JP3339995B2 - Cylindrical fuel cell and method of manufacturing the same - Google Patents

Cylindrical fuel cell and method of manufacturing the same

Info

Publication number
JP3339995B2
JP3339995B2 JP19521395A JP19521395A JP3339995B2 JP 3339995 B2 JP3339995 B2 JP 3339995B2 JP 19521395 A JP19521395 A JP 19521395A JP 19521395 A JP19521395 A JP 19521395A JP 3339995 B2 JP3339995 B2 JP 3339995B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
molded body
air electrode
fuel cell
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19521395A
Other languages
Japanese (ja)
Other versions
JPH0945354A (en
Inventor
雅人 西原
高志 重久
祥二 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP19521395A priority Critical patent/JP3339995B2/en
Publication of JPH0945354A publication Critical patent/JPH0945354A/en
Application granted granted Critical
Publication of JP3339995B2 publication Critical patent/JP3339995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、円筒型燃料電池セ
ルおよびその製造方法に関し、詳細には固体電解質の切
欠面と燃料極または空気極の露出面との連続同一面に集
電体を形成した円筒型燃料電池セルおよびその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical fuel cell and a method of manufacturing the same, and more particularly, to forming a current collector on the same continuous surface of a cutout surface of a solid electrolyte and an exposed surface of a fuel electrode or an air electrode. And a method of manufacturing the same.

【0002】[0002]

【従来技術】従来より、固体電解質型燃料電池はその作
動温度が900〜1050℃と高温であるため発電効率
が高く、第3世代の発電システムとして期待されてい
る。一般に、固体電解質型燃料電池セルには円筒型と平
板型が知られている。平板型燃料電池セルは、発電の単
位体積当り出力密度が高いという特長を有するが、実用
化に関してはガスシ−ル不完全性やセル内の温度分布の
不均一性などの問題がある。それに対して、円筒型燃料
電池セルでは、出力密度は低いものの、セルの機械的強
度が高く、またセル内の温度の均一性が保てるという特
長がある。両形状の固体電解質型燃料電池セルとも、そ
れぞれの特長を生かして積極的に研究開発が進められて
いる。
2. Description of the Related Art Conventionally, since a solid oxide fuel cell has a high operating temperature of 900 to 1050 ° C., it has a high power generation efficiency and is expected as a third generation power generation system. In general, a solid oxide fuel cell is known to be a cylindrical type or a flat type. The flat fuel cell has the feature that the power density per unit volume of power generation is high, but there are problems such as imperfect gas seal and non-uniformity of the temperature distribution in the cell in practical use. On the other hand, the cylindrical fuel cell has the features that the output density is low, but the mechanical strength of the cell is high and the temperature uniformity in the cell can be maintained. Both types of solid oxide fuel cells are being actively researched and developed utilizing their respective features.

【0003】円筒型燃料電池の単セルは、図3に示した
ように開気孔率40%程度のCaO安定化ZrO2 を支
持管1とし、その上にLaMnO3 系材料からなる多孔
性の空気極2を形成し、その表面にY2 3 安定化Zr
2 からなる固体電解質3を被覆し、さらにこの表面に
多孔性のNi−ジルコニアの燃料極4が設けられてい
る。燃料電池のモジュ−ルにおいては、各単セルはLa
CrO3 系の集電体(インタ−コネクタ)5を介して接
続される。
As shown in FIG. 3, a single cell of a cylindrical fuel cell has a supporting tube 1 made of CaO-stabilized ZrO 2 having an open porosity of about 40%, and a porous air made of LaMnO 3 material on the supporting tube 1. A pole 2 is formed, and Y 2 O 3 stabilized Zr is formed on its surface.
A solid electrolyte 3 made of O 2 is covered, and a porous Ni-zirconia fuel electrode 4 is provided on this surface. In the fuel cell module, each single cell is La
It is connected via a CrO 3 -based current collector (inter-connector) 5.

【0004】このような燃料電池の発電は、各単セルを
1000〜1050℃の温度で保持するとともに、支持
管1内部に空気(酸素)6を、外部に燃料(水素)7を
供給することにより行われる。
In such power generation of a fuel cell, each unit cell is maintained at a temperature of 1000 to 1050 ° C., and air (oxygen) 6 is supplied inside the support tube 1 and fuel (hydrogen) 7 is supplied outside. It is performed by

【0005】そして、近年、セル作製の工程においてプ
ロセスを単純化するため、空気極材料であるLaMnO
3 系材料を直接多孔性の支持管として使用する試みがな
されている。空気極としての機能を合わせ持つ支持管材
料としては、LaをCaで20原子%又はSrで10〜
15原子%置換したLaMnO3 固溶体材料が用いられ
ている。
In recent years, in order to simplify the process in the cell fabrication process, LaMnO, which is an air electrode material, has been used.
Attempts to use 3-based material as a direct porous support tube have been made. As a support tube material having the function as an air electrode, La is 20 at% by Ca or 10 to 10 at Sr.
A LaMnO 3 solid solution material substituted with 15 atomic% is used.

