JP2003192378A - Lead-free low-melting glass for sealing - Google Patents

Lead-free low-melting glass for sealing

Info

Publication number
JP2003192378A
JP2003192378A JP2001391252A JP2001391252A JP2003192378A JP 2003192378 A JP2003192378 A JP 2003192378A JP 2001391252 A JP2001391252 A JP 2001391252A JP 2001391252 A JP2001391252 A JP 2001391252A JP 2003192378 A JP2003192378 A JP 2003192378A
Authority
JP
Japan
Prior art keywords
glass
lead
free
sealing
bao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001391252A
Other languages
Japanese (ja)
Inventor
Masahiro Yoshida
昌弘 吉田
Yasuo Hatate
泰雄 幡手
Yoshizo Kamimura
芳三 上村
Tsugimitsu Sarada
二充 皿田
Masataka Tokutome
政隆 徳留
Junji Maezono
潤二 前薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamato Denki Co Ltd
Original Assignee
Yamato Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamato Denki Co Ltd filed Critical Yamato Denki Co Ltd
Priority to JP2001391252A priority Critical patent/JP2003192378A/en
Publication of JP2003192378A publication Critical patent/JP2003192378A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide lead-free glass for sealing equivalent to PbO-B<SB>2</SB>O<SB>3</SB>low- melting glass. <P>SOLUTION: The lead-free low-melting glass for sealing comprises a lead-free composition consisting of a network forming oxide, an intermediate oxide and a network modifying oxide, wherein a vitreous low-melting substance is selected by adjusting the weight % of these oxides. The lead-free composition is composed of B<SB>2</SB>O<SB>3</SB>or V<SB>2</SB>O<SB>5</SB>as the network forming oxides, ZnO as the intermediate oxide and BaO as the network modifying oxide, and adjusted to the range of 20-80 wt.% of B<SB>2</SB>O<SB>3</SB>, 0-60 wt.% of BaO and 0-60 wt.% of ZnO, or to the range of 30-70 wt.% of V<SB>2</SB>O<SB>5</SB>, 0-50 wt.% of ZnO and 50-80 wt.% of BaO. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電子部品の封止、特
に蛍光表示管及び半導体パッケージの封着加工用低融点
無鉛ガラスに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low melting point lead-free glass for sealing electronic parts, particularly for sealing fluorescent display tubes and semiconductor packages.

【0002】[0002]

【従来の技術】従来、封着加工とは、エレクトロニクス
産業の分野で使用され、金属、ガラス又はセラミック容
器の開口部を封じてガスや湿気の侵入を防ぐ一連の作業
である。封着は、電子管や電子部品の安定な作動を保証
するために必要不可欠な作業であり、現在、酸化鉛(P
bO)を含有する粉末状の鉛ガラスが使用されている。
鉛ガラスの主成分は、PbOの低融点性、高い溶解性を
活かしたPbO−B 系のガラスが中心であった。
2. Description of the Related Art Conventionally, sealing is an electronics
Used in the industrial field, metal, glass or ceramic
A series of operations to seal the opening of the vessel and prevent gas and moisture from entering
Is. Sealing ensures stable operation of electron tubes and electronic components
This is an indispensable work for
Powdered lead glass containing bO) has been used.
The main component of lead glass is the low melting point and high solubility of PbO.
Utilized PbO-BTwoO ThreeThe center of the system was glass.

【0003】しかし、近年鉛の有する有毒性が問題とな
ってきている。この鉛は人体に摂取されると造血酵素障
害、赤血球中に変性血球の増加、ヘモグロビンの減少、
脳中枢を犯して痴呆症を生ずるといわれている。鉛は通
常の環境にも広く存在しており、人体中にも存在し常に
摂取、***されており(人体中平均80mg/70k
g)、摂取量が多量で体内に蓄積された時に中毒とな
る。さらに封着材として鉛ガラスを使用した電子部品が
廃棄された際、酸性雨により鉛が地下に浸透し、土壌汚
染、地下水汚染にもつながるものであるとその有害性が
問題視されている。このため職業病を防止する労働安全
衛生面からの規制とともに、環境規制も実施されてきて
いる。
However, the toxicity of lead has become a problem in recent years. When this lead is ingested by the human body, hematopoietic enzyme disorders, increased degenerative blood cells in red blood cells, decreased hemoglobin,
It is said to cause dementia by violating the brain center. Lead is widely present in the normal environment, is also present in the human body, and is constantly ingested and excreted (average 80 mg / 70 k in human body).
g), Poisoning occurs when the intake is large and accumulated in the body. Furthermore, when electronic components using lead glass as a sealing material are discarded, acid rain causes lead to permeate underground, leading to soil pollution and groundwater pollution. For this reason, environmental regulations have been implemented as well as occupational health and safety regulations to prevent occupational diseases.

【0004】このような背景から、これまでの様々な電
子部品に使用されていた有鉛系の封着用ガラスと代替可
能な無鉛系の封着ガラスの開発が要求されている。
Under these circumstances, there is a demand for the development of lead-free sealing glass that can replace the lead-containing sealing glass that has been used in various electronic components up to now.

【0005】これまでに無鉛系低融点ガラスとしてTi
系やP系等について研究報告がなされてお
り、低融性であるものは調製可能であることが明らかに
されている。しかし、有鉛系ガラスと完全に代替を行え
るほど、低熱膨張、接着性、封止性、さらに化学的耐久
性に優れた無鉛系の封着ガラスは基礎研究の領域を未だ
脱していない。
Until now, Ti has been used as a lead-free low melting glass.
Research reports have been made on O 2 system, P 2 O 5 system and the like, and it has been clarified that those having a low melting point can be prepared. However, lead-free sealing glass, which has low thermal expansion, adhesiveness, sealing property, and chemical durability so that it can be completely replaced with leaded glass, has not left the basic research field.

【0006】[0006]

【発明が解決しようとする課題】本発明は、単なる元素
置換のみならず、ガラス構造やそれを構成する元素の物
理化学的性質に基づいた材料探索によって、金属酸化物
を酸素との単結合強度によるガラスの形成能力の違いに
よって、網目形成酸化物(Network former:NW
F)、中間酸化物(Intermediate)、網目修飾酸化物
(Network modifier:NWM)と分類されることに着
目し、PbOと単結合強度が最も近い金属酸化物はZn
Oであること、酸化物として1mol当たりの解離エネ
ルギーがほぼ等しい(144kcal/mol)こと及
び酸素配位数によってPbO、ZnOの両方ともガラス
の構造中において類似の機能を有することからPbOの
代替酸化物としてZnOを用い、
DISCLOSURE OF THE INVENTION The present invention is based on not only simple element substitution, but also material search based on the physicochemical properties of the glass structure and the elements constituting the glass structure to obtain a single bond strength of a metal oxide with oxygen. Due to the difference in glass forming ability due to the
F), an intermediate oxide, and a network modifier (NWM), and the metal oxide with the closest single bond strength to PbO is Zn.
Since it is O, the dissociation energy per mol as an oxide is almost equal (144 kcal / mol), and both PbO and ZnO have similar functions in the glass structure due to the oxygen coordination number, the alternative oxidation of PbO ZnO is used as a product,

