JP2003179274A - Thermoelectric converting device - Google Patents

Thermoelectric converting device

Info

Publication number
JP2003179274A
JP2003179274A JP2001378950A JP2001378950A JP2003179274A JP 2003179274 A JP2003179274 A JP 2003179274A JP 2001378950 A JP2001378950 A JP 2001378950A JP 2001378950 A JP2001378950 A JP 2001378950A JP 2003179274 A JP2003179274 A JP 2003179274A
Authority
JP
Japan
Prior art keywords
heat
thermoelectric conversion
element group
side heat
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001378950A
Other languages
Japanese (ja)
Inventor
Chiaki Matsubara
千彰 松原
Muhammad Enamul Kabiru
ムハマド エナムル カビル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2001378950A priority Critical patent/JP2003179274A/en
Publication of JP2003179274A publication Critical patent/JP2003179274A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a thermoelectric converting device which is low in production cost and has high thermal conversion efficiency. <P>SOLUTION: The thermoelectric converting device comprises a thermoelectric converting element group 1 formed by arranging P-type semiconductors and N-type conductors alternately and a heat exchanging means which is fixed to the thermoelectric converting element group, which is obtained by repeatedly laminating the P-type semiconductor, a heat-radiation side heat-conductive plate 5, the N-type semiconductor, and the heat-absorption side heat-conductive plate in order and fixing them by a pressing means together with electrodes provided at both ends in the laminating direction. The pressing means is constituted by screwing the thermoelectric converting element group and electrodes by a shaft 10 provided at a nearly center part. The heat-radiation side heat- conductive plate is connected to a heat-radiation side heat exchanging means and the heat-absorption side heat-conductive plate is connected to the heat- absorption side heat exchanging means. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱電変換装置のP
型半導体およびN型半導体と電極の接合法に関し、特に
熱電変換素子との接触部の熱伝達性能の改良に関する。
TECHNICAL FIELD The present invention relates to a thermoelectric conversion device P.
TECHNICAL FIELD The present invention relates to a method for joining an N-type semiconductor and an N-type semiconductor to an electrode, and particularly to improving heat transfer performance at a contact portion with a thermoelectric conversion element.

【0002】[0002]

