JP2003173802A - Solid electrolyte fuel cell and its manufacturing method - Google Patents

Solid electrolyte fuel cell and its manufacturing method

Info

Publication number
JP2003173802A
JP2003173802A JP2001370678A JP2001370678A JP2003173802A JP 2003173802 A JP2003173802 A JP 2003173802A JP 2001370678 A JP2001370678 A JP 2001370678A JP 2001370678 A JP2001370678 A JP 2001370678A JP 2003173802 A JP2003173802 A JP 2003173802A
Authority
JP
Japan
Prior art keywords
reaction
solid electrolyte
green sheet
fuel cell
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001370678A
Other languages
Japanese (ja)
Other versions
JP4018378B2 (en
Inventor
Hiroya Ishikawa
浩也 石川
Yoshihiro Funahashi
佳宏 舟橋
Masahiro Shibata
昌宏 柴田
Hideki Uematsu
秀樹 上松
Masaaki Hattori
昌晃 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2001370678A priority Critical patent/JP4018378B2/en
Publication of JP2003173802A publication Critical patent/JP2003173802A/en
Application granted granted Critical
Publication of JP4018378B2 publication Critical patent/JP4018378B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolyte fuel cell, and its manufacturing method, equipped with an anti-reaction layer for effectively preventing reaction of solid electrolyte and each electrode. <P>SOLUTION: The solid electrolyte fuel cell is provided with a fuel electrode to be a substrate, a solid electrolyte layer equipped on the fuel electrode by film forming, and an air electrode equipped on the fuel electrode at the other side of the fuel electrode by film forming, and further, with an anti-reaction layer fitted between the solid electrolyte and at least either the fuel electrode or the air electrode with a porosity to be not more than 25%. By controlling the porosity at 25% or under, a solid electrolyte fuel cell with a good low electric resistance. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃料極基板に固体
電解質及び空気極を成膜形成し、固体電解質と電極との
界面に反応防止層を導入した支持膜型の固体電解質型燃
料電池及びその製造方法に関するものである。更に詳し
くは、固体電解質と各電極との反応を有効に防止する反
応防止層を用いた内部抵抗が低い固体電解質型燃料電池
及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte fuel cell of a supporting membrane type in which a solid electrolyte and an air electrode are formed on a fuel electrode substrate and a reaction preventive layer is introduced at the interface between the solid electrolyte and the electrode. The present invention relates to a manufacturing method thereof. More specifically, the present invention relates to a solid oxide fuel cell having a low internal resistance using a reaction preventive layer that effectively prevents a reaction between a solid electrolyte and each electrode, and a method for producing the same.

【0002】[0002]

【従来の技術】平板型の固体電解質型燃料電池(以下、
燃料電池と略す)には、自立膜式/支持膜式で区別され
る方式がある。自立膜式は、固体電解質が最も厚く形成
されたものである。例えばイットリア安定化ジルコニア
(以下、YSZという)等からなる500μm程度の比
較的厚い固体電解質板に、ニッケル及びYSZからなる
燃料極と、ペロブスカイト複合酸化物(例えば、ランタ
ンストロンチウムマンガナイト、以下、LSMという)
からなる空気極とがそれぞれ30μm程度と薄く形成さ
れた単セル構造を有する。
2. Description of the Related Art A flat plate type solid oxide fuel cell (hereinafter referred to as
The fuel cell (abbreviated as fuel cell) has a system that is distinguished by a self-supporting membrane type / supporting membrane type. The self-supporting membrane type is one in which the solid electrolyte is formed thickest. For example, a relatively thick solid electrolyte plate of about 500 μm made of yttria-stabilized zirconia (hereinafter referred to as YSZ) or the like, a fuel electrode made of nickel and YSZ, and a perovskite complex oxide (for example, lanthanum strontium manganite, hereinafter referred to as LSM). )
And an air electrode composed of 3 μm each have a single cell structure thinly formed with a thickness of about 30 μm.

【0003】これに対し、支持膜式は固体電解質が薄く
形成されており、燃料極及び空気極の一方のみを100
0μm程度に厚く形成した基板とし、固体電解質ともう
一方の電極を50μm等と極力薄く形成した単セル構造
を有する。(例えば、特開2000−260436号公
報、特開2001−283877号公報参照)。これら
燃料電池を作製する際、ジルコニア系電解質と空気極材
料との反応性が高いため、電極焼付け時に固体電解質と
電極との界面において高抵抗の反応相が生成して燃料電
池全体の内部抵抗が増加し、燃料電池の出力低下を招く
問題があった。また、ランタンガレード系電解質と燃料
極材料及び空気極材料との反応性も高いため、同様に固
体電解質と各電極との界面に反応相が生成して燃料電池
の出力低下を招く問題があった。
On the other hand, in the support membrane type, the solid electrolyte is formed thinly, and only one of the fuel electrode and the air electrode is 100
The substrate has a thickness of about 0 μm and has a single cell structure in which the solid electrolyte and the other electrode are formed as thin as 50 μm. (See, for example, JP 2000-260436 A and JP 2001-283877 A). When manufacturing these fuel cells, since the reactivity between the zirconia-based electrolyte and the air electrode material is high, a high resistance reaction phase is generated at the interface between the solid electrolyte and the electrode during electrode baking, and the internal resistance of the entire fuel cell is reduced. However, there is a problem that the output increases and the output of the fuel cell decreases. In addition, since the reactivity of the lanthanum garde-based electrolyte with the fuel electrode material and the air electrode material is also high, there is a problem that a reaction phase is similarly generated at the interface between the solid electrolyte and each electrode, which causes a reduction in output of the fuel cell. It was

【0004】この問題に対し、酸化セリウムを主成分と
した反応防止層用グリーンシートを焼成済の固体電解質
上に形成し、更に各電極を形成してから焼成すること
で、反応を防止する検討が特開平10−177862号
公報やH.Uchida,S.Arisaka,andM.Watanabe,Solid State
Ionics,135,347(2000)及びH.Uchida,S.Arisaka,and M.
Watanabe,Erectrochem.Solid-State.Lett.,2,428(1999)
等でなされている。
In order to solve this problem, a reaction preventing layer is formed by forming a green sheet for a reaction preventive layer containing cerium oxide as a main component on a baked solid electrolyte, and then forming each electrode and baking the electrode. Japanese Patent Laid-Open No. 10-177862, H. Uchida, S. Arisaka, and M. Watanabe, Solid State.
Ionics, 135, 347 (2000) and H. Uchida, S. Arisaka, and M.
Watanabe, Erectrochem. Solid-State. Lett., 2,428 (1999)
Etc.

【0005】[0005]

【発明が解決しようとする課題】しかし、反応防止層に
は所々に気孔があるため、この気孔を介して電極材料と
固体電解質とが直接接触してしまい、この部分で反応相
が生成する恐れがある。また、一般に反応防止層は電気
抵抗が小さい、即ち、酸素イオン導電性が高いものが求
められるため、粒子同士が繋がった緻密なものが好まし
い。このため、ジルコニア系電解質の表面に酸化セリウ
ムを主成分とする反応防止層を形成する際、焼付け温度
を高くして反応防止層をより緻密化にすることが行われ
る。しかし、無闇に焼付け温度を高くすると電解質と反
応防止層の反応により、イオン導電性の低下を招く恐れ
がある。
However, since the reaction prevention layer has pores in some places, the electrode material and the solid electrolyte may come into direct contact with each other through the pores, and a reaction phase may be generated in this portion. There is. Further, in general, the reaction prevention layer is required to have a low electric resistance, that is, a high oxygen ion conductivity. Therefore, a dense one in which particles are connected to each other is preferable. Therefore, when forming the reaction preventive layer containing cerium oxide as the main component on the surface of the zirconia-based electrolyte, the baking temperature is increased to make the reaction preventive layer more dense. However, if the baking temperature is unduly raised, the ionic conductivity may be lowered due to the reaction between the electrolyte and the reaction preventive layer.