【0006】また、上記のような燃料電池セルを製造す
る方法としては、例えばCaO安定化ZrO2 からなる
絶縁粉末を押出成形法などにより円筒状に成形後、これ
を焼成して円筒状支持体を作製し、その支持管の外周面
に空気極、固体電解質、燃料極、あるいは集電体のスラ
リ−を塗布してこれを順次焼成して積層することが行わ
れている。
As a method of manufacturing the above-described fuel cell, for example, an insulating powder made of CaO-stabilized ZrO 2 is formed into a cylindrical shape by an extrusion method or the like, and then fired to form a cylindrical support. And a slurry of an air electrode, a solid electrolyte, a fuel electrode, or a current collector is applied to the outer peripheral surface of the support tube, and the resultant is sequentially fired and laminated.

【0007】[0007]

【発明が解決しようとする課題】燃料電池セルの製造工
程を簡略化するために、支持管を兼ねた空気極成形体
と、固体電解質成形体と、集電体成形体とを積層した円
筒状積層体を同時焼成することが望ましい。
SUMMARY OF THE INVENTION In order to simplify the manufacturing process of a fuel cell, a cylindrical shape in which an air electrode molded body also serving as a support tube, a solid electrolyte molded body, and a current collector molded body are laminated. It is desirable to fire the laminate simultaneously.

【0008】そこで、本発明者らは、図4に示すよう
に、押出成形法により作製したLaMnO3 系材料から
なる円筒状の空気極成形体11に、ドクタ−ブレ−ド法
により作製したY2 3 安定化ZrO2 からなる固体電
解質成形体12と、LaCrO3 系材料からなる集電体
成形体13を積層し、同時焼成を試みた結果、集電体上
部Aに連続した微細なクラックや集電体端部Bの一部に
剥がれが発生し、空気極と集電体、また固体電解質と集
電体とのそれぞれにおける界面の密着性が不十分とな
り、本来の発電性能が発揮されないということがわかっ
た。即ち、集電体成形体13としてのグリ−ンシ−トが
積層される箇所は、図4に示したように固体電解質成形
体の厚さが100〜150μm程度あるために段差を生
じており、その結果集電体成形体13を積層した後に焼
成すると集電体内部に応力が発生し、集電体上部に連続
した微細なクラックが発生したり、集電体端部の一部が
剥がれたりするのである。
Accordingly, the present inventors, as shown in FIG. 4, attached a cylindrical air electrode formed body 11 made of a LaMnO 3 -based material manufactured by an extrusion method to a Y-shaped body manufactured by a doctor blade method. As a result of laminating a solid electrolyte molded body 12 made of 2 O 3 stabilized ZrO 2 and a current collector molded body 13 made of a LaCrO 3 -based material and attempting simultaneous firing, fine cracks were continuously formed on the upper part A of the current collector. And the end of the current collector end B, peeling occurs, and the adhesion at the interface between the air electrode and the current collector, and between the solid electrolyte and the current collector becomes insufficient, and the original power generation performance is not exhibited I understood that. That is, as shown in FIG. 4, the thickness of the solid electrolyte molded body is about 100 to 150 μm, and a step is formed in the portion where the green sheet as the current collector molded body 13 is laminated. As a result, when the current collector molded body 13 is fired after being laminated, a stress is generated inside the current collector, a continuous fine crack is generated on the upper portion of the current collector, or a part of the end of the current collector is peeled off. You do it.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記目的
に対して円筒状のセル構造、特に集電体の形成法につい
て検討を重ねた結果、集電体の積層箇所となる燃料電池
セル本体の表面をあらかじめ凹凸のない、例えば平面に
研磨し、この面に集電体成形体を積層して同時焼成する
と、集電体に表面欠陥が発生することなく、良好な接合
状態が形成されることを見い出し本発明に至った。
Means for Solving the Problems The present inventors have repeatedly studied a cylindrical cell structure, particularly a method of forming a current collector, for the above object, and as a result, have found that a fuel cell to be a laminated portion of the current collector is obtained. If the surface of the cell body is polished in advance without irregularities, for example, to a flat surface, and a current collector molded body is laminated and fired simultaneously on this surface, a good bonding state is formed without surface defects occurring on the current collector The present invention has been found.

【0010】本発明の円筒型燃料電池セルは、円筒状の
固体電解質の片面に燃料極、他面に空気極が形成された
燃料電池セル本体の外面に、前記固体電解質の内面に形
成された前記燃料極または前記空気極と電気的に接続す
る集電体を設けてなり、前記固体電解質と、前記燃料極
または前記空気極と、前記集電体とを同時焼成してなる
円筒型燃料電池セルにおいて、前記固体電解質の一部に
切欠部を設けて該固体電解質の内面に形成されている前
記燃料極または前記空気極の一部を露出させるととも
に、前記固体電解質の切欠面と前記燃料極または前記空
気極の露出面とを段差のない連続した同一面となし、か
つ、連続同一面に前記集電体を接合してなるものであ
る。
[0010] The cylindrical fuel cell of the present invention is formed on the outer surface of a fuel cell body in which a fuel electrode is formed on one surface of a cylindrical solid electrolyte and the air electrode is formed on the other surface, and on the inner surface of the solid electrolyte. A cylindrical fuel cell including a current collector electrically connected to the fuel electrode or the air electrode, and simultaneously firing the solid electrolyte, the fuel electrode or the air electrode, and the current collector; In the cell, a cutout is provided in a part of the solid electrolyte to expose a part of the fuel electrode or the air electrode formed on the inner surface of the solid electrolyte, and the cutout surface of the solid electrolyte and the fuel electrode are formed. Alternatively, the exposed surface of the air electrode is formed as a continuous same surface without a step, and the current collector is joined to the continuous same surface.