【従来の技術】熱電変換は、2種の異なる金属やP型、N
型の2種の半導体からなる熱電変換素子により、熱エネ
ルギーを電気エネルギーへ直接変換するゼーベック効果
や電気エネルギーを熱エネルギーへ変換するペルチェ効
果が公知であり、可動部分が無いためメンテナンスや騒
音対策を必要とせず、長期運転が可能である等の特徴が
ある。この特徴を生かして冷蔵、冷凍や自動車、各種エ
ンジン等の排ガスからの電力回収に利用されている。従
来の熱電変換装置を図3に示す。P型半導体およびN型半
導体からなるそれぞれの熱電変換素子107は、電極1
05に半田層108を介して接合され、前記電極105
はセラミックスなどの耐熱性絶縁板104に接着、固定されて
いる。耐熱性絶縁板104の背面側には金属材料などに
より形成された熱交換器の熱交換部材103が熱伝導グ
リース101を用いて接合されている。このような熱電
変換装置においては、構成面では部品点数の低減や性能
面では熱電変換素子と熱交換部材との間の熱抵抗が少な
いことが望まれる。
2. Description of the Related Art Thermoelectric conversion uses two different metals, P type and N type.
The Seebeck effect that directly converts thermal energy into electric energy and the Peltier effect that converts electrical energy into thermal energy are known by the thermoelectric conversion element composed of two types of semiconductors. It has features such as long-term operation without the need. Utilizing this feature, it is used for refrigeration, freezing, and electric power recovery from exhaust gas from automobiles, various engines, and the like. A conventional thermoelectric conversion device is shown in FIG. Each thermoelectric conversion element 107 made of a P-type semiconductor and an N-type semiconductor has an electrode 1
05 through the solder layer 108, and the electrode 105
Is adhered and fixed to a heat resistant insulating plate 104 such as ceramics. A heat exchange member 103 of a heat exchanger formed of a metal material or the like is bonded to the back side of the heat resistant insulating plate 104 by using a heat conductive grease 101. In such a thermoelectric conversion device, it is desired that the number of parts is reduced in terms of configuration and that the thermal resistance between the thermoelectric conversion element and the heat exchange member is low in terms of performance.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
熱電変換装置においては、構成面で電極はP型、N型半
導体と半田付けで接続され、電極は耐熱性絶縁物に機械
的に接合されるなど、部品点数が多いことや半田付け作
業が生産コストを大幅に引き上げていた。また、通常製
造上の問題からモジュール厚にはバラツキがあり、上記
従来の熱電変換装置においては、図3に示すモジュール
1の厚みL1とモジュール2の厚みL2が異なり、高温側、
低温側のそれぞれの熱交換部材103間に熱電変換素子
と電極よりなるモジュールが機械的に固定されている。
モジュール厚みの厚いものは熱交換部材と直接接触する
が、厚みの薄いものは熱伝導グリース層を介して浮いた
状態で固定されることになる。熱電発電装置ではモジュ
ール厚みにバラツキがある複数のモジュールを配置して
組み立てるが、そのときに発生する問題点を図4で説明
する。図4は例として8個のモジュールを設定した場合
で、モジュール111を熱交換部材110により取付ね
じ112で固定した場合を上面から見た図である。図4
で熱交換部材110の平面度やモジュール厚みにより、
モジュールと熱交換部材が機械的に接触するのは数個の
モジュール(ハッチングで示す1−3、2−1、2−
4)に限られることを例として模式的に示している。接
触しないモジュールは機械的な締め付け圧力がかからな
い状態で、熱伝導グリースを介して設定されている。熱
交換部材とモジュールとの接触圧力と、その接触部の熱
抵抗との関係を図5に示す。接触圧力が上昇するととも
に接触部熱抵抗は指数関数的に低減する。最適な接触圧
力は接触部熱抵抗がほぼ一定となるA点領域が最適であ
る。上記の機械的な締め付け圧力がかからない状態で設
定されたモジュールの熱抵抗は大きくなり、ひいては装
置全体の熱変換効率低下へ大きく影響するという問題点
があった。熱電変換素子と電極の接合で半田を使用しな
い例(US6,034,318)では、図6に示すように方形の電
極202の2つの窪みにP型とN型の円柱状半導体素子
201を交互に設定し、複数個の電極202を耐熱性絶
縁物203および金属製の熱交換部材204を介して、
バネ205で加圧して機械的に固定している。しかし、
素子と電極部の厚みL3は素子や電極の厚みにバラツキ
が有り、前記に従来形のように、接圧が加わらない部位
が発生、熱抵抗の増大から熱変換効率の低下の問題点が
ある。そこで、本発明の目的は、電極とP型、N型半導
体の接合に半田付け以外の方法により生産コストを引き
下げること、全ての熱電変換素子に接触圧力が確実に印
加するようにして、接触熱抵抗を低減し、装置全体の熱
変換効率を向上することができる熱電変換装置を提供す
ることである。
However, in the conventional thermoelectric conversion device, the electrodes are connected to the P-type and N-type semiconductors by soldering in terms of construction, and the electrodes are mechanically bonded to the heat-resistant insulator. Due to the large number of parts and the soldering work, the production cost was greatly increased. In addition, there is a variation in module thickness due to a manufacturing problem, and in the above conventional thermoelectric conversion device, the thickness L1 of the module 1 and the thickness L2 of the module 2 shown in FIG.
A module including a thermoelectric conversion element and an electrode is mechanically fixed between the heat exchange members 103 on the low temperature side.
The thick module has direct contact with the heat exchange member, while the thin module is fixed in a floating state via the heat conductive grease layer. In a thermoelectric generator, a plurality of modules having variations in module thickness are arranged and assembled, and the problems that occur at that time will be described with reference to FIG. FIG. 4 is a top view of the case where eight modules are set as an example and the module 111 is fixed by the heat exchange member 110 with the mounting screw 112. Figure 4
Therefore, depending on the flatness of the heat exchange member 110 and the module thickness,
Mechanical contact between the module and the heat exchange member is caused by several modules (hatched 1-3, 2-1 and 2-).
