JP2010215478A - Dielectric ceramic composition and electronic component using the same - Google Patents

Dielectric ceramic composition and electronic component using the same Download PDF

Info

Publication number
JP2010215478A
JP2010215478A JP2009067004A JP2009067004A JP2010215478A JP 2010215478 A JP2010215478 A JP 2010215478A JP 2009067004 A JP2009067004 A JP 2009067004A JP 2009067004 A JP2009067004 A JP 2009067004A JP 2010215478 A JP2010215478 A JP 2010215478A
Authority
JP
Japan
Prior art keywords
ceramic composition
dielectric ceramic
electronic component
dielectric
cazro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009067004A
Other languages
Japanese (ja)
Inventor
Toshiyuki Suzuki
利幸 鈴木
Taiji Miyauchi
泰治 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2009067004A priority Critical patent/JP2010215478A/en
Publication of JP2010215478A publication Critical patent/JP2010215478A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric ceramic composition capable of low-temperature firing of CaZrO<SB>3</SB>having a desired dielectric constant of 20-30 in maintaining the low-loss property. <P>SOLUTION: The dielectric ceramic composition contains a component represented by the composition formula: CaZrO<SB>3</SB>of 93.8-98.6 wt.% as the main component, and Bi<SB>2</SB>O<SB>3</SB>of 1-5 wt.% and Li<SB>2</SB>O of 0.4-1.2 wt.% as accessory components to the main component. And, the electronic component contains the dielectric ceramic composition and internal wiring. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、Ag/Cu等の低融点導体材料を内部配線として使用可能な低温焼結性を有する誘電体磁器組成物およびこれを用いた電子部品に関する。   The present invention relates to a dielectric ceramic composition having a low temperature sinterability that can use a low melting point conductor material such as Ag / Cu as an internal wiring, and an electronic component using the dielectric ceramic composition.

従来より、携帯電話等の移動体通信では、数百MHz〜数GHz程度のいわゆる準マイクロ波と呼ばれる高周波帯が使用されている。そのため、移動体通信機器に用いられる共振器、フィルタ、コンデンサ等の電子部品においても高周波特性が重要視されている。   Conventionally, in mobile communication such as cellular phones, a high frequency band called a so-called quasi-microwave of about several hundred MHz to several GHz has been used. Therefore, high-frequency characteristics are regarded as important in electronic parts such as resonators, filters and capacitors used in mobile communication devices.

このような電子部品に関して、目的によっては、使用周波数における所望の誘電率が20〜30で、誘電損失の小さな誘電体磁器組成物が要望される場合がある。誘電損失の評価には、例えばQ=1/tanδと共振周波数fとの積であるQf値で示される品質係数が用いられ、誘電損失が小さくなれば品質係数Qf値は大きくなる。誘電損失は高周波部品の電力損失を意味するので、品質係数Qf値の大きな誘電体磁器組成物が求められている。   For such electronic components, depending on the purpose, a dielectric ceramic composition having a desired dielectric constant of 20 to 30 at a used frequency and a small dielectric loss may be desired. For the evaluation of the dielectric loss, for example, a quality factor indicated by a Qf value that is a product of Q = 1 / tan δ and the resonance frequency f is used, and the quality factor Qf value increases as the dielectric loss decreases. Since dielectric loss means power loss of high-frequency components, a dielectric ceramic composition having a high quality factor Qf value is required.

このように誘電率が20〜30で、誘電損失の小さな誘電体材料の一例として、組成式CaZrOで表されるセラミックスが知られている。しかしながら、CaZrOセラミックスの場合、焼結温度が1200℃以上であるため、CaZrOセラミックス基板上にAg/Cu等の電気伝導度に優れる内部電極を形成して多層に積層しても同時焼成が困難であるという問題がある。そこで、このようなAg/Cu等の低融点導体材料を内部電極に用いた多機能基板を同時焼成により得ようとする場合には、例えば900℃程度まで焼成温度を低下させる必要がある。 As an example of a dielectric material having a dielectric constant of 20 to 30 and a small dielectric loss, ceramics represented by the composition formula CaZrO 3 is known. However, in the case of CaZrO 3 ceramics, since the sintering temperature is 1200 ° C. or higher, simultaneous firing is possible even when an internal electrode having excellent electrical conductivity such as Ag / Cu is formed on a CaZrO 3 ceramic substrate and laminated in multiple layers. There is a problem that it is difficult. Therefore, when a multifunctional substrate using such a low melting point conductor material such as Ag / Cu for the internal electrode is to be obtained by simultaneous firing, it is necessary to lower the firing temperature to about 900 ° C., for example.