【0007】さらに、BaOのような原子量の大きな金
属を含む酸化物をPbOの代替物質として用いることに
より、酸化物系ガラス中において酸素の結合を切る形で
網目構造を修飾する網目修飾酸化物としての役割を果た
させて鉛系低融点ガラスに匹敵し又は優れた封着用ガラ
スを得ることを目的とする。
Further, by using an oxide containing a metal with a large atomic weight such as BaO as a substitute for PbO, it can be used as a network modifying oxide for modifying the network structure in the oxide glass by cutting oxygen bonds. The purpose of the present invention is to obtain a glass for sealing which is equivalent to or excellent in lead-based low melting point glass by playing the role of.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
め本発明は第1に網目形成酸化物、中間酸化物及び網目
修飾酸化物よりなる無鉛系組成物であって、これらの酸
化物の重量%を調製してガラス質の低融点物質を選定し
てなる封着加工用無鉛低融点ガラス、第2に網目形成酸
化物がB又はV、中間酸化物がZnO、網
目修飾酸化物がBaOによって無鉛系組成物を構成した
上記第1発明記載の封着加工用無鉛低融点ガラス、第3
に上記無鉛系組成物を構成するBを20〜80w
t%、BaO0〜60wt%、ZnOを0〜60wt%
の範囲に調製した上記第1〜第2発明記載の封着加工用
無鉛低融点ガラス、第4に上記無鉛系組成物を構成する
が30wt%、BaOが50wt%、ZnOが
20wt%に調製した上記第1〜第3発明のいずれかに
記載の封着加工用無鉛低融点ガラス、第5に上記無鉛系
組成物を構成するVが30〜70wt%、ZnO
が0〜50wt%、BaOが50〜80wt%である上
記第1又は第2発明記載の封着加工用無鉛低融点ガラ
ス、第6に上記無鉛系組成物に対してBiを添加
調製した上記第1〜第5発明のいずれかに記載の封着加
工用無鉛低融点ガラス、第7に上記無鉛系組成物に対し
てTeOを添加調製した上記第1〜第5発明のいずれ
かに記載の封着加工用無鉛低融点ガラス、第8に耐火物
フィラーを混合した上記第1〜第7発明のいずれかに記
載の封着加工用無鉛低融点ガラス、によって構成され
る。
In order to achieve the above object, the present invention is firstly a lead-free composition comprising a network-forming oxide, an intermediate oxide and a network-modifying oxide. A lead-free low melting point glass for sealing, which is prepared by selecting a vitreous low melting point substance by weight%, secondly, the network forming oxide is B 2 O 3 or V 2 O 5 , the intermediate oxide is ZnO, A lead-free low melting point glass for sealing according to the above-mentioned first invention, wherein the network-modifying oxide constitutes a lead-free composition with BaO.
20 to 80 w of B 2 O 3 constituting the lead-free composition
t%, BaO 0 to 60 wt%, ZnO 0 to 60 wt%
The lead-free low-melting glass for sealing according to the first to second inventions prepared in the above range, and fourth, 30 wt% of B 2 O 3 constituting the lead-free composition, 50 wt% of BaO, and 20 wt% of ZnO. % Of the lead-free low-melting glass for sealing according to any one of the first to third inventions, fifthly V 2 O 5 constituting the lead-free composition is 30 to 70 wt%, ZnO
Is 0 to 50 wt% and BaO is 50 to 80 wt%. Lead-free low melting point glass for sealing according to the first or second invention, and sixth, Bi 2 O 3 is added to the lead-free composition to prepare. any of the above first to sealing processing lead-free low-melting-point glass according to any one of the fifth invention, the first to fifth invention of adding prepared TeO 2 to 7 with respect to the lead-free composition The lead-free low-melting glass for sealing according to any one of claims 1 to 8 and the lead-free low-melting glass for sealing according to any one of the first to seventh inventions.

【0009】従って、無鉛系の低融点ガラスの調製に際
し、網目形成酸化物としてB又はV、網目
修飾酸化物としてZnOとBaOを選択し、この3成分
系の無鉛系低融点ガラスを調製して無鉛系の低融点ガラ
スの物理化学的特性を、ガラス転移点、軟化点、熱膨張
係数、粉末X線回折法(XRD)による構造解析により
評価して、網目形成酸化物における網目修飾酸化物の役
割を明らかにするとともに、調製された無鉛系低融点ガ
ラスの封着、封止特性を確認し得て、PbO−B
系のガラスに匹敵する封着用ガラスを得ることができ
る。
Therefore, when preparing a lead-free low melting point glass, B 2 O 3 or V 2 O 5 is selected as the network-forming oxide, and ZnO and BaO are selected as the network-modifying oxides. A melting point glass was prepared and the physicochemical properties of a lead-free low melting point glass were evaluated by a glass transition point, a softening point, a coefficient of thermal expansion, and a structural analysis by powder X-ray diffraction (XRD), and a network-forming oxide was obtained. and clarifies the role of network modifier oxide, sealing of the prepared lead-free low-melting-point glass, obtained confirm the sealing properties of, PbO-B 2 O 3
It is possible to obtain glass for sealing that is comparable to the glass of the system.

【0010】[0010]

【発明の実施の形態】網目形成酸化物(NWF)即ちガ
ラス形成能を持つ酸化物が作る3次元網目を形成しうる
酸化物、つまりガラス(非晶質:アモルファス)の骨格
を形成しうる酸化物はB、V、SiO
等である。
BEST MODE FOR CARRYING OUT THE INVENTION An oxide capable of forming a three-dimensional network formed by a network-forming oxide (NWF), that is, an oxide having a glass-forming ability, that is, an oxidation capable of forming a skeleton of glass (amorphous). The materials are B 2 O 3 , V 2 O 5 , SiO 2 ,
P 2 O 5 and the like.

【0011】中間酸化物即ち単独ではガラスを形成でき
ないが、網目形成酸化物(NWF)の一部と置き換わっ
て網目形成に加わり、又、網目修飾酸化物としての役割
も果し得る酸化物はZnO、PbO、Al等であ
る。
ZnO is an intermediate oxide, that is, an oxide which cannot form a glass by itself, but which replaces a part of a network-forming oxide (NWF) and participates in network formation, and can also serve as a network-modifying oxide. , PbO, Al 2 O 3 and the like.

【0012】網目修飾酸化物(NWM)即ち単独でガラ
ス形成はできないが、ガラスの一成分として網目形成酸
化物(NWF)が作る網目中に入り、性質に影響を及ぼ
すことはできる酸化物はBaO、ZnO、PbO等であ
る。
A network modifying oxide (NWM), that is, an oxide that cannot form a glass by itself, but which can enter the network formed by a network forming oxide (NWF) as a component of glass and affect the properties is BaO. , ZnO, PbO and the like.

【0013】上記物理化学的見地から原料金属酸化物と
してB、ZnO、BaOを選択し、表1B−1〜
B−32に示す組成(仕込予定wt%、仕込量g)につ
いて表2に示すように焼成後のガラス化状態を明確化さ
せた。
From the above physicochemical point of view, B 2 O 3 , ZnO and BaO are selected as raw material metal oxides, and shown in Table 1B-1.
The vitrification state after firing was clarified as shown in Table 2 for the composition shown in B-32 (scheduled wt%, charged amount g).

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】これによるとB−4、B−7〜B−10、
B−12〜B−16、B−21〜B−26、B−28〜
B−32においてガラス化状態を呈し、仕込組成がB
で20〜80wt%、BaOで0〜60wt%、Z
nOで0〜60wt%の範囲である。
According to this, B-4, B-7 to B-10,
B-12 to B-16, B-21 to B-26, B-28 to
B-32 shows a vitrified state and has a composition of B 2
20 to 80 wt% for O 3 , 0 to 60 wt% for BaO, Z
The range of nO is 0 to 60 wt%.

【0017】表1に示す組成についてさらに良好なガラ
ス(非晶質ガラス)を選択するとB が40〜80
wt%、BaOは0〜60wt%、ZnOは0〜60w
t%の範囲である。
More favorable glass for the compositions shown in Table 1
B (Amorphous glass) is selected TwoOThreeIs 40-80
wt%, BaO 0-60 wt%, ZnO 0-60w
It is in the range of t%.