4) is schematically shown as an example. Non-contacting modules are set via thermal grease with no mechanical clamping pressure. FIG. 5 shows the relationship between the contact pressure between the heat exchange member and the module and the thermal resistance of the contact portion. As the contact pressure increases, the contact thermal resistance decreases exponentially. The optimum contact pressure is optimum in the area A where the thermal resistance of the contact part is almost constant. There has been a problem that the thermal resistance of the module set in a state where the above mechanical tightening pressure is not applied becomes large, which in turn has a great influence on the reduction of the heat conversion efficiency of the entire apparatus. In an example (US6,034,318) in which solder is not used for joining the thermoelectric conversion element and the electrode, P-type and N-type columnar semiconductor elements 201 are alternately set in the two depressions of the rectangular electrode 202 as shown in FIG. Then, the plurality of electrodes 202 are connected via the heat resistant insulator 203 and the heat exchange member 204 made of metal,
The spring 205 pressurizes and mechanically fixes it. But,
The thickness L3 of the element and the electrode portion has a variation in the thickness of the element and the electrode. As in the conventional type, there is a portion where the contact pressure is not applied, and there is a problem that the thermal resistance increases and the heat conversion efficiency decreases. . Therefore, an object of the present invention is to reduce the production cost by a method other than soldering for joining the electrodes and the P-type and N-type semiconductors, and to ensure that the contact pressure is applied to all thermoelectric conversion elements. It is an object of the present invention to provide a thermoelectric conversion device that can reduce resistance and improve the heat conversion efficiency of the entire device.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、本発明はつぎの構成にしている。 (1)P型半導体とN型半導体を交互に複数個配置した熱電
変換素子群と、前記熱電変換素子群に固定した熱交換部
材とからなる熱電変換装置において、前記熱電変換素子
群は、P型半導体、放熱側の熱伝導板、N型半導体、吸熱
側の熱伝導板の順に繰り返して積層し、積層方向の両端
に設けた電極とともに押圧手段にて固定したものであ
る。本構成によれば、半田層や耐熱性絶縁物を必要とせ
ず、また各素子に均一の接触圧力を印加できる。 (2)前記押圧手段は、前記素子群と前記電極とを略中央
部に設けたシャフトでねじ締めしたものである。本構成
によれば、耐熱性絶縁物を介しことなく金属製の熱伝導
板が直接的熱交換部材へ伝達されるので、熱の伝達効率
が向上する。 (3)前記放熱側の熱伝導板を放熱側の熱交換部材に、前
記吸熱側の熱伝導板を吸熱側の熱交換部材にそれぞれ接
続したものである。本構成によれば、耐熱性絶縁物を介
しことなく金属製の熱伝導板が直接的熱交換部材へ伝達
されるので、熱の伝達効率が向上する。 (4) 前記熱交換手段は、熱交換部材、熱交換部材間に設
けた絶縁部材および熱媒体からなり、前記熱伝導板と前
記熱交換部材とを接触固定したものである。本構成によ
れば、装置全体の機械的強度を高めて装置としての信頼
性を向上する事でができる。、
In order to solve the above problems, the present invention has the following constitution. (1) a thermoelectric conversion element group comprising a plurality of P-type semiconductors and N-type semiconductors alternately arranged, and a thermoelectric conversion device comprising a heat exchange member fixed to the thermoelectric conversion element group, wherein the thermoelectric conversion element group is P Type semiconductor, the heat conducting plate on the heat radiation side, the N-type semiconductor, and the heat conducting plate on the heat absorbing side are repeatedly laminated in this order and fixed by pressing means together with the electrodes provided at both ends in the laminating direction. According to this structure, a solder layer and a heat resistant insulator are not required, and a uniform contact pressure can be applied to each element. (2) The pressing means is a device in which the element group and the electrode are screwed together by a shaft provided in a substantially central portion. According to this configuration, since the metal heat conduction plate is directly transmitted to the heat exchange member without passing through the heat resistant insulator, the heat transmission efficiency is improved. (3) The heat conducting plate on the heat radiating side is connected to the heat exchanging member on the heat radiating side, and the heat conducting plate on the heat absorbing side is connected to the heat exchanging member on the heat absorbing side. According to this configuration, since the metal heat conduction plate is directly transmitted to the heat exchange member without passing through the heat resistant insulator, the heat transmission efficiency is improved. (4) The heat exchange means includes a heat exchange member, an insulating member provided between the heat exchange members, and a heat medium, and the heat conduction plate and the heat exchange member are fixed in contact with each other. According to this configuration, it is possible to increase the mechanical strength of the entire device and improve the reliability of the device. ,