【0006】また、固定電解質を焼成した後に、その表
面に反応防止層を焼き付けると焼成工程が二工程となる
ため、焼成に伴うコストが増大する。本発明は、上記問
題点を解決するものであり、固体電解質と各電極との反
応を効果的に防止する反応防止層を用いた内部抵抗が低
い固体電解質型燃料電池及びその製造方法を提供するこ
とを目的とする。
Further, if the reaction preventive layer is baked on the surface of the fixed electrolyte after baking, the baking process becomes two steps, so that the cost associated with baking increases. The present invention solves the above problems, and provides a solid oxide fuel cell having a low internal resistance using a reaction preventive layer that effectively prevents a reaction between a solid electrolyte and each electrode, and a method for producing the same. The purpose is to

【0007】[0007]

【課題を解決するための手段】即ち、本発明の固体電解
質型燃料電池は、基板となる燃料極と、該燃料極上に成
膜によって設けられる固体電解質層と、該固体電解質層
の燃料極側の反対側に成膜によって設けられる空気極と
を有し、上記固体電解質層と上記燃料極及び上記空気極
の少なくとも一方との間に設けられ、気孔率が25%以
下のCe1−xLn2−δである反応防止層と、を
備えることを特徴とする。また、Lnは希土類元素であ
り、xの範囲は0.05≦x≦0.3である。尚、δは
酸素欠損量である。
That is, a solid oxide fuel cell of the present invention comprises a fuel electrode serving as a substrate, a solid electrolyte layer formed on the fuel electrode by film formation, and a fuel electrode side of the solid electrolyte layer. opposite and a cathode provided by deposition on, provided between at least one of the solid electrolyte layer and the fuel electrode and the air electrode, porosity less 25% Ce 1-x Ln characterized in that it and a reaction-preventing layer is x O 2-δ. Ln is a rare earth element, and the range of x is 0.05 ≦ x ≦ 0.3. In addition, δ is the amount of oxygen deficiency.

【0008】更に、上記反応防止層はGa元素を含み、
該Ga元素の含有量は酸化物換算で0.05〜1.5m
ol%であるとすることができる。また、上記反応防止
層の厚さは1〜18μmとすることができる。更に、上
記固体電解質層はLn23(ただし、Lnは希土類元
素)で安定化したジルコニア(ZrO)、又はSr及
びMgの少なくとも一方をドープしたランタンガレード
(LaGaO)とすることができる。
Further, the reaction preventing layer contains Ga element,
The content of the Ga element is 0.05 to 1.5 m in terms of oxide.
can be ol%. The thickness of the reaction prevention layer can be set to 1 to 18 μm. Further, the solid electrolyte layer may be zirconia (ZrO 2 ) stabilized with Ln 2 O 3 (where Ln is a rare earth element) or lanthanum garade (LaGaO 3 ) doped with at least one of Sr and Mg. it can.

【0009】本発明の固体電解質型燃料電池の製造方法
は、少なくとも酸化ニッケルを含有する燃料極用グリー
ンシート、並びに固体電解質層用グリーンシート及び反
応防止層用グリーンシートを所定の順序で積層して積層
体を得る工程と、該積層体を焼成する工程と、この焼成
により得られた反応防止層の表面上に空気極を形成する
工程と、を備えることを特徴とする。
In the method for producing a solid oxide fuel cell of the present invention, a green sheet for a fuel electrode containing at least nickel oxide, a green sheet for a solid electrolyte layer and a green sheet for a reaction preventive layer are laminated in a predetermined order. The method is characterized by including a step of obtaining a laminated body, a step of firing the laminated body, and a step of forming an air electrode on the surface of the reaction preventive layer obtained by the firing.

【0010】上記燃料極用グリーンシートを単独焼成し
た場合の収縮率は、反応防止層用グリーンシートを単独
焼成した場合の収縮率より小さくなる条件で上記焼成を
行うことができる。また、上記燃料極用グリーンシート
を単独焼成した場合の収縮率をA、固体電解質層用グリ
ーンシートを単独焼成した場合の収縮率をB、及び反応
防止層用グリーンシートを単独焼成した場合の収縮率を
Cとしたときに、A≦B<Cの関係を満たす条件で上記
焼成を行うことができる。更に、上記積層体の焼成温度
は、1250〜1450℃とすることができる。
The above-mentioned firing can be carried out under the condition that the shrinkage rate when the fuel electrode green sheet is fired alone is smaller than the shrinkage rate when the reaction preventing layer green sheet is fired alone. In addition, the contraction rate when the above-mentioned fuel electrode green sheet is independently fired is A, the contraction rate when the solid electrolyte layer green sheet is independently fired is B, and the contraction rate when the reaction prevention layer green sheet is independently fired. When the rate is C, the above firing can be performed under the condition that A ≦ B <C is satisfied. Further, the firing temperature of the laminate can be set to 1250 to 1450 ° C.

【0011】[0011]

【発明の効果】本発明の固体電解質型燃料電池によれ
ば、25%以下の気孔率となる緻密な反応防止層を用い
ることにより、燃料極及び空気極のうちのいずれか一方
と固体電解質との間の反応を有効に防止し、内部抵抗が
小さい固体電解室型燃料電池とすることができる。特
に、反応防止層をCe1−xLn2−δにより構成
することで、イオン導電性が高く、しかも固体電解質と
各電極との反応性を低くすることができる。更に、Ga
元素を所定割合で反応防止層に含有させることで、緻密
化した反応防止層を容易に得ることができる。また、上
記反応防止層の厚さを所定範囲とすることで、固体電解
質と反応防止層との反応を有効に防止でき、また電気抵
抗が低いものとすることができる。
According to the solid oxide fuel cell of the present invention, by using a dense reaction preventing layer having a porosity of 25% or less, one of the fuel electrode and the air electrode and the solid electrolyte can be formed. It is possible to obtain a solid-electrolyte chamber fuel cell having a small internal resistance by effectively preventing the reaction between the two. In particular, when the reaction preventive layer is made of Ce 1-x Ln x O 2-δ , the ionic conductivity is high and the reactivity between the solid electrolyte and each electrode can be lowered. Furthermore, Ga
A densified reaction-preventing layer can be easily obtained by incorporating an element in a predetermined ratio into the reaction-preventing layer. Further, by setting the thickness of the reaction preventing layer within a predetermined range, it is possible to effectively prevent the reaction between the solid electrolyte and the reaction preventing layer, and it is possible to reduce the electric resistance.

【0012】本発明の固体電解質型燃料電池の製造方法
によれば、燃料極層用グリーンシート、固体電解質層用
グリーンシート及び反応防止層用グリーンシートの積層
体を同時に焼成することで、固体電解質用グリーンシー
トの焼成時の収縮により、反応防止層を強制的に収縮さ
せ、反応防止層を緻密化でき、気孔率を制御することが
できる。特に、上記固体電解質用グリーンシートを単独
で焼成したときの収縮率を、上記反応防止層用グリーン
シートを単独で焼成したときの収縮率よりも小さいもの
とすることで、反応防止層用グリーンシートの収縮率を
実質的に小さくすることが可能であり、より緻密化する
ことができる。
According to the method for producing a solid oxide fuel cell of the present invention, the solid electrolyte is obtained by simultaneously firing the laminate of the green sheet for the fuel electrode layer, the green sheet for the solid electrolyte layer and the green sheet for the reaction prevention layer. The reaction-preventing layer can be forcibly shrunk by the shrinkage of the green sheet for firing during firing, so that the reaction-preventing layer can be densified and the porosity can be controlled. In particular, by setting the shrinkage rate when the solid electrolyte green sheet is fired alone to be smaller than the shrinkage rate when the reaction prevention layer green sheet is fired alone, the reaction prevention layer green sheet It is possible to substantially reduce the shrinkage ratio of, and it is possible to further densify.

