JP2003226572A - Low dielectric constant ceramic composition and production method therefor - Google Patents

Low dielectric constant ceramic composition and production method therefor

Info

Publication number
JP2003226572A
JP2003226572A JP2002028278A JP2002028278A JP2003226572A JP 2003226572 A JP2003226572 A JP 2003226572A JP 2002028278 A JP2002028278 A JP 2002028278A JP 2002028278 A JP2002028278 A JP 2002028278A JP 2003226572 A JP2003226572 A JP 2003226572A
Authority
JP
Japan
Prior art keywords
composition
firing
low
ceramic composition
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002028278A
Other languages
Japanese (ja)
Inventor
Hisafumi Yamamoto
寿文 山元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal SMI Electronics Device Inc
Original Assignee
Sumitomo Metal SMI Electronics Device Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal SMI Electronics Device Inc filed Critical Sumitomo Metal SMI Electronics Device Inc
Priority to JP2002028278A priority Critical patent/JP2003226572A/en
Publication of JP2003226572A publication Critical patent/JP2003226572A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic composition for a dielectric substrate which can be sintered at low temperatures, has a low dielectric constant, has reduced loss in a high frequency zone, and has no diffusion and migration when Ag is used as an internal electrode, and to provide a production method therefor. <P>SOLUTION: The dielectric ceramic composition contains, as an oxide composition, by mass, 29.0 to 48.0% SiO<SB>2</SB>, 45.0 to 67.0% ZnO, 2.0 to 7.0% Bi<SB>2</SB>O<SB>3</SB>, and 1.0 to 7.0% Li<SB>2</SB>O. Raw material powder of each oxide or the like is blended in required quantity, and is subjected to wet blending by a ball mill. The blend is dried, and after that, is calcined at 700 to 900°C. The calcined material is subjected to crushing and particle size regulation. Subsequently, a binder is added thereto, and kneading is performed. The kneaded material is formed into a required shape, and, after the printing, lamination or the like of an electric conductor etc., firing is performed at 800 to 925°C, so that the above dielectric ceramic composition is produced. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、数GHzから数十GHz
の高周波領域を対象とする電子部品やモジュール基板に
用いられる誘電体磁器組成物に関する。
TECHNICAL FIELD The present invention relates to several GHz to several tens GHz.
The present invention relates to a dielectric porcelain composition used for electronic components and module substrates targeting the high-frequency region.

【0002】[0002]

【従来の技術】近年、情報の高速大量伝達通信および移
動体通信の発達にともない、集積回路においては、小型
化、高密度化ばかりでなく、取り扱われる信号に数GHz
帯(マイクロ波)さらにはそれ以上の周波数帯域(ミリ
波)の利用が検討されており、回路の基板や構成部品に
対して、このような高周波帯域に適合した材料が要望さ
れている。
2. Description of the Related Art In recent years, with the development of high-speed mass communication of information and mobile communication, in integrated circuits, not only downsizing and densification but also several GHz are used for handled signals.
Utilization of a band (microwave) and a further frequency band (millimeter wave) has been studied, and materials suitable for such a high frequency band have been demanded for circuit boards and components.

【0003】これら集積回路に要求される性能として
は、高周波帯域での信号伝搬速度が速く、かつ損失が小
さいことが好ましく、基板材料に用いられる磁器組成物
は、比誘電率εが低いこと、および誘電損失tanδが
小さいことすなわちQ値が高いことが重要である。
As the performance required for these integrated circuits, it is preferable that the signal propagation speed in the high frequency band is high and the loss is small, and the ceramic composition used as the substrate material has a low relative permittivity ε r. , And that the dielectric loss tan δ is small, that is, the Q value is high.

【0004】一般に、誘電体中の信号伝搬速度は比誘電
率が低いほど速くなる。回路基板として代表的なものに
アルミナ磁器があるが、誘電率は9〜10程度であり、周
波数帯がマイクロ波またはそれ以上になると、これより
さらに低いものが好ましい。Q値は、低ければ信号の伝
送線路通過時の損失が多くなるため、できるだけ高くす
る必要がある。高いQ値を実現するには、誘電体では主
に組成により定まるので、その選定には十分な配慮を要
し、用いられる導体は、比抵抗値が低いほどよい。
Generally, the signal propagation speed in a dielectric material increases as the relative permittivity decreases. Alumina porcelain is a typical circuit board, but it has a dielectric constant of about 9 to 10, and when the frequency band is microwave or higher, a lower one is preferable. If the Q value is low, there is a large loss when the signal passes through the transmission line, so it is necessary to make it as high as possible. In order to realize a high Q value, the composition of a dielectric material is mainly determined by its composition. Therefore, careful consideration must be given to its selection, and the lower the specific resistance value of the conductor used, the better.

【0005】この誘電体磁器組成物基板に対しても、小
型化高密度化の要求から、多層積層基板法が開発されて
いる。これは、誘電体のグリーンシート上に導体となる
金属ペーストにて形成する集積回路接続用のパターンを
印刷した後、シートを積層圧着し、磁器組成物と導体用
金属とを同時に焼成するものである。さらに基板表層の
外部との接続用電極は、この同時焼成後にペーストを付
着させ、再度焼成することもある。
With respect to this dielectric ceramic composition substrate, a multilayer laminated substrate method has been developed due to the demand for miniaturization and high density. This is to print a pattern for connecting an integrated circuit, which is formed by a metal paste serving as a conductor, on a dielectric green sheet, laminate and press-bond the sheets, and simultaneously fire the porcelain composition and the conductor metal. is there. Further, the electrode for connection to the outside of the substrate surface layer may be fired again by attaching a paste after the simultaneous firing.