特許文献1には、CaZrOセラミックスを主成分の一部として含み、LiO−B−SiO−CaO−Al系ガラスフリットを副成分として含有させることで、低温焼成化させた技術が開示されている。 Patent Document 1 includes CaZrO 3 ceramics as a main component and includes Li 2 O—B 2 O 3 —SiO 2 —CaO—Al 2 O 3 -based glass frit as a minor component, thereby firing at low temperature. A technique that has been developed is disclosed.

特開2005−213138号公報Japanese Patent Laying-Open No. 2005-213138

しかしながら、特許文献1に示されるセラミックス組成物の場合、低温焼成化のための副成分の添加により品質係数Qf値が低下しているものであり、さらなる低損失の維持が要望されている。   However, in the case of the ceramic composition shown in Patent Document 1, the quality factor Qf value is reduced by the addition of subcomponents for low-temperature firing, and maintenance of further low loss is desired.

本発明は、上記に鑑みてなされたものであって、所望の誘電率20〜30を有するCaZrOの低損失特性を維持しつつ低温焼成化が可能な誘電体磁器組成物およびこれを用いた電子部品を提供することを目的とする。 The present invention has been made in view of the above, and uses a dielectric ceramic composition capable of low-temperature firing while maintaining the low loss characteristics of CaZrO 3 having a desired dielectric constant of 20 to 30 and the same. The purpose is to provide electronic components.

上述した課題を解決し、目的を達成するために、本発明にかかる誘電体磁器組成物は、主成分として、組成式CaZrOで表される成分を93.8〜98.6重量%含み、前記主成分に対する副成分として、Biを1〜5重量%、LiOを0.4〜1.2重量%の範囲で含むことを特徴とする。 In order to solve the above-described problems and achieve the object, the dielectric ceramic composition according to the present invention contains 93.8 to 98.6% by weight of a component represented by the composition formula CaZrO 3 as a main component, As subcomponents with respect to the main component, Bi 2 O 3 is contained in an amount of 1 to 5% by weight and Li 2 O is contained in an amount of 0.4 to 1.2% by weight.

また、本発明にかかる電子部品は、上記誘電体磁器組成物と内部配線とを含むことを特徴とする。   An electronic component according to the present invention includes the dielectric ceramic composition and an internal wiring.

本発明によれば、所望の誘電率20〜30を有するCaZrOの低損失特性を維持しつつ低温焼成化が可能な誘電体磁器組成物およびこれを用いた電子部品を提供することができる。 According to the present invention, it is possible to provide a dielectric ceramic composition capable of being fired at a low temperature while maintaining the low loss characteristics of CaZrO 3 having a desired dielectric constant of 20 to 30, and an electronic component using the same.

図1は、本実施の形態の電子部品の一例としてバンドパスフィルタの構成例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing a configuration example of a bandpass filter as an example of an electronic component of the present embodiment. 図2は、副成分の添加量を変化させた場合の品質係数Qf値の大小を模式的に示す説明図である。FIG. 2 is an explanatory diagram schematically showing the magnitude of the quality factor Qf value when the addition amount of the subcomponent is changed.

以下、本発明を実施するための形態について説明する。   Hereinafter, modes for carrying out the present invention will be described.

本実施の形態の誘電体磁器組成物は、主成分として、組成式CaZrOで表される成分を93.8〜98.6重量%含んでいる。また、本実施の形態の誘電体磁器組成物は、このような主成分に対する副成分として、Biを1〜5重量%、LiOを0.4〜1.2重量%の範囲で含んでいる。 The dielectric ceramic composition of the present embodiment, as a main component, contains a component represented by the composition formula CaZrO 3 93.8 to 98.6 wt%. Moreover, the dielectric ceramic composition of the present embodiment has Bi 2 O 3 in the range of 1 to 5% by weight and Li 2 O in the range of 0.4 to 1.2% by weight as subcomponents for such a main component. Including.

