layer 7 is formed.
Although the thermal expansion coefficient of the heat dissipation board 4a varies depending on the nature and amount of the metal to be impregnated, for example, when copper is dispersed, it becomes 5 to 7 ppm / K in the plane direction. Crushing when screwing is greatly reduced. Therefore, when the semiconductor package is tightly fixed to the external device with a screw, the semiconductor package can be firmly tightened.
[0036]
The gold plating layer improves the wettability with the brazing material used for bonding with the semiconductor element 2. Depending on the brazing material, a gold plating layer may not be necessary. Then, the heat dissipation substrate 4a is attached to the lower surface of the frame body 31 by brazing the metal layer on the upper surface of the heat dissipation substrate 4a to the lower surface of the box body 31 via a brazing material such as solder or silver solder. .
Further, since the metal layer and the gold plating layer are formed on the upper and lower surfaces of the heat dissipation substrate 4a, even if the heat dissipation substrate 4a is porous with pores on the surface, the pores are completely blocked by the metal layer. It is. However, sufficient airtightness cannot be obtained unless a metal layer is formed on the side surfaces. In that case, the reliability of the hermetic sealing inside the semiconductor module becomes high by spreading the metal layer all around.
In the present invention, it is also preferable to form a metal layer on the heat dissipation substrate 4a in advance so that a graphite metal composite that is difficult to be bonded to a semiconductor element is firmly bonded to the heat dissipation substrate 4a via the metal layer.
Further, the thermal expansion coefficient in the direction (plane direction) parallel to the mounting surface (bonding surface) of the semiconductor element 2 is 4 to 10 ppm / K, and the thermal expansion coefficient is well matched with the box body 31 to generate thermal stress. It became clear that it would be a highly reliable module.
[0037]
The box 31 is attached to the outer peripheral portion of the upper surface of the heat dissipation board 4a via an adhesive such as brazing material, glass, or resin so as to surround the mounting portion. A space for accommodating the element 2 is formed inside.
The box 31 is made of an Fe—Ni—Co alloy or an Fe—Ni alloy, and is formed into a predetermined frame shape by, for example, a metal processing method such as a conventionally known press molding method on an ingot (lumb) of the Fe—Ni—Co alloy. It is manufactured by doing.
The box 31 made of Fe-Ni-Co alloy or Fe-Ni alloy has a thermal expansion coefficient of 4 to 6 ppm / K, which is almost the same as the thermal expansion coefficient of 4 to 10 ppm / K of the heat dissipation board 4a. Therefore, the thermal stress which generate | occur | produces between the thermal radiation board | substrate 4a and the box 31 is small, and the high reliability as a semiconductor module is ensured.
Further, the thermal expansion coefficient of the semiconductor element is 3 to 6 ppm, and the thermal stress generated between the base 1 and the semiconductor element 2 is small, and high reliability as a semiconductor module is ensured.
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
[0038]
Table 2 shows the results of the hermetic sealing test of the optical semiconductor module shown in the above example.
In order to evaluate the correlation between the presence / absence of a metal layer and hermeticity, based on JIS C 7021 A-6, helium leak detector DLMS-33 manufactured by Nippon Vacuum was used and the amount of helium gas penetrating the heat dissipation substrate was measured. did. The amount of helium gas penetrating the heat radiating substrate was taken as the leak amount and used as an airtight parameter. The results are shown in Table 2.
[0039]
[Table 2]
Figure 2005005528
[0040]
Both Al-graphite and Cu-graphite were found to be significantly improved in airtightness by forming a metal layer. If the thickness of the metal layer is less than 0.5 μm, sufficient airtightness cannot be obtained. On the other hand, if the thickness exceeds 20 μm, the metal layer peels due to an increase in the residual stress of the metal layer. The graphite / Cu composite or the like may form a film fired at 900 ° C. after printing Ag paste or Cu paste. In this case, since the film stress is low, good airtightness can be obtained even if the film thickness is 20 μm or more. Further, higher airtightness can be obtained when the metal layer is formed on the entire periphery than when only the upper and lower surfaces are formed.
[0041]
【The invention's effect】
According to the module for housing a semiconductor element of the present invention, the thermal conductivity in one direction is 250 W / mK or more, the thermal expansion coefficient is 0.1 ppm / K or more and less than 4 ppm / K, and the thermal conductivity orthogonal to the one direction is A graphite metal composite composed of graphite and metal having a thermal expansion coefficient of 150 ppm / K or more and 4 ppm / K or less and 10 ppm / K or less is used as a heat dissipation substrate. There are a case where they are used in a consistent manner, a case where one direction side is matched with a semiconductor element mounting surface direction, and a case where these are used in combination. As a result, a module for housing a semiconductor element in which anisotropic characteristics of high thermal conductivity and low thermal expansion are selectively configured is obtained. Therefore, the heat generated by the semiconductor element can be efficiently dissipated outside the module, and the semiconductor element mounted inside the semiconductor module can be operated normally and stably over a long period of time.
Further, since a metal layer is formed around the base, airtightness is maintained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a module for mounting a semiconductor element of the present invention.
FIG. 2 is a large sectional view showing an embodiment of a module for mounting a semiconductor element of the present invention.
FIG. 3 is a cross-sectional view showing one embodiment of a module for mounting a semiconductor element of the present invention.
FIG. 4 is a cross-sectional view showing an embodiment of a module for mounting a semiconductor element of the present invention.
FIG. 5 is a cross-sectional view showing one embodiment of a module for mounting a semiconductor element of the present invention.
FIG. 6 is an explanatory view showing an example of cutting out a carbonaceous metal composite in a 45 ° direction.
FIG. 7 is an explanatory view showing a process of producing a carbonaceous metal composite by a molten metal forging method.
[Explanation of symbols]
1a, 1b: Insulating substrate
2: Semiconductor element
3: Heat transfer member
4a, 4b, 4c, 4d, 4e: heat dissipation board
5: Heat dissipation structure
6: Wiring
7: Connection terminal
8: Thermosetting resin
9: Solder
10: Adhesive
31: Box
32: Optical fiber
33: Through hole