【0011】また、本発明の円筒型燃料電池セルの製造
方法は、円筒状の固体電解質の片面に空気極、他面に燃
料極が形成された燃料電池セル本体の外面に、前記固体
電解質の内面に形成された前記燃料極または前記空気極
と電気的に接続する集電体を設けてなる円筒型燃料電池
セルの製造方法であって、円筒状の空気極成形体または
燃料極成形体の外面に固体電解質成形体を形成する工程
と、これを仮焼する工程と、前記固体電解質成形体の一
部と前記空気極成形体または前記燃料極成形体の一部と
が段差のない連続した同一面となるまで前記仮焼体外周
面を研摩する工程と、該連続同一面に集電体成形体を形
成する工程と、この積層体を酸化性雰囲気中で同時に焼
成する工程と、この焼結体の固体電解質表面に燃料極成
形体を形成する工程と、前記燃料極成形体を形成した積
層体を酸化性雰囲気中で焼成する工程とを具備するもの
である。
Further, the method of manufacturing a cylindrical fuel cell according to the present invention is characterized in that the solid electrolyte is formed on the outer surface of a fuel cell body having an air electrode on one side and a fuel electrode on the other side. A method for manufacturing a cylindrical fuel cell comprising a current collector electrically connected to the fuel electrode or the air electrode formed on the inner surface, comprising: A step of forming a solid electrolyte molded body on the outer surface, a step of calcining the solid electrolyte molded body, and a part of the solid electrolyte molded body and a part of the air electrode molded body or the fuel electrode molded body were continuous with no steps. Polishing the outer peripheral surface of the calcined body until the same surface is obtained, forming a current collector molded body on the continuous same surface, simultaneously firing the laminate in an oxidizing atmosphere, A process for forming an anode compact on the surface of a solid electrolyte When, in which and a step of firing the laminate to form the fuel electrode green body in an oxidizing atmosphere.

【0012】さらに、本発明の円筒型燃料電池セルの製
造方法は、円筒状の固体電解質の片面に空気極、他面に
燃料極が形成された燃料電池セル本体の外面に、前記固
体電解質の内面に形成された前記燃料極または前記空気
極と電気的に接続する集電体を設けてなる円筒型燃料電
池セルの製造方法であって、円筒状の空気極成形体また
は燃料極成形体の外面に固体電解質成形体を形成する工
程と、これを仮焼する工程と、前記固体電解質成形体の
一部と前記空気極成形体または前記燃料極成形体の一部
とが段差のない連続した同一面となるまで前記仮焼体外
周面を研摩する工程と、該連続同一面に集電体成形体を
形成する工程と、前記仮焼体の固体電解質成形体表面に
前記空気極成形体または前記燃料極成形体を形成する工
程と、この積層体を酸化性雰囲気中で同時に焼成する工
程とを具備するものである。
Further, the method for manufacturing a cylindrical fuel cell according to the present invention is characterized in that the solid electrolyte is formed on the outer surface of a fuel cell body having an air electrode formed on one side and a fuel electrode formed on the other side. A method for manufacturing a cylindrical fuel cell comprising a current collector electrically connected to the fuel electrode or the air electrode formed on the inner surface, comprising: A step of forming a solid electrolyte molded body on the outer surface, a step of calcining the solid electrolyte molded body, and a part of the solid electrolyte molded body and a part of the air electrode molded body or the fuel electrode molded body were continuous with no steps . Polishing the outer peripheral surface of the calcined body until it becomes the same surface, forming a current collector molded body on the continuous same surface, and forming the air electrode molded body or the solid electrolyte molded body surface of the calcined body. A step of forming the fuel electrode molded body, and the laminate In which and a step of simultaneously fired in an oxidizing atmosphere.

【0013】[0013]

【作用】本発明の円筒型燃料電池セルでは、固体電解質
の一部に切欠部を設けて該固体電解質の内面に形成され
ている燃料極または空気極の一部を露出させるととも
に、固体電解質の切欠面と燃料極または空気極の露出面
とを連続した同一面となし、かつ、該連続同一面に集電
体を接合したため、集電体を形成する固体電解質,およ
び燃料極または空気極の上面が段差(凹凸)のない連続
同一面、例えば平面,曲面とされ、集電体が歪むことな
く積層され、集電体内に無理な応力が発生せず、集電体
上部に連続した微細なクラックや集電体端部の一部に剥
がれが発生せず、集電体に欠陥が発生しない。よって、
燃料電池セルを作製する際に表面上に欠陥が生成しない
ため、セルの製造時の歩留まりを図ることができる。
In the cylindrical fuel cell of the present invention, a notch is provided in a part of the solid electrolyte to expose a part of the fuel electrode or the air electrode formed on the inner surface of the solid electrolyte, Since the cutout surface and the exposed surface of the fuel electrode or the air electrode are continuous and the same surface, and the current collector is joined to the continuous same surface, the solid electrolyte forming the current collector and the fuel electrode or the air electrode are formed. The upper surface is a continuous same surface without steps (irregularities), for example, a flat surface or a curved surface. The current collectors are stacked without distortion, and no excessive stress is generated in the current collectors. Cracks and peeling of a part of the end of the current collector do not occur, and no defect occurs in the current collector. Therefore,
Since no defect is generated on the surface when the fuel cell is manufactured, the yield at the time of manufacturing the cell can be improved.