【0006】基板に形成させる内部導体は、小型化高密
度化にともない細線化が必要であるが、比抵抗値が高け
れば損失が増し、さらには発熱の原因になるので、でき
るだけ比抵抗値の低い材料とする必要がある。このよう
な材料には、Ag、Cu、Auなどがあるが、Cuは高
温の大気中では酸化されるため磁器組成物による基板の
焼成は還元性雰囲気としなければならなくなり、Auは
高価なため集積回路接続部品のコストが上昇する。Ag
は比抵抗値が低い点で、導体用金属として最も好ましい
が、融点は961℃で、Cuの1083℃,Auの1063℃に比
してもかなり低い。
The internal conductor formed on the substrate needs to be thinned in line with miniaturization and high density, but if the specific resistance value is high, loss increases, which causes heat generation. Must be low material. Such materials include Ag, Cu, Au, etc. However, since Cu is oxidized in a high temperature atmosphere, firing of the substrate with the porcelain composition must be done in a reducing atmosphere, and Au is expensive. The cost of integrated circuit connection components increases. Ag
Is most preferable as a conductor metal because of its low specific resistance value, but its melting point is 961 ° C., which is considerably lower than Cu's 1083 ° C. and Au's 1063 ° C.

【0007】焼成温度が導体金属の融点近傍、さらには
融点を超えると、拡散や流動化によって導体が細くなっ
たり消失したりするおそれがある。したがって、内部導
体や内部電極にAgを適用しようとすれば、Agの融点
を十分下回る温度で焼成できる磁器組成物を用いなけれ
ばならないが、一般に磁器組成物は、このような低温で
は焼結が不完全となり、密度不足や強度不足、さらには
低Q値となる傾向がある。
If the firing temperature is near or above the melting point of the conductor metal, the conductor may become thin or disappear due to diffusion or fluidization. Therefore, if Ag is applied to the inner conductor or the inner electrode, it is necessary to use a porcelain composition that can be fired at a temperature sufficiently lower than the melting point of Ag. Generally, however, a porcelain composition does not sinter at such a low temperature. There is a tendency for incompleteness, insufficient density, insufficient strength, and low Q value.

【0008】Agの融点以下の温度において焼成が可能
な磁器組成物として、いわゆるガラスセラミックスがあ
る。これは、セラミックスの骨材をガラスに混在させた
もので、ガラス組成の軟化温度や融点が低いことで低温
での焼成を可能にしており、骨材とガラスとの組み合わ
せにて様々な改良がおこなわれている。たとえば特開平
10-297960号公報に開示された発明は、骨材としてオル
ト珪酸亜鉛(ZnSiO)およびクリストバライト
(SiO)、ガラスとしてSiO−LiO−B
を用い、焼成温度は800〜1000℃で損失が小さく比
誘電率の低いセラミックスが得られるとしている。
As a porcelain composition which can be fired at a temperature below the melting point of Ag, there is so-called glass ceramics. This is a mixture of ceramic aggregate in glass, and because the softening temperature and melting point of the glass composition are low, firing at low temperatures is possible, and various improvements can be made by combining aggregate and glass. It is done. For example
The invention disclosed in Japanese Patent Publication No. 10-297960 discloses zinc orthosilicate (Zn 2 SiO 4 ) and cristobalite (SiO 2 ) as an aggregate and SiO 2 —Li 2 O—B 2 as glass.
It is said that ceramics with low loss and low relative dielectric constant can be obtained at a firing temperature of 800 to 1000 ° C. using O 3 .

【0009】ガラスセラミックスは誘電率は低いという
利点はあるが、いくつかの問題がある。まず一般的にQ
値が低いので、高周波帯域での損失が大きい。そして多
くの場合、ガラス成分とセラミックス成分とを別々に作
製し、これらを混ぜてグリーンシート用素材とするの
で、製造工程が多くなる。また、Agを電極として用い
る場合、マイグレーション(湿潤雰囲気下での使用にお
ける絶縁破壊)を生じやすい。このような問題に十分対
処できているガラスセラミックス、とくにAgを内部導
体として用いることに適した、低誘電率かつ高Q値で、
低い温度にて十分焼成可能な磁器組成物が要望されてい
る。
Although glass-ceramics have the advantage of having a low dielectric constant, there are some problems. First generally Q
Since the value is low, the loss in the high frequency band is large. In many cases, the glass component and the ceramic component are produced separately, and these are mixed to form a green sheet material, so that the number of manufacturing processes increases. Further, when Ag is used as the electrode, migration (dielectric breakdown in use in a wet atmosphere) is likely to occur. Glass-ceramics that can sufficiently cope with such a problem, particularly a low dielectric constant and a high Q value suitable for using Ag as an inner conductor,
There is a demand for a porcelain composition that can be sufficiently fired at a low temperature.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、低温
焼結が可能で、とくにAgを内部電極に用いる集積回路
基板に適用できる、比誘電率が低く高周波帯域での損失
が小さい誘電体の磁器組成物と、その製造方法の提供に
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a dielectric material which can be sintered at a low temperature and can be applied to an integrated circuit board using Ag as an internal electrode, and has a low relative dielectric constant and a small loss in a high frequency band. The present invention provides a porcelain composition and a method for producing the same.

【0011】[0011]

【課題を解決するための手段】本発明者らは、10GHz帯
さらにはそれ以上の周波数帯域で使用される、磁器組成
物の性能を改善すべく種々検討をおこなった。その際に
目標とした性能は次のとおりである。 1)比誘電率が低く、10GHz帯およびそれ以上の周波数
帯域において高Q値であり、適用周波数f(GHz)とQ
の積fQ値が15000(GHz)以上。 2)内部電極にAgを用いることが可能な、Agの融点
を十分下回る焼成温度で焼結でき、Agが内部に拡散せ
ず、かつマイグレーションが生じない。 3)拘束焼成法の適用が可能。 4)通常のセラミックスの製造方法である固相法によ
り、すなわち各原料粉末を混合し仮焼した後、粉砕して
グリーンシートを作製し、これを焼成することにより磁
器組成物基板とすることが可能。
The present inventors have conducted various studies to improve the performance of porcelain compositions used in the frequency band of 10 GHz and higher. The target performance at that time is as follows. 1) Low relative permittivity, high Q value in the 10 GHz band and higher frequency bands, and applicable frequency f (GHz) and Q
The product fQ value of 15,000 (GHz) or more. 2) Ag can be used for the internal electrodes, and the sintering can be performed at a firing temperature sufficiently lower than the melting point of Ag, Ag does not diffuse inside, and migration does not occur. 3) The restricted firing method can be applied. 4) A porcelain composition substrate can be obtained by a solid-phase method that is a usual method for producing ceramics, that is, after mixing raw material powders, calcining them, and then crushing to produce a green sheet, which is then fired. Possible.