まず、主成分として組成式CaZrOで表される成分を含むのは、CaZrOセラミックスが、目的とする誘電率εr=20〜30を有し、かつ、低損失材料として高い品質係数Qf値を有するためである。このような主成分は、誘電体磁器組成物において、副成分の含有量に応じて、93.8〜98.6重量%含まれていればよい。 First, the component represented by the composition formula CaZrO 3 is included as a main component because the CaZrO 3 ceramics has a target dielectric constant εr = 20 to 30 and a high quality factor Qf value as a low-loss material. It is for having. Such a main component may be contained in the dielectric ceramic composition in an amount of 93.8 to 98.6% by weight depending on the content of subcomponents.

また、副成分として酸化ビスマスBiと酸化リチウムLiOとを含むのは、主成分であるCaZrOセラミックスの粉末に、焼成時に液相を形成する焼結助剤として少量添加させることで、Ag/Cu等の低融点導体材料との同時焼成を可能にする低温焼成化のためである。すなわち、酸化ビスマスBiと酸化リチウムLiOが共融混合物を生成し、酸化ビスマスBiの融点が低下することで低い温度域で液相を形成する。この低融点液相形成材と濡れ性の良好な主成分中の酸化カルシウムCaOおよびジルコニアZrOを均一に混合させることで、低温域において酸化カルシウムCaOおよびジルコニアZrOとの粒界拡散を促進させ強固なネックを形成させる。これにより、CaZrOセラミックス単体の場合よりも低い温度で焼結体を形成することが可能となる。 In addition, bismuth oxide Bi 2 O 3 and lithium oxide Li 2 O as subcomponents are added to CaZrO 3 ceramics powder, which is the main component, as a sintering aid for forming a liquid phase during firing. This is for low-temperature firing that enables simultaneous firing with a low melting point conductor material such as Ag / Cu. That is, bismuth oxide Bi 2 O 3 and lithium oxide Li 2 O form a eutectic mixture, and a liquid phase is formed in a low temperature range by lowering the melting point of bismuth oxide Bi 2 O 3 . By uniformly mixing this low melting point liquid phase forming material and calcium oxide CaO and zirconia ZrO 2 in the main component having good wettability, diffusion of grain boundaries between calcium oxide CaO and zirconia ZrO 2 is promoted in a low temperature range. Form a strong neck. Thereby, it becomes possible to form a sintered compact at a temperature lower than the case of CaZrO 3 ceramics alone.

ここで、本発明の目的は、Ag/Cu等の低融点導体材料を内部配線とする電子部品に用いられる低温焼結可能な誘電体磁器組成物を提供することにあり、品質係数Qf値の特性低下は電子部品の損失が大きくなることを意味するので、目標値以上、例えばQf値=15000GHz以上を維持しながら、低温焼結化を図るものである。このような観点から、酸化ビスマスBi、酸化リチウムLiOの含有量が、それぞれBiが1〜5重量%、LiOを0.4〜1.2重量%に設定される。 An object of the present invention is to provide a dielectric ceramic composition that can be sintered at a low temperature and used for an electronic component having a low melting point conductor material such as Ag / Cu as an internal wiring. The characteristic deterioration means that the loss of the electronic component becomes large. Therefore, low temperature sintering is achieved while maintaining the target value or more, for example, Qf value = 15000 GHz or more. From this point of view, the contents of bismuth oxide Bi 2 O 3 and lithium oxide Li 2 O are set to 1 to 5% by weight of Bi 2 O 3 and 0.4 to 1.2% by weight of Li 2 O, respectively. Is done.