【0014】また、燃料電池セルとして、燃料極または
空気極と集電体との電気的接続が良好となるためにセル
から発生する電力を効率的に集電することができ、燃料
電池セルの発電性能を高めることもできる。
Further, as the fuel cell, the electric connection between the fuel electrode or the air electrode and the current collector is improved, so that the power generated from the cell can be efficiently collected, and Power generation performance can also be improved.

【0015】[0015]

【発明の実施の形態】本発明の円筒型燃料電池セルを図
面を用いて詳細に説明する。本発明の円筒型燃料電池セ
ルは、図1および図2に示すように、円筒状の固体電解
質31の内面に空気極32、外面に燃料極33を形成し
て燃料電池セル本体34が構成されており、この燃料電
池セル本体34の外面に、空気極32と電気的に接続す
る集電体35を設けてなるものである。尚、支持管を形
成し、この支持管の外面に空気極32,固体電解質3
1,燃料極33を積層して構成しても良い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A cylindrical fuel cell according to the present invention will be described in detail with reference to the drawings. As shown in FIGS. 1 and 2, the cylindrical fuel cell of the present invention has an air electrode 32 formed on an inner surface of a cylindrical solid electrolyte 31 and a fuel electrode 33 formed on an outer surface thereof to form a fuel cell main body 34. A current collector 35 electrically connected to the air electrode 32 is provided on the outer surface of the fuel cell main body 34. A support tube is formed, and the air electrode 32 and the solid electrolyte 3 are formed on the outer surface of the support tube.
1, the fuel electrode 33 may be laminated.

【0016】本発明に用いられる空気極32は、自己支
持管としての機能を有する円筒状の空気極成形体を押出
成形して作製される。この空気極32は、ペロブスカイ
ト型結晶相を主相とするLaMnO3 系の材料で、その
平均結晶粒径は3〜20μm、特に5〜15μmである
ことが望ましい。これは、主結晶相の粒径が3μmより
小さいと強度は高いもののガス透過性が低く、20μm
を越えるとガス透過性は高くなるものの強度が不十分と
なるためである。なお、空気極32の開気孔率は20〜
45%、特に30〜40%が適当である。また、平均細
孔径は1.0〜5.0μmの範囲がガス透過性に優れ
る。
The air electrode 32 used in the present invention is manufactured by extruding a cylindrical air electrode molded body having a function as a self-supporting tube. The air electrode 32 is a LaMnO 3 -based material having a perovskite-type crystal phase as a main phase, and preferably has an average crystal grain size of 3 to 20 μm, particularly 5 to 15 μm. This is because when the particle diameter of the main crystal phase is smaller than 3 μm, the strength is high but the gas permeability is low,
This is because, when it exceeds, the gas permeability increases but the strength becomes insufficient. The open porosity of the air electrode 32 is 20 to
45%, especially 30-40%, is suitable. The average pore diameter in the range of 1.0 to 5.0 μm is excellent in gas permeability.

【0017】空気極32の表面に形成される固体電解質
31は、平均粒径が0.5〜3μmのY2 3 等の周知
の安定化剤により安定化されたZrO2 からなる粉体を
用いてスラリ−を調製し、その後ドクタ−ブレ−ド法等
により作製されたグリ−ンシ−トを空気極成形体の外周
面に巻き付けて形成されたものである。
The solid electrolyte 31 formed on the surface of the air electrode 32 is made of ZrO 2 powder having an average particle diameter of 0.5 to 3 μm and stabilized by a known stabilizer such as Y 2 O 3. A slurry is prepared using the slurry, and then a green sheet produced by a doctor blade method or the like is wound around the outer peripheral surface of the air electrode molded body.

【0018】空気極32と電気的に接続する集電体35
は、燃料電池セル本体34の外面に形成され段差のない
連続同一面37を覆うように形成されており、後述する
燃料極とは電気的に接続されていない。連続同一面37
は 固体電解質31の一部に切欠部を設けて該固体電解
質31の内面に形成されている空気極32の一部を露出
させるとともに、固体電解質31の切欠面39と空気極
32の露出面41とを連続した同一面(固体電解質31
の切欠面39と空気極32の露出面41とが段差のない
平面状態)となして構成されている。この連続同一面3
7は固体電解質成形体の一部と空気極成形体の一部とが
連続した同一面となるまで仮焼体外周面を研摩すること
により形成されている。
A current collector 35 electrically connected to the air electrode 32
Are formed on the outer surface of the fuel cell body 34 so as to cover the continuous same surface 37 having no step, and are not electrically connected to a fuel electrode described later. Continuous same surface 37
A notch is provided in a part of the solid electrolyte 31 to expose a part of the air electrode 32 formed on the inner surface of the solid electrolyte 31, and the notch 39 of the solid electrolyte 31 and the exposed surface 41 of the air electrode 32 And the same surface (solid electrolyte 31)
And the exposed surface 41 of the air electrode 32 are in a flat state without any step. This continuous same surface 3
7 is formed by polishing the outer peripheral surface of the calcined body until a part of the solid electrolyte molded body and a part of the air electrode molded body become continuous and the same surface.