【0012】ここで、fQ値を評価に用いるのは、Q値
は測定周波数に依存すること、およびハッキ・コールマ
ン法(両端短絡形誘電体共振器法)を用い、共振周波数
におけるQ値を測定するからである。またfQ値が1500
0以上であることを目標にしたのは、10GHzにてQ値が15
000以上あれば、ミリ波と呼ばれる周波数帯域ににおい
ても、損失が少なく十分対応できると考られるからであ
る。
Here, the fQ value is used for evaluation in that the Q value depends on the measurement frequency, and the Q value at the resonance frequency is measured using the Hacky-Coleman method (dielectric resonator method with both ends shorted). Because it does. Also, the fQ value is 1500
The target of being 0 or more is that the Q value is 15 at 10 GHz.
This is because if it is 000 or more, even in a frequency band called a millimeter wave, it is considered that the loss is small and it can be sufficiently coped with.

【0013】Agを内部導体や電極とするには、Agの
融点を下回る温度で焼成しなければならないが、このよ
うな低温で焼結できれば、導体や電極にCuまたはAu
を用いる場合にも十分対応できる。
In order to use Ag as an internal conductor or electrode, it must be fired at a temperature lower than the melting point of Ag. If sintering can be carried out at such a low temperature, Cu or Au will be added to the conductor or electrode.
It is possible to sufficiently deal with the case of using.

【0014】焼成後の平面(XY方向)における寸法精
度がよく、大型の基板でもグリーンシート上の回路形状
と同一寸法のものを得る方法として、拘束焼成法があ
る。これは積層したグリーンシートの上下面またはいず
れか一方の面に、積層体と焼き付を生じない、たとえば
Alなどのグリーンシートを置き、垂直方向に加
圧しながら焼成することによって、焼結に伴う収縮を厚
み方向(Z方向)だけにする焼成方法である。この場
合、焼成後の平面方向の収縮がないことを容易に実現で
き、かつ加圧のために用いるグリーンシートと焼き付か
ないことが重要である。これは、焼成温度を低くするこ
とにより、より容易になるが、通常用いられるAl
などと焼き付かないことも必要である。
A constrained firing method is known as a method for obtaining a dimensional accuracy in a plane (XY direction) after firing and having the same dimensions as the circuit shape on the green sheet even on a large substrate. This is done by placing a green sheet of, for example, Al 2 O 3 or the like that does not cause sticking with the laminated body on the upper and lower surfaces of the stacked green sheets or one of the surfaces, and firing by applying pressure in the vertical direction. This is a firing method in which shrinkage accompanying binding is limited to the thickness direction (Z direction). In this case, it is important that it is possible to easily realize that there is no shrinkage in the plane direction after firing, and that it does not stick to the green sheet used for pressing. This can be made easier by lowering the firing temperature, but the commonly used Al 2 O
It is also necessary not to burn with 3 .

【0015】磁器組成物を構成する主成分として、Si
とZnOとを用いた。これらを用いた磁器組成物
は、ウィレマイト相(ZnSiO)とクォーツ相
(SiO )の混合体を形成して、比誘電率が低く高い
Q値が得られるので、目的とする高周波用誘電体を得る
ための、必須含有成分であると考えたからである。
Si is the main constituent of the porcelain composition.
OTwoAnd ZnO were used. Porcelain composition using these
Is the willemite phase (ZnTwoSiOFour) And the quartz phase
(SiO Two) To form a mixture with low relative permittivity and high
Since the Q value can be obtained, the target high frequency dielectric is obtained.
This is because it was considered to be an essential ingredient for

【0016】これら二つの主成分に対し、まずは、B
のような低融点の成分を用いずに焼成温度が低下で
き、Agの融点以下で十分緻密な磁器組成物の焼結が可
能になることを判断基準とし、種々の成分とその含有量
を検討した。その結果、Bi とLiOとの二成
分の適量の複合添加が効果的であることを見出した。
For these two main components, first, BTwo
OThreeThe firing temperature can be lowered without using a low melting point component such as
In this case, it is possible to sinter sufficiently dense porcelain composition below the melting point of Ag.
Various ingredients and their contents are judged based on the fact that they become functional.
It was investigated. As a result, Bi TwoOThreeAnd LiTwoNisei with O
It has been found that the combined addition of an appropriate amount of minutes is effective.

【0017】これら二成分は、単独の添加で焼結温度を
低下させようとすると多量の含有が必要になり、その結
果Q値を大きく低下させてしまう。ところが、複合して
添加することによって、Q値の低下を少なくして焼結温
度を低下させることが可能であった。ウィレマイト相と
クォーツ相(SiO)との混合組成物は、通常難焼結
性であり、これらのみでは焼成温度を高くしても、緻密
な焼結体を得ることができず、さらに温度を上げると溶
融してしまう。ところがBiとLiOとを複合
添加すると、Agの溶融点以下で十分緻密に焼成できた
のは、SiO、BiおよびLiOの三成分の
組み合わせによって、相対的に低融点のガラス相が形成
され、この液相の存在により焼結が促進されたのではな
いかと思われる。
If these two components are added alone to reduce the sintering temperature, they must be contained in a large amount, resulting in a large reduction in Q value. However, it was possible to decrease the Q value and decrease the sintering temperature by adding them in combination. A mixed composition of a willemite phase and a quartz phase (SiO 2 ) is usually difficult to sinter, and even if these are used alone, a dense sintered body cannot be obtained even if the firing temperature is increased, and the temperature is further increased. If you raise it, it will melt. However, when Bi 2 O 3 and Li 2 O were added in combination, it was possible to sinter sufficiently densely below the melting point of Ag because of the combination of the three components of SiO 2 , Bi 2 O 3 and Li 2 O. A low-melting-point glass phase was formed in this region, and the presence of this liquid phase probably promoted sintering.