【0005】[0005]

【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて説明する。図1は、本発明の熱電変換装置を示
す断面図である。図において、1は熱電変換素子群、2
は電極、3、3' は熱交換部材、4は絶縁部材、5は
熱伝導板である。なお、9はナット、10はシャフトで
ある。表面が絶縁物でコーディングされたシャフト10
へ電極2を、次に中空円柱状の熱電変換素子1の中空部
を、次に一部に切り欠き穴を持った熱伝導板5の切り欠
き穴を挿入し、これを順次に繰り返して複数個のN型半
導体、熱伝導板、P型半導体群を形成し、その両端をワ
ッシャ7、Sワッシャ8、を介して、ナット9で所要の
接圧となるように締め付けている。電気出力は両端の電
極よりとリ出している。複数の熱伝導板5の一方は放熱
側熱交換器20の複数の熱交換部材3へ、もう一方は吸
熱側熱交換器30の複数の熱交換部材3へに機械的に接
合されている。前記複数の熱交換部材3間には絶縁部材
4により固定されている。なお、放熱側熱交換器20や
吸熱側熱交換器30には気体や液体の熱媒体が流れて、
熱の交換を行う。また、図2には熱交換部材の変形例を
示している。図上方の熱交換部材は管路径が異なり、管
路径小さい熱交換部材3と管路径大きい熱交換部材3'
の間に絶縁部材4を設定している。また、図下方の熱交
換部材は複数のフィン持ったもので各熱交換部材は絶縁
部材4により電気的に絶縁状態で機械的固定されてい
る。動作は電気エネルギーを熱エネルギーへ変換するペ
ルチェ効果であれば、電極間に電流を流す事により、熱
電素子間に温度差が発生し、熱伝導板を通じて放熱側や
吸熱側へ熱の伝導が行われる。また、熱エネルギーを電
気エネルギーへ変換するゼーベック効果であれば、熱交
換器に温度差を与える事により、両端の電極には電気が
発生する。このような構成であるので、従来形のように
半田付け工程や耐熱性絶縁物が必要なくなり、生産性が
高まりや生産コストを大幅に低減できた。また、各熱電
変換素子の両端をボルトなどにより機械的に所要の接圧
に設定できるようにしたので、素子と電極間や素子と熱
伝導板の熱抵抗が低下して、ひいては装置全体の熱交換
効率が大幅に向上した。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a thermoelectric conversion device of the present invention. In the figure, 1 is a thermoelectric conversion element group, 2
Is an electrode, 3 and 3'is a heat exchange member, 4 is an insulating member, and 5 is a heat conducting plate. In addition, 9 is a nut and 10 is a shaft. Shaft 10 whose surface is coated with insulation
Insert the electrode 2 into the hollow portion of the hollow cylindrical thermoelectric conversion element 1 and then into the cutout hole of the heat conduction plate 5 having a cutout hole in a part thereof, and repeat this step in sequence to obtain a plurality of holes. An N-type semiconductor, a heat conduction plate, and a P-type semiconductor group are formed, and both ends of the N-type semiconductor, the heat conduction plate, and the P-type semiconductor are fastened with a nut 9 through a washer 7 and an S washer 8 so that a required contact pressure is obtained. The electric output goes out from the electrodes at both ends. One of the plurality of heat conduction plates 5 is mechanically joined to the plurality of heat exchange members 3 of the heat radiation side heat exchanger 20, and the other is mechanically joined to the plurality of heat exchange members 3 of the heat absorption side heat exchanger 30. An insulating member 4 fixes between the plurality of heat exchange members 3. In addition, a heat medium such as a gas or a liquid flows through the heat radiation side heat exchanger 20 and the heat absorption side heat exchanger 30,
Exchange heat. Further, FIG. 2 shows a modification of the heat exchange member. The heat exchange members in the upper part of the figure have different pipe diameters, and the heat exchange member 3 having a small pipe diameter and the heat exchange member 3 ′ having a large pipe diameter are provided.
The insulating member 4 is set between the two. The heat exchange member at the bottom of the figure has a plurality of fins, and each heat exchange member is mechanically fixed in an electrically insulated state by an insulating member 4. If the operation is the Peltier effect that converts electrical energy into heat energy, a current difference is generated between the thermoelectric elements by passing a current between the electrodes, and heat is conducted to the heat radiation side or heat absorption side through the heat conduction plate. Be seen. In the case of the Seebeck effect of converting heat energy into electric energy, a temperature difference is applied to the heat exchanger, so that electricity is generated at the electrodes at both ends. With such a configuration, the soldering process and the heat-resistant insulator unlike the conventional type are not required, and the productivity is increased and the production cost can be significantly reduced. Also, since both ends of each thermoelectric conversion element can be mechanically set to the required contact pressure with bolts or the like, the thermal resistance between the element and the electrode and between the element and the heat conduction plate is reduced, and the heat of the entire device is reduced. Exchange efficiency has improved significantly.