まず、酸化ビスマスBi、酸化リチウムLiOは、ともに少量のほうが主成分の特性(Qf値)を活かすのに有効となるが、少量になり過ぎると、Ag/Cu等の導体材料との同時焼成が可能な温度までの低温焼成化が難しくなるため、酸化ビスマスBiは1重量%、LiOは0.4重量%以上とした。また、逆に、酸化ビスマスBi、酸化リチウムLiOは、ともに含有量を増加させる程、低温焼成化は容易となるものの、主成分の特性(Qf値)が低下してしまう。酸化ビスマスBiの場合には、5重量%を超えると、Qf値が目標値よりも低下してしまうので、含有量を5重量%以下とした。酸化リチウムLiOの場合には、1.2重量%を超えると、Qf値が目標値よりも低下してしまう上に、焼結の程度を示す密度も低下してしまうので、含有量を1.2重量%以下とした。 First, bismuth oxide Bi 2 O 3, lithium oxide Li 2 O is both a small amount of more is effective to utilize the characteristics of the main component (Qf value) when too small amount, the conductive material such as Ag / Cu Therefore, bismuth oxide Bi 2 O 3 was 1 wt% and Li 2 O was 0.4 wt% or more. Conversely, as the content of both bismuth oxide Bi 2 O 3 and lithium oxide Li 2 O is increased, the low-temperature firing is facilitated, but the characteristics (Qf value) of the main component are lowered. In the case of bismuth oxide Bi 2 O 3 , if it exceeds 5% by weight, the Qf value will be lower than the target value, so the content was made 5% by weight or less. In the case of lithium oxide Li 2 O, if it exceeds 1.2% by weight, the Qf value will be lower than the target value, and the density indicating the degree of sintering will also be reduced. 1.2 wt% or less.

なお、添加する副成分が酸化ビスマスBiのみの場合は、焼成温度を目標温度まで低温化できなかったり、誘電率が目標値から外れてしまうので、不適である。同様に、添加する副成分が酸化リチウムLiOのみの場合は、Qf値が目標値よりも大幅に低下してしまうので、不適である。 In addition, when the subcomponent added is only bismuth oxide Bi 2 O 3 , the firing temperature cannot be lowered to the target temperature, or the dielectric constant deviates from the target value, which is not suitable. Similarly, when the subcomponent to be added is only lithium oxide Li 2 O, the Qf value is significantly lower than the target value, which is not suitable.

次に、本実施の形態の誘電体磁器組成物およびこれを用いた電子部品の製造法について説明する。   Next, a dielectric ceramic composition of the present embodiment and a method for manufacturing an electronic component using the same will be described.

(1)原材料準備
まず、主成分として、酸化カルシムCaO及びジルコニアZrOの粉末を所定量用意するとともに、主成分に対して添加する副成分として酸化ビスマスBiおよび酸化リチウムLiOを所定量ずつ用意する。
(1) Preparation of raw materials First, a predetermined amount of powders of calcium oxide CaO and zirconia ZrO 2 are prepared as main components, and bismuth oxide Bi 2 O 3 and lithium oxide Li 2 O are added as auxiliary components to the main components. Prepare a predetermined amount.

(2)混合
上記の粉末を混合して原料混合粉末とする。混合は、乾式混合、湿式混合等の混合方式、例えば、ボールミルで純水、エタノール等の溶媒を用いた混合方式により行うことができる。混合時間は4〜24時間程度とすればよい。混合が完了した後、原料混合粉末を60℃〜200℃、好ましくは90℃〜110℃で2〜36時間程度乾燥させる。
(2) Mixing The above powder is mixed to obtain a raw material mixed powder. Mixing can be performed by a mixing method such as dry mixing or wet mixing, for example, a mixing method using a solvent such as pure water or ethanol in a ball mill. The mixing time may be about 4 to 24 hours. After mixing is completed, the raw material mixed powder is dried at 60 ° C. to 200 ° C., preferably 90 ° C. to 110 ° C. for about 2 to 36 hours.

(3)仮焼
原料混合粉末を焼成温度以下の温度、例えば、700℃〜800℃にて1〜10時間程度で仮焼を行う。
(3) Calcination The raw material mixed powder is calcined at a temperature equal to or lower than the calcination temperature, for example, 700 ° C. to 800 ° C. for about 1 to 10 hours.

(4)粉砕
その後、仮焼をした原料混合粉末を粉砕して乾燥する。粉砕は、乾式粉砕、湿式粉砕等の粉砕方式、例えば、ボールミルで純水、エタノール等の溶媒を用いた粉砕方式により行うことができる。粉砕時間は4〜36時間程度とすればよい。粉砕した粉末の乾燥は60℃〜200℃、好ましくは90℃〜110℃で2〜36時間程度とすればよい。
(4) Pulverization Thereafter, the calcined raw material mixed powder is pulverized and dried. The pulverization can be performed by a pulverization method such as dry pulverization or wet pulverization, for example, a pulverization method using a ball mill with a solvent such as pure water or ethanol. The pulverization time may be about 4 to 36 hours. The pulverized powder may be dried at 60 to 200 ° C., preferably 90 to 110 ° C. for about 2 to 36 hours.