【0018】そこで、SiOとZnOとの混合組成
に、BiとLiOとを複合添加した磁器組成物
を種々試作して、誘電率とQ値がすぐれている組成範囲
だけでなく、Agの拡散の有無、マイグレーションの発
生、さらには拘束焼成法の適用の可否についても調査
し、最適組成範囲の検討をおこなった。
Therefore, various prototypes of porcelain compositions in which Bi 2 O 3 and Li 2 O are added in combination to the mixed composition of SiO 2 and ZnO are prepared, and only in the composition range where the dielectric constant and the Q value are excellent. However, the presence or absence of Ag diffusion, the occurrence of migration, and the applicability of the constrained firing method were also investigated, and the optimum composition range was examined.

【0019】焼成温度温度を低下させる手段として、B
など低融点酸化物の添加があるが、このような場
合、Agの拡散が生じることが多い。これは導電体とし
てグリーンシート上に塗布するAgペーストに含まれる
ガラスフリットと、低融点酸化物とが反応し、その際に
Agもフリットとともに磁器組成物中へ移行していくた
めではないかと思われる。このようなAg拡散が生じる
と、Agを経路として、高湿度、高電圧の環境下で絶縁
破壊を起こしやすくなるのではないかと思われる。これ
に対し、BiとLiOとを適量複合添加した場
合は、Bi またはLiOは融点がBなど
より高いこともあって、このような拡散現象は生じ難い
と考えられる。
As a means for lowering the firing temperature, B
TwoOThreeThere is a low melting point oxide added, but in such cases
In this case, Ag diffusion often occurs. This is a conductor
Included in the Ag paste applied on the green sheet
When the glass frit reacts with the low melting point oxide,
Ag also migrates into the porcelain composition along with the frit.
I suspect that Such Ag diffusion occurs
Insulate under high humidity and high voltage environment using Ag as a path
It seems that it is likely to cause destruction. this
On the other hand, BiTwoOThreeAnd LiTwoWhen O and a proper amount are added in combination
If BiTwoO ThreeOr LiTwoO has a melting point of BTwoOThreeSuch
Because it is higher, such diffusion phenomenon is unlikely to occur
it is conceivable that.

【0020】また、拘束焼成法を利用するには、加圧に
用いる未焼結組成物と焼結体組成物とが焼成後簡単には
がせ、内部導体や電極となるAgが、焼成後の磁器組成
物に十分に密着でき、かつ導通不良を起こさないことが
必要であるが、このような点に関しても、上述の組成範
囲内での最適限界を明らかにした。
In order to use the constrained firing method, the unsintered composition used for pressurization and the sintered body composition can be easily peeled off after firing, and Ag which will be an internal conductor or an electrode can be porcelain after firing. It is necessary that the composition can be sufficiently adhered to the composition and that the conduction failure does not occur. However, regarding this point as well, the optimum limit within the above composition range has been clarified.

【0021】さらに、上述の組成範囲の磁器組成物を、
通常の各原料粉末を混合し仮焼した後、粉砕してグリー
ンシートを作製し、グリーンシート上にAgペーストに
より導電体パターンを印刷後、これを積層して焼成する
方法にて基板とする際の、焼成温度等の影響を調査し
た。その結果、925℃までの焼成温度で良好な結果の得
られることが確認できた。
Further, a porcelain composition having the above composition range is
When a raw material powder is mixed and calcined and then crushed to produce a green sheet, a conductor pattern is printed on the green sheet with Ag paste, and then laminated and fired to form a substrate. The effect of the firing temperature was investigated. As a result, it was confirmed that good results were obtained at firing temperatures up to 925 ° C.

【0022】以上のような検討結果から、さらにより安
定して目標性能の得られる限界を明らかにして本発明を
完成させた。本発明の要旨は次のとおりである。 (1) 酸化物組成比として質量%で、SiO:29.0〜4
8.0%、ZnO:45.0〜67.0%、Bi:2.0〜7.0
%およびLiO:1.0〜7.0%を含有し、他は不純物か
らなることを特徴とする低誘電率磁器組成物。 (2) 各酸化物の粉末原料を配合しボールミルにて湿式混
合して、乾燥後700〜900℃にて仮焼後粉砕整粒した後、
バインダを添加して混練し、成形後、導電体の印刷およ
び積層をおこなってから、800〜925℃にて焼結すること
を特徴とする請求項1に記載の低誘電率磁器組成物の製
造方法。
From the above-mentioned examination results, the present invention has been completed by clarifying the limit of obtaining the target performance in a more stable manner. The gist of the present invention is as follows. (1) in mass% as the oxide composition ratio, SiO 2: 29.0 to 4
8.0%, ZnO: 45.0~67.0%, Bi 2 O 3: 2.0~7.0
% And Li 2 O: 1.0 to 7.0%, and the others consisting of impurities. A low dielectric constant porcelain composition. (2) The powder raw materials of the respective oxides are blended, wet mixed in a ball mill, dried, calcined at 700 to 900 ° C., crushed and sized,
The production of a low dielectric constant porcelain composition according to claim 1, wherein after the binder is added and kneaded, the conductor is printed, the conductor is printed and laminated, and then sintered at 800 to 925 ° C. Method.

【0023】[0023]

【発明の実施の形態】本発明の磁器組成物は、成分組成
範囲を以下のとおりに限定する。ここで含有組成は酸化
物の形で表した質量%である。
BEST MODE FOR CARRYING OUT THE INVENTION The composition range of the porcelain composition of the present invention is limited as follows. Here, the contained composition is mass% expressed in the form of oxide.