Claims (7)

半導体素子搭載用モジュールにおいて、一方向の熱伝導率が250W/mK以上、熱膨張係数が0.1ppm/K以上、4ppm/K未満、前記一方向と直交する熱伝導率が150W/mK以上、熱膨張係数が4ppm/K以上、10ppm/K以下の黒鉛と金属からなる複合体を放熱基板とし、当該放熱基板の一方向面側あるいは直交面側に半導体素子を搭載することを特徴とする半導体素子搭載用モジュール。In the semiconductor element mounting module, the thermal conductivity in one direction is 250 W / mK or more, the thermal expansion coefficient is 0.1 ppm / K or more and less than 4 ppm / K, the thermal conductivity orthogonal to the one direction is 150 W / mK or more, A semiconductor comprising a composite of graphite and metal having a thermal expansion coefficient of 4 ppm / K or more and 10 ppm / K or less as a heat dissipation board, and a semiconductor element is mounted on one side or orthogonal side of the heat dissipation board. Module for mounting elements. 半導体素子搭載用モジュールにおいて、厚み方向の熱伝導率が250W/mK以上、熱膨張係数が0.1ppm/K以上、4ppm/K未満、前記厚み方向と直交する熱伝導率が150W/mK以上、熱膨張係数が4ppm/K以上、10ppm/K以下の黒鉛と金属からなる複合体を放熱基板とし、当該放熱基板の直交面側に半導体素子を搭載することを特徴とする半導体素子搭載用モジュール。In the module for mounting a semiconductor element, the thermal conductivity in the thickness direction is 250 W / mK or more, the thermal expansion coefficient is 0.1 ppm / K or more and less than 4 ppm / K, the thermal conductivity orthogonal to the thickness direction is 150 W / mK or more, A module for mounting a semiconductor element, wherein a composite made of graphite and metal having a thermal expansion coefficient of 4 ppm / K or more and 10 ppm / K or less is used as a heat dissipation board, and a semiconductor element is mounted on the orthogonal plane side of the heat dissipation board. 押出成形、焼成、黒鉛化処理された多孔質黒鉛化押出成形体にAl又はCuから選ばれた金属または該金属を1種以上含む合金を溶湯鍛造し、前記多孔質黒鉛化押出成形体内部に前記金属によるランダムな放熱経路を形成した黒鉛と金属からなる複合体を放熱基板とし、前記多孔質黒鉛化押出成形体の押出方向を前記放熱基板の厚み方向に一致させ、もって厚み方向の熱伝導率が250W/mK以上、熱膨張係数が0.1ppm/K以上、4ppm/K未満、前記厚み方向と直交する方向の熱伝導率が150W/mK以上、熱膨張係数が4ppm/K以上、10ppm/K以下としており、当該放熱基板の直交面側に半導体素子を搭載することを特徴とする半導体素子搭載用モジュール。A porous graphitized extruded product subjected to extrusion molding, firing and graphitization treatment is forged with a metal selected from Al or Cu or an alloy containing one or more of the metals, and the porous graphitized extruded product is formed inside the porous graphitized extruded product. A composite composed of graphite and metal that forms a random heat dissipation path with the metal is used as a heat dissipation substrate, and the extrusion direction of the porous graphitized extrudate is made to coincide with the thickness direction of the heat dissipation substrate, thereby conducting heat conduction in the thickness direction. The coefficient of