【0018】表1、B−31に示す無鉛ガラスはB
が30wt%、BaOが50wt%、ZnOが20w
t%であり、従来の鉛ガラスの代替封着材として最も優
れた物理化学的特性を有する。
The lead-free glass shown in Table 1, B-31 is B 2 O.
3 is 30 wt%, BaO is 50 wt%, ZnO is 20 w
It is t% and has the best physicochemical properties as an alternative sealing material for conventional lead glass.

【0019】即ちB−31に示す無鉛ガラスを封着実験
に用いたところ、封着部に生じた応力による剥離やクラ
ックは発生せず、充分に封着、封止可能であった。しか
し表に示すようにX線分析による熱力学的性質において
鉛ガラスのTg(ガラス転移点)302℃に対し480
℃と高く、Tf(軟化点)320℃に対し537℃と高
く、かつTx(結晶析出温度)432℃に対し590℃
と高い点で封着温度が鉛ガラスより高いが、ガラスの熱
的安定度の指標△T=Tx−Tg130℃に対し110
℃と大差はない(表3)。
That is, when the lead-free glass shown in B-31 was used in the sealing experiment, peeling and cracks due to stress generated in the sealed portion did not occur, and it was possible to sufficiently seal and seal. However, as shown in the table, in the thermodynamic properties by X-ray analysis, it was 480 against Tg (glass transition point) 302 ° C. of lead glass.
As high as 537 ° C, Tf (softening point) of 320 ° C as high as 537 ° C, and Tx (crystal precipitation temperature) of 432 ° C as 590 ° C.
The sealing temperature is higher than that of lead glass at a high point, but the index of thermal stability of glass is ΔT = Tx−Tg of 130 ° C.
There is not much difference from the temperature (° C) (Table 3).

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【実施例】(実験例1) 試薬 ガラスを形成する試薬として用いた三酸化ホウ素(B
)、酸化亜鉛(ZnO)、酸化バリウム(BaO)
は、和光純薬の特級試薬を用いた。その他の分析試薬等
も、同様に特級試薬を用いた。
Example (Experimental Example 1) Boron trioxide (B 2 used as a reagent for forming a reagent glass)
O 3 ), zinc oxide (ZnO), barium oxide (BaO)
Used the special grade reagent of Wako Pure Chemical Industries. Similarly, other analytical reagents and the like used special grade reagents.

【0022】無鉛低融点ガラスの調製 表1に調製した原料金属酸化物の仕込み組成の一覧を示
す。表1の原料金属酸化物を所定の組成で十分に混合し
たものを白金るつぼに入れ、電気炉内で約1000℃で
60分間焼成した。その後、溶融物をアルミナボートに
流し込み、ガラス棒を作成した。大気中で冷却後、ガラ
ス棒をスタンプミル(ANS143、日陶科学株式会
社)にて粉砕し、その粒径を100μ以下に分級した。
Preparation of lead-free low melting point glass Table 1 shows a list of the composition of the raw material metal oxide prepared. A mixture of the raw material metal oxides shown in Table 1 having a predetermined composition was put into a platinum crucible and fired in an electric furnace at about 1000 ° C. for 60 minutes. Then, the melt was poured into an alumina boat to form a glass rod. After cooling in the air, the glass rod was crushed by a stamp mill (ANS143, Nitto Kagaku Co., Ltd.) to classify the particle size to 100 μm or less.

【0023】ガラス転移点、軟化点の測定 調製された無鉛系の低融点ガラスのガラス移転点(T
g)、軟化点(Tf)、結晶化開始温度(Tx)を示差
熱分析装置(DT−40、島津製作所)を用いて測定し
た。すべてのサンプルは、昇温速度10℃/minで、
25〜600℃まで昇温測定を行った。標準サンプルに
は、α−Alを用いた(表3)。
Measurement of glass transition point and softening point The glass transition point (T
g), the softening point (Tf), and the crystallization start temperature (Tx) were measured using a differential thermal analyzer (DT-40, Shimadzu Corporation). All samples were heated at a heating rate of 10 ° C / min,
The temperature rise measurement was performed up to 25 to 600 ° C. Α-Al 2 O 3 was used as a standard sample (Table 3).

【0024】熱膨張係数の測定 調製した無鉛系低融点ガラスの熱膨張係数を熱機械分析
装置(TMA8310、理学電気株式会社)を用いて測
定した。調製した粉末ガラスを再度溶融し、5×5×2
0mm(縦×横×高さ)の四角柱に成形し、上底面が平
行に成形されたものを測定試料として用いた。25〜2
00℃まで5℃/minで昇温させ、平均熱膨張係数α
を求めた。標準サンプルには、α−Alを用い
た。
Measurement of Coefficient of Thermal Expansion The coefficient of thermal expansion of the prepared lead-free low melting point glass was measured using a thermomechanical analyzer (TMA8310, Rigaku Denki Co., Ltd.). The prepared powder glass is melted again and 5 × 5 × 2
A rectangular column having a size of 0 mm (length x width x height) was formed, and the top and bottom surfaces were formed in parallel, and used as a measurement sample. 25-2
The average coefficient of thermal expansion α is raised to 5 ° C / min up to 00 ° C.
I asked. Α-Al 2 O 3 was used as a standard sample.

【0025】粉末X線回析法(XRD)による構造解析 調製した無鉛系低融点ガラスの構造解析を粉末X線装置
(ガイガーフレックス2013型、理学電気株式会社)
を用いて行った。走査速度は、2度/minで行った。
Structural Analysis by Powder X-ray Diffraction Method (XRD) Structural analysis of the prepared lead-free low melting point glass was carried out by powder X-ray equipment (Geiger Flex 2013 type, Rigaku Denki Co., Ltd.).
Was performed using. The scanning speed was 2 degrees / min.

【0026】封着実験 図1に封着実験の手順の概略図を示す。封着実験は、板
ガラスを2枚張り合わせることで評価した。粉末状の無
鉛系低融点粉ガラスにシンナーを加え、十分に混練して
ガラスペーストを調製した。調製したガラスペーストを
板ガラスに均一に塗布し、ガラスペーストを塗布した板
ガラスを電気炉で、ガラス転移点附近において30分間
仮焼成を行った。その後、電気炉から取り出した板ガラ
スにガラスペーストを塗布していない板ガラスを重ね
て、クリップで固定し、再度電気炉に入れ軟化点附近の
一定温度下で60分間本焼成(封着)を行った。
Sealing Experiment FIG. 1 shows a schematic diagram of the procedure of the sealing experiment. The sealing experiment was evaluated by laminating two plate glasses. A thinner was added to powdery lead-free low-melting-point powdered glass and sufficiently kneaded to prepare a glass paste. The prepared glass paste was uniformly applied to a plate glass, and the plate glass coated with the glass paste was pre-baked for 30 minutes in the vicinity of the glass transition point in an electric furnace. Then, the plate glass not coated with the glass paste was stacked on the plate glass taken out from the electric furnace, fixed with a clip, put in the electric furnace again, and main baking (sealing) was performed at a constant temperature near the softening point for 60 minutes. .