【0013】[0013]

【発明の実施の形態】本発明について、以下に詳細に説
明する。上記本発明の固体電解質型燃料電池は、各電極
材料と固体電解質とが反応防止層に生じた気孔を介して
直接接触して反応を起こすことを防止するために、反応
防止層の気孔率を所定の割合未満とし、反応防止層を緻
密にしたことが特徴である。本発明者らがこの気孔率に
ついて、種々の方法で制御した結果、特に気孔率が25
%以下(好ましくは24%以下、更に好ましくは23%
以下)である場合には、各電極と固体電解質との反応を
有効に防止することができることがわかった。また、反
応防止層の粒界における電気抵抗も小さくなり、気孔率
が25%を超えるものに比べて、性能向上が明確とな
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. The solid oxide fuel cell of the present invention has a porosity of the reaction preventive layer in order to prevent a reaction by directly contacting each electrode material and the solid electrolyte through the pores generated in the reaction preventive layer. The characteristic is that the ratio is less than the predetermined ratio and the reaction preventing layer is made dense. As a result of controlling the porosity by various methods, the present inventors found that the porosity was 25
% Or less (preferably 24% or less, more preferably 23%
In the following cases, it was found that the reaction between each electrode and the solid electrolyte can be effectively prevented. In addition, the electrical resistance at the grain boundaries of the reaction preventive layer also becomes small, and the performance improvement becomes clear as compared with the case where the porosity exceeds 25%.

【0014】上記「気孔率」は、上記「反応防止層」の
断面を撮影し、その撮影物全体に対して気孔が占める面
積の比率とする。また、気孔率を25%以内とするの
は、25%を超えるとものに比べて、出力密度の性能向
上が明確となるためである。上記「Ce1−xLn
2−δ」を構成するLnは、希土類元素、つまりSc及
びY等からなる群から選ばれる少なくとも一種である。
また、この希土類元素のうち、Sm及びGdが好まし
い。更に、具体例としては、Ce0.8Sm0.2 1.9(以
下SDCと表記)又はCe0.8Gd0.21.9(以下GD
Cと表記)を挙げることができる。
The above "porosity" means that of the above "reaction prevention layer".
The surface of the cross-section taken by the pores for the entire object.
The product ratio. In addition, the porosity should be within 25%
Is more than 25% compared to the original power density performance
This is because the top becomes clear. Above "Ce1-xLnxO
2-δIs a rare earth element, that is, Sc and
And at least one selected from the group consisting of Y and the like.
Of these rare earth elements, Sm and Gd are preferred.
Yes. Further, as a specific example, Ce0.8Sm0.2O 1.9(Below
Lower SDC) or Ce0.8Gd0.2O1.9(Hereinafter GD
C).

【0015】また、上記反応防止層は、Ga元素を酸化
物換算で0.05〜1.5mol%(好ましくは、0.
05〜1mol%、更に好ましくは、0.1〜1mol
%)含有することが好ましい。Ga元素を含有すること
により、反応防止層を緻密化しやすく、気孔率を低くす
ることができ、電気抵抗を更に小さくすることができ
る。Ga元素の含有量が0.05mol%未満では、そ
の効果が明確には認められない。一方、1.5mol%
よりも多く添加すると、反応防止層の電気抵抗は逆に高
くなる傾向にあり、好ましくない。尚、上記反応防止層
は、イオン導電性を阻害せず、しかも上記反応を防止す
る効果を損なわない限り、他の目的で種々の成分や添加
剤等を含んでいてもかまわない。
Further, in the reaction preventing layer, the Ga element is converted into an oxide in an amount of 0.05 to 1.5 mol% (preferably, 0.
05 to 1 mol%, more preferably 0.1 to 1 mol
%) Is preferably contained. By containing the Ga element, the reaction preventing layer can be easily densified, the porosity can be lowered, and the electric resistance can be further reduced. If the content of Ga element is less than 0.05 mol%, the effect is not clearly recognized. On the other hand, 1.5 mol%
If it is added in a larger amount, the electric resistance of the reaction preventive layer tends to increase, which is not preferable. The reaction-preventing layer may contain various components and additives for other purposes as long as it does not impair the ionic conductivity and does not impair the effect of preventing the reaction.

【0016】次に、上記本発明の反応防止層は、上記固
体電解質と上記空気極との間、及び上記固体電解質と上
記燃料極との間の少なくとも一方に設けることができ
る。特に反応が起こりやすい固体電解質の電極界面に設
けることができる。更に、上記反応防止層の厚さは1〜
18μm(好ましくは、1〜15μm、更に好ましく
は、2〜10μm、特に好ましくは3〜7μm)とする
ことができる。1μm未満であると、気孔によって表裏
が連通し易くなり、その部分での固体電解質と各電極と
の反応が起こる傾向にあるため好ましくない。更に、反
応防止層を固体電解質上に固定するための熱処理時に固
体電解質と反応防止層との界面で反応が起こり、高抵抗
の反応相を形成する恐れがあるため好ましくない。一
方、18μmを越えると、反応防止層中のイオン移動抵
抗が大きくなる傾向にあるため、好ましくない。従っ
て、反応防止層の厚さはできる限り薄くするのが好まし
い。
Next, the reaction preventive layer of the present invention can be provided between at least one of the solid electrolyte and the air electrode and between at least one of the solid electrolyte and the fuel electrode. In particular, it can be provided at the electrode interface of the solid electrolyte where the reaction easily occurs. Furthermore, the thickness of the reaction prevention layer is 1 to
The thickness can be 18 μm (preferably 1 to 15 μm, more preferably 2 to 10 μm, particularly preferably 3 to 7 μm). When it is less than 1 μm, the front and back sides are easily communicated with each other due to pores, and the reaction between the solid electrolyte and each electrode tends to occur at that portion, which is not preferable. Further, during the heat treatment for fixing the reaction preventive layer on the solid electrolyte, a reaction may occur at the interface between the solid electrolyte and the reaction preventive layer, which may form a high resistance reaction phase, which is not preferable. On the other hand, when it exceeds 18 μm, the ion migration resistance in the reaction preventive layer tends to increase, which is not preferable. Therefore, it is preferable that the thickness of the reaction preventing layer is as thin as possible.

【0017】上記燃料極用グリーンシートの収縮率が、
反応防止層の収縮率より小さい方が好ましい。即ち、基
板となる燃料極用グリーンシートの収縮率を小さくする
ことで、燃料極用グリーンシートの収縮に伴って固体電
解質用グリーンシート及び反応防止層用グリーンシート
の焼成による収縮以上に収縮させることができ、より緻
密にすることができる。同様に、固体電解質用グリーン
シートの収縮を反応防止層用グリーンシートの収縮より
大きくすることで、固体電解質用グリーンシートの収縮
によって反応防止層用グリーンシートをより収縮するこ
とができる。
The shrinkage ratio of the fuel electrode green sheet is
It is preferably smaller than the shrinkage rate of the reaction preventive layer. That is, by shrinking the shrinkage rate of the fuel electrode green sheet, which is a substrate, the shrinkage of the solid electrolyte green sheet and the reaction prevention layer green sheet is more than the shrinkage due to the shrinkage of the fuel electrode green sheet. It can be made more precise. Similarly, by making the shrinkage of the green sheet for solid electrolyte larger than that of the green sheet for reaction prevention layer, the green sheet for reaction prevention layer can be further shrunk by the shrinkage of the green sheet for solid electrolyte.