【0006】[0006]

【発明の効果】以上述べたように、本発明によれば、電
極と複数個の熱電変換素子と熱伝導板を機械的結合に
し、各熱電変換素子に所要の接圧を設定できるようにし
たので、半田付け工程や耐熱性絶縁物が必要なくなり、
生産性の向上や生産コストの大幅低減ができる。また、
各熱電変換素子の両端をねじなどにより所要の接圧に設
定できるようにしたので、素子と電極間や素子と熱伝導
板の熱抵抗が低下して、ひいては装置全体の熱交換効率
が大幅に向上する効果がある。
As described above, according to the present invention, the electrodes, the plurality of thermoelectric conversion elements, and the heat conduction plate are mechanically coupled so that a required contact pressure can be set for each thermoelectric conversion element. Therefore, there is no need for soldering process or heat resistant insulation
Productivity can be improved and production cost can be significantly reduced. Also,
Since both ends of each thermoelectric conversion element can be set to the required contact pressure with screws etc., the thermal resistance between the element and the electrode and between the element and the heat conduction plate is reduced, which in turn greatly improves the heat exchange efficiency of the entire device. Has the effect of improving.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱電変換装置を示す縦断面図FIG. 1 is a vertical sectional view showing a thermoelectric conversion device of the present invention.

【図2】本発明の他の熱電変換装置を示す縦断面図FIG. 2 is a longitudinal sectional view showing another thermoelectric conversion device of the present invention.

【図3】従来の熱電変換装置を示す縦断面図FIG. 3 is a vertical sectional view showing a conventional thermoelectric conversion device.

【図4】従来の熱電変換装置の状況を示す上面図FIG. 4 is a top view showing a state of a conventional thermoelectric conversion device.

【図5】接触部熱抵抗と接触圧力との関係を示す特性図FIG. 5 is a characteristic diagram showing the relationship between the thermal resistance of the contact portion and the contact pressure.

【図6】従来の熱電変換装置を示す部分断面図FIG. 6 is a partial cross-sectional view showing a conventional thermoelectric conversion device.