【0019】この連続同一面37に形成される集電体3
5は空気極32と電気的に接続されている。集電体35
はLaCrO3 系のスラリーを調製し、その後ドクタ−
ブレ−ド法等により作製された帯状のグリ−ンシ−トを
平面37に積層して形成されたものである。
The current collector 3 formed on the continuous same surface 37
5 is electrically connected to the air electrode 32. Current collector 35
Prepares a LaCrO 3 based slurry, and then
It is formed by laminating a belt-like green sheet produced by a blade method or the like on a flat surface 37.

【0020】そして、本発明の円筒型燃料電池セルの製
造方法は、空気極成形体の外周面に固体電解質成形体を
積層したものを、酸化性雰囲気で1000〜1300℃
の温度で1〜3時間程度仮焼し、集電体の積層箇所とな
る固体電解質仮焼体の表面を固体電解質仮焼体の一部と
空気極仮焼体の一部とが連続した同一面(平面)となる
まで研磨し、この連続同一面に集電体成形体を積層す
る。このようにして作製した空気極/固体電解質/集電
体積層体は、大気等の酸化性雰囲気中、1300〜16
00℃の温度で3〜15時間程度同時焼成することによ
り焼結させる。集電体を形成する面は、固体電解質の切
欠面39と空気極32の露出面41との間に段差がなけ
れば良く、例えば、連続同一面37は曲面であっても良
い。
The method for manufacturing a cylindrical fuel cell according to the present invention is characterized in that a solid electrolyte molded body is laminated on the outer peripheral surface of an air electrode molded body at 1000 to 1300 ° C. in an oxidizing atmosphere.
At a temperature of about 1 to 3 hours, and the surface of the solid electrolyte calcined body, which is a layered portion of the current collector, has a part of the solid electrolyte calcined body and a part of the cathode calcined body which are continuous Polishing is performed until a surface (plane) is formed, and a current collector molded body is laminated on the continuous same surface. The air electrode / solid electrolyte / current collector laminate thus manufactured was placed in an oxidizing atmosphere such as air at 1300-16.
Sintering is performed by simultaneous firing at a temperature of 00 ° C. for about 3 to 15 hours. The surface on which the current collector is formed is not required to have a step between the cutout surface 39 of the solid electrolyte and the exposed surface 41 of the air electrode 32. For example, the continuous same surface 37 may be a curved surface.

【0021】そして、燃料極として、Niを30〜80
重量%含有し残部が安定化ZrO2(Y2 3 等の安定
化剤を含む)からなる多孔質のサ−メット材料を使用
し、上記積層焼結体の所定箇所に燃料極成形体を積層し
て焼結させることにより、円筒型燃料電池セルが製造さ
れる。空気極/固体電解質/集電体積層成形体を形成し
た後、さらに燃料極成形体を積層し、これらを同時に焼
成することもできる。
Then, as the fuel electrode, 30 to 80 Ni is used.
Using a porous cermet material containing ZrO 2 (containing a stabilizer such as Y 2 O 3 ) with the balance being stabilized by weight and using a porous cermet material at a predetermined position of the laminated sintered body, By stacking and sintering, a cylindrical fuel cell is manufactured. After the formation of the air electrode / solid electrolyte / current collector laminated body, the fuel electrode body can be further laminated and fired simultaneously.

【0022】尚、固定電解質の内面に燃料極を、外面に
空気極を形成することもできる。
Incidentally, a fuel electrode may be formed on the inner surface of the fixed electrolyte, and an air electrode may be formed on the outer surface.

【0023】[0023]

【実施例】円筒状の固体電解質型燃料電池セルを同時焼
成により作製するため、まず円筒状空気極成形体を以下
のようにして作製した。市販の純度99.9%以上のL
2 3 ,Y2 3 ,CaCO3 ,Mn2 3 を出発原
料として、これをLa0.560.14Ca0.3 MnO3 の組
成になるように秤量混合した後、1500℃で3時間仮
焼し粉砕して平均粒径が5〜8μmの固溶体粉末を得
た。この固溶体粉末にバインダ−を添加し、押出成形法
で円筒状の空気極成形体を作製した。
EXAMPLE In order to produce a cylindrical solid oxide fuel cell by simultaneous firing, a cylindrical air electrode compact was first produced as follows. L with commercial purity of 99.9% or more
a 2 O 3 , Y 2 O 3 , CaCO 3 , Mn 2 O 3 were used as starting materials, weighed and mixed so as to have a composition of La 0.56 Y 0.14 Ca 0.3 MnO 3 , and then calcined at 1500 ° C. for 3 hours. And pulverized to obtain a solid solution powder having an average particle diameter of 5 to 8 μm. A binder was added to the solid solution powder, and a cylindrical air electrode molded body was produced by an extrusion molding method.