【0018】上記固体電解質としては、いずれの従来公
知の固体電解質を用いてもよい。例えば、ジルコニア系
酸化物、LaGaO系酸化物、BaCeO系酸化物
等が挙げることができる。これらは燃料電池用の固体電
解質として安定して使用でき、イオン導電性が優れてい
る材料であるためである。ジルコニア系電解質は、空気
極との反応が起こりやすいため、固体電解質と空気極と
の界面へ上記本発明の反応防止層を導入することが好ま
しく、上記本発明の反応防止層を用いることで、燃料電
池特性が有効に向上される。また、ランタンガレード系
電解質は、燃料極と固体電解質との界面、及び空気極と
固体電解質との界面の両方において構成元素の拡散が起
こりやすいため、両方の界面へ反応防止層を導入するこ
とが好ましい。
Any conventionally known solid electrolyte may be used as the solid electrolyte. For example, zirconia-based oxide, LaGaO 3 -based oxide, BaCeO 3 -based oxide and the like can be mentioned. This is because these are materials that can be stably used as solid electrolytes for fuel cells and have excellent ionic conductivity. Zirconia-based electrolyte, since the reaction with the air electrode is likely to occur, it is preferable to introduce the reaction preventive layer of the present invention at the interface between the solid electrolyte and the air electrode, by using the reaction preventive layer of the present invention, The fuel cell characteristics are effectively improved. In addition, since the lanthanum garde-based electrolyte is likely to diffuse constituent elements at both the interface between the fuel electrode and the solid electrolyte and the interface between the air electrode and the solid electrolyte, it is necessary to introduce a reaction preventive layer at both interfaces. Is preferred.

【0019】上記燃料極としては、いずれの従来公知の
材料でも良いが、例えば、Au、Pd、Ni及びFe等
の金属、又は前記金属とZrO、CeO、MnO
等の金属酸化物との混合物を挙げることができる。ま
た、上記空気極としては、いずれの従来公知の材料でも
良いが、例えば、白金、又は金属酸化物、例えば、酸化
ランタン、酸化ストロンチウム、酸化セリウム、酸化コ
バルト、酸化マンガン、酸化鉄又はこれらの組合せの複
合酸化物等が挙げられる。
The fuel electrode may be any conventionally known material, for example, a metal such as Au, Pd, Ni and Fe, or the above metal and ZrO 2 , CeO 2 , MnO 2
And a mixture with a metal oxide such as. The air electrode may be any conventionally known material, for example, platinum, or a metal oxide such as lanthanum oxide, strontium oxide, cerium oxide, cobalt oxide, manganese oxide, iron oxide or a combination thereof. And the like.

【0020】更に、本発明の固体電解質型燃料電池の製
造方法によれば、燃料極用グリーンシート、固体電解質
用グリーンシート及び反応防止層用グリーンシートの積
層体を焼成することにより、燃料極用グリーンシート及
び固体電解質用グリーンシートの焼成時の収縮により、
反応防止層用グリーンシートを強制的に収縮させること
で、反応防止層を緻密化でき、気孔率を制御することが
できる。尚、上記各「グリーンシート」は、未焼成体の
他、仮焼体も含めたシートとする。特に、燃料極用グリ
ーンシート及び固体電解質用グリーンシートを単独で焼
成したときの収縮率を、上記反応防止層用グリーンシー
トを単独で焼成したときの収縮率よりも小さいものとす
ることで、反応防止層用グリーンシートの収縮率を小さ
くし、より緻密化することができる。収縮率の差は、い
ずれであってもよいが、効果的に収縮させ、かつ反りが
ないように、好ましくは燃料極用グリーンシートの収縮
率が反応防止層用グリーンシートの収縮率の0.8〜
0.98倍、より好ましくは0.85〜0.95倍程度
である。この「収縮率」は、該当する部位を単独で焼成
し、焼成後の該当部位の幅をグリーンシートの該当部位
の幅で割った値である。
Further, according to the method for producing a solid oxide fuel cell of the present invention, a laminate of a green sheet for a fuel electrode, a green sheet for a solid electrolyte and a green sheet for a reaction preventive layer is fired to produce a fuel electrode for a fuel electrode. Due to shrinkage during firing of the green sheet and the solid electrolyte green sheet,
By forcibly shrinking the reaction-preventing layer green sheet, the reaction-preventing layer can be densified and the porosity can be controlled. Each of the above-mentioned "green sheets" is a sheet that includes not only the unfired body but also the calcined body. In particular, the shrinkage rate when the green sheet for the fuel electrode and the green sheet for the solid electrolyte is independently fired is set to be smaller than the shrinkage rate when the green sheet for the reaction prevention layer is independently fired, so that the reaction The shrinkage rate of the green sheet for the prevention layer can be reduced to make the green sheet more dense. The difference in shrinkage may be any, but it is preferable that the shrinkage of the fuel electrode green sheet is 0. 8 ~
It is 0.98 times, more preferably about 0.85 to 0.95 times. The “shrinkage ratio” is a value obtained by firing the corresponding portion independently and dividing the width of the corresponding portion after firing by the width of the corresponding portion of the green sheet.

【0021】積層体の焼成温度は、1250〜1450
℃(好ましくは、1300〜1400℃)が好ましい。
1250℃未満であると、燃料極、固体電解質及び反応
防止層は十分に緻密化されることが困難であり、燃料電
池として使用が困難である。また、1550℃を超える
と、固体電解質及び反応防止層の界面において焼成時に
反応が起こり、高抵抗の反応相ができてしまい、燃料電
池性能が低下する傾向にある。
The firing temperature of the laminate is 1250 to 1450.
C. (preferably 1300 to 1400.degree. C.) is preferable.
When the temperature is lower than 1250 ° C, it is difficult to sufficiently densify the fuel electrode, the solid electrolyte and the reaction preventing layer, and it is difficult to use the fuel cell as a fuel cell. On the other hand, if the temperature exceeds 1550 ° C, a reaction occurs at the interface between the solid electrolyte and the reaction preventive layer during firing to form a high resistance reaction phase, which tends to deteriorate the fuel cell performance.

【0022】[0022]

【実施例】以下、本発明について、実施例を挙げて具体
的に説明する。 1.固体電解質型燃料電池の作製 (1)燃料極用グリーンシート 酸化ニッケル粉末60重量部と、イットリア安定化ジル
コニア(8mol%Y −92mol%ZrO
以下8YSZと略称する)粉末40重量部を混合して成
分原料とし、気孔形成剤として人造黒鉛粉を30重量部
加えた。次いで、分散剤1重量部と、トルエン及びメチ
ルエチルケトンを2:3の割合で混合して得た有機溶媒
35重量部とをそれぞれ混合し、アルミナ製ポットミル
を用いて24時間混合した。
EXAMPLES Hereinafter, the present invention will be described with reference to examples.
To explain. 1. Fabrication of solid oxide fuel cell (1) Green sheet for fuel electrode 60 parts by weight of nickel oxide powder and yttria-stabilized zircon
Konia (8mol% Y TwoOThree-92 mol% ZrOTwo,
(Hereinafter, abbreviated as 8YSZ)
30 parts by weight of artificial graphite powder as a pore forming agent
added. Then 1 part by weight of dispersant, toluene and methyl
Organic solvent obtained by mixing ruethyl ketone in a ratio of 2: 3
Alumina pot mill
And mixed for 24 hours.

【0023】その後、可塑剤としてフタル酸ジブチル
(DBP)を7重量部、及びバインダとしてポリビニル
アルコール16重量部をそれぞれ加えて更に3時間混合
し、スラリーを得た。このスラリーをドクターブレード
法で厚さ200μmのグリーンシートを得た。そして、
上記グリーンシートを7枚積層圧着した後、30mmの
正方形に切断して厚さ1300μmの燃料極用グリーン
シートLを得た。また、バインダのポリビニルアルコー
ルを20重量部として燃料極用グリーンシートMを作製
した。
Thereafter, 7 parts by weight of dibutyl phthalate (DBP) as a plasticizer and 16 parts by weight of polyvinyl alcohol as a binder were added and mixed for another 3 hours to obtain a slurry. A 200 μm thick green sheet was obtained from this slurry by the doctor blade method. And
Seven green sheets were laminated and pressure-bonded, and then cut into a 30 mm square to obtain a green sheet L for a fuel electrode having a thickness of 1300 μm. In addition, a fuel electrode green sheet M was prepared with 20 parts by weight of polyvinyl alcohol as a binder.