【符号の説明】[Explanation of symbols]

1 熱電変換素子群 2 電極 3、3' 熱交換部材 4 絶縁部材 5 熱伝導板 7 ワッシャ 8 Sワッシャ 9 ナット 10 シャフト 20 放熱側熱交換器 30 吸熱側熱交換器 101 熱伝導グリース 103、110、204 熱交換部材 104、203 耐熱性絶縁物 105 電極 108 半田層 107、201 熱電変換素子 111 モジュール 112 取付ねじ 素子 202 電極 205バネ 1 Thermoelectric conversion element group 2 electrodes 3, 3'heat exchange member 4 Insulation member 5 heat conduction plate 7 washers 8 S washer 9 nuts 10 shaft 20 Heat radiation side heat exchanger 30 Heat absorption side heat exchanger 101 Thermal grease 103, 110, 204 Heat exchange member 104, 203 Heat resistant insulation 105 electrode 108 Solder layer 107, 201 thermoelectric conversion element 111 modules 112 mounting screw element 202 electrode 205 spring

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 P型半導体とN型半導体を交互に複数個配
置した熱電変換素子群と、前記熱電変換素子群に固定し
た熱交換手段とからなる熱電変換装置において、 前記熱電変換素子群は、P型半導体、放熱側の熱伝導
板、N型半導体、吸熱側の熱伝導板の順に繰り返して積
層し、積層方向の両端に設けた電極とともに押圧手段に
て固定したことを特徴とする熱電変換装置。
1. A thermoelectric conversion device comprising a thermoelectric conversion element group in which a plurality of P-type semiconductors and N-type semiconductors are alternately arranged, and heat exchange means fixed to the thermoelectric conversion element group, wherein the thermoelectric conversion element group is , P-type semiconductor, heat dissipation side heat conduction plate, N type semiconductor, heat absorption side heat conduction plate are repeatedly laminated in this order, and are fixed by pressing means together with electrodes provided at both ends in the lamination direction. Converter.
【請求項2】 前記押圧手段は、前記素子群と前記電極
とを略中央部に設けたシャフトでねじ締めしたことを特
徴とする請求項1記載の熱電変換装置。
2. The thermoelectric conversion device according to claim 1, wherein the pressing unit is configured such that the element group and the electrode are screwed together by a shaft provided in a substantially central portion.
【請求項3】 前記放熱側の熱伝導板を放熱側熱交換手
段に、前記吸熱側の熱伝導板を吸熱側熱交換手段にそれ
ぞれ接続したことを特徴とする請求項1または2記載の
熱電変換装置。
3. The thermoelectric generator according to claim 1, wherein the heat conducting plate on the heat radiating side is connected to the heat radiating side heat exchanging means, and the heat conducting plate on the heat absorbing side is connected to the heat absorbing side heat exchanging means, respectively. Converter.
【請求項4】 前記熱交換手段は、熱交換部材、熱交換
部材間に設けた絶縁部材および熱媒体からなり、前記熱
伝導板と前記熱交換部材とを接触固定したことを特徴と
する請求項1から3のいずれか1項に記載の熱電変換装
置。
4. The heat exchanging means comprises a heat exchanging member, an insulating member provided between the heat exchanging members, and a heat medium, and the heat conducting plate and the heat exchanging member are fixed in contact with each other. The thermoelectric conversion device according to any one of items 1 to 3.
JP2001378950A 2001-12-12 2001-12-12 Thermoelectric converting device Pending JP2003179274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001378950A JP2003179274A (en) 2001-12-12 2001-12-12 Thermoelectric converting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001378950A JP2003179274A (en) 2001-12-12 2001-12-12 Thermoelectric converting device

Publications (1)

Publication Number Publication Date
JP2003179274A true JP2003179274A (en) 2003-06-27

Family

ID=19186518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001378950A Pending JP2003179274A (en) 2001-12-12 2001-12-12 Thermoelectric converting device

Country Status (1)

