JP2003201121A - Method for manufacturing laminated manganese oxide nanocomplex - Google Patents

Method for manufacturing laminated manganese oxide nanocomplex

Info

Publication number
JP2003201121A
JP2003201121A JP2001398510A JP2001398510A JP2003201121A JP 2003201121 A JP2003201121 A JP 2003201121A JP 2001398510 A JP2001398510 A JP 2001398510A JP 2001398510 A JP2001398510 A JP 2001398510A JP 2003201121 A JP2003201121 A JP 2003201121A
Authority
JP
Japan
Prior art keywords
manganese oxide
layered
layered manganese
nanocomposite
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001398510A
Other languages
Japanese (ja)
Other versions
JP3911559B2 (en
Inventor
Sokai Ryu
宗懐 劉
Giyoushiyo Yo
暁晶 楊
Kenta Oi
健太 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001398510A priority Critical patent/JP3911559B2/en
Publication of JP2003201121A publication Critical patent/JP2003201121A/en
Application granted granted Critical
Publication of JP3911559B2 publication Critical patent/JP3911559B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/08Intercalated structures, i.e. with atoms or molecules intercalated in their structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • C01P2002/22Two-dimensional structures layered hydroxide-type, e.g. of the hydrotalcite-type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for intercalating an optional compound between laminated manganese oxide layers without necessitating complicated operation. <P>SOLUTION: A nanosheet is formed by swelling or exfoliating the laminated manganese oxide in water and then a nanoparticle forming material is blended therewith. By rearranging the mixture, nanoparticle is intercalated between the laminated manganese oxide layers. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、層状マンガン酸化
物を膨潤又は剥離させたナノシートが、水中で再配列す
る性質を利用して、その層間に各種のナノ粒子をインタ
ーカレートさせ、層状マンガン酸化物系ナノ複合体を製
造する方法に関するものである。
TECHNICAL FIELD [0001] The present invention utilizes a property that a nanosheet obtained by swelling or exfoliating a layered manganese oxide rearranges in water to intercalate various nanoparticles between layers to form a layered manganese. The present invention relates to a method for producing an oxide-based nanocomposite.

【0002】[0002]

【従来の技術】層状化合物について、その層間隔を拡大
又は縮小させることにより、ゲスト分子をインターカレ
ーションすることはよく知られている。この際のインタ
ーカレーションの内容は、ゲスト分子の種類と、ホスト
化合物の構造に依存する。そして、溶媒のインターカレ
ーションを含む層間隔の拡大は膨潤と稱され、水分子を
含む膨潤の場合、ショートレンジの膨潤と、ロングレン
ジの膨潤の2種類の膨潤が存在する。このショートレン
ジの膨潤は層間に水和物層が形成されるもので粘土物質
その他多数の層状化合物で観察されており、これは水の
分子層の数の増加により段階的に層間隔が拡大するもの
である。また、ロングレンジの膨潤は、拡散二重層の形
成を伴うもので、浸透的な斥力に対し、静電的な誘引力
の変化をもたらす。
BACKGROUND OF THE INVENTION It is well known to intercalate guest molecules in layered compounds by increasing or reducing the layer spacing. The content of the intercalation at this time depends on the type of guest molecule and the structure of the host compound. Then, the expansion of the layer interval including the intercalation of the solvent is swelled and swelled, and in the case of the swelling including water molecules, there are two types of swelling, that is, the short range swelling and the long range swelling. This swelling in the short range is due to the formation of a hydrate layer between the layers and has been observed in clay substances and many other layered compounds. This is due to the increase in the number of molecular layers of water, and the layer spacing gradually expands. It is a thing. In addition, long-range swelling is accompanied by the formation of a diffusion double layer, which causes an electrostatic attraction change with respect to an osmotic repulsive force.

【0003】他方、これらの膨潤のほかに、モンモリロ
ナイトやスメクタイトのようなある種の粘土物質におい
て、層状酸化物が剥離してホスト化合物のシートを生じ
ることが知られている。そして、この剥離は、数種の層
状酸化物について、インターカレーションによって人工
的に行うことができる。このようにして、剥離されたコ
ロイド状のナノシートは、特異な光学特性や量子効果を
示すので、非常に注目されている。
On the other hand, in addition to these swellings, it is known that in some clay substances such as montmorillonite and smectite, the layered oxides exfoliate to form a sheet of host compound. And this exfoliation can be artificially performed by intercalation about several kinds of layered oxides. In this way, the exfoliated colloidal nanosheets show remarkable optical properties and quantum effects, and thus have received much attention.

【0004】そして、層状マンガン酸化物のインターカ
レーションについても、これまで層状マンガン酸化物に
アルキルアンモニウムイオンをインターカレートして層
間隔を拡大する方法[「インオーガニック・ケミストリ
ー(Inorg.Chem.)」,第31巻,第116
5ページ(1992年)]、ケギン(Keggin)イ
オンすなわち[Al134(OH)24(H2O)127+
ピラー前駆体として用いて層間隔を拡大したのち、有機
モノマーをインターカレートし、さらに重合させる方法
(同上)、ナトリウムバーネサイトにドデシルトリメチ
ルアンモニウムイオン又はテトラブチルアンモニウムイ
オンをインターカレートして、層間隔2.41nm又は
1.28nmの層状マンガン酸化物を得る方法[「ケミ
カル・コミュニケーション(Chem.Commu
n.)」,1997,第1031ページ]、層状バーネ
サイト型マンガン酸化物をテトラアルキルアンモニウム
ヒドロキシド水溶液中で処理して、テトラアルキルアン
モニウムイオンをインターカレートする方法[「ラング
ミュア(Langmuir)」,第16巻,第9号(2
000),第4154ページ]などが提案されている。
Regarding intercalation of layered manganese oxide, a method of intercalating an alkylammonium ion into layered manganese oxide to expand the layer spacing has been known ["Inorganic Chemistry (Inorg. Chem.)"]. , Vol. 31, Vol. 116
5 (1992)], using Keggin ions, that is, [Al 13 O 4 (OH) 24 (H 2 O) 12 ] 7+ as pillar precursors to increase the layer spacing, and then intercalate the organic monomer. A method of calating and further polymerizing (the same as above), a method of intercalating dodecyltrimethylammonium ion or tetrabutylammonium ion into sodium birnessite to obtain a layered manganese oxide having a layer spacing of 2.41 nm or 1.28 nm. ["Chemical Communication (Chem. Commu
n. ) ”, 1997, p. 1031], a method of intercalating tetraalkylammonium ions by treating a layered birnessite-type manganese oxide in an aqueous solution of tetraalkylammonium hydroxide [“ Langmuir ”, Volume 16]. , No. 9 (2
000), page 4154] and the like.

【0005】しかしながら、これらの従来のインターカ
レーション方法では、煩雑な操作を必要とする上に、層
状マンガン酸化物の層間にインターカレートできるゲス
ト化合物が限られ、大きいイオンや分子を導入すること
が困難であるという欠点があった。
However, these conventional intercalation methods require complicated operations, and the guest compounds that can be intercalated between the layers of the layered manganese oxide are limited, so that large ions or molecules must be introduced. It had the drawback of being difficult.

【0006】[0006]

【発明が解決しようとする課題】本発明は、煩雑な操作
を必要とせずに、任意の化合物を層状マンガン酸化物の
層間にインターカレートしうる方法を提供することを目
的としてなされたものである。
SUMMARY OF THE INVENTION The present invention has been made with the object of providing a method capable of intercalating any compound between the layers of layered manganese oxide without requiring a complicated operation. is there.

【0007】[0007]

【課題を解決するための手段】本発明者らは、層状マン
ガン酸化物のインターカレーションについて種々研究を
重ねた結果、層状マンガン酸化物を剥離してナノシート
を形成させ、これを再配列する際に、ゲストとなるナノ
粒子を形成する物質を共存させることにより、任意のゲ
ストを層間にインターカレートした層状マンガン酸化物
の層間化合物が得られることを見出し、この知見に基づ
いて本発明をなすに至った。
As a result of various studies on intercalation of layered manganese oxide, the present inventors have found that when the layered manganese oxide is peeled off to form a nanosheet, which is rearranged. In addition, it was found that an intercalation compound of a layered manganese oxide in which any guest is intercalated between layers can be obtained by coexisting a substance that forms nanoparticles serving as a guest, and the present invention is based on this finding. Came to.

【0008】すなわち、本発明は、層状マンガン酸化物
を水中で膨潤又は剥離させてナノシートを形成させ、次
いでこれにナノ粒子形成物質を混合し、再配列させるこ
とにより層状マンガン酸化物の層間にナノ粒子をインタ
ーカレートさせることを特徴とする層状マンガン酸化物
系ナノ複合体の製造方法を提供するものである。
That is, according to the present invention, the layered manganese oxide is swollen or exfoliated in water to form a nanosheet, and then a nanoparticle-forming substance is mixed and rearranged to form a nanosheet between the layers of the layered manganese oxide. It is intended to provide a method for producing a layered manganese oxide-based nanocomposite, characterized by intercalating particles.

【0009】本発明において、ナノシートとは層状マン
ガン酸化物を膨潤させ、又は剥離させることにより、そ
れを構成する層が個々に分れて生じるナノオーダーサイ
ズ、すなわち10-9mレベルのシートを意味し、ナノ粒
子とはナノオーダーサイズの無機又は有機の分子或いは
イオンからなる粒子を意味し、層状マンガン酸化物系ナ
ノ複合体とは、層状マンガン酸化物のナノオーダーサイ
ズの層間に、ナノオーダーサイズの粒子がインターカレ
ートされた複合体を意味する。
In the present invention, the nanosheet means a nano-order size sheet produced by swelling or exfoliation of the layered manganese oxide so that the layers constituting the nanosheet are individually separated, that is, a level of 10 -9 m. However, nanoparticles mean particles composed of inorganic or organic molecules or ions of nano-order size, and layered manganese oxide-based nanocomposite means nano-order size between layers of nano-order size of layered manganese oxide. Means a complex in which the particles of are intercalated.