【0024】(2)固体電解質用グリーンシート及び反
応防止層用グリーンシート 8YSZ粉末100重量部と、バインダとしてポリビニ
ルアルコール13重量部及びブチルカルビトール35重
量部とをそれぞれ混合して、固体電解質材料のスラリー
を調製した。このスラリーを燃料極用グリーンシートの
一方の面に25μmの厚さでスクリーン印刷し、固体電
解質用グリーンシートを形成した。
(2) Solid electrolyte green sheet and reaction preventive layer green sheet 8 parts by weight of YSZ powder, 13 parts by weight of polyvinyl alcohol and 35 parts by weight of butyl carbitol as a binder are mixed to prepare a solid electrolyte material. A slurry was prepared. This slurry was screen-printed on one surface of the fuel electrode green sheet to a thickness of 25 μm to form a solid electrolyte green sheet.

【0025】反応防止層用グリーンシートは、サマリア
をドープしたセリア(Sm0.2Ce0 .80.8、以下SD
Cと略称する)を用いた。このSDCは、酸化サマリウ
ム及び酸化セリウムを所定量秤量し、エタノールを溶媒
として湿式混合後、1400℃、6時間の条件で仮焼し
て粉末を得た。続いて、この粉末にエタノールを加えて
湿式粉砕し、平均粒径が0.6μmのSDCの粉末を得
た。このSDC粉末100重量部に、バインダとしてポ
リビニルアルコール13重量部及びブチルカルビトール
35重量部とをそれぞれ混合して、反応防止層スラリー
とした。このスラリーを固体電解質用グリーンシート上
に15mm角の正方形となるようにスクリーン印刷して
反応防止層用グリーンシートを形成した。
[0025] The green sheet for the reaction prevention layer, doped ceria Samaria (Sm 0.2 Ce 0 .8 O 0.8 , below SD
(Abbreviated as C) was used. This SDC was obtained by weighing predetermined amounts of samarium oxide and cerium oxide, wet-mixing them with ethanol as a solvent, and then calcining the mixture at 1400 ° C. for 6 hours to obtain a powder. Subsequently, ethanol was added to this powder and wet pulverization was performed to obtain an SDC powder having an average particle size of 0.6 μm. 100 parts by weight of this SDC powder was mixed with 13 parts by weight of polyvinyl alcohol and 35 parts by weight of butyl carbitol as a binder to prepare a reaction preventive layer slurry. This slurry was screen-printed on the green sheet for solid electrolyte so as to form a square of 15 mm square to form a green sheet for reaction prevention layer.

【0026】また、異なる反応防止層として、ガリウム
を微量添加したSm0.8Ce0.2-xGax2-δ(xは0.
005又は0.01)からなる組成物粉末を調製し、こ
の組成物粉末を用いて反応防止層用グリーンシートを形
成し、積層体を得た。
Further, as a different reaction preventing layer, Sm 0.8 Ce 0.2-x Ga x O 2-δ (x is 0.
005 or 0.01) was prepared, and a green sheet for a reaction preventive layer was formed using this composition powder to obtain a laminate.

【0027】(3)焼成 燃料極用グリーンシート、固体電解質用グリーンシート
及び反応防止層用グリーンシートを積層して得た積層体
を、所定の焼成温度で焼成を一時間行い、積層焼成体を
得た。
(3) A laminated body obtained by laminating the fired fuel electrode green sheet, the solid electrolyte green sheet and the reaction prevention layer green sheet is fired at a predetermined firing temperature for 1 hour to obtain a laminated fired body. Obtained.

【0028】(3)空気極用グリーンシート 平均粒径が2μmのLa0.6Sr0.4CoO3-δ(以下、
LSCと略称する)粉末100重量部に、バインダとし
てポリビニルアルコール13重量部及びブチルカルビト
ール35重量部とをそれぞれ混合して、空気極スラリー
を調製した。この空気極スラリーを積層焼成体の反応防
止層の表面に5mm角の正方形となるようにスクリーン
印刷し、空気極用グリーンシートを形成した。その後、
1200℃の焼成温度で1時間かけて焼成し、固体電解
質型燃料電池セルを作製した。
(3) Green sheet for air electrode La 0.6 Sr 0.4 CoO 3-δ (hereinafter,
An air electrode slurry was prepared by mixing 100 parts by weight of powder (LSC) and 13 parts by weight of polyvinyl alcohol and 35 parts by weight of butyl carbitol as binders, respectively. This air electrode slurry was screen-printed on the surface of the reaction preventive layer of the laminated fired body so as to form a square of 5 mm square to form a green sheet for air electrode. afterwards,
The solid electrolyte fuel cell was fired at a firing temperature of 1200 ° C. for 1 hour to produce a solid oxide fuel cell.

【0029】2.特性の評価方法 上記作製した固体電解質型燃料電池の特性評価を行っ
た。この評価方法を以下に示す。 (1)各要素の厚さ及び気孔率の評価方法 反応防止層の厚さ、及び反応防止層の気孔率について
は、電界放出電子顕微鏡(以下、FE−SEMと略称す
る)により得られた写真から測定した。作製した固体電
解質型燃料電池を2分に切断し、エポキシ系樹脂中に埋
め込んだ後、断面が見られるように鏡面状に研磨した。
鏡面状に研磨した断面について、FE−SEMにて50
0倍の視野で写真を撮り、反応防止層の厚さを写真上の
寸法から求めた。
2. Evaluation method of characteristics The characteristics of the solid oxide fuel cell produced above were evaluated. This evaluation method is shown below. (1) Evaluation method of thickness and porosity of each element The thickness of the reaction-preventing layer and the porosity of the reaction-preventing layer were obtained by a field emission electron microscope (hereinafter, abbreviated as FE-SEM). Measured from. The produced solid oxide fuel cell was cut into 2 minutes, embedded in an epoxy resin, and then polished into a mirror surface so that a cross section could be seen.
FE-SEM was used to measure the cross section polished into a mirror surface.
A photograph was taken with a field of view of 0 times, and the thickness of the reaction-preventing layer was determined from the dimensions on the photograph.

【0030】また、反応防止層の気孔率については、F
E−SEM写真の短辺幅が反応防止層の厚さの80%に
相当する視野で画像全体が反応防止層の組織となるよう
写真を撮った後、得られた写真の気孔部を白、SDC組
織部を黒に着色し、コンピューター上の画像解析ソフト
ウェアで気孔部(白部)の面積比率を求め、その割合を
気孔率とした。 (2)収縮率の評価方法 燃料極用グリーンシート、固体電解質用グリーンシート
及び反応防止層用グリーンシートをそれぞれ単独で焼成
し、焼成後の該当部位の幅をグリーンシートの該当部位
の幅で割った値を収縮率とした。
The porosity of the reaction preventive layer is F
The E-SEM photograph was photographed in such a manner that the short side width corresponds to 80% of the thickness of the reaction-preventing layer so that the entire image becomes the texture of the reaction-preventing layer, and the pores of the obtained photograph were white. The SDC texture part was colored black, the area ratio of the pores (white parts) was determined by image analysis software on a computer, and the ratio was defined as the porosity. (2) Shrinkage evaluation method The fuel electrode green sheet, the solid electrolyte green sheet, and the reaction prevention layer green sheet are separately fired, and the width of the corresponding portion after firing is divided by the width of the corresponding portion of the green sheet. The value obtained was defined as the shrinkage rate.

【0031】(3)出力密度の評価方法 図1に示すように、燃料極1、固体電解質2、反応防止
層3及び空気極4からなる固体電解質型燃料電池の固体
電解質2の表面に、15mm角の穴があいた厚さ0.1
mmのSUS430からなるセパレータ5を結晶化ガラ
ス6によってシールし、2本のアルミナ製パイプ7で挟
み込んだ。また、パイプ7より管径が小さい2本のアル
ミナ製パイプ8の端面にそれぞれ白金網9を設け、燃料
極1及び空気極4に接触させて、引き出し線とした。ま
た、内側のアルミナ管から、水素ガス及び空気ガスを通
じ、発電させ、その最大出力密度を求めた。
(3) Evaluation Method of Power Density As shown in FIG. 1, the surface of the solid electrolyte 2 of the solid oxide fuel cell comprising the fuel electrode 1, the solid electrolyte 2, the reaction preventive layer 3 and the air electrode 4 has a thickness of 15 mm. Thickness with perforated holes 0.1
The separator 5 made of SUS430 of mm was sealed by the crystallized glass 6 and sandwiched by the two alumina pipes 7. Further, platinum nets 9 were respectively provided on the end faces of two alumina pipes 8 having a smaller diameter than the pipe 7, and they were brought into contact with the fuel electrode 1 and the air electrode 4 to form lead wires. In addition, hydrogen gas and air gas were passed through the inner alumina tube to generate power, and the maximum output density was obtained.