(4)成型
得られた粉末に対して、必要に応じて有機ビヒクルを添加して、ペーストを調製し、ポリエチレンテレフタレート等の基材フィルム上に該ペーストを塗布する。塗布後、乾燥により有機溶剤を除去してグリーンシートを形成する。なお、有機ビヒクルとは、バインダを有機溶剤中に溶解したものである。溶媒としては、テルピネオール、ブチルカルビトール、アセトン、トルエン、イソプロピルアルコール等を、バインダとしては、エチルセルロース、ポリビニルブチラール等を用いることができる。また、有機ビヒクルは、ジ−n−ブチルフタレート等の可塑剤等を含んでいてもよい。なお、成型はシート法に限られない。印刷法等の湿式成型の他、プレス成型等の乾式成型でもよく、所望の形状に応じて成型方法を適宜選択することが可能である。
(4) Molding An organic vehicle is added to the obtained powder as necessary to prepare a paste, and the paste is applied on a base film such as polyethylene terephthalate. After coating, the organic solvent is removed by drying to form a green sheet. The organic vehicle is obtained by dissolving a binder in an organic solvent. As the solvent, terpineol, butyl carbitol, acetone, toluene, isopropyl alcohol or the like can be used, and as the binder, ethyl cellulose, polyvinyl butyral or the like can be used. The organic vehicle may contain a plasticizer such as di-n-butyl phthalate. Molding is not limited to the sheet method. In addition to wet molding such as a printing method, dry molding such as press molding may be used, and a molding method can be appropriately selected according to a desired shape.

(5)電極形成・積層
形成したグリーンシート上に、所定形状の内部電極が形成されるようにAg(または、Cu)を含有する導電性ペーストを内部配線として塗布する。このように、導電性ペーストが塗布されたグリーンシートを必要に応じて複数作製し、積層して積層体を得る。また、この積層体には、所定形状の端子が形成されるように導電性ペーストを塗布する。その後、乾燥により導電性ペーストから有機溶剤を除去する。
(5) Electrode Formation / Lamination On the formed green sheet, a conductive paste containing Ag (or Cu) is applied as internal wiring so that an internal electrode having a predetermined shape is formed. As described above, a plurality of green sheets coated with the conductive paste are produced as necessary and laminated to obtain a laminate. In addition, a conductive paste is applied to the laminated body so that terminals having a predetermined shape are formed. Thereafter, the organic solvent is removed from the conductive paste by drying.

(6)焼成
上述の誘電体磁器組成物の製造方法における焼成工程及びアニール工程と同様の工程を行う焼成は、例えば、空気中のような酸素雰囲気の他、還元雰囲気にて行うことが望ましい。また、焼成温度は内部電極として用いるAgまたはAgを主成分とする合金やCuまたはCuを主成分とする合金等の導体材料の融点以下、例えば860℃〜1100℃、好ましくは880℃〜960℃であることが求められる。本実施の形態では、例えば933℃に設定している。
(6) Firing Firing that performs the same steps as the firing step and the annealing step in the above-described method for producing a dielectric ceramic composition is desirably performed in a reducing atmosphere in addition to an oxygen atmosphere such as air. The firing temperature is equal to or lower than the melting point of a conductor material such as Ag or an alloy containing Ag as a main component or an alloy containing Cu or Cu as a main component, for example, 860 ° C. to 1100 ° C., preferably 880 ° C. to 960 ° C. It is required to be. In the present embodiment, for example, it is set to 933 ° C.

(7)切断
冷却後、切断により個品化することで、誘電体磁器組成物と内部配線とが同時焼成された電子部品が完成する。
(7) Cutting After cooling, an individual component is obtained by cutting to complete an electronic component in which the dielectric ceramic composition and the internal wiring are simultaneously fired.