【0024】次に、共沈法により得られたY2 3 を8
mol%の割合で含有する平均粒径が1〜2μmのZr
2 粉末に、トルエンとバインダ−を添加してスラリ−
を調製し、ドクタ−ブレ−ド法により厚み120〜15
0μmの固体電解質成形体を作製した。前記空気極成形
体にこの前記固体電解質成形体をロ−ル状に巻き付け、
1100℃で1時間の仮焼を行なった。仮焼後、集電体
成形体の積層箇所となる固体電解質仮焼体の表面を空気
極仮焼体が表出するまで平面研磨し、試料No.1とし
た。固体電解質仮焼体の表面を研磨しない図4によるも
のを比較例として試料No.2とした。
Next, Y 2 O 3 obtained by the coprecipitation method was added to 8
Zr having an average particle size of 1 to 2 μm contained at a ratio of mol%
A slurry is prepared by adding toluene and a binder to O 2 powder.
And a thickness of 120 to 15 according to the doctor blade method.
A solid electrolyte molded body of 0 μm was produced. The solid electrolyte molded body is wound around the air electrode molded body in a roll form,
Calcination was performed at 1100 ° C. for 1 hour. After calcination, the surface of the solid electrolyte calcined body, which is to be a laminated portion of the current collector molded body, was polished until the air electrode calcined body was exposed. It was set to 1. The sample according to FIG. 4 in which the surface of the calcined solid electrolyte was not polished was used as a comparative example. And 2.

【0025】次に、市販の純度99.9%以上のLa2
3 ,Cr2 3 ,MgOを出発原料として、これをL
a(Mg0.1 Cr0.9 0.993 の組成になるように秤
量混合した後、1500℃で3時間仮焼し粉砕して、平
均粒径が1〜3μmの固溶体粉末を得た。次に、この固
溶体粉末にトルエンとバインダ−を添加してスラリ−を
調製し、ドクタ−ブレ−ド法により厚み150μmの集
電体成形体を作製した。
Next, commercially available La 2 having a purity of 99.9% or more is used.
Starting from O 3 , Cr 2 O 3 and MgO, this is
a (Mg 0.1 Cr 0.9) were weighed mixed so that the composition of .99 O 3, and 3 hours calcined was pulverized at 1500 ° C., an average particle diameter was obtained a solid solution powder of 1 to 3 [mu] m. Next, toluene and a binder were added to the solid solution powder to prepare a slurry, and a current collector molded body having a thickness of 150 μm was produced by a doctor blade method.

【0026】この前記集電体成形体を試料No.1、2
の空気極/固体電解質仮焼体表面の所定箇所に帯状に積
層し、その後1500℃で6時間の同時焼成を試みた。
焼成後、NiO粉末にZrO2 (10mol%Y2 3
含有)粉末を重量比で70:30の割合で混合した混合
粉末に水を溶媒として加えて作製した燃料極スラリ−を
積層焼結体表面に塗布し、厚み50μmの燃料極成形体
層を作製し、焼結体した。
The current collector molded body was used as a sample No. One, two
Was laminated in a band at a predetermined position on the surface of the air electrode / solid electrolyte calcined body, and then simultaneous firing at 1500 ° C. for 6 hours was attempted.
After firing, ZrO 2 (10 mol% Y 2 O 3
A fuel electrode slurry prepared by adding water as a solvent to a mixed powder obtained by mixing powder at a ratio of 70:30 by weight is applied to the surface of the laminated sintered body to form a fuel electrode molded layer having a thickness of 50 μm. And sintered.

【0027】以上の工程を経て、円筒状の固体電解質型
燃料電池セルを作製した。同時焼成後の集電体層の欠陥
の有無、また作製したセルの1000℃における発電試
験により測定した出力密度から総合的評価を行った。そ
の結果を表1に示した。
Through the above steps, a cylindrical solid oxide fuel cell was manufactured. Comprehensive evaluation was performed based on the presence or absence of defects in the current collector layer after co-firing and the output density of the produced cell measured by a power generation test at 1000 ° C. The results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】表1の結果から明らかなように、集電体積
層箇所を平面研磨した本発明品の試料No.1は集電体
層の欠陥が無く、また出力密度も試料No.2よりも高い
ために燃料電池セルの発電性能において優れるものであ
った。
As is clear from the results shown in Table 1, the sample No. of the product of the present invention in which the current-collector lamination portion was planarly polished. Sample No. 1 was excellent in the power generation performance of the fuel cell because there was no defect in the current collector layer and the output density was higher than that of Sample No. 2.