【0032】3.特性評価 上記「2.特性の評価方法」によって評価した結果を表
1に示す。表1に示すように、本評価は固体電解質型燃
料電池の焼成温度、燃料極厚さ及び反応防止層厚さを変
化させ、その出力密度等を評価している。
3. Characteristic Evaluation Table 1 shows the results of evaluation by the above “2. Characteristic evaluation method”. As shown in Table 1, in this evaluation, the output temperature and the like are evaluated by changing the firing temperature, the fuel electrode thickness and the reaction prevention layer thickness of the solid oxide fuel cell.

【0033】[0033]

【表1】 [Table 1]

【0034】試料1〜5は、焼成温度を1250〜15
00℃に変えることによる、反応防止層の気孔率と出力
密度の変化を検討したものである。その結果、気孔率が
25%以下となる試料2〜4で、0.3W/cm2以上
の出力を得ることができた。尚、試料5は、焼成温度を
1500℃としたものだが、気孔率は5%と非常に小さ
く緻密であるが、出力密度は0.08W/cm2と低い
ものとなっている。この理由を調べるために、固体電解
質と反応防止層との界面をエネルギー分散型X線検出器
にて調べたところ、高抵抗の反応相があることがわかっ
た。このことから、焼成温度は1500℃未満(より好
ましくは1400℃以下)程度が好ましいことがわか
る。
Samples 1 to 5 had firing temperatures of 1250 to 15
This is an examination of changes in porosity and power density of the reaction-preventing layer by changing the temperature to 00 ° C. As a result, in Samples 2 to 4 having a porosity of 25% or less, an output of 0.3 W / cm 2 or more could be obtained. Sample 5 has a firing temperature of 1500 ° C., and has a very small porosity of 5% and is dense, but has a low output density of 0.08 W / cm 2 . In order to investigate this reason, the interface between the solid electrolyte and the reaction preventive layer was examined with an energy dispersive X-ray detector, and it was found that there was a high resistance reaction phase. From this, it is understood that the firing temperature is preferably less than 1500 ° C (more preferably 1400 ° C or less).

【0035】試料6は同時焼成を行わず、燃料極用グリ
ーンシート及び固体電解質用グリーンシートを焼成後、
反応防止層及び空気極を焼成したものである。この試料
6は、焼成回数以外は試料4と同じであるにもかかわら
ず、気孔率が32%と試料中最も大きいものとなった。
これは、反応防止層及び空気極の焼成時に、燃料極の収
縮に伴う収縮が起きず、緻密化されないためである。
Sample 6 was not fired at the same time, but after firing the fuel electrode green sheet and the solid electrolyte green sheet,
The reaction preventive layer and the air electrode were fired. This sample 6 had the highest porosity of 32%, although it was the same as the sample 4 except for the number of firings.
This is because when the reaction prevention layer and the air electrode are fired, no contraction occurs due to the contraction of the fuel electrode, and the reaction electrode is not densified.

【0036】試料7〜9は、反応防止層の厚さを0.8
〜20μmに変化させたものである。反応防止層が0.
8μmの試料7では、気孔による影響が大きく、固体電
解質と空気極との間に高抵抗の反応相が生成しているの
が確認され、出力密度が0.1W/cm2と低いものに
なった。
In Samples 7 to 9, the reaction preventive layer had a thickness of 0.8.
It was changed to ˜20 μm. The reaction preventive layer is 0.
In Sample 7 of 8 μm, it was confirmed that a high resistance reaction phase was generated between the solid electrolyte and the air electrode due to the large influence of pores, and the power density was as low as 0.1 W / cm 2. It was

【0037】また、反応防止層が20μmである試料9
は、反応防止層の気孔率が26%と大きいものになり、
更に出力密度も0.12W/cm2と低いものになっ
た。これは、燃料極及び固体電解質の厚さの和と、反応
防止層の厚みの比が100未満であり、反応防止層を強
制的に収縮させる作用が弱く、気孔率が25%より大き
くなったためと考えられる。また、焼成後に顕著な反り
が発生した。尚、気孔率を小さくし、焼成による反りを
抑えるためには、燃料極の厚さと、反応防止層の厚みの
比を100以上とするのが好ましい。以上より、反応防
止層の厚さは、1μm以上、20μm未満が最適である
ことがわかる。
Sample 9 having a reaction preventive layer of 20 μm
Has a large porosity of 26% for the reaction preventing layer,
Further, the power density was as low as 0.12 W / cm 2 . This is because the ratio of the sum of the thicknesses of the fuel electrode and the solid electrolyte to the thickness of the reaction prevention layer was less than 100, the action of forcibly contracting the reaction prevention layer was weak, and the porosity was greater than 25%. it is conceivable that. In addition, remarkable warpage occurred after firing. In addition, in order to reduce the porosity and suppress the warpage due to firing, it is preferable that the ratio of the thickness of the fuel electrode to the thickness of the reaction prevention layer is 100 or more. From the above, it is understood that the optimum thickness of the reaction prevention layer is 1 μm or more and less than 20 μm.

【0038】試料10〜14は、Gaを含有するSDC
を用いた反応防止層を備える固体電解質型燃料電池であ
る。試料10、11は1350℃で焼成した試料であっ
て、より高温で焼成した試料4よりも気孔率が低い18
%、15%であり、より緻密になっていることがわか
る。また、出力密度も、0.62W/cm2、0.68
W/cm2と、試料4の0.6W/cm2より大きな出力
を得ることができた。
Samples 10 to 14 are SDC containing Ga.
It is a solid oxide fuel cell provided with a reaction preventive layer using. Samples 10 and 11 were samples fired at 1350 ° C. and had a lower porosity than sample 4 fired at a higher temperature 18
% And 15%, and it can be seen that the density is higher. The power density is 0.62 W / cm 2 , 0.68
And W / cm 2, it was possible to obtain a large output from 0.6 W / cm 2 of the sample 4.

【0039】試料12、13は、バインダのポリビニル
アルコールを増やし、収縮率を増やした固体電解質型燃
料電池を1350℃で焼成したものである。このような
固体電解質型燃料電池は、気孔率が12、10%と試料
10、11よりも小さく、出力密度も0.76W/cm
2、0.83W/cm2と大きくなっている。また、焼成
温度を1250℃に下げた試料14においても、0.4
4W/cm 2と良好な出力密度が得られていることがわ
かる。このように、0.1〜1mol%のGaを添加す
ることによって、反応防止層焼成時の収縮が向上し、更
に良好な特性が得られることを確認した。
Samples 12 and 13 are binder polyvinyl.
Solid electrolyte type fuel with more alcohol and more shrinkage
The raw battery was fired at 1350 ° C. like this
The solid oxide fuel cell has a porosity of 12, 10% and a sample
Less than 10, 11 and power density 0.76 W / cm
2, 0.83 W / cm2And is getting bigger. Also firing
Even in the sample 14 whose temperature was lowered to 1250 ° C., 0.4
4 W / cm 2It can be seen that good power density is obtained.
Light In this way, 0.1 to 1 mol% of Ga is added.
By doing so, the shrinkage during firing of the reaction preventive layer is improved, and
It was confirmed that excellent characteristics were obtained.