【0027】表1、表2に今回調製したB−Ba
O−ZnO系無鉛ガラスの仕込み組成、収率及びその外
観をまとめた。収率に関して、ガラス回収率、回収不可
能、非溶融の3つに分けている。これは、金属酸化物の
組成により、調製したガラスの溶融状態が白金るつぼの
中で異なっているためである。3成分の金属酸化物が、
焼成温度1000℃で良好に反応したガラスは、流動性
に富んだガラスであった。このようなガラスは、アルミ
ナボートに調製したガラスを流し込み回収する際も、約
70%以上の高収率であった。回収不可能とは、回収の
際に白金るつぼに残った残査である。さらに、非溶融と
は、焼成温度下で全く溶融せず、軽石状の塊状物質を示
す。
Tables 1 and 2 show the B 2 O 3 -Ba prepared this time.
The charging composition, yield, and appearance of O-ZnO-based lead-free glass are summarized. The yield is divided into three categories: glass recovery rate, non-recoverable, and non-melting. This is because the molten state of the prepared glass differs in the platinum crucible depending on the composition of the metal oxide. Three-component metal oxide,
The glass that reacted well at the firing temperature of 1000 ° C. was a glass having a high fluidity. Such a glass had a high yield of about 70% or more even when the prepared glass was poured into an alumina boat and collected. Unrecoverable is the residue left in the platinum crucible during recovery. Furthermore, non-melting means a pumice-like lumpy substance that does not melt at the firing temperature.

【0028】調製したガラスの外観に関しては、大きく
3つに大別される。その典型的な無鉛系ガラスの外観は
黄色透明なガラス(B−31)、黄白色透明なガラスの
表面に白色の結晶が析出し分相化したガラス(B−
3)、全く溶融せず軽石状の物質(B−11)である、
、BaO、ZnOの組成により大きく外観が変
化することを確認した(表2)。
The appearance of the prepared glass is roughly classified into three types. The typical lead-free glass has a yellow transparent glass (B-31) and a white-white transparent glass with white crystals precipitated on the surface of the glass (B-31).
3), a pumice-like substance that does not melt at all (B-11),
It was confirmed that the appearance greatly changed depending on the composition of B 2 O 3 , BaO, and ZnO (Table 2).

【0029】図2にB−BaO−ZnO系無鉛ガ
ラスのガラス化範囲を同定した結果を三角線図を用いて
表す。図中の◇は、調製したガラスの組成を示す。◇の
下に示した値は、調製したB−BaO−ZnO系
無鉛ガラスのガラス転移点を示す。ガラス化範囲は、高
収率でガラスが回収でき、かつガラス転移点が600℃
以下で調製できた範囲を内側曲線で、ガラス回収限界範
囲を外側曲線(破線)で示した。ガラスを調製する際の
仕込みの組成が、20〜80wt%B、0〜60
wt%ZnO、0〜60wt%BaOの範囲において、
低融点で流動性に富んだガラスが調製することができ
た。
FIG. 2 shows the results of identifying the vitrification range of the B 2 O 3 —BaO—ZnO lead-free glass by using a triangular diagram. ◇ in the figure indicates the composition of the prepared glass. The values shown under ⋄ indicate the glass transition point of the prepared B 2 O 3 —BaO—ZnO-based lead-free glass. In the vitrification range, glass can be recovered in high yield and the glass transition point is 600 ° C.
The range that can be prepared below is shown by the inner curve, and the glass recovery limit range is shown by the outer curve (broken line). The composition of the feed in the preparation of glass, 20~80wt% B 2 O 3, 0~60
In the range of wt% ZnO and 0 to 60 wt% BaO,
A glass with a low melting point and a high fluidity could be prepared.

【0030】図3に三角線図中に示した仕込み組成で調
製したB−BaO−ZnO系無鉛ガラスのガラス
転移点から求めた温度曲線を示す。図中の波線が、その
温度曲線である。調製されたB−BaO−ZnO
系無鉛ガラスに対して、470〜560℃まで温度曲線
を求めた。求めた温度曲線より、Bの含有量が増
加すれば、ガラス転移点が上昇することが分かる。そこ
で、図7にB−BaO−ZnO系無鉛ガラスのB
含有量の影響をまとめた。ここでは、B−2,
3,4,5とB−7,8,9,10の2つの系列につい
てまとめた。Bの含有量が増加すれば、ガラス転
移点も単調増加的に上昇することが分かった。
FIG. 3 shows a temperature curve obtained from the glass transition point of the B 2 O 3 —BaO—ZnO system lead-free glass prepared with the composition shown in the triangular diagram. The wavy line in the figure is the temperature curve. Prepared B 2 O 3 -BaO-ZnO
For the lead-free glass, a temperature curve was obtained from 470 to 560 ° C. From the obtained temperature curve, it can be seen that the glass transition point rises as the content of B 2 O 3 increases. Therefore, in FIG. 7, B 2 O 3 —BaO—ZnO-based lead-free glass B
The effects of 2 O 3 content are summarized. Here, B-2,
Two series of 3,4,5 and B-7,8,9,10 were summarized. It was found that the glass transition point monotonically increased as the content of B 2 O 3 increased.

【0031】調製したB−BaO−ZnO系無鉛
ガラスの構造評価を粉末X線回析法(XRD)を用いて
行った。その結果を図2に示す。特にここでは調製した
−BaO−ZnO系無鉛ガラスが、無定形ガラ
スであるか、結晶化ガラスであるかを評価した。封着加
工を行うためには、無定形ガラスであることが望まし
い。これは、熱履歴による特性変化が小さいため、封着
温度や時間などの封着条件を自由に変化させることが可
能であるからである。図中の○は無定形ガラス、△は基
本的には無定形ガラスであるが一部結晶析出が確認され
たガラス、そして×は結晶化ガラスであることを示す。
The structure of the prepared B 2 O 3 —BaO—ZnO lead-free glass was evaluated by the powder X-ray diffraction method (XRD). The result is shown in FIG. In particular, it was evaluated here whether the prepared B 2 O 3 —BaO—ZnO-based lead-free glass was amorphous glass or crystallized glass. In order to perform the sealing process, amorphous glass is desirable. This is because the characteristic change due to the heat history is small, and thus the sealing conditions such as the sealing temperature and the time can be freely changed. In the figure, ◯ indicates amorphous glass, Δ indicates basically amorphous glass, but some crystal precipitation was confirmed, and x indicates crystallized glass.

【0032】図2に実線で示した良好なガラス化範囲
は、無定形ガラスであることを確認した。図5に典型的
な3パターンのXRDチャートを示す。図中の(a)〜(c)
は、それぞれ一部結晶化ガラスを含む無定形ガラス(B
−3)、結晶化ガラス(B−11)、無定形ガラス(B
−31)のXRDチャートである。B−3のようにB
の含有量が多いと、一部Bの結晶が析出する
結果が得られた。B−11のように全くガラス化できな
い溶融物は、各酸化物の結晶パターンが確認できた。そ
して、B−31のように極めて良好にガラス化できたも
のは、各金属酸化物の結晶パターンを観察することが全
くできなかった。
It was confirmed that the good vitrification range shown by the solid line in FIG. 2 was amorphous glass. FIG. 5 shows typical three patterns of XRD charts. (A) to (c) in the figure
Is an amorphous glass (B
-3), crystallized glass (B-11), amorphous glass (B
It is an XRD chart of -31). B 2 like B-3
When the O 3 content was high, the result was that some B 2 O 3 crystals were precipitated. In the melt such as B-11 which could not be vitrified at all, the crystal pattern of each oxide could be confirmed. In the case of B-31, which could be extremely vitrified, the crystal pattern of each metal oxide could not be observed at all.

【0033】通常、封着ガラスとして広く一般に使用さ
れている鉛ガラスは、B−31のようなXRDパターン
を有する無定形ガラスである。図2の結果から、低融
点、無定形、そして良好なガラスが得られる範囲の同定
を行うことができた。特に、三角線図中のB−10,3
0,31が無鉛系の封着ガラスとして十分な性能を有し
ている。
Lead glass, which is widely and commonly used as a sealing glass, is an amorphous glass having an XRD pattern such as B-31. From the results of FIG. 2, it was possible to identify the range in which a low melting point, amorphous, and good glass were obtained. In particular, B-10,3 in the triangle diagram
Nos. 0 and 31 have sufficient performance as lead-free sealing glass.