【0010】[0010]

【発明の実施の形態】本発明において、マトリックスと
して用いる層状マンガン酸化物としては、層状構造を有
し、水溶液に対し溶解しないマンガン酸化物であればよ
く、特に制限はないが、安定な層状構造をとることがで
きるという点でバーネサイト、ブゼライトのような層状
マンガン酸化物が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the layered manganese oxide used as the matrix is not particularly limited as long as it has a layered structure and is insoluble in an aqueous solution. Layered manganese oxides such as vernesite and buzellite are preferable in that they can be obtained.

【0011】これらの層状マンガン酸化物に、常法に従
ってテトラメチルアンモニウムイオン、テトラエチルア
ンモニウムイオン、テトラプロピルアンモニウムイオ
ン、テトラブチルアンモニウムイオン、デシルトリメチ
ルアンモニウムイオン、ジデシルジメチルアンモニウム
イオンのようなテトラアルキルアンモニウムイオンをイ
ンターカレートし、その生成物を水洗し、乾燥すると、
層状マンガン酸化物が膨潤又は剥離したナノシートが得
られる。
These layered manganese oxides are added to tetraalkylammonium ions such as tetramethylammonium ion, tetraethylammonium ion, tetrapropylammonium ion, tetrabutylammonium ion, decyltrimethylammonium ion and didecyldimethylammonium ion according to a conventional method. Is intercalated, the product is washed with water and dried,
A nanosheet in which the layered manganese oxide is swollen or exfoliated is obtained.

【0012】次に、これにナノ粒子形成物質を加え、再
配列させれば、対応するナノ粒子がナノサイズの層間に
インターカレートした層状マンガン酸化物系ナノ複合体
を製造することができる。この際用いるナノ粒子形成物
質は、水又はアルコールを溶媒とした溶液中でナノサイ
ズの分子又はイオンを形成するものであればよく、特に
制限はないが、特に溶液中でゾルを形成する金属の水酸
化物、酸化物、ヒドロ酸化物が好ましい。このようなも
のとしては、例えば、チタン、ジルコニウム、バナジウ
ム、クロム、マンガン、鉄、コバルト、ニッケル、銅、
亜鉛、アルミニウム及びアンチモンの水酸化物、酸化
物、ヒドロ酸化物を挙げることができる。
Next, a nanoparticle-forming substance is added thereto and rearranged to produce a layered manganese oxide nanocomposite in which corresponding nanoparticles intercalate between nanosized layers. The nanoparticle-forming substance used at this time is not particularly limited as long as it can form nano-sized molecules or ions in a solution in which water or alcohol is used as a solvent. Hydroxides, oxides and hydroxides are preferred. As such, for example, titanium, zirconium, vanadium, chromium, manganese, iron, cobalt, nickel, copper,
Mention may be made of zinc, aluminum and antimony hydroxides, oxides and hydroxides.

【0013】そのほか、加熱により金属や非金属の水酸
化物、酸化物を生成しうる化合物、例えば、ケイ素、チ
タン又はジルコニウムのテトラアルコキシドや、このテ
トラアルコキシドのアルコキシル基の一部がアルキル基
又はアミノアルキル基により置換されているものも用い
ることができる。このような化合物の具体例としては、
テトラメトキシシラン、テトラエトキシシラン、テトラ
ブトキシシラン、アミノプロピルトリメトキシシラン、
テトラエトキシチタン、テトラブトキシチタン、テトラ
エトキシジルコニウムなどを挙げることができる。
In addition, a compound capable of forming a metal or non-metal hydroxide or oxide by heating, for example, a tetraalkoxide of silicon, titanium or zirconium, or a part of the alkoxyl group of this tetraalkoxide is an alkyl group or an amino group. Those substituted with an alkyl group can also be used. Specific examples of such compounds include:
Tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, aminopropyltrimethoxysilane,
Examples thereof include tetraethoxy titanium, tetrabutoxy titanium and tetraethoxy zirconium.

【0014】これらのナノ粒子形成物質を共存させて行
う層状マンガン酸化物の膨潤又は剥離されたナノシート
の再配列は、該ナノシートとナノ粒子形成物質を混合
し、室温において1〜48時間、好ましくは5〜24時
間かきまぜ又は振りまぜたのち、固形物をろ別し、乾燥
させることによって行われる。この際の乾燥温度として
は、室温ないし50℃の範囲が選ばれるが、さらに高い
温度を用いてもよい。また、層状マンガン酸化物とその
層間にインカレートされるナノ粒子の割合としては、モ
ル比で50:1ないし1:5の範囲が選ばれる。
The rearrangement of the swollen or exfoliated nanosheets of the layered manganese oxide in the presence of these nanoparticle-forming substances is carried out by mixing the nanosheets with the nanoparticle-forming substances and then at room temperature for 1 to 48 hours, preferably. After stirring or shaking for 5 to 24 hours, the solid matter is filtered off and dried. The drying temperature at this time is selected in the range of room temperature to 50 ° C., but higher temperature may be used. The ratio of the layered manganese oxide and the nanoparticles incalated between the layers is selected in the range of 50: 1 to 1: 5 in terms of molar ratio.