図1は、このような製造方法に従い製造された電子部品の一例として、携帯電話等における高周波通信用のバンドパスフィルタの構成例を示す概略断面図である。すなわち、上述の誘電体磁器組成物からなる誘電体グリーンシートを作成し、必要に応じてスルーホール加工を形成し、Agペーストをスクリーン印刷法で形成・乾燥させたグリーンシートを積層後、焼成・切断加工を経て個品化したものである。図1中に示すバンドパスフィルタ1において、2は、誘電体磁器組成物(積層セラミックス)からなる誘電体部分であり、L1は、インダクタを構成するAg導体によるコイルパターン部分であり、C1〜C3は、Ag導体により形成されるキャパシタパターン部分であり、3は、L1とC1とを導通させるAg導体が充填されたビアホール部分であり、LC共振回路が形成されている。   FIG. 1 is a schematic cross-sectional view showing a configuration example of a band-pass filter for high-frequency communication in a mobile phone or the like as an example of an electronic component manufactured according to such a manufacturing method. That is, a dielectric green sheet made of the above-described dielectric ceramic composition is prepared, through-hole processing is formed as necessary, and a green sheet obtained by forming and drying an Ag paste by a screen printing method is laminated, fired, It is a product that has been cut into individual pieces. In the band-pass filter 1 shown in FIG. 1, reference numeral 2 denotes a dielectric portion made of a dielectric ceramic composition (laminated ceramic), L1 denotes a coil pattern portion made of an Ag conductor constituting the inductor, and C1 to C3 Is a capacitor pattern portion formed of an Ag conductor, and 3 is a via hole portion filled with an Ag conductor for conducting L1 and C1, and an LC resonance circuit is formed.

なお、誘電体磁器組成物を用いた電子部品としては、図1に例示したような誘電体磁器組成物と配線パターンのみからなるものであってもよく、さらには外部に素子が個別に実装されたものであってもよい。   The electronic component using the dielectric ceramic composition may be composed only of the dielectric ceramic composition and the wiring pattern as illustrated in FIG. 1, and further, elements are individually mounted outside. It may be.

さらには、誘電体磁器組成物自身をセラミック基板として用いる電子部品であってもよい。特に、誘電体磁器組成物中の主成分であるCaZrOセラミックスは、線熱膨張係数αがα=8.9ppm/K程度であるので、例えば、誘電体磁器組成物をセラミック基板として半導体部品とPC基板との間に物理的に配することにより熱応力を緩和させることができる。すなわち、半導体部品(例えば、Siチップ部品)をPC基板上に直接搭載させた場合、Siチップ部品、PC基板それぞれの線熱膨張係数が2.4ppm/K,15ppm/K程度であり、両者間の線熱膨張の違いから応力が生じ、Siチップ部品の破損などを生じ得るが、両者の中間の線熱膨張係数を有する本発明の誘電体磁器組成物をセラミック基板として介在させることで、熱応力を緩和させ、Siチップ部品の破損を防止することができる。 Furthermore, an electronic component using the dielectric ceramic composition itself as a ceramic substrate may be used. In particular, CaZrO 3 ceramics, which is the main component in the dielectric ceramic composition, has a linear thermal expansion coefficient α of about α = 8.9 ppm / K. Thermal stress can be relieved by physically disposing it between the PC board. That is, when a semiconductor component (for example, Si chip component) is directly mounted on a PC board, the linear thermal expansion coefficients of the Si chip part and the PC board are about 2.4 ppm / K and 15 ppm / K, respectively. Stress may occur due to the difference in linear thermal expansion between the two, and damage to the Si chip component may occur. However, by interposing the dielectric ceramic composition of the present invention having a linear thermal expansion coefficient between the two as a ceramic substrate, Stress can be relieved and Si chip parts can be prevented from being damaged.

以下、上記の実施の形態に即した、本発明の誘電体磁器組成物の実施例について説明する。本実施例では、副成分である酸化ビスマスBi、酸化リチウムLiOの添加量(重量%)を変えた場合に形成される誘電体磁器組成物の特性値を求め、その良否を判定したものである。結果を表1に示す。なお、この結果は、焼成温度を933℃(炉の設定温度)とし、焼成時間を2時間とした場合の特性値を示している。品質係数Qfの良否判定は、15000GHz未満を△、15000GHz以上を○、20000GHz以上を◎として評価した。なお、Qfの評価は5GHzでの測定値である。また、933℃の低温焼成による焼結の程度を示す密度ρの良否判定は、基板の相対密度から判定した。 Hereinafter, examples of the dielectric ceramic composition of the present invention according to the above embodiment will be described. In this embodiment, bismuth oxide Bi 2 O 3 is a subcomponent to obtain the characteristic values of the dielectric ceramic composition is formed when changing the addition amount of lithium oxide Li 2 O (% by weight), the quality It is determined. The results are shown in Table 1. This result shows the characteristic value when the firing temperature is 933 ° C. (furnace set temperature) and the firing time is 2 hours. The quality of the quality factor Qf was evaluated as Δ for less than 15000 GHz, ◯ for 15000 GHz or more, and ◎ for 20000 GHz or more. In addition, evaluation of Qf is a measured value in 5 GHz. Moreover, the quality determination of the density ρ indicating the degree of sintering by low-temperature firing at 933 ° C. was determined from the relative density of the substrate.