【0034】図2の実線で示したガラス化範囲より、ガ
ラス転移点を下げる効果がある金属酸化物の同定も可能
である。無鉛ガラスの構成金属酸化物の一部であるZn
Oは、1mol当たりの解離エネルギーと配位数がPb
Oのそれと同様なのでPbOの代替金属酸化物として期
待された。
From the vitrification range shown by the solid line in FIG. 2, it is possible to identify a metal oxide having an effect of lowering the glass transition point. Zn which is a part of the constituent metal oxide of lead-free glass
O has a dissociation energy per 1 mol and a coordination number of Pb.
Since it is similar to that of O, it was expected as an alternative metal oxide of PbO.

【0035】しかし、ZnOの増加によりガラス転移点
の減少を観察できなかった。網目修飾酸化物として考え
られたZnOは、含有量が増加すると網目修飾酸化物と
して機能するより、むしろ網目形成酸化物として機能す
る。一方、BaOの含有量の増加により、ガラス転移点
を減少することができた。
However, it was not possible to observe a decrease in the glass transition point due to an increase in ZnO. ZnO, considered as a network-modifying oxide, functions as a network-forming oxide rather than as a network-modifying oxide with increasing content. On the other hand, the glass transition point could be decreased by increasing the content of BaO.

【0036】B−BaO−ZnO系無鉛ガラスに
おいて、金属の原子量の大きいBaOのような金属酸化
物がPbOの代替金属酸化物としての寄与が大きい。つ
まりBaOは、Bを網目構造とするガラス中にお
いて酸素橋を切る形で網目構造を修飾し、網目構造の重
合度を減少させている。
In the B 2 O 3 —BaO—ZnO lead-free glass, a metal oxide such as BaO, which has a large atomic weight of metal, makes a large contribution as a substitute metal oxide for PbO. That is, BaO modifies the network structure by cutting oxygen bridges in glass having B 2 O 3 as the network structure, and reduces the degree of polymerization of the network structure.

【0037】図6にB−BaO−ZnO系無鉛ガ
ラスのBaOの含有量の影響を示す。ここでは、30B
−xBaO−(70−x)ZnOと40B
−xBaO−(60−x)ZnOの2つの系列について
BaOの添加効果をまとめた。双方の系列ともBaOの
含有量が増加すれば、ガラス転移点は減少することが確
認できた。Bの含有量が30wt%である30B
−xBaO−(70−x)ZnOの系列の方が、
BaOの網目修飾酸化物としての寄与が大きく、その含
有量の増加に伴いガラス転移点の大幅な減少を引き起こ
していることが分かった。
FIG. 6 shows the influence of the BaO content in the B 2 O 3 —BaO—ZnO lead-free glass. Here, 30B
2 O 3 -xBaO- (70-x ) ZnO and 40B 2 O 3
The effect of addition of BaO was summarized for two series of -xBaO- (60-x) ZnO. It was confirmed that the glass transition point was decreased when the BaO content was increased in both series. 30B in which the content of B 2 O 3 is 30 wt%
The series of 2 O 3 -xBaO- (70-x) ZnO is
It was found that the contribution of BaO as a network-modifying oxide is large, and that the glass transition point is significantly decreased with the increase of the content thereof.

【0038】ここで、今回調製したB−BaO−
ZnO系無鉛ガラスの封着、封止性能評価について言及
する。封着、封止特性に必要不可欠の要素とは、封着ガ
ラスの熱膨張係数と封着工程における封着ガラスの安定
性である。
Here, B 2 O 3 --BaO-- prepared this time
The sealing of ZnO-based lead-free glass and the evaluation of sealing performance will be mentioned. The essential factors for sealing and sealing properties are the coefficient of thermal expansion of the sealing glass and the stability of the sealing glass in the sealing process.

【0039】ガラスは割れやすい材料であるので、ガラ
スと被封着体との熱膨張係数を適合させて封着部の応力
(ストレス)を制御し、強固な封着体とする必要があ
る。
Since glass is a material that breaks easily, it is necessary to control the stress (stress) of the sealed portion by matching the thermal expansion coefficients of the glass and the sealed body to form a strong sealed body.

【0040】そこで封着材は、なるべく低い熱膨張係数
であることが望ましい。ここで無鉛ガラス(B−31)
の熱機械分析装置(TMA)を用いた熱膨張係数測定で
は、約50×10−6−1という結果を得ている。一
般に使用されている鉛ガラスは、約100×10−6
−1であり、今回調製した無鉛ガラスは、かなり熱膨張
係数が低いことが分かった。
Therefore, it is desirable that the sealing material has a coefficient of thermal expansion as low as possible. Lead-free glass (B-31)
In the thermal expansion coefficient measurement using the thermomechanical analyzer (TMA), the result of about 50 × 10 −6 ° C. −1 is obtained. Commonly used lead glass is about 100 × 10 -6
Is -1, lead-free glass prepared this time was found to significantly coefficient of thermal expansion is low.

【0041】特に一般的な封着材である鉛ガラスは、こ
の熱膨張係数を低くするために低膨張係数のセラミック
フィラーを混合し、これを封着材として用いる場合がほ
とんどである。今回調製したB−BaO−ZnO
系無鉛ガラスは、特別にセラミックフィラーを添加せず
とも十分に低熱膨張係数を有しているので、実用的な付
加価値は高い。
In most cases, lead glass, which is a general sealing material, is mixed with a ceramic filler having a low expansion coefficient in order to lower the thermal expansion coefficient, and this is used as the sealing material. We prepared B 2 O 3 -BaO-ZnO
The lead-free glass has a sufficiently low coefficient of thermal expansion without adding a ceramic filler, and thus has a high practical added value.

【0042】さらに、表3及び図4にB−BaO
−ZnO系無鉛ガラスの熱的特性等をまとめたものを示
す。表中の△T=Tx(結晶化開始温度)−Tg(ガラ
ス転移点)は、ガラスの熱的安定性の指標となる。この
値が大きければ大きいほど、ガラスが安定であることを
示す。特にB−31は、△T=110℃という値が得ら
れた。この値は、一般に使用されている封着材である鉛
ガラスの△T(△T=130℃)に近い値であった。今
回B−31の組成で調製されたB−BaO−Zn
O系無鉛ガラスは、鉛ガラスと同等の安定性を有するガ
ラスであることが判明する。
Further, in Table 3 and FIG. 4, B 2 O 3 --BaO is used.
The following is a summary of the thermal characteristics of the ZnO-based lead-free glass. ΔT = Tx (crystallization start temperature) -Tg (glass transition point) in the table is an index of the thermal stability of glass. The larger this value is, the more stable the glass is. Especially for B-31, a value of ΔT = 110 ° C. was obtained. This value was close to ΔT (ΔT = 130 ° C.) of lead glass which is a commonly used sealing material. B 2 O 3 —BaO—Zn prepared with the composition of B-31 this time
It is found that the O-based lead-free glass has the same stability as that of lead glass.

【0043】従って封着実験には、低融点、無定形、低
熱膨張、熱的安定性のすべての必須条件を兼ね備えたB
−31を使用した。図1に板ガラスを2枚張り合わせる
ことでB−BaO−ZnO系無鉛ガラス(B−3
1)の封着、封止特性を評価した結果では封着部に生じ
た応力により剥離やクラックは発生しなかった。従っ
て、実際の平面蛍光管に使用した際にも、十分に機密性
が保持できた。
Therefore, in the sealing experiment, B having all the essential conditions of low melting point, amorphous form, low thermal expansion, and thermal stability.
-31 was used. B 2 O 3 —BaO—ZnO-based lead-free glass (B-3
As a result of evaluating the sealing and sealing characteristics of 1), peeling or cracking did not occur due to the stress generated in the sealing portion. Therefore, even when used in an actual flat fluorescent tube, the airtightness could be sufficiently maintained.

【0044】(実験例2)網目形成酸化物(NWF)と
してBに代りVを用いたV−ZnO
−BaO系の無鉛酸化物によると図8に示すガラス化領
域が得られV が30〜70wt%、ZnOが0〜
50wt%、BaOが50〜80wt%において無定形
ガラスが得られ、表4に示されるように結晶析出温度T
x500℃以下、ガラス転移点Tg及び軟化点Tfが4
00℃以下であるという結果が得られた(図9)。
(Experimental Example 2) A network forming oxide (NWF)
Then BTwoOThreeInstead of VTwoO5Using VTwoO5-ZnO
According to the BaO-based lead-free oxide, the vitrification region shown in FIG.
Area is obtained and VTwoO 5Is 30-70 wt% and ZnO is 0-
Amorphous at 50 wt% and BaO at 50-80 wt%
A glass was obtained, and as shown in Table 4, the crystal precipitation temperature T
x500 ° C or lower, glass transition point Tg and softening point Tf are 4
The result of being below 00 degreeC was obtained (FIG. 9).

【0045】[0045]

【表4】 [Table 4]

【0046】(実験例3)上記無鉛ガラス(B−31)
又はVの1重量部に対し、第4成分Bi
びTeOを調製した場合、表5に示すように何れも外
観流動性良好なガラス状態の無鉛ガラスが得られ、ガラ
ス転移点Tgも371℃、366℃と低く軟化点Tfも
411℃、410℃と低い低融点ガラスが得られたが、
第4成分Biの場合Txが適当であって熱的安定
度△Tが229℃以上と高く封着加工に良好なガラスが
得られた。
(Experimental Example 3) The above lead-free glass (B-31)
Alternatively, when 4 parts of Bi 2 O 3 and TeO 2 were prepared with respect to 1 part by weight of V 2 O 5 , as shown in Table 5, lead-free glass in a glass state with good appearance fluidity was obtained, Although the transition point Tg was low at 371 ° C. and 366 ° C., the softening point Tf was low at 411 ° C. and 410 ° C.
In the case of the fourth component Bi 2 O 3 , Tx was appropriate and the thermal stability ΔT was as high as 229 ° C. or higher, and a glass good for sealing was obtained.

【0047】[0047]

【表5】 [Table 5]

【0048】上記無鉛系低融点ガラスの熱膨張係数を被
封着物の熱膨張係数と同じにするため及び封着物の強度
を向上させるために耐火物フィラーを上記低融点ガラス
に添加混合する。
In order to make the coefficient of thermal expansion of the lead-free low melting point glass the same as the coefficient of thermal expansion of the material to be sealed and to improve the strength of the material to be sealed, a refractory filler is added to and mixed with the low melting point glass.

【0049】耐火物フィラー粉末としてはコジェライ
ト、β・ユークリプタート、β・スポジュメン、ジルコ
ン、アルミナ、ムライト、シリカ、β−石英固溶体、ケ
イ酸亜鉛、チタン酸アルミニウム等がある。
Examples of the refractory filler powder include cordierite, β-eucryptate, β-spodumene, zircon, alumina, mullite, silica, β-quartz solid solution, zinc silicate and aluminum titanate.

【0050】低融点ガラス粉末と耐火物フィラー粉末と
の混合方法は、どのような方法をとってもよい。調製し
たての低融点ガラスブロックを粉砕機で粉砕する際に耐
火物フィラー粉末を加え、粉砕、混合を行ってもよい。
また、任意の粒径まで低融点ガラスを粉砕後、耐火物フ
ィラーを加え、混合して利用してもよい。
Any method may be used for mixing the low melting point glass powder and the refractory filler powder. When the freshly prepared low melting point glass block is crushed by a crusher, refractory filler powder may be added and crushed and mixed.
Further, the low melting point glass may be crushed to an arbitrary particle size, and then a refractory filler may be added and mixed to be used.

【0051】(実験例4)所望の熱膨張係数とするた
め、表4におけるV−8に対し、耐火物フィラーとして
α・アルミナを混合した。表6に示した混合割合で耐火
物フィラー粉末をいれ、ガラス転移点Tg、軟化点T
f、ガラスの安定指標△Tを求めた。耐火物フィラーを
混合した系(V−8−b)は、耐火物フィラーを混合し
ない系(V−8−a)と比較して、熱的安定性に優れ、
かつ低熱膨張特性が得られた。被封着体の熱膨張特性に
合わせて、耐火物フィラーを適量混合することにより、
良好な封着が可能となる。
(Experimental Example 4) In order to obtain a desired coefficient of thermal expansion, α-alumina was mixed with V-8 in Table 4 as a refractory filler. Refractory filler powder was added at the mixing ratios shown in Table 6, glass transition point Tg, and softening point T
f, the stability index ΔT of the glass was determined. The system (V-8-b) in which the refractory filler is mixed is superior in thermal stability to the system (V-8-a) in which the refractory filler is not mixed,
And low thermal expansion characteristics were obtained. According to the thermal expansion characteristics of the adherend, by mixing an appropriate amount of refractory filler,
Good sealing is possible.

【0052】[0052]

【表6】 [Table 6]

【0053】[0053]

【発明の効果】本発明は上述のように構成したので鉛系
低融点ガラスに匹敵し優れた封着加工用無鉛系低融点ガ
ラスを得ることができる。
EFFECTS OF THE INVENTION Since the present invention is constructed as described above, it is possible to obtain a lead-free low melting point glass for sealing which is superior to lead type low melting point glass.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の無鉛系低融点ガラスペーストで板ガラ
スを封着する状態の斜視図である。
FIG. 1 is a perspective view of a plate glass sealed with a lead-free low melting point glass paste of the present invention.

【図2】B−BaO−ZnO系無鉛ガラスのガラ
ス化範囲を同定した結果の三角線図である。
FIG. 2 is a triangular diagram showing a result of identifying a vitrification range of a B 2 O 3 —BaO—ZnO-based lead-free glass.

【図3】上記無鉛ガラスのガラス転移点から求めた温度
曲線三角線図である。
FIG. 3 is a triangular diagram of a temperature curve obtained from the glass transition point of the lead-free glass.

【図4】ガラス転移点、軟化点及び結晶析出温度曲線で
ある。
FIG. 4 is a glass transition point, a softening point and a crystal precipitation temperature curve.

【図5】(a)(b)(c)図はB−BaO−Z
nO系無鉛ガラスの構造評価をXRDを用いて行った図
である。
[5] (a) (b) (c ) Figure B 2 O 3 -BaO-Z
It is a figure which carried out structure evaluation of nO system lead-free glass using XRD.

【図6】上記無鉛ガラスのBaO含有量の影響を示す図
である。
FIG. 6 is a diagram showing the influence of the BaO content of the lead-free glass.

【図7】上記無鉛ガラスのB含有量の影響を示す
図である。
FIG. 7 is a diagram showing the influence of the B 2 O 3 content of the lead-free glass.

【図8】V−ZnO−BaO系無鉛酸化物のガラ
ス化領域三角線図である。
FIG. 8 is a vitrification region triangular diagram of a V 2 O 5 —ZnO—BaO-based lead-free oxide.

【図9】ガラス転移点Tg数値を示す三角線図である。FIG. 9 is a triangular diagram showing a glass transition point Tg value.