【0015】このようにして、層状マンガン酸化物の層
間に、例えば、チタニア、アルミナ、シリカのような無
機ナノ粒子やこれらのアミノアルキル化物をゲスト化合
物としてインターカレートした層状マンガン酸化物系ナ
ノ複合体を製造することができる。
In this way, a layered manganese oxide-based nanocomposite obtained by intercalating inorganic nanoparticles such as titania, alumina, and silica or their aminoalkylated compounds as guest compounds between the layers of the layered manganese oxide. The body can be manufactured.

【0016】このようにして得られた層状マンガン酸化
物系ナノ複合体の中で、シリカのアミノアルキル化物を
ゲスト分子としたものは、文献未載の新規化合物であ
り、これを窒素雰囲気中又は空気中で加熱処理すると、
層間にあるゲスト分子が熱分解するとともに、層状酸化
物が相変化して、安定なマンガン酸化物多孔体を与え
る。
Among the layered manganese oxide-based nanocomposites thus obtained, those having an aminoalkylated product of silica as a guest molecule are novel compounds which have not been published in the literature, and are used in a nitrogen atmosphere or When heat-treated in air,
The guest molecules between the layers are thermally decomposed and the layered oxide undergoes a phase change to give a stable manganese oxide porous body.

【0017】本発明方法により得られるシリカのアミノ
アルキル化物をインターカレートした層状マンガン酸化
物系ナノ複合体及びその加熱処理生成物は、高い伝導性
を有し、かつ安全性も高いので、リチウム二次電池材料
の正極活物質として好適である。
The layered manganese oxide nanocomposite obtained by intercalating the aminoalkylated product of silica obtained by the method of the present invention and the heat-treated product thereof have high conductivity and high safety. It is suitable as a positive electrode active material for secondary battery materials.

【0018】この場合の負極活物質としては、リチウム
イオンを吸蔵、放出しうる物質であればよく、特に制限
はない。例えば、金属リチウム、リチウム−アルミニウ
ム、リチウム−水銀、リチウム−鉛、リチウム−スズ、
ウッド合金などのリチウム合金、ポリエチレン、グラフ
ァイトなどの炭素化合物とリチウムとの複合体などを挙
げることができる。
In this case, the negative electrode active material is not particularly limited as long as it is a material capable of inserting and extracting lithium ions. For example, metallic lithium, lithium-aluminum, lithium-mercury, lithium-lead, lithium-tin,
Examples thereof include lithium alloys such as wood alloys, composites of carbon compounds such as polyethylene and graphite with lithium.

【0019】さらに電解質としては、従来からリチウム
電池に使われたものであればよく、特に制限はない。例
えば、プロピレン−カーボネート(PC),2‐メチル
テトラヒドロフラン(2MeTHF)、ジオキソラン、
テトラヒドロフラン(THF)、1,2‐ジエトキシエ
タン(DEE)、エチレンカーボネート(EC)、γ‐
ブチロラクトン、ジメチルスルホキシド、アセトニトリ
ル、ホルムアミド、ジメチルホルムアミド、ニトロメタ
ンなどの非プロトン性有機溶媒の1種あるいは2種以上
とLiClO4、LiAlClO4、LiBF4、LiC
l、LiPF4、LiAsF6、CF3SO3Liなどのリ
チウム塩の1種或いは2種以上との組合せや、リチウム
イオンを伝導体とする有機又は無機の固体電解質などを
用いることができる。
Further, the electrolyte is not particularly limited as long as it has been conventionally used in lithium batteries. For example, propylene carbonate (PC), 2-methyltetrahydrofuran (2MeTHF), dioxolane,
Tetrahydrofuran (THF), 1,2-diethoxyethane (DEE), ethylene carbonate (EC), γ-
One or more aprotic organic solvents such as butyrolactone, dimethyl sulfoxide, acetonitrile, formamide, dimethylformamide, and nitromethane, and LiClO 4 , LiAlClO 4 , LiBF 4 , and LiC.
l, LiPF 4 , LiAsF 6 , CF 3 SO 3 Li, or a combination thereof with one or more lithium salts, or an organic or inorganic solid electrolyte having a lithium ion as a conductor can be used.

【0020】[0020]

【実施例】次に実施例により本発明をさらに詳細に説明
するが、本発明はこれらの例によって何ら限定されるも
のではない。
The present invention will be described in more detail by way of examples, which should not be construed as limiting the invention thereto.

【0021】実施例1 プロトン型バーネサイトマンガン酸化物(H4Mn14
27・9H2O)1gを0.35Mテトラメチルアンモニ
ウムヒドロキシド水溶液250ml中に浸し、7日間か
きまぜることにより、バーネサイトマンガン酸化物ナノ
シート懸濁液を調製した。次いで、これからナノシート
をろ別し、乾燥した。次に、ヘキシルアルコール(C6
14OH)45mlとアミノプロピルトリメトキシシラ
ン[(CH3O)3SiC36NH2]9mlとの混合物
中に、前記のナノシート0.3gを加えて混合し、室温
で24時間振りまぜた。得られた反応混合物を遠心分離
し、固形分をエチルアルコール10mlずつで3回洗浄
したのち、室温で48時間乾燥した。このようにして得
た層状マンガン酸化物系ナノ複合体のX線回折チャート
を図1(a)に、また原料として用いたマンガン酸化物
のX線回折チャートを図1(b)に示す。これらの図よ
り層間隔0.72nmの原料が層間隔1.72nmのナ
ノ複合体に拡大していることが分る。また、このナノ複
合体の走査電子顕微鏡写真を図2に示す。これより、こ
のものが薄膜板状構造を有することが分る。さらに原子
吸光法で求めたこのもののSi/Mnのモル比は0.6
2、元素分析による全炭素、全窒素、全ケイ素の割合は
3.38:1.04:1であった。これらのデータか
ら、生成物はシリカ上にアミノプロピル基が結合した層
状マンガン酸化物ナノ複合体であると同定された。
Example 1 Proton type birnessite manganese oxide (H 4 Mn 14 O
Immersed 27 · 9H 2 O) 1g in 0.35M aqueous tetramethylammonium hydroxide solution 250 ml, by stirring for 7 days to prepare a bar Ne sites manganese oxide nanosheets suspension. The nanosheet was then filtered off and dried. Next, hexyl alcohol (C 6
H 14 OH) 45 ml and aminopropyltrimethoxysilane [(CH 3 O) 3 SiC 3 H 6 NH 2 ] 9 ml were mixed with 0.3 g of the above-mentioned nanosheet, and the mixture was shaken at room temperature for 24 hours. It was The obtained reaction mixture was centrifuged, the solid content was washed 3 times with 10 ml of ethyl alcohol each time, and then dried at room temperature for 48 hours. An X-ray diffraction chart of the layered manganese oxide-based nanocomposite thus obtained is shown in FIG. 1 (a), and an X-ray diffraction chart of the manganese oxide used as a raw material is shown in FIG. 1 (b). From these figures, it can be seen that the raw material having the layer spacing of 0.72 nm has expanded to the nanocomposite having the layer spacing of 1.72 nm. A scanning electron micrograph of this nanocomposite is shown in FIG. From this, it can be seen that this has a thin film plate-like structure. Furthermore, the Si / Mn molar ratio of this product determined by atomic absorption method is 0.6.
2. The ratio of total carbon, total nitrogen and total silicon determined by elemental analysis was 3.38: 1.04: 1. From these data, the product was identified as a layered manganese oxide nanocomposite with aminopropyl groups attached on silica.

【0022】実施例2 実施例1と同様にして調製したマンガン酸化物ナノシー
ト0.1gを、ジオクタデシルジメチルアンモニウムブ
ロミド[(C18372(CH32NBr]0.79g
を溶解したエチルアルコール50mlの中へ加え、室温
で24時間振りまぜたのち、ろ過し、固形分をエチルア
ルコール5mlずつで3回洗浄し、次いで室温で48時
間乾燥した。このようにして得た高結晶性の層状マンガ
ン酸化物ナノ複合体のX線回折チャートを図3に示す。
これより層間隔が3.29nmに拡大したことが分る。
また、赤外分析及び熱分析の結果から、このものがジオ
クタデシルジメチルアンモニウムイオンがインターカレ
ートされていることが確認された。
Example 2 0.1 g of manganese oxide nanosheet prepared in the same manner as in Example 1 was added to 0.79 g of dioctadecyldimethylammonium bromide [(C 18 H 37 ) 2 (CH 3 ) 2 NBr].
Was added to 50 ml of dissolved ethyl alcohol, and the mixture was shaken at room temperature for 24 hours, filtered, and the solid content was washed 3 times with 5 ml of ethyl alcohol each time, and then dried at room temperature for 48 hours. An X-ray diffraction chart of the thus obtained highly crystalline layered manganese oxide nanocomposite is shown in FIG.
From this, it can be seen that the layer spacing is expanded to 3.29 nm.
From the results of infrared analysis and thermal analysis, it was confirmed that dioctadecyldimethylammonium ion was intercalated in this product.

【0023】実施例3 実施例1と同様にして得たマンガン酸化物ナノシート
0.1gをヘキシルアルコール20mlに懸濁し、かき
まぜながら、この中へジオクタデシルジメチルアンモニ
ウムブロミド[(C18372(CH32NBr]0.
175gとチタン(IV)テトラブトキシド[Ti(O
494]1.15gとを加え、室温で24時間振り
まぜたのち、ろ過し、固形分をエチルアルコール5ml
ずつで3回洗浄後、室温で48時間乾燥した。このよう
にして、層間隔2.23nmのチタン酸化物をインター
カレートした層状マンガン酸化物ナノ複合体を得た。こ
のものは、400℃に加熱しても、層状構造は安定であ
った。
Example 3 0.1 g of manganese oxide nanosheets obtained in the same manner as in Example 1 was suspended in 20 ml of hexyl alcohol, and the mixture was stirred while dioctadecyldimethylammonium bromide [(C 18 H 37 ) 2 ( CH 3 ) 2 NBr] 0.
175 g and titanium (IV) tetrabutoxide [Ti (O
C 4 H 9 ) 4 ] 1.15 g was added, and the mixture was shaken at room temperature for 24 hours, filtered, and the solid content was 5 ml of ethyl alcohol.
After washing three times with each of them, it was dried at room temperature for 48 hours. Thus, a layered manganese oxide nanocomposite having titanium oxide intercalated with a layer spacing of 2.23 nm was obtained. This product had a stable layered structure even when heated to 400 ° C.

【0024】応用例 実施例2で得たシリカ−マンガン酸化物ナノ複合体70
質量部にアセチレンブラック20質量部及びテフロン
(登録商標)バインダ10質量部を加え、フィルム状に
成形したものを正極とし、リチウム金属を負極とし、か
つエチレンカーボネートとジエチレンカーボネートとの
質量比1:2の混合物中に1M濃度でLiPF6を含有
させた電解質を用いてコイン型リチウム二次電池を作製
した。このものに対し、0.2mA/cm2の電流を
4.2〜1.2Vの間で充放電したときの充放電曲線を
図4に示す。この図から分るように、容量は130mA
h/g−MnO2と高く、より安定なサイクル特性を示
す。このことより、シリカ−マンガン酸化物ナノ複合体
はシリカのインターカレーションによりバーネサイトマ
ンガン酸化物が安定され、充放電特性も安定化している
ことが分る。
Application Example Silica-manganese oxide nanocomposite 70 obtained in Example 2
20 parts by weight of acetylene black and 10 parts by weight of Teflon (registered trademark) binder were added to the parts by weight, and a film-shaped product was used as a positive electrode, lithium metal was used as a negative electrode, and the weight ratio of ethylene carbonate and diethylene carbonate was 1: 2. A coin-type lithium secondary battery was produced using the electrolyte containing LiPF 6 at a concentration of 1 M in the mixture. FIG. 4 shows a charge / discharge curve when a current of 0.2 mA / cm 2 was charged / discharged between 4.2 and 1.2 V with respect to this product. As you can see from this figure, the capacity is 130mA.
It has a high h / g-MnO 2 and shows more stable cycle characteristics. From this, it can be seen that in the silica-manganese oxide nanocomposite, the vernesite manganese oxide is stabilized by the intercalation of silica, and the charge / discharge characteristics are also stabilized.

【0025】[0025]

【発明の効果】本発明によると、これまで得ることがで
きなかった大きいイオンや分子を層状マンガン酸化物に
簡単な操作でインターカレートすることができ、これに
よって、リチウム電池の正極活物質として好適な、アミ
ノアルキル基を結合したシリカをインターカレートした
新規な層状マンガン酸化物系ナノ複合体を得ることがで
きる。
According to the present invention, it is possible to intercalate large ions and molecules, which have hitherto not been obtained, into a layered manganese oxide by a simple operation, whereby a positive electrode active material for a lithium battery can be obtained. It is possible to obtain a suitable novel layered manganese oxide-based nanocomposite in which silica having aminoalkyl groups bonded is intercalated.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明方法により得られたナノ複合体の1例
(a)とその原料(b)とのX線回折チャート。
FIG. 1 is an X-ray diffraction chart of an example (a) of a nanocomposite obtained by the method of the present invention and its raw material (b).

【図2】 本発明方法により得られたナノ複合体の1例
の走査電子顕微鏡写真図。
FIG. 2 is a scanning electron micrograph showing an example of a nanocomposite obtained by the method of the present invention.

【図3】 本発明方法により得られたナノ複合体の別例
のX線回折チャート。
FIG. 3 is an X-ray diffraction chart of another example of the nanocomposite obtained by the method of the present invention.

【図4】 本発明方法により得られたナノ複合体を正極
として用いたリチウム二次電池の充放電曲線。
FIG. 4 is a charge / discharge curve of a lithium secondary battery using the nanocomposite obtained by the method of the present invention as a positive electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大井 健太 香川県高松市林町2217番14 独立行政法人 産業技術総合研究所四国センター内 Fターム(参考) 4G048 AA02 AB01 AC06 AD04 AD06 AE05 5H029 AJ14 AK02 AL07 AL12 AM03 AM04 AM05 AM07 CJ08 CJ12 CJ13 CJ15 DJ16 DJ17 5H050 AA19 BA16 BA17 CA05 CB08 CB12 FA17 FA19 GA10 GA12 GA13 GA16    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kenta Oi             2217-14 Hayashi-cho, Takamatsu-shi, Kagawa Independent administrative agency             AIST Shikoku Center F-term (reference) 4G048 AA02 AB01 AC06 AD04 AD06                       AE05                 5H029 AJ14 AK02 AL07 AL12 AM03                       AM04 AM05 AM07 CJ08 CJ12                       CJ13 CJ15 DJ16 DJ17                 5H050 AA19 BA16 BA17 CA05 CB08                       CB12 FA17 FA19 GA10 GA12                       GA13 GA16

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 層状マンガン酸化物を水中で膨潤又は剥
離させてナノシートを形成させ、次いでこれにナノ粒子
形成物質を混合し、再配列させることにより層状マンガ
ン酸化物の層間にナノ粒子をインターカレートさせるこ
とを特徴とする層状マンガン酸化物系ナノ複合体の製造
方法。
1. Intercalation of nanoparticles between layers of layered manganese oxide by swelling or exfoliating layered manganese oxide in water to form a nanosheet, and then mixing and rearranging the nanoparticle-forming substance. A method for producing a layered manganese oxide-based nanocomposite, which comprises:
【請求項2】 ナノ粒子形成物質がチタン、ジルコニウ
ム、バナジウム、クロム、マンガン、鉄、コバルト、ニ
ッケル、銅、亜鉛、アルミニウム及びアンチモンの中か
ら選ばれた少なくとも1種の金属の水酸化物又は酸化物
である請求項1記載の層状マンガン酸化物系ナノ複合体
の製造方法。
2. The hydroxide or oxide of at least one metal selected from the group consisting of titanium, zirconium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, aluminum and antimony. The method for producing a layered manganese oxide-based nanocomposite according to claim 1, which is a product.
【請求項3】 ナノ粒子形成物質がアミノアルキルトリ
アルコキシシランである請求項1記載の層状マンガン酸
化物系ナノ複合体の製造方法。
3. The method for producing a layered manganese oxide-based nanocomposite according to claim 1, wherein the nanoparticle-forming substance is aminoalkyltrialkoxysilane.
JP2001398510A 2001-12-27 2001-12-27 Method for producing layered manganese oxide-based nanocomposite Expired - Lifetime JP3911559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001398510A JP3911559B2 (en) 2001-12-27 2001-12-27 Method for producing layered manganese oxide-based nanocomposite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001398510A JP3911559B2 (en) 2001-12-27 2001-12-27 Method for producing layered manganese oxide-based nanocomposite

Publications (2)

Publication Number Publication Date
JP2003201121A true JP2003201121A (en) 2003-07-15
JP3911559B2 JP3911559B2 (en) 2007-05-09

Family

ID=27639643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001398510A Expired - Lifetime JP3911559B2 (en) 2001-12-27 2001-12-27 Method for producing layered manganese oxide-based nanocomposite

Country Status (1)

Country Link
JP (1) JP3911559B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005019109A1 (en) * 2003-08-26 2005-03-03 Matsushita Electric Industrial Co., Ltd. Method for producing manganese oxide nanostructure and oxygen reduction electrode using such manganese oxide nanostructure
WO2006006531A1 (en) * 2004-07-13 2006-01-19 National University Corporation Hokkaido University Process for producing transition metal ion crosslinked electrode material
JP2006076865A (en) * 2004-09-13 2006-03-23 Yamaguchi Univ Method for manufacturing layered manganese oxide
JP2006083025A (en) * 2004-09-16 2006-03-30 Kagawa Univ Nanoscale substance and its production method
JP2006225201A (en) * 2005-02-17 2006-08-31 Tosoh Corp Manganese compound-supporting material and its synthesizing method
CN104671287A (en) * 2015-01-27 2015-06-03 北京航空航天大学 Environment-friendly preparation method of nano manganese oxide composite material
KR20160066966A (en) * 2014-12-03 2016-06-13 주식회사 엘지화학 Preparation method for nanosheet of layered strucutre compound
CN108878092A (en) * 2018-07-04 2018-11-23 常州市金坛磁性材料有限公司 A kind of Ni-based thin soft magnetic sheet and preparation method thereof
JP2022523843A (en) * 2019-03-08 2022-04-26 エバーオン24, インコーポレイテッド Aqueous aluminum ion batteries, battery-capacitor hybrids, said battery and battery-capacitor compositions, and related methods of manufacture and use.
WO2022191337A1 (en) * 2021-03-12 2022-09-15 国立大学法人山口大学 Layered manganese oxide, and preparation method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7338582B2 (en) 2003-08-26 2008-03-04 Matsushita Electric Industrial Co., Ltd. Method for manufacturing manganese oxide nanostructure and oxygen reduction electrode using said manganese oxide nanostructure
WO2005019109A1 (en) * 2003-08-26 2005-03-03 Matsushita Electric Industrial Co., Ltd. Method for producing manganese oxide nanostructure and oxygen reduction electrode using such manganese oxide nanostructure
WO2006006531A1 (en) * 2004-07-13 2006-01-19 National University Corporation Hokkaido University Process for producing transition metal ion crosslinked electrode material
JP2006076865A (en) * 2004-09-13 2006-03-23 Yamaguchi Univ Method for manufacturing layered manganese oxide
JP4547495B2 (en) * 2004-09-13 2010-09-22 国立大学法人山口大学 Method for producing layered manganese oxide thin film
JP2006083025A (en) * 2004-09-16 2006-03-30 Kagawa Univ Nanoscale substance and its production method
JP4505635B2 (en) * 2004-09-16 2010-07-21 国立大学法人 香川大学 Nanoscale material and method for producing the same
JP2006225201A (en) * 2005-02-17 2006-08-31 Tosoh Corp Manganese compound-supporting material and its synthesizing method
KR102055926B1 (en) 2014-12-03 2019-12-13 주식회사 엘지화학 Preparation method for nanosheet of layered strucutre compound
KR20160066966A (en) * 2014-12-03 2016-06-13 주식회사 엘지화학 Preparation method for nanosheet of layered strucutre compound
CN104671287A (en) * 2015-01-27 2015-06-03 北京航空航天大学 Environment-friendly preparation method of nano manganese oxide composite material
CN108878092A (en) * 2018-07-04 2018-11-23 常州市金坛磁性材料有限公司 A kind of Ni-based thin soft magnetic sheet and preparation method thereof
CN108878092B (en) * 2018-07-04 2021-11-23 常州勤行电子科技有限公司 Nickel-based soft magnetic sheet and preparation method thereof
JP2022523843A (en) * 2019-03-08 2022-04-26 エバーオン24, インコーポレイテッド Aqueous aluminum ion batteries, battery-capacitor hybrids, said battery and battery-capacitor compositions, and related methods of manufacture and use.
JP7416819B2 (en) 2019-03-08 2024-01-17 アルシム エナジー, インコーポレイテッド Aqueous aluminum ion batteries, battery-capacitor hybrids, compositions of said batteries and battery-capacitors, and related methods of manufacture and use.
WO2022191337A1 (en) * 2021-03-12 2022-09-15 国立大学法人山口大学 Layered manganese oxide, and preparation method thereof

Also Published As

Publication number Publication date
JP3911559B2 (en) 2007-05-09

Similar Documents

Publication Publication Date Title
Shi et al. Recent development of Mn‐based oxides as zinc‐ion battery cathode
US9868105B2 (en) Spinel-type lithium titanium oxide/graphene composite and method of preparing the same
US9225009B2 (en) Self-assembled composite of graphene oxide and tetravalent vanadium oxohydroxide
CN109167066A (en) A kind of preparation method of few layer titanium carbide growth in situ nitrogen-doped carbon nanometer pipe three-dimensional composite material
Qiao et al. One-pot synthesis of CoO/C hybrid microspheres as anode materials for lithium-ion batteries
Zeng et al. Li3VO4: an insertion anode material for magnesium ion batteries with high specific capacity
US20170194631A1 (en) Porous silicon electrode and method
JP4642960B2 (en) Method for producing lithium titanate
WO2012132387A1 (en) Electrode material, method for producing same, electrode, secondary battery, and vehicle
KR101751787B1 (en) Anodes active material containing Si composite for lithium secondary batteries and its preparation method and lithium secondary batteries comprising the same
JP2000281354A (en) Layer rock salt type oxide particulate powder and its production
KR101888743B1 (en) Composite including porous grapheme and carbonaceous material
EP2661781A1 (en) Electrode materials and method for producing same
Tan et al. MoS2‐Nanosheet‐Decorated Carbon Nanofiber Composites Enable High‐Performance Cathode Materials for Mg Batteries
KR20170039851A (en) Manufacturing method of ZnSb nanosheet using chemical exfoliation
JP3911559B2 (en) Method for producing layered manganese oxide-based nanocomposite
JP3894615B2 (en) Lithium titanate, method for producing the same, and lithium battery using the same
KR101778941B1 (en) Manufacturing method of ZnSb nanosheet using electrochemical lithiation
JP6873039B2 (en) Coated Sulfur Particle Electrodes and Methods
El Ouardi et al. Facile synthesis of nanoparticles titanium oxide as high-capacity and high-capability electrode for lithium-ion batteries
EP4112548A1 (en) Method for manufacturing porous silicon and secondary battery anode active material containing same
KR101587846B1 (en) Porous nanocomposite, preparing method of the same, and electrode for lithium secondary battery including the same
KR101604003B1 (en) Anodes active material containing Si composite for lithium secondary batteries and its preparation method and lithium secondary batteries comprising the same
KR101262054B1 (en) 2D NANOSTRUCTURED Li4Ti5O12, SYNTHETIC METHOD THEREOF AND ELECTRODE MATERIAL COMPRISING SAID 2D NANOSTRUCTURED Li4Ti5O12
JP2000264636A (en) Lithium manganese spinel oxide particle powder and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061227

R150 Certificate of patent or registration of utility model

Ref document number: 3911559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term