thermal expansion is 250 W / mK or more, the coefficient of thermal expansion is 0.1 ppm / K or more and less than 4 ppm / K, the thermal conductivity in the direction perpendicular to the thickness direction is 150 W / mK or more, and the coefficient of thermal expansion is 4 ppm / K or more, 10 ppm. / K or less, and a semiconductor element is mounted on the orthogonal surface side of the heat dissipation board. 前記熱伝導率が250W/mK以上、熱膨張係数が0.1ppm/K以上、4ppm/K未満となる方向が、放熱基板の厚み方向側面に対し略45°傾いていることを特徴とする請求項1〜3の何れかに記載の半導体素子搭載用モジュール。The direction in which the thermal conductivity is 250 W / mK or more and the thermal expansion coefficient is 0.1 ppm / K or more and less than 4 ppm / K is inclined by approximately 45 ° with respect to the side surface in the thickness direction of the heat dissipation board. Item 4. The semiconductor element mounting module according to any one of Items 1 to 3. 前記放熱基板のヤング率が5GPa以上100GPa以下、曲げ強さが5MPa以上100MPa以下であることを特徴とする請求項1〜4の何れかに記載の半導体素子搭載用モジュール。5. The module for mounting a semiconductor element according to claim 1, wherein the heat dissipation substrate has a Young's modulus of 5 GPa to 100 GPa and a bending strength of 5 MPa to 100 MPa. 前記半導体素子を搭載した放熱基板の受熱側の面に、NiあるいはCu、Alのうち少なくとも1種を含む金属層を形成したことを特徴とする請求項1〜5の何れかに記載の半導体素子収納用モジュール。6. The semiconductor element according to claim 1, wherein a metal layer containing at least one of Ni, Cu, and Al is formed on a heat receiving surface of a heat dissipation board on which the semiconductor element is mounted. Module for storage. 前記放熱基板の放熱側がフィン形状となっているか、あるいは、放熱基板と水冷ジャケットを一体化した構造体であることを特徴とする請求項1〜6の何れかに記載の半導体素子搭載用モジュール。The module for mounting a semiconductor element according to any one of claims 1 to 6, wherein the heat dissipation side of the heat dissipation substrate has a fin shape or is a structure in which the heat dissipation substrate and a water cooling jacket are integrated.
JP2003168112A 2003-06-12 2003-06-12 Module for mounting semiconductor element Pending JP2005005528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003168112A JP2005005528A (en) 2003-06-12 2003-06-12 Module for mounting semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003168112A JP2005005528A (en) 2003-06-12 2003-06-12 Module for mounting semiconductor element

Publications (1)

Publication Number Publication Date
JP2005005528A true JP2005005528A (en) 2005-01-06

Family

ID=34093718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003168112A Pending JP2005005528A (en) 2003-06-12 2003-06-12 Module for mounting semiconductor element

Country Status (1)

Country Link
JP (1) JP2005005528A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117934A (en) * 2006-11-02 2008-05-22 Nec Corp Semiconductor device
US7427807B2 (en) 2005-02-18 2008-09-23 Mitac Technology Corp. Chip heat dissipation structure and manufacturing method
US7504148B2 (en) 2005-03-03 2009-03-17 Mitac Technology Corp Printed circuit board structure and manufacturing method thereof
JP2009141749A (en) * 2007-12-07 2009-06-25 Hitachi Ltd Receiver
JP2011023475A (en) * 2009-07-14 2011-02-03 Mitsubishi Materials Corp Insulating substrate, insulating circuit board, semiconductor device, method of manufacturing the insulating substrate, and method of manufacturing the insulating circuit board
US10748833B2 (en) 2018-09-06 2020-08-18 Samsung Electronics Co., Ltd. Fan-out semiconductor package
CN111771120A (en) * 2018-02-22 2020-10-13 国立大学法人大阪大学 Chip for substrate evaluation and substrate evaluation device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7427807B2 (en) 2005-02-18 2008-09-23 Mitac Technology Corp. Chip heat dissipation structure and manufacturing method
US7504148B2 (en) 2005-03-03 2009-03-17 Mitac Technology Corp Printed circuit board structure and manufacturing method thereof
JP2008117934A (en) * 2006-11-02 2008-05-22 Nec Corp Semiconductor device
JP2009141749A (en) * 2007-12-07 2009-06-25 Hitachi Ltd Receiver
JP2011023475A (en) * 2009-07-14 2011-02-03 Mitsubishi Materials Corp Insulating substrate, insulating circuit board, semiconductor device, method of manufacturing the insulating substrate, and method of manufacturing the insulating circuit board
CN111771120A (en) * 2018-02-22 2020-10-13 国立大学法人大阪大学 Chip for substrate evaluation and substrate evaluation device
JPWO2019163862A1 (en) * 2018-02-22 2021-02-04 国立大学法人大阪大学 Board evaluation chip and board evaluation device
JP7121953B2 (en) 2018-02-22 2022-08-19 国立大学法人大阪大学 Board evaluation chip and board evaluation device
US11454601B2 (en) 2018-02-22 2022-09-27 Osaka University Substrate evaluation chip and substrate evaluation device
CN111771120B (en) * 2018-02-22 2023-09-05 国立大学法人大阪大学 Chip for evaluating substrate and substrate evaluating device
US10748833B2 (en) 2018-09-06 2020-08-18 Samsung Electronics Co., Ltd. Fan-out semiconductor package

Similar Documents

Publication Publication Date Title
JP4348565B2 (en) High thermal conductivity / low thermal expansion composite material and heat dissipation board
US5981085A (en) Composite substrate for heat-generating semiconductor device and semiconductor apparatus using the same
JP4344934B2 (en) High thermal conductivity / low thermal expansion composite material, heat dissipation substrate and manufacturing method thereof
US20070053166A1 (en) Heat dissipation device and composite material with high thermal conductivity
JP2004200346A (en) Package for accommodating semiconductor device, its manufacturing method, and semiconductor apparatus
JP2004146413A (en) Package for housing semiconductor element and semiconductor device
JP2007059875A (en) Heat dissipation member, and package for electronic part housing using this and electronic apparatus
JP2001358266A (en) Material of heat radiation substrate for mounting semiconductor, method of manufacturing the same, and ceramic package using the same
JP2005005528A (en) Module for mounting semiconductor element
JP2000150743A (en) Substrate for semiconductor device and manufacture thereof
JPH08186204A (en) Heat sink and its manufacture
JP2004160549A (en) Ceramic-metal complex and high heat-conductive substrate for heat radiation using the same
JP2000277953A (en) Ceramic circuit board
JP2006060247A (en) Heat dissipation substrate and its manufacturing method
Occhionero et al. AlSiC for optoelectronic thermal management and packaging designs
JP2004288949A (en) Semiconductor element-accommodating package and semiconductor device
JP2004022964A (en) Al-SiC COMPOSITE BODY, HEAT SINK COMPONENT USING THE SAME, AND SEMICONDUCTOR MODULE DEVICE
JP4514598B2 (en) Electronic component storage package and electronic device
JP2004296726A (en) Heat dissipating member, package for containing semiconductor element, and semiconductor device
JP2003318316A (en) Ceramic circuit substrate
KR100413848B1 (en) Hermetic Package for Fiber Optic Module
JP3554304B2 (en) Semiconductor element storage package and semiconductor device
JP4454164B2 (en) Package for storing semiconductor elements
JP2005019875A (en) Heat radiating plate, heat radiating module, semiconductor mounted module, and semiconductor device
JP2004022885A (en) Al-SiC COMPOSITE BODY AND HEAT RADIATING COMPONENT