フロントページの続き (72)発明者 吉田 昌弘 鹿児島県鹿児島市宇宿3−35−26−403号 (72)発明者 幡手 泰雄 鹿児島県鹿児島市星ケ峯4−20−11 (72)発明者 上村 芳三 鹿児島県鹿児島市伊敷町7207−21 (72)発明者 皿田 二充 鹿児島県出水郡高尾野町大久保3816番地23 ヤマト電子株式会社内 (72)発明者 徳留 政隆 鹿児島県鹿児島市谷山中央6−9−2 (72)発明者 前薗 潤二 鹿児島県鹿児島市田上1−12−14 Fターム(参考) 4G062 AA08 AA15 BB08 BB12 CC04 CC08 DA01 DB01 DC01 DC04 DC05 DC06 DC07 DD01 DE01 DE02 DE03 DE04 DE05 DE06 DF01 EA01 EB01 EC01 ED01 EE01 EF01 EG01 EG02 EG03 EG04 EG05 EG06 EG07 FA01 FB01 FC01 FD01 FE01 FF01 FF05 FF06 FG01 FH01 FJ01 FK01 FL01 GA01 GA02 GA03 GB01 GC01 GD01 GD02 GD03 GE01 HH01 HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM08 NN32 NN34 PP02 PP03 PP04 PP05 PP11 Continued front page    (72) Inventor Masahiro Yoshida             No. 3-35-26-403 Ujuku, Kagoshima City, Kagoshima Prefecture (72) Inventor Yasuo Hatate             4-20-11 Hoshigamine, Kagoshima City, Kagoshima Prefecture (72) Inventor Yoshizo Uemura             7207-21 Ishiki-cho, Kagoshima City, Kagoshima Prefecture (72) Inventor Nitta Mitsuru             23, Okubo 3816, Takano Town, Izumi District, Kagoshima Prefecture               Yamato Electronics Co., Ltd. (72) Inventor Masataka Tokudome             6-9-2 Taniyama Chuo, Kagoshima City, Kagoshima Prefecture (72) Inventor Junji Maezono             1-12-14 Tagami, Kagoshima City, Kagoshima Prefecture F-term (reference) 4G062 AA08 AA15 BB08 BB12 CC04                       CC08 DA01 DB01 DC01 DC04                       DC05 DC06 DC07 DD01 DE01                       DE02 DE03 DE04 DE05 DE06                       DF01 EA01 EB01 EC01 ED01                       EE01 EF01 EG01 EG02 EG03                       EG04 EG05 EG06 EG07 FA01                       FB01 FC01 FD01 FE01 FF01                       FF05 FF06 FG01 FH01 FJ01                       FK01 FL01 GA01 GA02 GA03                       GB01 GC01 GD01 GD02 GD03                       GE01 HH01 HH03 HH05 HH07                       HH09 HH11 HH13 HH15 HH17                       HH20 JJ01 JJ03 JJ05 JJ07                       JJ10 KK01 KK03 KK05 KK07                       KK10 MM08 NN32 NN34 PP02                       PP03 PP04 PP05 PP11

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 網目形成酸化物、中間酸化物及び網目修
飾酸化物よりなる無鉛系組成物であって、これらの酸化
物の重量%を調製してガラス質の低融点物質を選定して
なる封着加工用無鉛低融点ガラス。
1. A lead-free composition comprising a network-forming oxide, an intermediate oxide and a network-modifying oxide, wherein a glassy low-melting substance is selected by preparing a weight% of these oxides. Lead-free low melting point glass for sealing.
【請求項2】 網目形成酸化物がB又はV
、中間酸化物がZnO、網目修飾酸化物がBaO
によって無鉛系組成物を構成した請求項1記載の封着加
工用無鉛低融点ガラス。
2. The network-forming oxide is B 2 O 3 or V.
2 O 5 , intermediate oxide is ZnO, network modifying oxide is BaO
The lead-free low melting point glass for sealing according to claim 1, wherein the lead-free composition is constituted by:
【請求項3】 上記無鉛系組成物を構成するB
20〜80wt%、BaOを0〜60wt%、ZnOを
0〜60wt%の範囲に調製した請求項1〜2記載の封
着加工用無鉛低融点ガラス。
3. The sealing according to claim 1, wherein the lead-free composition is prepared in the range of 20 to 80 wt% B 2 O 3 , 0 to 60 wt% BaO, and 0 to 60 wt% ZnO. Lead-free low melting glass for processing.
【請求項4】 上記無鉛系組成物を構成するB
30wt%、BaOが50wt%、ZnOが20wt%
に調製した請求項1〜3のいずれかに記載の封着加工用
無鉛低融点ガラス。
4. The lead-free composition comprises B 2 O 3 of 30 wt%, BaO of 50 wt%, and ZnO of 20 wt%.
The lead-free low melting point glass for sealing according to any one of claims 1 to 3, which is prepared according to claim 1.
【請求項5】上記無鉛系組成物を構成するVが3
0〜70wt%、ZnOが0〜50wt%、BaOが5
0〜80wt%である請求項1又は2記載の封着加工用
無鉛低融点ガラス。
5. V 2 O 5 constituting the lead-free composition is 3
0-70 wt%, ZnO 0-50 wt%, BaO 5
The lead-free low melting point glass for sealing according to claim 1 or 2, which is 0 to 80 wt%.
【請求項6】 上記無鉛系組成物に対してBi
添加調製した請求項1〜5のいずれかに記載の封着加工
用無鉛低融点ガラス。
6. The lead-free low melting glass for sealing according to claim 1, wherein Bi 2 O 3 is added to the lead-free composition.
【請求項7】 上記無鉛系組成物に対してTeOを添
加調製した請求項1〜5のいずれかに記載の封着加工用
無鉛低融点ガラス。
7. The lead-free low melting point glass for sealing according to claim 1, wherein TeO 2 is added to the lead-free composition.
【請求項8】 耐火物フィラーを混合した請求項1〜7
のいずれかに記載の封着加工用無鉛低融点ガラス。
8. A refractory filler mixed with a refractory filler.
Lead-free low melting point glass for sealing processing according to any one of 1.
JP2001391252A 2001-12-25 2001-12-25 Lead-free low-melting glass for sealing Pending JP2003192378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001391252A JP2003192378A (en) 2001-12-25 2001-12-25 Lead-free low-melting glass for sealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001391252A JP2003192378A (en) 2001-12-25 2001-12-25 Lead-free low-melting glass for sealing

Publications (1)

Publication Number Publication Date
JP2003192378A true JP2003192378A (en) 2003-07-09

Family

ID=27598898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001391252A Pending JP2003192378A (en) 2001-12-25 2001-12-25 Lead-free low-melting glass for sealing

Country Status (1)

Country Link
JP (1) JP2003192378A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004074198A1 (en) * 2003-02-19 2004-09-02 Yamato Electronic Co., Ltd. Lead-free glass material for use in sealing and, sealed article and method for sealing using the same
WO2005000755A1 (en) * 2003-06-27 2005-01-06 Yamato Electronic Co., Ltd. Lead-free glass material for use in sealing and, sealed article and method for sealing using the same
JP2006137635A (en) * 2004-11-12 2006-06-01 Nippon Electric Glass Co Ltd Filler powder, and powder and paste for sealing
JP2008147154A (en) * 2006-11-17 2008-06-26 Sumitomo Chemical Co Ltd Photoelectrochemical cell
JP2008150269A (en) * 2006-12-20 2008-07-03 Central Glass Co Ltd Insulating protective coating material
US7407423B2 (en) 2003-04-16 2008-08-05 Corning Incorporated Glass package that is hermetically sealed with a frit and method of fabrication
JP2008255362A (en) * 2008-05-26 2008-10-23 Nippon Electric Glass Co Ltd Emitting color conversion member
JP2008300536A (en) * 2007-05-30 2008-12-11 Asahi Glass Co Ltd Glass coated light emitting element, and glass coated light emitting device
JP2009084108A (en) * 2007-09-28 2009-04-23 Sekisui Chem Co Ltd Non-lead glass fine particle-dispersed paste composition
JP2010132923A (en) * 2010-02-25 2010-06-17 Nippon Electric Glass Co Ltd Light emission color conversion member
JP2010132922A (en) * 2010-02-25 2010-06-17 Nippon Electric Glass Co Ltd Composite component for light emission color conversion
US7755269B2 (en) 2006-01-06 2010-07-13 Hitachi Displays, Ltd. Spacer and image display panel using the same
JP2010174246A (en) * 2010-02-25 2010-08-12 Nippon Electric Glass Co Ltd Emitting color conversion member
US8022000B2 (en) 2006-01-06 2011-09-20 Hitachi Displays Ltd. Display device and production method thereof
US8071183B2 (en) 2006-06-02 2011-12-06 Hitachi Displays, Ltd. Display apparatus
KR20130025362A (en) * 2010-03-05 2013-03-11 주식회사 앰브로 Lead-free glass material for organic-el sealing, organic el display formed using same, and process for producing the display
JP2013071861A (en) * 2011-09-27 2013-04-22 Okamoto Glass Co Ltd Low softening point glass powder
JP2014028740A (en) * 2012-04-17 2014-02-13 Heraeus Precious Metals North America Conshohocken Llc Tellurium inorganic reaction system for thick electroconductive film paste for solar cell junction
JP2015504840A (en) * 2011-12-29 2015-02-16 ガーディアン・インダストリーズ・コーポレーション Vanadium-based frit material, binder, and / or solvent, and method for producing the same
JP2018006451A (en) * 2016-06-29 2018-01-11 日本新工芯技株式会社 Bonding method
US10252938B2 (en) 2011-07-04 2019-04-09 Hitachi, Ltd. Glass composition, glass frit containing same, glass paste containing same, and electrical/electronic component obtained using same

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1595856A1 (en) * 2003-02-19 2005-11-16 Yamato Electronic Co., Ltd. Lead-free glass material for use in sealing and, sealed article and method for sealing using the same
WO2004074198A1 (en) * 2003-02-19 2004-09-02 Yamato Electronic Co., Ltd. Lead-free glass material for use in sealing and, sealed article and method for sealing using the same
EP3006414A1 (en) * 2003-02-19 2016-04-13 Yamato Electronic Co., Ltd. Lead-free glass material for use in sealing and, sealed article and method for sealing using the same
EP1595856A4 (en) * 2003-02-19 2009-09-16 Yamato Electronic Co Ltd Lead-free glass material for use in sealing and, sealed article and method for sealing using the same
US7425518B2 (en) 2003-02-19 2008-09-16 Yamato Electronic Co., Ltd. Lead-free glass material for use in sealing and, sealed article and method for sealing using the same
US7407423B2 (en) 2003-04-16 2008-08-05 Corning Incorporated Glass package that is hermetically sealed with a frit and method of fabrication
US7585798B2 (en) 2003-06-27 2009-09-08 Yamato Electronic Co., Ltd. Lead-free glass material for use in sealing and, sealed article and method for sealing using the same
WO2005000755A1 (en) * 2003-06-27 2005-01-06 Yamato Electronic Co., Ltd. Lead-free glass material for use in sealing and, sealed article and method for sealing using the same
JP2006137635A (en) * 2004-11-12 2006-06-01 Nippon Electric Glass Co Ltd Filler powder, and powder and paste for sealing
JP4556624B2 (en) * 2004-11-12 2010-10-06 日本電気硝子株式会社 Sealing powder and sealing paste
US7755269B2 (en) 2006-01-06 2010-07-13 Hitachi Displays, Ltd. Spacer and image display panel using the same
US8022000B2 (en) 2006-01-06 2011-09-20 Hitachi Displays Ltd. Display device and production method thereof
US8075961B2 (en) 2006-06-02 2011-12-13 Hitachi Displays, Ltd. Display apparatus
US8071183B2 (en) 2006-06-02 2011-12-06 Hitachi Displays, Ltd. Display apparatus
JP2008147154A (en) * 2006-11-17 2008-06-26 Sumitomo Chemical Co Ltd Photoelectrochemical cell
JP2008150269A (en) * 2006-12-20 2008-07-03 Central Glass Co Ltd Insulating protective coating material
JP2008300536A (en) * 2007-05-30 2008-12-11 Asahi Glass Co Ltd Glass coated light emitting element, and glass coated light emitting device
JP2009084108A (en) * 2007-09-28 2009-04-23 Sekisui Chem Co Ltd Non-lead glass fine particle-dispersed paste composition
JP2008255362A (en) * 2008-05-26 2008-10-23 Nippon Electric Glass Co Ltd Emitting color conversion member
JP2010132922A (en) * 2010-02-25 2010-06-17 Nippon Electric Glass Co Ltd Composite component for light emission color conversion
JP2010174246A (en) * 2010-02-25 2010-08-12 Nippon Electric Glass Co Ltd Emitting color conversion member
JP2010132923A (en) * 2010-02-25 2010-06-17 Nippon Electric Glass Co Ltd Light emission color conversion member
KR20130025362A (en) * 2010-03-05 2013-03-11 주식회사 앰브로 Lead-free glass material for organic-el sealing, organic el display formed using same, and process for producing the display
KR101626840B1 (en) 2010-03-05 2016-06-02 야마토 덴시 가부시키가이샤 Lead-free glass material for organic-el sealing, and organic el display formed using same
US10252938B2 (en) 2011-07-04 2019-04-09 Hitachi, Ltd. Glass composition, glass frit containing same, glass paste containing same, and electrical/electronic component obtained using same
JP2013071861A (en) * 2011-09-27 2013-04-22 Okamoto Glass Co Ltd Low softening point glass powder
JP2015504840A (en) * 2011-12-29 2015-02-16 ガーディアン・インダストリーズ・コーポレーション Vanadium-based frit material, binder, and / or solvent, and method for producing the same
JP2014028740A (en) * 2012-04-17 2014-02-13 Heraeus Precious Metals North America Conshohocken Llc Tellurium inorganic reaction system for thick electroconductive film paste for solar cell junction
JP2018006451A (en) * 2016-06-29 2018-01-11 日本新工芯技株式会社 Bonding method

Similar Documents

Publication Publication Date Title
JP2003192378A (en) Lead-free low-melting glass for sealing
KR100978359B1 (en) Lead-free glass material for use in sealing and, sealed article and method for sealing using the same
CA2050517C (en) Sealing materials and glasses
JP2628007B2 (en) Lead-free glass and sealing material using the same
JP3845853B2 (en) Tin borophosphate glass and sealing material
JP4774721B2 (en) Low melting glass, sealing composition and sealing paste
JP3951514B2 (en) Silica tin phosphate glass and sealing material
JP3424219B2 (en) Low melting point sealing composition
JP4766444B2 (en) Bismuth-based lead-free sealing material
KR101020143B1 (en) Bismuth-based sealing material and bismuth-based paste material
JPS62191442A (en) Low-melting sealing composition
JP2008254974A (en) Bismuth-based low melting point glass composition
JPH08259262A (en) Low melting point seal bonding composition
JP2001010843A (en) Crystalline low-melting glass and sealing composition
JP2003238199A (en) Press frit
JP2003146691A (en) Low melting point glass, and production method therefor
JP5545589B2 (en) Manufacturing method of sealing material
JP2007161524A (en) Bismuth-based glass composition
JP2001322832A (en) Sealing composition
JP2002179436A (en) Silver phosphate glass and sealing material by using the same
JP2007169162A (en) Bismuth-based glass composition and bismuth-based material
JP4840980B2 (en) Low-melting lead-free glass material
JP2968985B2 (en) Low melting point sealing composition
JP4836075B2 (en) Low-melting lead-free glass material
JP2001328837A (en) Glass for sealing and sealing material using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060601

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109