【0040】尚、本発明においては、上記実施例に限ら
ず、目的、用途に応じて本発明の範囲内で種々変更した
実施例とすることができる。即ち、固体電解質は実施例
のYSZ及びLSGMに限らず、種々の固体電解質とし
て公知の酸化物を使用することができる。また、反応防
止層の種類も上記実施例のSDCに限られず、種々のセ
リア化合物等を使用することができる。
The present invention is not limited to the above-mentioned embodiments, but can be variously modified within the scope of the present invention depending on the purpose and application. That is, the solid electrolyte is not limited to YSZ and LSGM in the examples, and various known solid electrolytes can be used. Further, the kind of the reaction preventing layer is not limited to the SDC of the above-mentioned examples, and various ceria compounds and the like can be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本固体電解質型燃料電池の特性評価の構成を説
明するための模式断面図である。
FIG. 1 is a schematic cross-sectional view for explaining a configuration for evaluating characteristics of the present solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

1;燃料極、2;固体電解質、3;反応防止層、4;空
気極、5;セパレータ、6;結晶化ガラス、7、8;パ
イプ、9;白金網。
1; fuel electrode, 2; solid electrolyte, 3; reaction preventive layer, 4; air electrode, 5; separator, 6; crystallized glass, 7, 8; pipe, 9; platinum mesh.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴田 昌宏 名古屋市瑞穂区高辻町14番18号 日本特殊 陶業株式会社内 (72)発明者 上松 秀樹 名古屋市瑞穂区高辻町14番18号 日本特殊 陶業株式会社内 (72)発明者 服部 昌晃 名古屋市瑞穂区高辻町14番18号 日本特殊 陶業株式会社内 Fターム(参考) 5H026 AA06 BB01 BB02 BB08 CX01 EE12 HH00 HH03 HH04 HH08   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masahiro Shibata             14-18 Takatsuji-cho, Mizuho-ku, Nagoya-shi Japan special             Within Toyo Co., Ltd. (72) Inventor Hideki Uematsu             14-18 Takatsuji-cho, Mizuho-ku, Nagoya-shi Japan special             Within Toyo Co., Ltd. (72) Inventor Masaaki Hattori             14-18 Takatsuji-cho, Mizuho-ku, Nagoya-shi Japan special             Within Toyo Co., Ltd. F term (reference) 5H026 AA06 BB01 BB02 BB08 CX01                       EE12 HH00 HH03 HH04 HH08

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基板となる燃料極と、該燃料極上に成膜
によって設けられる固体電解質層と、該固体電解質層の
燃料極側の反対側に成膜によって設けられる空気極とを
有し、上記固体電解質層と上記燃料極及び上記空気極の
少なくとも一方との間に設けられ、気孔率が25%以下
のCe1−xLn2−δである反応防止層と、を備
えることを特徴とする固体電解質型燃料電池。ただし、
Lnは希土類元素であり、xの範囲は0.05≦x≦
0.3である。
1. A fuel electrode serving as a substrate, a solid electrolyte layer formed on the fuel electrode by film formation, and an air electrode formed on the opposite side of the solid electrolyte layer from the fuel electrode side by film formation. A reaction prevention layer which is provided between the solid electrolyte layer and at least one of the fuel electrode and the air electrode and has a porosity of 25% or less of Ce 1-x Ln x O 2-δ. A characteristic solid oxide fuel cell. However,
Ln is a rare earth element, and the range of x is 0.05 ≦ x ≦
It is 0.3.
【請求項2】 上記反応防止層はGa元素を含み、該G
a元素の含有量は酸化物換算で0.05〜1.5mol
%である請求項1記載の固体電解質型燃料電池。
2. The reaction preventing layer contains a Ga element,
The content of element a is 0.05 to 1.5 mol in terms of oxide.
%, The solid oxide fuel cell according to claim 1.
【請求項3】 上記反応防止層の厚さが1〜18μmで
ある請求項1又は2に記載の固体電解質型燃料電池。
3. The solid oxide fuel cell according to claim 1, wherein the reaction prevention layer has a thickness of 1 to 18 μm.
【請求項4】 上記固体電解質層がLn23(ただし、
Lnは希土類元素)で安定化したジルコニア(Zr
)、又はSr及びMgの少なくとも一方をドープし
たランタンガレード(LaGaO)である請求項1乃
至3のうちのいずれか一項に記載の固体電解質型燃料電
池。
4. The solid electrolyte layer comprises Ln 2 O 3 (provided that
Ln is a rare earth element stabilized zirconia (Zr
O 2), or any solid oxide fuel cell according to one of claims 1 to 3 at least one of Sr and Mg is doped lanthanum gallate de (LaGaO 3).
【請求項5】 少なくとも酸化ニッケルを含有する燃料
極用グリーンシート、並びに固体電解質層用グリーンシ
ート及び反応防止層用グリーンシートを所定の順序で積
層して積層体を得る工程と、 該積層体を焼成する工程と、この焼成により得られた反
応防止層の表面上に空気極を形成する工程と、を備える
ことを特徴とする固体電解質型燃料電池の製造方法
5. A step of stacking a green sheet for a fuel electrode containing at least nickel oxide, a green sheet for a solid electrolyte layer and a green sheet for a reaction preventive layer in a predetermined order to obtain a laminate, and the laminate. A method for producing a solid oxide fuel cell, comprising: a step of firing and a step of forming an air electrode on the surface of the reaction preventive layer obtained by the firing.
【請求項6】 上記燃料極用グリーンシートを単独焼成
した場合の収縮率が、反応防止層用グリーンシートを単
独焼成した場合の収縮率より小さくなる条件で上記焼成
を行う請求項5記載の固体電解質型燃料電池の製造方
法。
6. The solid according to claim 5, wherein the firing is carried out under the condition that the shrinkage rate when the fuel electrode green sheet is independently fired is smaller than the shrinkage rate when the reaction prevention layer green sheet is independently fired. Method for manufacturing electrolyte fuel cell.
【請求項7】 上記燃料極用グリーンシートを単独焼成
した場合の収縮率をA、固体電解質層用グリーンシート
を単独焼成した場合の収縮率をB、及び反応防止層用グ
リーンシートを単独焼成した場合の収縮率をCとしたと
きに、A≦B<Cの関係を満たす条件で上記焼成を行う
請求項5記載の固体電解質型燃料電池の製造方法。
7. The shrinkage rate when the green sheet for the fuel electrode is fired alone is A, the shrinkage rate when the green sheet for solid electrolyte layer is fired alone is B, and the green sheet for the reaction prevention layer is fired alone. The method for producing a solid oxide fuel cell according to claim 5, wherein the firing is performed under conditions satisfying the relationship of A ≦ B <C, where C is the shrinkage ratio.
【請求項8】 上記積層体の焼成温度が1250〜14
50℃である請求項5乃至7のいずれか一項に記載の固
体電解質型燃料電池の製造方法。
8. The firing temperature of the laminate is 1250 to 14
It is 50 degreeC, The manufacturing method of the solid oxide fuel cell of any one of Claim 5 thru | or 7.
JP2001370678A 2001-12-04 2001-12-04 Solid oxide fuel cell and manufacturing method thereof Expired - Lifetime JP4018378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001370678A JP4018378B2 (en) 2001-12-04 2001-12-04 Solid oxide fuel cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001370678A JP4018378B2 (en) 2001-12-04 2001-12-04 Solid oxide fuel cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003173802A true JP2003173802A (en) 2003-06-20
JP4018378B2 JP4018378B2 (en) 2007-12-05