Figure 2010215478
Figure 2010215478

また、副成分の添加量を変化させた場合の品質係数Qf値の大小の様子を図2に示す。図2では、黒丸の大きさ(面積)の大小が品質係数Qf値の大小をイメージ的に表している。   Further, FIG. 2 shows how the quality factor Qf value is large or small when the addition amount of the subcomponent is changed. In FIG. 2, the size (area) of the black circle represents the image quality of the quality factor Qf value.

このような結果に基づく主要な評価対象は品質係数Qf値とし、密度ρの評価は補助的とした。本実施例によれば、いずれの場合も誘電率εrは、目標とする20〜30の範囲内にある。また、酸化ビスマスBiの添加量としては、5重量%を超えると、品質係数Qfが低下してしまうので、1〜5重量%の範囲内がよいことが分かる。また、酸化リチウムLiOの添加量としては、1.2重量%を超えると、品質係数Qfが低下するとともに密度ρも低下してしまうので、0.4〜1.2重量%の範囲内がよいことが分かる。特に、品質係数Qf値に注目して評価すると、図2に示す品質係数Qf値の大小のイメージ図からも分かるように、Biを1〜2.5重量%、LiOを0.4〜1.0重量%とするのが、より好適といえる。 The main evaluation object based on such a result was the quality factor Qf value, and the evaluation of the density ρ was auxiliary. According to the present embodiment, in any case, the dielectric constant εr is in the target range of 20-30. Further, when the addition amount of bismuth oxide Bi 2 O 3 exceeds 5% by weight, the quality factor Qf is lowered, so that it is found that the range of 1 to 5% by weight is good. Further, when the amount of lithium oxide Li 2 O added exceeds 1.2% by weight, the quality factor Qf and the density ρ also decrease, so that the amount is within the range of 0.4 to 1.2% by weight. It turns out that is good. In particular, if the quality factor Qf value is evaluated and evaluated, Bi 2 O 3 is 1 to 2.5% by weight and Li 2 O is 0.1% as can be seen from the image of the quality factor Qf value shown in FIG. It can be said that it is more preferable to set it as 4 to 1.0 weight%.

2 誘電体磁器組成物   2 Dielectric porcelain composition

Claims (2)

主成分として、組成式CaZrOで表される成分を93.8〜98.6重量%含み、
前記主成分に対する副成分として、Biを1〜5重量%、LiOを0.4〜1.2重量%の範囲で含むことを特徴とする誘電体磁器組成物。
As a main component, containing 93.8 to 98.6% by weight of a component represented by the composition formula CaZrO 3 ,
As subcomponents with respect to the main component, Bi 2 O 3 1 to 5 wt%, the dielectric ceramic composition characterized by containing Li 2 O in the range of 0.4 to 1.2 wt%.
請求項1に記載の誘電体磁器組成物と内部配線とを含むことを特徴とする電子部品。   An electronic component comprising the dielectric ceramic composition according to claim 1 and an internal wiring.
JP2009067004A 2009-03-18 2009-03-18 Dielectric ceramic composition and electronic component using the same Pending JP2010215478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009067004A JP2010215478A (en) 2009-03-18 2009-03-18 Dielectric ceramic composition and electronic component using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009067004A JP2010215478A (en) 2009-03-18 2009-03-18 Dielectric ceramic composition and electronic component using the same

Publications (1)

Publication Number Publication Date
JP2010215478A true JP2010215478A (en) 2010-09-30

Family

ID=42974735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009067004A Pending JP2010215478A (en) 2009-03-18 2009-03-18 Dielectric ceramic composition and electronic component using the same

Country Status (1)

Country Link
JP (1) JP2010215478A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114243B2 (en) 2018-04-27 2021-09-07 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321630A (en) * 1994-03-25 1994-11-22 Sakai Chem Ind Co Ltd Composition for ceramic dielectric
JPH11116329A (en) * 1997-10-15 1999-04-27 Hitachi Metals Ltd Production of microwave dielectric laminated component
JP2000239062A (en) * 1999-02-17 2000-09-05 Kyocera Corp Dielectric porcelain composition
JP2002193663A (en) * 2000-12-22 2002-07-10 Ricoh Co Ltd Sintered body of crystal-oriented perovskite compound, its manufacturing method, compact of ceramic powder used for the compound and plate-like crystal-oriented perovskite compound
JP2003226572A (en) * 2002-02-05 2003-08-12 Sumitomo Metal Electronics Devices Inc Low dielectric constant ceramic composition and production method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321630A (en) * 1994-03-25 1994-11-22 Sakai Chem Ind Co Ltd Composition for ceramic dielectric
JPH11116329A (en) * 1997-10-15 1999-04-27 Hitachi Metals Ltd Production of microwave dielectric laminated component
JP2000239062A (en) * 1999-02-17 2000-09-05 Kyocera Corp Dielectric porcelain composition
JP2002193663A (en) * 2000-12-22 2002-07-10 Ricoh Co Ltd Sintered body of crystal-oriented perovskite compound, its manufacturing method, compact of ceramic powder used for the compound and plate-like crystal-oriented perovskite compound
JP2003226572A (en) * 2002-02-05 2003-08-12 Sumitomo Metal Electronics Devices Inc Low dielectric constant ceramic composition and production method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114243B2 (en) 2018-04-27 2021-09-07 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor and method for producing the same

Similar Documents

Publication Publication Date Title
JP5742373B2 (en) Dielectric porcelain, dielectric porcelain manufacturing method, and dielectric porcelain manufacturing powder manufacturing method
US10071932B2 (en) Glass ceramic sintered compact and wiring board
WO1997002221A1 (en) Dielectric porcelain, process for production thereof, and electronic parts produced therefrom
JP6728859B2 (en) Ceramic substrate and manufacturing method thereof
JP2011151089A (en) Laminated ceramic electronic component, and method of manufacturing the same
JP2007250728A (en) Ceramic laminated device and its fabrication process
JP5315544B2 (en) Dielectric porcelain composition and electronic component using the same
JP5527053B2 (en) Dielectric porcelain, dielectric porcelain manufacturing method, and electronic component
JP2010215478A (en) Dielectric ceramic composition and electronic component using the same
JP2012051750A (en) Method for manufacturing dielectric ceramic composition and laminated ceramic electronic component
JP2007031177A (en) Laminated ceramic component and method for production thereof
KR100444225B1 (en) Dielectric ceramic composition, ceramic capacitor using the same and process of producing thereof
KR100444221B1 (en) Dielectric ceramic composition, ceramic capacitor using the same and process of producing thereof
JP2010215477A (en) Dielectric ceramic composition and electronic component using the same
JP3813917B2 (en) Dielectric porcelain composition and electronic component using the same
JP2005335986A (en) Ceramic raw material composition, ceramic substrate and its manufacturing method
JP2006056762A (en) Ceramic raw material composition, ceramic substrate and its manufacturing method
KR100632393B1 (en) High-permittivity dielectric ceramic compositions for low-fire ceramic multilayer packages
JP5527052B2 (en) Dielectric porcelain, dielectric porcelain manufacturing method, and electronic component
JP3978689B2 (en) Low-temperature fired porcelain composition and microwave component using the same
JP2010235325A (en) Dielectric ceramic composition
JP4253652B2 (en) DIELECTRIC CERAMIC COMPOSITION, ELECTRONIC COMPONENT PRODUCED BY USING SAME, AND METHOD FOR PRODUCING MULTILAYER CERAMIC CAPACITOR
JP2006169006A (en) Electronic component, dielectric ceramic composition and method of manufacturing the same
CN103553606B (en) Microwave ceramic material, multilayer ceramic capacitor and prepare the method for this capacitor
JP2008254950A (en) Dielectric ceramic composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130806