Country Link
JP (1) JP2003179274A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066459A (en) * 2006-09-06 2008-03-21 Tohoku Okano Electronics:Kk Thermoelectric element module and thermoelectric conversion device employing it
JP2008546977A (en) * 2005-06-23 2008-12-25 ベバスト・アクチィエンゲゼルシャフト Heating device including thermoelectric module
JP2011526141A (en) * 2008-06-24 2011-09-29 ヴァレオ システム テルミク Device for generating electric energy, heat exchange tube bundle provided with this device, and heat exchanger provided with this tube bundle
JP2013543657A (en) * 2010-09-29 2013-12-05 ヴァレオ システム テルミク Thermoelectric devices, in particular thermoelectric devices for generating electric currents in automobiles
JP2013545270A (en) * 2010-09-29 2013-12-19 ヴァレオ システム テルミク Thermoelectric devices for generating currents, especially in automobiles
CN103840713A (en) * 2012-11-23 2014-06-04 财团法人工业技术研究院 Thermoelectric conversion device and selective absorption film
CN104691052A (en) * 2013-12-10 2015-06-10 财团法人工业技术研究院 Selective Absorption Film and Radiant Heat Recovery Generator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008546977A (en) * 2005-06-23 2008-12-25 ベバスト・アクチィエンゲゼルシャフト Heating device including thermoelectric module
JP4706983B2 (en) * 2005-06-23 2011-06-22 ベバスト・アクチィエンゲゼルシャフト Heating device including thermoelectric module
JP2008066459A (en) * 2006-09-06 2008-03-21 Tohoku Okano Electronics:Kk Thermoelectric element module and thermoelectric conversion device employing it
JP2011526141A (en) * 2008-06-24 2011-09-29 ヴァレオ システム テルミク Device for generating electric energy, heat exchange tube bundle provided with this device, and heat exchanger provided with this tube bundle
JP2013543657A (en) * 2010-09-29 2013-12-05 ヴァレオ システム テルミク Thermoelectric devices, in particular thermoelectric devices for generating electric currents in automobiles
JP2013545270A (en) * 2010-09-29 2013-12-19 ヴァレオ システム テルミク Thermoelectric devices for generating currents, especially in automobiles
CN103840713A (en) * 2012-11-23 2014-06-04 财团法人工业技术研究院 Thermoelectric conversion device and selective absorption film
CN103840713B (en) * 2012-11-23 2016-05-18 财团法人工业技术研究院 Thermoelectric conversion device and selective absorption film
CN104691052A (en) * 2013-12-10 2015-06-10 财团法人工业技术研究院 Selective Absorption Film and Radiant Heat Recovery Generator

Similar Documents

Publication Publication Date Title
US20030140957A1 (en) Thermoelectric module
JP5065077B2 (en) Thermoelectric generator
JP2775410B2 (en) Thermoelectric module
JP2010245265A (en) Thermoelectric module
JP2003179274A (en) Thermoelectric converting device
KR101508793B1 (en) Manufacturing method of heat exchanger using thermoelectric module
JP2006245224A (en) Cascade module for thermoelectric conversion
JPH08335722A (en) Thermoelectric conversion module
JPH11330568A (en) Thermoelectric power generation device and its manufacture
JP2884070B2 (en) Thermoelectric conversion module
JP6350297B2 (en) Thermoelectric generator
JP2003179273A (en) Thermoelectric converting device
CN111670505A (en) Thermoelectric module for generating electricity and corresponding production method
JP2000286463A (en) Thermoelectric conversion module
JP3062754B1 (en) Thermoelectric generation module
JPH02198179A (en) Thermoelectric element and manufacture thereof
EP3428981B1 (en) Thermoelectric conversion module
JP4288927B2 (en) Multistage thermoelectric module
JP2003222426A (en) Heat exchanger
JP2003273412A (en) Thermoelectric conversion device
JP2005317629A (en) Thermoelectric conversion module
JPH07176796A (en) Thermoelectric converter
JP2000091650A (en) High temperature thermoelectric transducer
JP2014110245A (en) Thermoelectric conversion device
JPH0555639A (en) Thermoelectric device