【0024】SiOの含有範囲は29.0〜48.0%とす
る。これは含有量が29.0%未満では、Agを内部導体あ
るいは電極として適用することのできる、925℃以下で
の焼成が困難になるからである。一方、48.0%を超える
量が含まれると、高周波域でのQ値が低下し、fQ値が
目標の15000を下回ってしまう。これは磁器組成物中に
Q値の低い、SiOを含むガラス相が増えるためと考
えられる。より望ましいのは、31.0〜42.0%の範囲であ
る。
The content range of SiO 2 is 29.0 to 48.0%. This is because if the content is less than 29.0%, it becomes difficult to apply Ag as an internal conductor or an electrode, and it becomes difficult to perform firing at 925 ° C or lower. On the other hand, when the content exceeds 48.0%, the Q value in the high frequency range decreases and the fQ value falls below the target of 15,000. It is considered that this is because the glass phase containing SiO 2 having a low Q value increases in the porcelain composition. A more desirable range is 31.0 to 42.0%.

【0025】ZnOは45.0〜67.0%とする。ZnOはS
iOと共に本発明の磁器組成物の基本成分であり、含
有量が45%を下回る場合、925℃以下の焼成温度では十
分な焼結が困難となる。これは高融点のSiOの含有
量の相対的増加により焼結温度が上がってしまうためで
ある。しかし67.0%を超える量が含まれると、Q値が低
下し目標とする値が得られない。より望ましいのは53.5
〜65.0%とすることである。
ZnO is set to 45.0 to 67.0%. ZnO is S
It is a basic component of the porcelain composition of the present invention together with iO 2 , and when the content is less than 45%, sufficient sintering becomes difficult at a firing temperature of 925 ° C or lower. This is because the sintering temperature rises due to the relative increase in the content of high melting point SiO 2 . However, when the amount exceeds 67.0%, the Q value decreases and the target value cannot be obtained. 53.5 is more desirable
It is to be ~ 65.0%.

【0026】Biは焼結温度の低下を目的として
含有させるが、その範囲は2.0〜7.0%とする。含有量が
2.0%未満では焼成温度を925℃以下としたとき、十分に
焼結がおこなわれない。しかし7.0%を超える量含有さ
せると、内部導体に使用するAgの拡散が著しくなる。
これは、Biは他の成分より融点が低く、Agと
反応しやすいためと考えられる。より望ましいのは2.0
〜3.5%とすることである。
Bi 2 O 3 is contained for the purpose of lowering the sintering temperature, but the range is 2.0 to 7.0%. Content is
If it is less than 2.0%, the sintering is not sufficiently performed when the firing temperature is set to 925 ° C or lower. However, when the content exceeds 7.0%, the diffusion of Ag used for the internal conductor becomes remarkable.
It is considered that this is because Bi 2 O 3 has a lower melting point than the other components and easily reacts with Ag. 2.0 is more desirable
It should be ~ 3.5%.

【0027】LiOの含有範囲は1.0〜7.0%とする。
LiOは、Biとともに含有させることによ
り、低温での焼結を可能にする効果がある。含有量が1.
0%未満ではAgの融点を十分下回る925℃以下での焼結
が困難になる。しかし7.0%を超える含有はQ値が低下
し、目標とするfQ値15000以上が得られなくなる。こ
れはLiO量が増すと、SiOと反応してQ値を低
下させるガラス相が増してくるためと考えられる。より
望ましい含有量は1.0〜3.0%である。
The content range of Li 2 O is 1.0 to 7.0%.
Li 2 O has an effect of enabling sintering at low temperature by including it together with Bi 2 O 3 . Content is 1.
If it is less than 0%, it becomes difficult to sinter at 925 ° C or lower, which is sufficiently lower than the melting point of Ag. However, when the content exceeds 7.0%, the Q value decreases, and the target fQ value of 15,000 or more cannot be obtained. It is considered that this is because as the amount of Li 2 O increases, the number of glass phases that react with SiO 2 and reduce the Q value increases. A more desirable content is 1.0 to 3.0%.

【0028】上記以外の成分としては、原料に混入して
くる種々の不純物があるが、得られた磁器組成物の特性
に悪影響をおよぼさない範囲のものであれば、とくには
限定しない。
As the components other than the above, there are various impurities mixed in the raw materials, but they are not particularly limited as long as they do not adversely affect the characteristics of the obtained ceramic composition.

【0029】本発明の磁器組成物の製造は、通常のセラ
ミックス系のものを焼成する方法に準じておこなう。ま
ず原料となる各成分のそれぞれの酸化物粉末を所要量用
意し、ボールミルにて十分に混合する。原料粉末は酸化
物以外の、炭酸塩や炭酸水素塩など他の化合物の形のも
のを用いてもよく、その場合は焼結後の酸化物量に相当
するモル分量の粉末を配合する。混合後仮焼して、セラ
ミックスの形成反応がおこなわれていることを確認して
から粉砕整粒する。最終焼成にてAgの融点未満の温度
で十分に焼結させるためには、仮焼の温度は高くしない
ことが望ましいが、低すぎるとセラミックスの形成反応
を十分に生じさせることができないので、700〜900℃と
するのがよい。
The porcelain composition of the present invention is manufactured according to the usual method of firing ceramics. First, a required amount of each oxide powder of each component serving as a raw material is prepared and sufficiently mixed with a ball mill. The raw material powder may be in the form of other compounds such as carbonates and hydrogencarbonates other than oxides. In that case, the powder is mixed in a molar amount corresponding to the amount of oxides after sintering. After mixing, calcination is carried out, and after confirming that the formation reaction of ceramics is carried out, crushing and sizing is performed. In order to sufficiently sinter at a temperature lower than the melting point of Ag in the final firing, it is desirable not to raise the temperature of calcination, but if it is too low, the formation reaction of ceramics cannot be sufficiently caused. It is recommended to set it to ~ 900 ℃.