【0030】[0030]

【発明の効果】以上詳述したように、本発明の円筒型燃
料電池セルでは、集電体上部に微細なクラックや集電体
端部の一部に剥がれが発生せず、集電体に欠陥が発生し
ないため、燃料電池セルを作製する際に表面上に欠陥が
生成せず、セルの製造時の歩留まりを図ることができ
る。また、燃料電池セルとして、燃料極または空気極と
集電体との電気的接続が良好となるためにセルから発生
する電力を効率的に集電することができ、燃料電池セル
の発電性能を高めることもできる。従って、空気極と固
体電解質と集電体とを同時焼成した場合における集電体
の欠陥不良を改善することができ、これよりセル製造の
歩留まり向上と低コスト化を実現できる。
As described in detail above, in the cylindrical fuel cell of the present invention, fine cracks do not occur at the upper part of the current collector and peeling does not occur at a part of the end of the current collector. Since no defect is generated, no defect is generated on the surface when the fuel cell is manufactured, and the yield at the time of manufacturing the cell can be improved. Further, as the fuel cell, the electric connection between the fuel electrode or the air electrode and the current collector is improved, so that the power generated from the cell can be efficiently collected, and the power generation performance of the fuel cell can be improved. Can be increased. Therefore, it is possible to improve the defect of the current collector when the air electrode, the solid electrolyte, and the current collector are co-fired, thereby improving the yield and the cost of the cell manufacturing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒型燃料電池セルの縦断面図であ
る。
FIG. 1 is a longitudinal sectional view of a cylindrical fuel cell of the present invention.

【図2】本発明の円筒型燃料電池セルの斜視図である。FIG. 2 is a perspective view of a cylindrical fuel cell according to the present invention.

【図3】従来の円筒型燃料電池セルの斜視図である。FIG. 3 is a perspective view of a conventional cylindrical fuel cell.

【図4】空気極成形体,固体電解質成形体,集電体成形
体を積層した状態を示す縦断面図である。
FIG. 4 is a longitudinal sectional view showing a state in which an air electrode molded body, a solid electrolyte molded body, and a current collector molded body are stacked.

【符号の説明】[Explanation of symbols]

31・・・固体電解質 32・・・空気極 33・・・燃料極 34・・・燃料電池セル本体 35・・・集電体 37・・・連続同一面 DESCRIPTION OF SYMBOLS 31 ... Solid electrolyte 32 ... Air electrode 33 ... Fuel electrode 34 ... Fuel cell main body 35 ... Current collector 37 ... Continuous same surface