Family

ID=19179862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001370678A Expired - Lifetime JP4018378B2 (en) 2001-12-04 2001-12-04 Solid oxide fuel cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4018378B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158528A (en) * 2003-11-26 2005-06-16 Kyocera Corp Fuel battery cell and fuel battery
JP2005166314A (en) * 2003-11-28 2005-06-23 Kyocera Corp Cell for fuel cell
JP2005196981A (en) * 2003-12-26 2005-07-21 Ngk Spark Plug Co Ltd Intermediate body of fuel electrode supporting film type fuel cell, and manufacturing method of the same
JP2005216760A (en) * 2004-01-30 2005-08-11 Kyocera Corp Fuel cell and its manufacturing method
JP2006139960A (en) * 2004-11-10 2006-06-01 Dainippon Printing Co Ltd Single compartment type solid oxide fuel cell
JP2006278089A (en) * 2005-03-29 2006-10-12 Kyocera Corp Fuel battery cell and fuel battery
JP2006286403A (en) * 2005-03-31 2006-10-19 Toyota Motor Corp Solid oxide fuel cell
JP2006302709A (en) * 2005-04-21 2006-11-02 Toto Ltd Solid oxide fuel cell
JP2007194170A (en) * 2006-01-23 2007-08-02 Nippon Telegr & Teleph Corp <Ntt> Flat solid oxide fuel cell and method of manufacturing same
US7300718B2 (en) 2003-11-05 2007-11-27 Honda Motor Co., Ltd. Electrolyte-electrode joined assembly and method for producing the same
JP2009140681A (en) * 2007-12-05 2009-06-25 Nissan Motor Co Ltd Cell unit, cell stack, and fuel cell
DE112006004086T5 (en) 2006-10-26 2009-09-10 Toto Ltd., Kita-Kyushu Solid oxide fuel cell
US7604670B2 (en) 2003-11-05 2009-10-20 Honda Motor Co., Ltd. Electrolyte-electrode joined assembly and method for producing the same
WO2010095728A1 (en) 2009-02-19 2010-08-26 Honda Motor Co., Ltd. Electrolyte electrode assembly and method for producing the same
US7851103B2 (en) 2006-10-26 2010-12-14 Toto Ltd. Solid oxide fuel cell with lanthanum-gallate oxide and having high output performance
JP4913260B1 (en) * 2011-03-03 2012-04-11 日本碍子株式会社 Solid oxide fuel cell
JP4988072B1 (en) * 2011-03-03 2012-08-01 日本碍子株式会社 Solid oxide fuel cell
JP5023250B1 (en) * 2011-07-19 2012-09-12 日本碍子株式会社 Fuel cell
JP2013041809A (en) * 2011-07-21 2013-02-28 Ngk Insulators Ltd Fuel cell
JP2013201035A (en) * 2012-03-26 2013-10-03 Toshiba Corp Solid oxide electrochemical cell
JP2016207300A (en) * 2015-04-16 2016-12-08 株式会社ノリタケカンパニーリミテド Manufacturing method of solid oxide fuel cell, half cell green sheet for solid oxide fuel cell, and solid oxide fuel cell

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7604670B2 (en) 2003-11-05 2009-10-20 Honda Motor Co., Ltd. Electrolyte-electrode joined assembly and method for producing the same
US7300718B2 (en) 2003-11-05 2007-11-27 Honda Motor Co., Ltd. Electrolyte-electrode joined assembly and method for producing the same
JP2005158528A (en) * 2003-11-26 2005-06-16 Kyocera Corp Fuel battery cell and fuel battery
JP2005166314A (en) * 2003-11-28 2005-06-23 Kyocera Corp Cell for fuel cell
JP4579527B2 (en) * 2003-11-28 2010-11-10 京セラ株式会社 Fuel cell, fuel cell and method for producing fuel cell
JP2005196981A (en) * 2003-12-26 2005-07-21 Ngk Spark Plug Co Ltd Intermediate body of fuel electrode supporting film type fuel cell, and manufacturing method of the same
JP4559068B2 (en) * 2003-12-26 2010-10-06 日本特殊陶業株式会社 Method for producing solid oxide fuel cell
JP2005216760A (en) * 2004-01-30 2005-08-11 Kyocera Corp Fuel cell and its manufacturing method
JP2006139960A (en) * 2004-11-10 2006-06-01 Dainippon Printing Co Ltd Single compartment type solid oxide fuel cell
JP2006278089A (en) * 2005-03-29 2006-10-12 Kyocera Corp Fuel battery cell and fuel battery
JP2006286403A (en) * 2005-03-31 2006-10-19 Toyota Motor Corp Solid oxide fuel cell
JP2006302709A (en) * 2005-04-21 2006-11-02 Toto Ltd Solid oxide fuel cell
JP2007194170A (en) * 2006-01-23 2007-08-02 Nippon Telegr & Teleph Corp <Ntt> Flat solid oxide fuel cell and method of manufacturing same
DE112006004086T5 (en) 2006-10-26 2009-09-10 Toto Ltd., Kita-Kyushu Solid oxide fuel cell
US7851103B2 (en) 2006-10-26 2010-12-14 Toto Ltd. Solid oxide fuel cell with lanthanum-gallate oxide and having high output performance
JP2009140681A (en) * 2007-12-05 2009-06-25 Nissan Motor Co Ltd Cell unit, cell stack, and fuel cell
WO2010095728A1 (en) 2009-02-19 2010-08-26 Honda Motor Co., Ltd. Electrolyte electrode assembly and method for producing the same
JP4913260B1 (en) * 2011-03-03 2012-04-11 日本碍子株式会社 Solid oxide fuel cell
JP4988072B1 (en) * 2011-03-03 2012-08-01 日本碍子株式会社 Solid oxide fuel cell
US8715880B2 (en) 2011-03-03 2014-05-06 Ngk Insulators, Ltd. Solid oxide fuel cell
JP5023250B1 (en) * 2011-07-19 2012-09-12 日本碍子株式会社 Fuel cell
JP2013041809A (en) * 2011-07-21 2013-02-28 Ngk Insulators Ltd Fuel cell
JP2013201035A (en) * 2012-03-26 2013-10-03 Toshiba Corp Solid oxide electrochemical cell
JP2016207300A (en) * 2015-04-16 2016-12-08 株式会社ノリタケカンパニーリミテド Manufacturing method of solid oxide fuel cell, half cell green sheet for solid oxide fuel cell, and solid oxide fuel cell

Also Published As

Publication number Publication date
JP4018378B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
JP4018378B2 (en) Solid oxide fuel cell and manufacturing method thereof
EP3021393B1 (en) Solid oxide fuel cell, manufacturing method therefor, fuel-cell stack, and solid oxide fuel-cell device
US11502306B2 (en) Cathode layer including ionic conductor material and electronic conductor material
EP2495791B1 (en) Fuel cell, cell stack, fuel cell module, and fuel cell device
JP2005327637A (en) Solid electrolyte fuel cell
JP5791552B2 (en) FUEL CELL AND METHOD FOR PRODUCING LAMINATED SINTERED BODY
JP4018377B2 (en) Solid oxide fuel cell and manufacturing method thereof
JP2002175814A (en) Manufacturing method of fuel electrode for solid electrolyte type fuel cell, the solid electrolyte type fuel cell and its manufacturing method
JP4383092B2 (en) Electrochemical element
JP2007200664A (en) Method of manufacturing solid oxide fuel cell
JP2011142042A (en) Power generation cell for solid oxide fuel battery and its manufacturing method
JP2005216760A (en) Fuel cell and its manufacturing method
WO2014122807A1 (en) Solid oxide fuel cell and method for producing same
WO2013054759A1 (en) Fuel cell
JP5159938B1 (en) Fuel cell
JP2004164878A (en) Manufacturing method of solid electrolyte type fuel cell
JPH09180731A (en) Solid electrolyte fuel cell
JP2006059611A (en) Ceria based solid electrolyte fuel cell and its manufacturing method
JP3342610B2 (en) Solid oxide fuel cell
JPH0992294A (en) Solid electrolyte type fuel cell and its manufacture
JP2006059610A (en) Solid electrolyte fuel cell and its manufacturing method
JP3336171B2 (en) Solid oxide fuel cell
KR102109730B1 (en) Method for fabricating solid oxide fuel cell
JP2002134133A (en) Cell of solid electrolyte fuel cell
JP3339995B2 (en) Cylindrical fuel cell and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040706

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070920

R150 Certificate of patent or registration of utility model

Ref document number: 4018378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term