【0030】仮焼後の整粒粉にバインダ等を添加して混
練し、たとえばシート状など所要形状に成形して、必要
により導電回路の印刷、積層、最終形状への加工等をお
こなって、800〜925℃で焼成し磁器組成物とする。焼成
温度を925℃までとするのは、Agを内部導体や電極に
用いる場合、Agの拡散を生じたり、使用時のマイグレ
ーションを引き起こすおそれがあるからである。しか
し、焼成温度が800℃未満では、焼結が十分おこなわれ
ず、緻密性が不足して所要特性が得られないことがあ
る。
A binder or the like is added to the sized powder after calcination, and the mixture is kneaded, and formed into a desired shape such as a sheet, and if necessary, printing of conductive circuits, lamination, processing into a final shape, and the like, Bake at 800 to 925 ° C to obtain a porcelain composition. The reason for setting the firing temperature to 925 ° C. is that when Ag is used for the internal conductor and the electrode, Ag may be diffused or migration during use may be caused. However, if the firing temperature is lower than 800 ° C., the sintering may not be sufficiently performed, and the denseness may be insufficient, so that the required properties may not be obtained.

【0031】上述のように組成範囲を限定し、焼成条件
を選定することにより、ウィレマイト相とクォーツ相を
含む、高周波特性のすぐれた低誘電率の磁器組成物とす
ることができる。
By limiting the composition range and selecting firing conditions as described above, it is possible to obtain a low dielectric constant porcelain composition containing a Willemite phase and a quartz phase and excellent in high frequency characteristics.

【0032】拘束焼成法を実施するときは、たとえば次
のようにしておこなう。目的とする磁器組成物のグリー
ンシートとは別に、Alの整粒粉を用い、バイン
ダ、可塑剤、溶剤等は磁器組成物に用いるものと同じと
し、混練してドクターブレード法などにより、グリ−ン
シートに成形する。Alのグリーンシートの厚さ
は、目的とする磁器組成物のグリ−ンシートと同程度か
ら3倍ぐらいまでとすればよいが、とくに限定するもで
はない。このAlのグリーンシートを、目的とす
る磁器組成物のグリーンシート積層物の上下面に置き、
加圧して焼結用積層体を作製する。これをセッターで挟
み込み、積層方向に1MPa程度の圧力を印加し、その状態
で焼成する。
The constrained firing method is carried out, for example, as follows. Separately from the intended green sheet of the porcelain composition, Al 2 O 3 sized powder is used, and the binder, plasticizer, solvent, etc. are the same as those used for the porcelain composition, and kneading is performed by a doctor blade method or the like. , To form a green sheet. The thickness of the Al 2 O 3 green sheet may be from the same level as the green sheet of the intended ceramic composition to about 3 times, but is not particularly limited. This Al 2 O 3 green sheet is placed on the upper and lower surfaces of the green sheet laminate of the target porcelain composition,
Pressurize to produce a laminate for sintering. This is sandwiched between setters, a pressure of about 1 MPa is applied in the stacking direction, and firing is performed in that state.

【0033】焼成後、本発明の磁器組成物は焼結される
が、Alのグリーンシートは、焼結されず脱脂さ
れただけの状態になるので、簡単に取り除くことができ
る。得られた焼結体は、要すれば表面を平面研磨機など
で研磨し、平滑面とする。
After firing, the porcelain composition of the present invention is sintered, but the green sheet of Al 2 O 3 is not sintered and is only degreased, so that it can be easily removed. If necessary, the surface of the obtained sintered body is polished by a flat polishing machine or the like to obtain a smooth surface.

【0034】[0034]

【実施例】95%以上の高純度のSiO、ZnO、Bi
およびLiO(LiCOとして)の粉末原
料を用いて表1の組成の配合とし、以下のようにして磁
器組成物を作製した。
[Example] High-purity 95% or more of SiO 2 , ZnO, Bi
A powder composition of 2 O 3 and Li 2 O (as Li 2 CO 3 ) was used to prepare the composition shown in Table 1, and a porcelain composition was prepared as follows.

【0035】[0035]

【表1】 [Table 1]

【0036】所定の組成に配合した原料粉末を、ジルコ
ニア製ボールを用いたボールミルにて、純水を加えて24
時間湿式混合し、乾燥後ライカイ機にて攪拌した後、80
0℃で2時間仮焼した。仮焼後、X線回折により焼結反応
がおこなわれたことを確認し、さらにジルコニア製ボー
ルのボールミルにて純水を加えて24時間粉砕して、乾燥
後のメジアン径で粒径1〜3μmの粉末とした。粉砕粉末
を乾燥させ、10%PVA水溶液のバインダを加えて造粒
し、金型を用いて、100MPaの圧力にて直径15mm、高さ8m
mの円柱状試片に成形した。
The raw material powder blended to a predetermined composition was added with pure water in a ball mill using zirconia balls to obtain 24
Wet-mix for 80 hours
It was calcined at 0 ° C for 2 hours. After calcination, it was confirmed by X-ray diffraction that the sintering reaction had taken place, and pure water was further added in a ball mill made of zirconia balls and crushed for 24 hours. The median diameter after drying was 1 to 3 μm. Powder. The crushed powder is dried, a binder of 10% PVA aqueous solution is added to granulate, and a mold is used to apply a pressure of 100 MPa to a diameter of 15 mm and a height of 8 m.
It was molded into a cylindrical test piece of m.

【0037】各試料に対して一部の試片を用い、あらか
じめ800〜1000℃の範囲の温度で試験的に焼成して、焼
結による十分な緻密化に必要な温度を見出し、その温度
を焼成温度として、該当試料の被測定試片の焼成をおこ
なった。焼成時間はいずれも2時間である。
A part of the test piece was used for each sample, and the test piece was preliminarily fired at a temperature in the range of 800 to 1000 ° C. to find the temperature required for sufficient densification by sintering, and the temperature was determined. As the firing temperature, the test piece of the sample to be measured was fired. The firing time is 2 hours in each case.

【0038】焼成後の焼結磁器組成物試片は、底面を研
磨し平滑にしてから、ハッキ・コールマン法(両端短絡
形誘電体共振器法)により比誘電率εおよび誘電損失
tanδ(またはQ=1/tanδ)を求めた。誘電損失は測
定共振周波数fにより変化するので、周波数に影響さ
れず被測定材で一定の値になるとされるfとQとの積の
fQ値で損失の大小を評価した。これらの結果を合わせ
て表2に示す。
After firing, the sintered porcelain composition test piece was polished and smoothed at its bottom surface, and then the relative permittivity ε r and the dielectric loss were measured by the Hack-Coleman method (dielectric resonator method with both ends short-circuited).
Tan δ (or Q = 1 / tan δ) was determined. Since the dielectric loss changes depending on the measured resonance frequency f 0 , the magnitude of the loss was evaluated by the fQ value of the product of f and Q, which is assumed to be a constant value in the measured material without being influenced by the frequency. The results are shown together in Table 2.

【0039】[0039]

【表2】 [Table 2]

【0040】Agの拡散およびマイグレーションの評価
については、以下のようにしておこなった。上記の仮焼
後粉砕した乾燥粉末に、アクリル系バインダおよび可塑
剤を添加したキシレン、トルエンおよびブタノールから
なる溶剤を、粉末量に対し約30質量%加え、十分に混合
してスラリーとし、このスラリーによりドクターブレー
ド法を用いて、焼成後の厚さ目標100μmのグリーンシー
トを作製した。グリーンシート上に、内部電極用Agペ
ーストを厚さ20μmとしてスクリーン印刷した後、電極
層数9層に積層し、85℃に予熱して6MPaで加圧圧着後、
切断して、4225サイズのコンデンサ用グリーンシート積
層体とし、焼成をおこなった。
The diffusion and migration of Ag were evaluated as follows. To the dry powder pulverized after the above calcination, a solvent consisting of xylene added with an acrylic binder and a plasticizer, toluene and butanol, about 30 mass% with respect to the amount of the powder, and sufficiently mixed to form a slurry. By using the doctor blade method, a green sheet having a target thickness of 100 μm after firing was prepared. After screen-printing Ag paste for internal electrodes to a thickness of 20 μm on the green sheet, stacking it with 9 electrode layers, preheating to 85 ° C, and pressure bonding at 6 MPa,
It was cut to obtain a 4225 size green sheet laminate for capacitors and fired.

【0041】ただし、十分な焼結に必要な温度が925℃
を超える試料については、Agの拡散が激しく、導体消
失のおそれがあるため、上記の積層体の作製はおこなわ
なかった。
However, the temperature required for sufficient sintering is 925 ° C.
For the samples exceeding 1.0, Ag was severely diffused and the conductor might disappear. Therefore, the above-mentioned laminate was not prepared.

【0042】Ag拡散の有無の調査は、積層方向に垂直
な断面を研磨して内部の導体および電極が観察できるよ
うにし、磁器組成物部分のSEM観察およびEDS分析
をおこなった。マイグレーションについては、上記焼成
後の積層コンデンサの電極端面部にAgペーストを塗布
して700℃で焼き付け、そこへNi/Snのバレルめっ
きをおこなって外部端子とし、130℃、90%RH、DC25V、
9時間のPCT(Pressure Cooker Test)を施した後、絶
縁抵抗を測定した。結果を表2に併記する。
In order to investigate the presence or absence of Ag diffusion, a cross section perpendicular to the stacking direction was polished so that the internal conductors and electrodes could be observed, and SEM observation and EDS analysis of the porcelain composition portion were carried out. Regarding migration, Ag paste is applied to the electrode end surface of the fired multilayer capacitor and baked at 700 ° C., and Ni / Sn barrel plating is performed as an external terminal at 130 ° C., 90% RH, DC25V,
After performing a PCT (Pressure Cooker Test) for 9 hours, the insulation resistance was measured. The results are also shown in Table 2.

【0043】表2の結果からわかるように、本発明にて
規定する組成範囲を逸脱する試番2、4、6、8および14
は、焼結に要する焼成温度が目標とした925℃を超えて
いる。これらの中で、試番14はfQ値が劣るが、他はい
ずれもεが低くfQ値は良好である。しかし、925℃
を超える焼成温度は、導体消失の危険性が高く、好まし
くない。
As can be seen from the results shown in Table 2, sample numbers 2, 4, 6, 8 and 14 which deviate from the composition range specified in the present invention.
, The firing temperature required for sintering exceeds the target of 925 ° C. Of these, the trial number 14 was inferior in fQ value, but the others had low ε r and good fQ value. But 925 ℃
If the firing temperature is higher than 1, there is a high risk of conductor loss, which is not preferable.

【0044】また、同様に本発明にて規定する組成範囲
を逸脱する試番16は、焼成温度が低くてもAgの拡散が
生じており、試番18ではfQ値が目標値を大きく下回る
結果になっている。
Similarly, in the sample No. 16 which deviates from the composition range specified in the present invention, Ag diffusion occurs even at a low firing temperature, and in the sample No. 18, the fQ value is much lower than the target value. It has become.

【0045】これらに比較し、本発明で規定する組成範
囲では、いずれも920℃以下の焼成温度にて、εは低
くfQ値がすぐれ、Ag拡散およびマイグレーションは
なく、ウィレマイト相を有する磁器組成物が得られてい
る。
In comparison with these, in the composition range specified in the present invention, ε r is low, fQ value is excellent, there is no Ag diffusion and migration, and a porcelain composition having a willemite phase is obtained at a firing temperature of 920 ° C. or less. Things have been obtained.

【0046】[0046]

【発明の効果】本発明の誘電体磁器組成物は、比誘電率
が低く高周波帯域における損失が低く、しかも低い焼成
温度でその特性を得ることができる。したがって、内部
導体や電極として比抵抗の低いAgを使用することがで
き、すぐれた高周波性能と相まって、電子回路の高周波
化、小型化、高密度化のための基板用等の用途に好適で
ある。
EFFECTS OF THE INVENTION The dielectric ceramic composition of the present invention has a low relative permittivity and a low loss in a high frequency band, and its characteristics can be obtained at a low firing temperature. Therefore, Ag having a low specific resistance can be used as the internal conductor and the electrode, and, in combination with the excellent high-frequency performance, it is suitable for applications such as a substrate for high-frequency, miniaturization, and high-density electronic circuits. .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】酸化物組成比として質量%で、SiO
29.0〜48.0%、ZnO:45.0〜67.0%、Bi:2.
0〜7.0%およびLiO:1.0〜7.0%を含有し、他は不
純物からなることを特徴とする低誘電率磁器組成物。
1. An oxide composition ratio of mass% is SiO 2 :
29.0~48.0%, ZnO: 45.0~67.0%, Bi 2 O 3: 2.
A low dielectric constant porcelain composition containing 0 to 7.0% and Li 2 O: 1.0 to 7.0%, and the other components.
【請求項2】各酸化物の粉末原料を配合し湿式混合し
て、乾燥後700〜900℃にて仮焼後粉砕整粒した後、バイ
ンダを添加して混練し、シート状に成形後、導電体の印
刷および積層をおこなってから、800〜925℃にて焼結す
ることを特徴とする請求項1に記載の低誘電率磁器組成
物の製造方法。
2. A powder raw material of each oxide is blended and wet mixed, dried, calcined at 700 to 900 ° C., crushed and sized, and then a binder is added and kneaded to form a sheet, The method for producing a low dielectric constant porcelain composition according to claim 1, wherein the conductor is printed and laminated, and then sintered at 800 to 925 ° C.
JP2002028278A 2002-02-05 2002-02-05 Low dielectric constant ceramic composition and production method therefor Withdrawn JP2003226572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002028278A JP2003226572A (en) 2002-02-05 2002-02-05 Low dielectric constant ceramic composition and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002028278A JP2003226572A (en) 2002-02-05 2002-02-05 Low dielectric constant ceramic composition and production method therefor

Publications (1)

Publication Number Publication Date
JP2003226572A true JP2003226572A (en) 2003-08-12

Family

ID=27749546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002028278A Withdrawn JP2003226572A (en) 2002-02-05 2002-02-05 Low dielectric constant ceramic composition and production method therefor

Country Status (1)

Country Link
JP (1) JP2003226572A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092093A1 (en) * 2003-04-15 2004-10-28 Nikko Company Low temperature sintering ceramic composition for high frequency, method of fabricating the same and electronic component
JP2010215478A (en) * 2009-03-18 2010-09-30 Tdk Corp Dielectric ceramic composition and electronic component using the same
CN111925197A (en) * 2020-07-21 2020-11-13 深圳顺络电子股份有限公司 Microwave dielectric ceramic material and preparation method thereof
CN113800898A (en) * 2021-08-19 2021-12-17 桂林理工大学 Low-cost low-dielectric microwave dielectric ceramic co-fired with aluminum electrode and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092093A1 (en) * 2003-04-15 2004-10-28 Nikko Company Low temperature sintering ceramic composition for high frequency, method of fabricating the same and electronic component
JP2006523602A (en) * 2003-04-15 2006-10-19 ニッコー株式会社 Low-frequency fired porcelain composition for high frequency, its manufacturing method and electronic component
US7300897B2 (en) 2003-04-15 2007-11-27 Nikko Company Low temperature sintering ceramic composition for high frequency, method of fabricating the same and electronic component
JP2010215478A (en) * 2009-03-18 2010-09-30 Tdk Corp Dielectric ceramic composition and electronic component using the same
CN111925197A (en) * 2020-07-21 2020-11-13 深圳顺络电子股份有限公司 Microwave dielectric ceramic material and preparation method thereof
CN111925197B (en) * 2020-07-21 2023-01-03 深圳顺络电子股份有限公司 Microwave dielectric ceramic material and preparation method thereof
CN113800898A (en) * 2021-08-19 2021-12-17 桂林理工大学 Low-cost low-dielectric microwave dielectric ceramic co-fired with aluminum electrode and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5273490B2 (en) Ceramic composition, ceramic green sheet, and ceramic electronic component
JP5321066B2 (en) Ceramic composition and ceramic substrate
CN107635940A (en) The pressed compact and wiring plate of glass ceramic frit
JP6728859B2 (en) Ceramic substrate and manufacturing method thereof
JP3419291B2 (en) Low-temperature sintered ceramic composition and multilayer ceramic substrate using the same
JP4802039B2 (en) Ceramic composition and multilayer ceramic circuit device
CN102753502B (en) Ceramic sintered body and method for producing same
JP4569000B2 (en) Low-frequency sintered dielectric material for high frequency and its sintered body
JP2003226572A (en) Low dielectric constant ceramic composition and production method therefor
JP2010052970A (en) Ceramic composition, ceramic green sheet, and ceramic electronic component
JP5527053B2 (en) Dielectric porcelain, dielectric porcelain manufacturing method, and electronic component
JP4337818B2 (en) Porcelain composition
US20200031721A1 (en) Ceramic composition and electronic component using the ceramic composition
JP3909366B2 (en) Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition
JP2002173362A (en) Dielectric ceramic composition and multilayer substrate using the same
JP3909367B2 (en) Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition
JP5527052B2 (en) Dielectric porcelain, dielectric porcelain manufacturing method, and electronic component
JP4442077B2 (en) Porcelain composition for high frequency components
JP3401147B2 (en) Low temperature firing porcelain composition
JP3420437B2 (en) Low temperature firing porcelain composition
JP4534413B2 (en) Method for producing low dielectric constant porcelain composition for high frequency component
JP2008037675A (en) Low temperature-sinterable ceramic composition, ceramic substrate, method for manufacturing the same, and electronic component
JP4174668B2 (en) DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT
JPH05178659A (en) Porcelain composition for insulator
JP2005136303A (en) Manufacturing method of multilayer ceramic substrate

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040412

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050405