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−21085(JP,A) 特開 平5−174861(JP,A) 特開 平7−111157(JP,A) 特開 平2−226661(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 8/12 H01M 8/02 ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-5-21085 (JP, A) JP-A-5-174861 (JP, A) JP-A-7-111157 (JP, A) JP-A-2- 226661 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 8/12 H01M 8/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】円筒状の固体電解質の片面に燃料極、他面
に空気極が形成された燃料電池セル本体の外面に、前記
固体電解質の内面に形成された前記燃料極または前記空
気極と電気的に接続する集電体を設けてなり、前記固体
電解質と、前記燃料極または前記空気極と、前記集電体
とを同時焼成してなる円筒型燃料電池セルにおいて、前
記固体電解質の一部に切欠部を設けて該固体電解質の内
面に形成されている前記燃料極または前記空気極の一部
を露出させるとともに、前記固体電解質の切欠面と前記
燃料極または前記空気極の露出面とを段差のない連続し
た同一面となし、かつ、連続同一面に前記集電体を接合
してなることを特徴とする円筒型燃料電池セル。
1. A fuel cell having a fuel electrode formed on one surface of a cylindrical solid electrolyte and an air electrode formed on the other surface, and a fuel electrode or an air electrode formed on an inner surface of the solid electrolyte. A current collector electrically connected to the solid electrolyte, the fuel electrode or the air electrode, and the current collector being simultaneously fired with a cylindrical fuel cell. A portion is provided with a cutout portion to expose a part of the fuel electrode or the air electrode formed on the inner surface of the solid electrolyte, and a cutout surface of the solid electrolyte and an exposed surface of the fuel electrode or the air electrode. Are formed on the same continuous surface without a step, and the current collector is joined to the same continuous surface.
【請求項2】円筒状の固体電解質の片面に空気極、他面
に燃料極が形成された燃料電池セル本体の外面に、前記
固体電解質の内面に形成された前記燃料極または前記空
気極と電気的に接続する集電体を設けてなる円筒型燃料
電池セルの製造方法であって、円筒状の空気極成形体ま
たは燃料極成形体の外面に固体電解質成形体を形成する
工程と、これを仮焼する工程と、前記固体電解質成形体
の一部と前記空気極成形体または前記燃料極成形体の一
部とが段差のない連続した同一面となるまで前記仮焼体
外周面を研摩する工程と、該連続同一面に集電体成形体
を形成する工程と、この積層体を酸化性雰囲気中で同時
に焼成する工程と、この焼結体の固体電解質表面に燃料
極成形体を形成する工程と、前記燃料極成形体を形成し
た積層体を酸化性雰囲気中で焼成する工程とを具備する
ことを特徴とする円筒型燃料電池セルの製造方法。
2. The fuel cell or the air electrode formed on the inner surface of the solid electrolyte, on the outer surface of a fuel cell body having an air electrode on one surface and a fuel electrode on the other surface of a cylindrical solid electrolyte. A method for manufacturing a cylindrical fuel cell comprising a current collector electrically connected, comprising: forming a solid electrolyte molded body on an outer surface of a cylindrical air electrode molded body or a fuel electrode molded body; Calcining, and polishing the outer peripheral surface of the calcined body until a part of the solid electrolyte molded body and a part of the air electrode molded body or the fuel electrode molded body have the same continuous surface without any level difference. Performing a step of forming a current collector molded body on the same continuous surface; simultaneously firing the laminate in an oxidizing atmosphere; and forming a fuel electrode molded body on the solid electrolyte surface of the sintered body. Oxidizing the laminated body formed with the fuel electrode molded body. Method of manufacturing a cylindrical fuel cell characterized by comprising the step of firing in 囲気.
【請求項3】円筒状の固体電解質の片面に空気極、他面
に燃料極が形成された燃料電池セル本体の外面に、前記
固体電解質の内面に形成された前記燃料極または前記空
気極と電気的に接続する集電体を設けてなる円筒型燃料
電池セルの製造方法であって、円筒状の空気極成形体ま
たは燃料極成形体の外面に固体電解質成形体を形成する
工程と、これを仮焼する工程と、前記固体電解質成形体
の一部と前記空気極成形体または前記燃料極成形体の一
部とが段差のない連続した同一面となるまで前記仮焼体
外周面を研摩する工程と、該連続同一面に集電体成形体
を形成する工程と、前記仮焼体の固体電解質成形体表面
に前記空気極成形体または前記燃料極成形体を形成する
工程と、この積層体を酸化性雰囲気中で同時に焼成する
工程とを具備することを特徴とする円筒型燃料電池セル
の製造方法。
3. The fuel cell or the air electrode formed on the inner surface of the solid electrolyte, on the outer surface of a fuel cell body having an air electrode formed on one surface and a fuel electrode formed on the other surface of a cylindrical solid electrolyte. A method for manufacturing a cylindrical fuel cell comprising a current collector electrically connected, comprising: forming a solid electrolyte molded body on an outer surface of a cylindrical air electrode molded body or a fuel electrode molded body; Calcining, and polishing the outer peripheral surface of the calcined body until a part of the solid electrolyte molded body and a part of the air electrode molded body or the fuel electrode molded body have the same continuous surface without any level difference. Forming a current collector formed body on the continuous same surface; forming the air electrode formed body or the fuel electrode formed body on the surface of the solid electrolyte formed body of the calcined body; Simultaneously firing the body in an oxidizing atmosphere. Method of manufacturing a cylindrical fuel cell characterized by and.
JP19521395A 1995-07-31 1995-07-31 Cylindrical fuel cell and method of manufacturing the same Expired - Fee Related JP3339995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19521395A JP3339995B2 (en) 1995-07-31 1995-07-31 Cylindrical fuel cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19521395A JP3339995B2 (en) 1995-07-31 1995-07-31 Cylindrical fuel cell and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0945354A JPH0945354A (en) 1997-02-14
JP3339995B2 true JP3339995B2 (en) 2002-10-28

Family

ID=16337349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19521395A Expired - Fee Related JP3339995B2 (en) 1995-07-31 1995-07-31 Cylindrical fuel cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3339995B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4638070B2 (en) * 2001-02-27 2011-02-23 京セラ株式会社 Cylindrical fuel cell, method for producing the same, and fuel cell

Also Published As

Publication number Publication date
JPH0945354A (en) 1997-02-14

Similar Documents

Publication Publication Date Title
JP2003173802A (en) Solid electrolyte fuel cell and its manufacturing method
JP4462727B2 (en) Solid electrolyte fuel cell
JP4845296B2 (en) Solid oxide fuel cell and fuel cell
JP3347561B2 (en) Solid oxide fuel cell
JP3434883B2 (en) Method for manufacturing fuel cell
JP3339983B2 (en) Solid oxide fuel cell and method of manufacturing the same
JPH0992302A (en) Unit cell of cylindrical fuel cell and its manufacture
JP3350313B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3339998B2 (en) Cylindrical fuel cell
JP3342610B2 (en) Solid oxide fuel cell
JP3339995B2 (en) Cylindrical fuel cell and method of manufacturing the same
JP3730774B2 (en) Solid oxide fuel cell
JP3342621B2 (en) Solid oxide fuel cell
JP3336171B2 (en) Solid oxide fuel cell
JP3638489B2 (en) Solid oxide fuel cell
JPH09129245A (en) Cell for solid electrolyte fuel cell
JP2002134133A (en) Cell of solid electrolyte fuel cell
JP4748863B2 (en) Solid oxide fuel cell and fuel cell
JP2002134132A (en) Solid electrolyte fuel cell and its manufacturing method
JP3217695B2 (en) Cylindrical fuel cell
JP2001126745A (en) Solid electrolytic fuel cell
JP3342611B2 (en) Manufacturing method of cylindrical fuel cell
JPH08130029A (en) Solid electrolyte fuel cell and its manufacture
JP3281814B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3677404B2 (en) Cylindrical solid electrolyte fuel cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees