JP2003173774A - Anode material for lithium ion secondary battery and its manufacturing method and lithium ion secondary battery using same anode material - Google Patents

Anode material for lithium ion secondary battery and its manufacturing method and lithium ion secondary battery using same anode material

Info

Publication number
JP2003173774A
JP2003173774A JP2001370322A JP2001370322A JP2003173774A JP 2003173774 A JP2003173774 A JP 2003173774A JP 2001370322 A JP2001370322 A JP 2001370322A JP 2001370322 A JP2001370322 A JP 2001370322A JP 2003173774 A JP2003173774 A JP 2003173774A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium ion
ion secondary
negative electrode
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001370322A
Other languages
Japanese (ja)
Other versions
JP3709987B2 (en
Inventor
Takanobu Kawai
隆伸 河井
Takashi Wakizaka
敬 脇阪
Kenichi Motokawa
健一 本川
Kyoko Kataoka
恭子 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP2001370322A priority Critical patent/JP3709987B2/en
Publication of JP2003173774A publication Critical patent/JP2003173774A/en
Application granted granted Critical
Publication of JP3709987B2 publication Critical patent/JP3709987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anode material for a lithium ion secondary battery of high capacity, heavy load characteristics and excellent handling whose decomposition can be restrained even under existence of propylene carbonate used for portable equipment or the like such as a cellular phone, a PDA, and a personal computer, and its manufacturing method, as well as a lithium ion secondary battery using the anode material. <P>SOLUTION: The anode material for the lithium ion secondary battery wholly consists of graphite with its core material made of graphite particles, covered with a basal surface (100) and/or an amorphous coated part formed of a graphite skeleton. As the manufacturing method of an anode material for the lithium ion secondary battery, an amorphous pitch or crystalline pitch is first coated on a particle surface of a core material of carbon or graphite nature by a mechanochemical method, and then, is made unfusible, carbonized and graphitized so that a whole part covered with a basal face (100) with a particle surface formed of a carbon skeleton and/or an amorphous coated part is composed of graphite. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、携帯電話、携帯情
報端末、ビデオカメラ、パソコン等の可搬型機器類など
に用いられるリチウムイオン系二次電池用負極材及びそ
の製造方法、及び該製造方法により得られる負極材を用
いたリチウムイオン系二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode material for a lithium ion secondary battery used in portable equipment such as mobile phones, personal digital assistants, video cameras, personal computers, etc., a method for producing the same, and a method for producing the same. The present invention relates to a lithium ion secondary battery using the negative electrode material obtained by.

【0002】[0002]

【従来の技術】リチウムイオン二次電池はハイパワー、
高容量の二次電池として携帯電話、パソコン、携帯情報
端末(PDA)等の可搬型機器類に多く使用され、今後
もその需要が更に高くなると予想されている。このよう
な可搬型機器類の小型化への流れを受け、リチウムイオ
ン系二次電池も小型・軽量化の要請を受けている。
2. Description of the Related Art Lithium ion secondary batteries have high power,
It is widely used as a high-capacity secondary battery in portable devices such as mobile phones, personal computers, and personal digital assistants (PDAs), and it is expected that the demand for it will further increase in the future. In response to the trend toward miniaturization of such portable devices, lithium ion secondary batteries are also required to be compact and lightweight.

【0003】そのため、リチウムイオン系二次電池を構
成するパーツや材料も高性能化の動きが活発になってい
る。電池の性能を左右するカーボン系負極材についても
例外ではない。
Therefore, the performance of parts and materials constituting a lithium-ion secondary battery has been actively improved. The carbon-based negative electrode material that influences battery performance is no exception.

【0004】近年更に、ポリマーを用いて電解質をゲル
化し、外装に缶の代わりに薄くて軽いアルミラミネート
フィルムを用いたリチウムポリマー二次電池が発売さ
れ、更に電池の薄型化、軽量化に寄与するようになっ
た。
In recent years, a lithium polymer secondary battery using a polymer to gel an electrolyte and a thin and lightweight aluminum laminate film instead of a can has been put on the market, which contributes to further thinning and weight saving of the battery. It became so.

【0005】これらの二次電池の中でもとりわけリチウ
ムポリマー二次電池は、ゲル化したポリマー電解質の中
に加える可塑剤としてプロピレンカーボネイト(以下P
Cと略す)を用いる例が多い。
Among these secondary batteries, a lithium polymer secondary battery is a propylene carbonate (hereinafter referred to as P) as a plasticizer added to a gelled polymer electrolyte.
There are many examples of using C).

【0006】しかし、現在主流で用いられている黒鉛質
系負極材は、その表面でPCの分解を促進するため、電
池作製上PCを使用できない例がほとんどである。例え
ば、G.C.Chung et al、 J.Ele
c.Soc.、146(5)1664(1999)及び
G.C.Chung et al、J. Elec.S
oc.、147(12) 4391(2000)による
と黒鉛表面のエッジ構造とPCの相互作用について詳細
に考察されている。また、M. Yoshioet a
l、J. Elec. Soc.、147(4) 12
45(2000)では、天然黒鉛の表面にCVD処理で
炭素被覆することで耐PC性を改善できることが紹介さ
れて、現在では上市されている。
[0006] However, most of the graphite-based negative electrode materials currently used in the mainstream accelerate the decomposition of PC on the surface thereof, and in most cases, PC cannot be used for battery preparation. For example, G.I. C. Chung et al. Ele
c. Soc. 146 (5) 1664 (1999) and G.I. C. Chung et al. Elec. S
oc. 147 (12) 4391 (2000), the interaction between PC and the edge structure of the graphite surface is discussed in detail. In addition, M. Yoshio et a
1, J.I. Elec. Soc. 147 (4) 12
45 (2000), it was introduced that the PC resistance can be improved by coating the surface of natural graphite with carbon by CVD treatment, and it is now on the market.

【0007】しかしながら、CVDというコストのかか
る手法を用いていることから、電池メーカーが要求して
いる安価な材料という点で無理がある。
However, since a costly method called CVD is used, it is unreasonable in that it is an inexpensive material required by battery manufacturers.

【0008】現在リチウムポリマー二次電池用には、既
存の負極材の中では、比較的耐PC性の良いMCMB
(メソカーボンマイクロビーズ)が主に使われているよ
うであるが、容量は300〜310mAh/g程度で将
来の高容量電池用には容量的に不足である。また、価格
も高く、電池製造のコストダウンが図りにくい等の難点
がある。
At present, for lithium polymer secondary batteries, MCMB, which has relatively good PC resistance, among the existing negative electrode materials.
It seems that (mesocarbon microbeads) are mainly used, but the capacity is about 300 to 310 mAh / g, which is insufficient in capacity for future high capacity batteries. In addition, the price is high, and it is difficult to reduce the cost of battery production.

【0009】[0009]

【発明が解決しようとする課題】このような状況から、
リチウムイオン系二次電池の負極材として、プロピレン
カーボネイトの存在下でもその分解を抑制することが可
能で、かつ高容量、高負荷特性、かつ取り扱い性に優れ
るリチウムイオン系二次電池用負極材の開発が望まれて
いる。
From such a situation,
As a negative electrode material for lithium-ion secondary batteries, it is possible to suppress the decomposition of propylene carbonate even in the presence of propylene carbonate, and has a high capacity, high load characteristics, and excellent handleability. Development is desired.

【0010】従って、本発明の目的は、携帯電話、PD
A、パソコン等の可搬型機器類などに用いられる、プロ
ピレンカーボネイトの存在下でもその分解を抑制するこ
とが可能で、かつ高容量、高負荷特性、かつ取り扱い性
に優れるリチウムイオン系二次電池用負極材を提供する
ことである。
Therefore, an object of the present invention is to provide a mobile phone, a PD.
A, Lithium-ion secondary batteries used in portable equipment such as personal computers, which can suppress decomposition even in the presence of propylene carbonate, have high capacity, high load characteristics, and are easy to handle. It is to provide a negative electrode material.

【0011】また、本発明の別の目的は、かかる特性の
優れたリチウムイオン系二次電池用負極材の製造方法を
提供することである。
Another object of the present invention is to provide a method for producing a negative electrode material for a lithium ion secondary battery having such excellent characteristics.

【0012】さらに、本発明の別の目的は、上記本発明
の製造方法により得られた負極材を用いたリチウムイオ
ン系二次電池を提供することである。
Further, another object of the present invention is to provide a lithium ion secondary battery using the negative electrode material obtained by the manufacturing method of the present invention.

【0013】[0013]

【課題を解決するための手段】本発明者等は、上記課題
を解決するために種々検討した結果、黒鉛化された炭素
質母材(コア材)粒子表面に黒鉛骨格で形成される基底
面(100)面及び/又はアモルファスな被膜部分で覆
われた全体が黒鉛からなるように形成することにより、
上記課題が達成できるリチウムイオン系二次電池用負極
材及びその製造方法が得られることを見い出し、本発明
を完成するに至ったものである。
Means for Solving the Problems As a result of various studies to solve the above problems, the present inventors have found that a basal surface formed of a graphite skeleton on the surface of graphitized carbonaceous base material (core material) particles. By forming the entire surface covered with the (100) plane and / or the amorphous film portion with graphite,
The present invention has been completed by finding that a negative electrode material for a lithium ion secondary battery and a method for producing the same that can achieve the above object are obtained.

【0014】すなわち、本発明では、炭素質または黒鉛
質の母材(コア材)にメカノケミカル法により非晶質ピ
ッチまたは晶質ピッチを被覆後、軽度に不融化後、炭素
化及び更には黒鉛化することにより、コア部分と被覆部
分(スキン部)の熱収縮の差によって、より熱収縮の大
きいスキン部が、炭素化時にコア粒子の周方向に張力が
かかり、結果としてスキン部は、黒鉛骨格の基底面(1
00)面及び/又はアモルファスな被膜部分で覆われた
全体が黒鉛からなる面の混合状態の面が選択的に形成さ
れる。
That is, in the present invention, a carbonaceous or graphitic base material (core material) is coated with an amorphous pitch or a crystalline pitch by a mechanochemical method, and after lightly infusible, carbonization and further graphite The difference in heat shrinkage between the core portion and the coating portion (skin portion) causes the skin portion, which has a larger heat shrinkage, to be tensioned in the circumferential direction of the core particles during carbonization, and as a result, the skin portion is made of graphite. Base of skeleton (1
The (00) plane and / or the plane of mixed state of the plane entirely covered with the amorphous coating portion is made of graphite.

【0015】この結果、PC(プロピレンカーボネイ
ト)の存在下でもPCと黒鉛エッジ構造との相互作用を
起こしにくく、PCの分解を抑制可能な高容量、高負荷
特性、且つ取り扱い性に優れるリチウムイオン二次電池
用及びリチウムポリマー二次電池用カーボン負極材を調
製することができる。
As a result, even in the presence of PC (propylene carbonate), the interaction between the PC and the graphite edge structure is unlikely to occur, and the lithium ion battery having a high capacity capable of suppressing the decomposition of PC, a high load characteristic, and an excellent handleability. Carbon negative electrode materials for secondary batteries and lithium polymer secondary batteries can be prepared.

【0016】本発明の方法によると、乾式で混合後にメ
カノケミカル処理をするだけで、溶剤、ガス類等の材料
を使用する必要が無いため、副生成する溶剤、ガス類を
処理するための設備、更には種々の環境対策に費用をか
ける必要も無く、製造コストを低く押さえることができ
る。
According to the method of the present invention, it is not necessary to use a material such as a solvent or a gas simply by performing a mechanochemical treatment after mixing in a dry system. Therefore, a facility for treating a solvent or a gas produced as a by-product. Moreover, it is not necessary to spend money on various environmental measures, and the manufacturing cost can be kept low.

【0017】以上の如き処理によって得られた本発明の
耐PC性の優れた負極材を使用すると、高容量でガス発
生量の少ないPCを含む組成の電解液を用いたリチウム
イオン系二次電池、PCを可塑剤として用いたリチウム
ポリマー二次電池の製造が可能となる。
When the negative electrode material of the present invention having excellent PC resistance obtained by the treatment as described above is used, a lithium ion secondary battery using an electrolytic solution containing PC having a high capacity and a small amount of gas generation. It is possible to manufacture a lithium polymer secondary battery using PC as a plasticizer.

【0018】このように本発明のリチウムイオン系二次
電池用負極材は、黒鉛質であるコア材の粒子表面が黒鉛
骨格で形成される基底面(100)面及び/又はアモル
ファスな被膜部分で覆われた全体が黒鉛からなることを
特徴とするものである。
As described above, in the lithium ion secondary battery negative electrode material of the present invention, the particle surface of the graphite core material is the basal plane (100) surface and / or the amorphous coating film portion formed of the graphite skeleton. The whole covered is made of graphite.

【0019】また、本発明のリチウムイオン系二次電池
用負極材の製造方法は、炭素質または黒鉛質のコア材
(母材)の粒子表面にメカノケミカル法によりスキン材
として非晶質ピッチまたは晶質ピッチを被覆後、更に不
融化、炭素化及び黒鉛化処理をして粒子表面が黒鉛骨格
で形成される基底面(100)面及び/又はアモルファ
スな被膜部分で覆われた全体が黒鉛からなることを特徴
とするものである。
The method for producing a negative electrode material for a lithium ion secondary battery according to the present invention comprises a carbonaceous or graphitic core material (base material) having a grain surface formed of amorphous pitch or a skin material by a mechanochemical method. After coating the crystalline pitch, further infusibilization, carbonization and graphitization treatment is carried out, and the particle surface is formed of graphite skeleton. It is characterized by becoming.

【0020】さらに、本発明のリチウムイオン系二次電
池は、上記本発明の製造方法により得られた負極材を用
いたことを特徴とするものである。
Further, the lithium ion secondary battery of the present invention is characterized by using the negative electrode material obtained by the manufacturing method of the present invention.

【0021】[0021]

【発明の実施の形態】以下に、本発明のリチウムイオン
系二次電池用負極材及びその製造方法並びに該製造方法
により得られた負極材を用いたリチウムイオン系二次電
池について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a negative electrode material for a lithium ion secondary battery of the present invention, a method for producing the same, and a lithium ion secondary battery using the negative electrode material obtained by the production method will be described in detail. .

【0022】1.コア材材質 炭素質の粒子であって、その粒子の長径aと短径bとの
比a/bが2以下で、配向の小さいものであれば、特に
限定しない。具体的には、(1)偏光顕微鏡下での観察
において、晶質部分のニードル状部分の割合(N率)が
50%以下の石油系及び石炭系焼成コークスの粉末また
は生コークスの粉末、(2)メソフェーズピッチ粉末の
炭素化品または黒鉛化品でa/bが2以下である粒子で
あれば特に問わない。前記比a/bが2より大きいと、
メカノケミカル処理によるピッチの被覆が不均一とな
り、コア材表面のエッジ構造を充分被覆できなくなり、
耐PC性が充分発揮できなくなり、好ましくない。ま
た、前記N率が50%を越えるコークス系粒子は、即ち
配向の大きいものであり、この塊を粉砕すれば、自ずと
その配向面で剥離・粉砕されやすく、前記a/bが3を
越える粒子となり、同様に被覆が不均一となり、好まし
くない。
1. The core material carbonaceous particles are not particularly limited as long as the ratio a / b of the major axis a and the minor axis b of the particles is 2 or less and the orientation is small. Specifically, (1) a petroleum-based and coal-based calcined coke powder or raw coke powder having a needle-like portion (N ratio) of a crystalline portion of 50% or less in observation under a polarization microscope, ( 2) Any carbonized or graphitized mesophase pitch powder particles having a / b of 2 or less may be used. When the ratio a / b is greater than 2,
The coating of the pitch due to mechanochemical treatment becomes uneven, and the edge structure on the surface of the core material cannot be sufficiently covered,
It is not preferable because the PC resistance cannot be sufficiently exhibited. Further, the coke-based particles having an N ratio of more than 50% have a large orientation, and if this lump is crushed, it is easy for the coke-based particles to be exfoliated and crushed on the orientation surface, and the a / b exceeds 3 And similarly, the coating becomes non-uniform, which is not preferable.

【0023】2.コア材の粒度 コア材の平均粒子径は市販の負極材と同程度であれば、
特に問わない。具体的には、コア材の平均粒子径は5〜
50μmであることが好ましい。コア材の平均粒子径が
5μm以下では、比表面積が大きくなり、この結果負極
材として用いても充放電時の不可逆容量が大きくなり好
ましくない。一方、コア材の平均粒子径が50μm以上
では、その粒度分布上、負極電極シートの厚さを越える
粒子、即ち80μm以上の粒子を多く含むため、好まし
くない。なお、コア材の平均粒子径が、5〜50μmで
あっても3μm以下の粒子の存在割合は、3容量%以
下、好ましくは1容量%以下であることが必要である。
3μm以下の粒子の存在割合がこれより多いと、メカノ
ケミカル処理に預からない微粒子としてそのまま残存し
てしまうので好ましくない。
2. Particle size of the core material If the average particle diameter of the core material is about the same as the commercially available negative electrode material,
It doesn't matter. Specifically, the average particle size of the core material is 5 to
It is preferably 50 μm. If the average particle diameter of the core material is 5 μm or less, the specific surface area becomes large, and as a result, even if it is used as a negative electrode material, the irreversible capacity during charging and discharging becomes large, which is not preferable. On the other hand, if the average particle size of the core material is 50 μm or more, it is not preferable because many particles exceeding the thickness of the negative electrode sheet, that is, particles of 80 μm or more are included in the particle size distribution. Even if the average particle size of the core material is 5 to 50 μm, the proportion of particles having a particle size of 3 μm or less needs to be 3% by volume or less, preferably 1% by volume or less.
If the abundance ratio of particles having a particle size of 3 μm or less is larger than this, it is not preferable because it remains as fine particles that are not deposited in the mechanochemical treatment.

【0024】3.コア材の不融化及び炭素化の条件 コア材としてピッチを用いる場合にはコア材の不融化、
炭素化が必要であり、この不融化は、上記コア材を粉砕
後、空気中280〜320℃で酸化処理を行い、不融化
し、これを整粒して用いる。このようにして不融化して
得られたコア材の炭素化は、被処理物の酸化減耗を防ぐ
ために炭酸ガス、窒素ガスなどの非酸化性雰囲気下で行
うのが好ましく、焼成温度は、700℃以上であれば良
いが、1200℃以下が好ましい。焼成温度が700℃
未満では炭素化の点で熱分解が十分ではなく、また、1
200℃を越える温度では炉の耐久性、製造コストの点
で現実的ではない。このように非酸化性雰囲気下で焼成
して得られた炭素質材料を、更に2800〜3200℃
の範囲で予め黒鉛化して用いてもよい。2800℃以下
では、黒鉛の結晶化が十分に進まず、好ましくない。3
200℃より高温では実質上処理できない。
3. Conditions for infusibilizing and carbonizing core material When using pitch as the core material, infusibilizing core material,
Carbonization is necessary, and for infusibilization, the core material is pulverized, then oxidized in air at 280 to 320 ° C. to be infusibilized, and the particles are sized and used. Carbonization of the core material thus obtained by infusibilization is preferably carried out in a non-oxidizing atmosphere such as carbon dioxide gas or nitrogen gas in order to prevent oxidative wear of the object to be treated, and the firing temperature is 700 The temperature may be higher than or equal to 0 ° C, but the temperature is preferably 1,200 ° C or lower. Baking temperature is 700 ℃
If it is less than 1, thermal decomposition is not sufficient in terms of carbonization, and 1
Temperatures over 200 ° C are not realistic in terms of furnace durability and manufacturing cost. The carbonaceous material thus obtained by firing in a non-oxidizing atmosphere is further subjected to 2800 to 3200 ° C.
It may be graphitized beforehand in the range of. At 2800 ° C or lower, crystallization of graphite does not proceed sufficiently, which is not preferable. Three
Substantially no treatment is possible at temperatures above 200 ° C.

【0025】4.スキン部の材質 炭素質材料または黒鉛化された炭素質コア材粒子表面を
被覆するスキン部の材質は、光学的等方性または異方性
即ちメソフェーズピッチで軟化点が、200℃以上、4
00℃以下のものでコア材の平均粒径程度以下に微粉砕
したものが選ばれる。軟化点が200℃以下では、その
後工程での不融化が困難で本用途に使用できず、軟化点
が400℃以上のものは、実質的に軟化点が無いことに
なり、メカノケミカル処理にかけることができず好まし
くない。また、スキン部に用いる材質の粒径がコア材の
平均粒径より大きいと、メカノケミカル処理時間を長く
必要としたり、均一な被覆ができなかったりするので好
ましくない。
4. Material of skin part The material of the skin part covering the surface of the carbonaceous material or the graphitized carbonaceous core material particles is optically isotropic or anisotropic, that is, having a softening point of 200 ° C. or more in mesophase pitch, 4
Those having a temperature of 00 ° C. or less and finely pulverized to have an average particle size of the core material or less are selected. If the softening point is 200 ° C or lower, it cannot be used for this purpose because it is difficult to infusibilize in the subsequent process, and if the softening point is 400 ° C or higher, there is virtually no softening point and the mechanochemical treatment is applied. It is not possible because it is not possible. Further, if the particle size of the material used for the skin portion is larger than the average particle size of the core material, the mechanochemical treatment time becomes long and uniform coating cannot be achieved, which is not preferable.

【0026】5.メカノケミカル処理 一般にメカノケミカル処理は、擂潰機を使用しコア材と
スキン材を重量比がコア/スキン=100/10〜30
で混合磨砕処理することで達成できるが、本発明の場
合、コア材表面を完全に被覆することが大切なので、む
しろ市販のメカノケミカル処理装置を使用することが望
ましい。市販の装置としては、例えば、ホソカワミクロ
ン株式会社製のメカノフュージョンシステムAMシリー
ズ、AMSシリーズ、株式会社奈良機械製作所のハイブ
リタイザーNHSシリーズなどが挙げられる。これらの
装置を使用すれば、数分から数十分で均一な被膜をコア
材表面に形成することができる。擂潰機を用いた場合
は、スキン材の粒度をコア材の平均粒径の少なくとも3
分の1以下にして、処理時間も、少なくとも4時間以上
かける必要がある。
5. Mechanochemical treatment In general, mechanochemical treatment uses a crusher and the weight ratio of core material and skin material is 100/10 to 30.
However, in the present invention, since it is important to completely cover the surface of the core material, it is preferable to use a commercially available mechanochemical treatment device. Examples of commercially available devices include mechanofusion systems AM series and AMS series manufactured by Hosokawa Micron Co., Ltd., and a hybridizer NHS series manufactured by Nara Machinery Co., Ltd. By using these devices, a uniform coating can be formed on the core material surface in a few minutes to a few tens of minutes. When using a crushing machine, the grain size of the skin material should be at least 3 times the average grain size of the core material.
It is necessary to reduce the processing time to one-third or less and the processing time to at least four hours or more.

【0027】6.スキン部の不融化 このようにして得られたメカノケミカル処理品は、空気
中で熱処理し、不融化する。不融化の温度は特に限定さ
れるものではないが、処理物の燃焼を防ぐ目的で通常は
320℃以下で行う。
6. Insolubilization of skin part The mechanochemically treated product thus obtained is infusibilized by heat treatment in air. The temperature of infusibilization is not particularly limited, but it is usually 320 ° C. or lower for the purpose of preventing combustion of the processed material.

【0028】7.スキン部の焼成 不活性ガス雰囲気中または還元性雰囲気中で焼成し、不
融化品中の揮発分を除去する。焼成温度は特に限定され
ないが、通常は600℃以上で十分である。
7. Firing of the skin portion Firing is performed in an inert gas atmosphere or a reducing atmosphere to remove volatile components in the infusibilized product. The firing temperature is not particularly limited, but 600 ° C. or higher is usually sufficient.

【0029】8.スキン部の黒鉛化 このように処理して得られた焼成品は不活性ガスまたは
還元性雰囲気中で黒鉛化し、リチウムイオン系二次電池
用負極材を製造する。黒鉛化の温度は2800℃以上と
する。黒鉛化の温度が2800℃未満の場合には、放電
容量が低下して好ましくない。このスキン部の黒鉛化処
理過程において、用いた炭素質コア材も同時に黒鉛化さ
れる。
8. Graphitization of Skin Part The fired product obtained by the above treatment is graphitized in an inert gas or a reducing atmosphere to produce a negative electrode material for a lithium ion secondary battery. The graphitization temperature is 2800 ° C. or higher. When the graphitization temperature is lower than 2800 ° C, the discharge capacity is lowered, which is not preferable. In the process of graphitizing the skin portion, the carbonaceous core material used is also graphitized.

【0030】このような黒鉛化処理により、炭素質母材
粒子の表面に黒鉛骨格で形成される基底面(100)面
及び/又はアモルファス面の混合状態の面が選択的に形
成される。
By such graphitization treatment, a mixed surface of the basal plane (100) plane and / or the amorphous plane formed of the graphite skeleton is selectively formed on the surface of the carbonaceous base material particles.

【0031】次に、上記本発明の製造方法により得られ
た負極材を用いて、リチウムイオン系二次電池を製造す
ることができる。この二次電池の構成自体は、従来から
公知のものであり、例えば、該負極材に、ポリフッ化ビ
ニリデン等のバインダーを溶解したNーメチルー2ーピ
ロリドン等の溶剤を加え、十分に混合後ペースト化す
る。この負極材とバインダーとの混合比(重量比)は負
極材の粒度や比表面積にもよるが100:5〜100:
15とすることが望ましい。バインダーにはPVDFの
他にEPDM(エチレンプロピレンジエンモノマー)や
スチレンブタジエンゴム(SBR)、ポリテトラフルオ
ロエチレン(PTFE)等の公知の材料を用いることが
できる。このようにして得られたペーストをドクターブ
レード等を用いて銅箔表面に塗布し、これを例えば、約
150℃で1時間程度乾燥後、圧延し、電極シートを形
成する。
Next, a lithium ion secondary battery can be manufactured using the negative electrode material obtained by the manufacturing method of the present invention. The structure itself of this secondary battery is conventionally known, and for example, a solvent such as N-methyl-2-pyrrolidone in which a binder such as polyvinylidene fluoride is dissolved is added to the negative electrode material and sufficiently mixed to form a paste. . The mixing ratio (weight ratio) of the negative electrode material and the binder is 100: 5 to 100: depending on the particle size and the specific surface area of the negative electrode material.
It is desirable to set it to 15. In addition to PVDF, known materials such as EPDM (ethylene propylene diene monomer), styrene butadiene rubber (SBR), and polytetrafluoroethylene (PTFE) can be used for the binder. The paste thus obtained is applied to the surface of the copper foil using a doctor blade or the like, and this is dried at, for example, about 150 ° C. for about 1 hour and then rolled to form an electrode sheet.

【0032】正極材料は特に限定されるものではない
が、当該分野で公知の金属LiのほかLiCoO2 、L
iNiO2 又はLiMn24 等のリチウム含有化合物
或はこれらの混合物を用いることができる。また、セパ
レーターも特に限定されるものではなく、従来公知の材
料を用いることができる。
The positive electrode material is not particularly limited, but in addition to the metal Li known in the art, LiCoO 2 , L
Lithium-containing compounds such as iNiO 2 or LiMn 2 O 4 or mixtures thereof can be used. Also, the separator is not particularly limited, and conventionally known materials can be used.

【0033】電解質としては、LiCl、LiBr、L
iCiO4 、LiPF6 、LiBF 4 、LiB(C6
54 等のリチウム塩を単独で又はこれらの2種類以上
の塩を混合して用いることができる。
As the electrolyte, LiCl, LiBr, L
iCiOFour , LiPF6 , LiBF Four , LiB (C6 H
Five )Four Lithium salts such as
Can be used as a mixture.

【0034】また、電解液としてはリチウム塩を溶解す
る、例えば、プロピレンカーボネート(PC)、エチレ
ンカーボネート(EC)、ジメチルカーボネート(DM
C)、メチルエチルカーボネート(MEC)等の非プロ
トン性低誘電率の公知の溶媒を単独で又はこれらの2種
以上の溶媒を混合して用いてもよい。
Further, as an electrolytic solution, a lithium salt is dissolved, for example, propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DM).
A known aprotic solvent having a low dielectric constant such as C) or methyl ethyl carbonate (MEC) may be used alone or in combination of two or more kinds thereof.

【0035】[0035]

【作用】かかる本発明のリチウムイオン系二次電池用負
極材の製造方法によれば、黒鉛質の母材の表面に形成さ
れたスキン部は、黒鉛骨格の基底面(100)面及び/
又はアモルファス面の混合状態の面が選択的に形成さ
れ、この結果、PC(プロピレンカーボネイト)の存在
下でもPCと黒鉛エッジ構造との相互作用を起こしにく
く、PCの分解を抑制可能な、高容量、高負荷特性、且
つ取り扱い性に優れるリチウムイオン系二次電池用カー
ボン負極材を調製することができる。
According to the method for producing a negative electrode material for a lithium ion secondary battery of the present invention, the skin portion formed on the surface of the graphite base material has a base surface (100) surface of the graphite skeleton and / or
Alternatively, a mixed surface of amorphous surfaces is selectively formed, and as a result, even in the presence of PC (propylene carbonate), the interaction between PC and the graphite edge structure is unlikely to occur, and decomposition of PC can be suppressed. It is possible to prepare a carbon negative electrode material for a lithium ion secondary battery, which has high load characteristics and excellent handleability.

【0036】[0036]

【実施例】以下、実施例及び比較例により本発明を詳細
に説明する。実施例1 平均粒子径18.4μmで軟化点360℃、メソフェー
ズ量95%のメソフェーズピッチを空気中で昇温しなが
ら最高温度300℃にて1時間熱処理し不融化を行っ
た。
EXAMPLES The present invention will be described in detail below with reference to examples and comparative examples. Example 1 A mesophase pitch having an average particle diameter of 18.4 μm and a softening point of 360 ° C. and a mesophase amount of 95% was heated in air at a maximum temperature of 300 ° C. for 1 hour for infusibilization.

【0037】不融化して得られたメソフェーズピッチを
解砕後、窒素雰囲気下1000℃にて1時間熱処理し、
更に黒鉛化炉に移して、アルゴン雰囲気下3000℃で
0.5時間熱処理した。
After crushing the mesophase pitch obtained by infusibilization, it was heat-treated at 1000 ° C. for 1 hour in a nitrogen atmosphere,
Furthermore, it moved to the graphitization furnace and heat-processed at 3000 degreeC for 0.5 hour in argon atmosphere.

【0038】このようにして得られた黒鉛粉末を乾式分
級で3μm以下の粒子が0%になるように整粒した。得
られた黒鉛粉末は(株)セイシン企業製の粒度分布測定
機LMS−30を用いて測定した平均粒子径が15.1
μm、リガク(株)製のX線回折測定装置(Rod B
system型)を用いて、Cu−Kα線をNiで単
色化し、「日本学術振興会法」に準拠して測定した平均
層面間隔(以下d(002)と示す)が0.3363n
mであり、この粒子の長径aと短径bとの比a/bは
1.51であった。
The graphite powder thus obtained was sized by dry classification so that 0% of particles having a size of 3 μm or less were obtained. The obtained graphite powder had an average particle size of 15.1 measured by using a particle size distribution analyzer LMS-30 manufactured by Seishin Enterprise Co., Ltd.
μm, X-ray diffraction measurement device (Rod B manufactured by Rigaku Corporation)
The Cu-Kα ray was monocolored with Ni using a system type), and the average inter-layer spacing (hereinafter referred to as d (002)) measured according to the "Japan Society for the Promotion of Science" was 0.3363n.
m, and the ratio a / b of the major axis a and the minor axis b of this particle was 1.51.

【0039】この黒鉛粉末100重量部に対してこの黒
鉛と同じ原料であるメソフェーズピッチ25重量部をブ
レンダーに仕込み、5分間処理を行い、均一に混合させ
た。更にホソカワミクロン(株)製メカノフュージョン
AM80F型にて0.25時間メカノケミカル処理を
し、黒鉛粉末の周囲にメソフェーズピッチをコーティン
グした。このようにコーティングされたメソフェーズ部
分を空気中にて昇温しながら最高温度300℃で1時
間、不融化した後、全体を解砕した。
To 100 parts by weight of this graphite powder, 25 parts by weight of mesophase pitch, which is the same raw material as this graphite, was charged into a blender, treated for 5 minutes, and uniformly mixed. Further, mechanochemical treatment was performed for 0.25 hours using Mechanofusion AM80F manufactured by Hosokawa Micron Co., Ltd., and mesophase pitch was coated around the graphite powder. The thus coated mesophase portion was infusibilized at a maximum temperature of 300 ° C. for 1 hour while heating in air, and then the whole was crushed.

【0040】このようにして得られた粉末を窒素雰囲気
下1000℃にて1時間焼成し、その後、更にアルゴン
雰囲気下3000℃で0.5時間熱処理し、平均粒子径
15.6μmを有するリチウムイオン系二次電池負極材
用ハイブリッド型炭素材を得た。
The powder thus obtained was calcined in a nitrogen atmosphere at 1000 ° C. for 1 hour, and then further heat-treated in an argon atmosphere at 3000 ° C. for 0.5 hour to obtain lithium ions having an average particle diameter of 15.6 μm. A hybrid carbon material for a negative electrode material of a secondary battery was obtained.

【0041】実施例2 実施例1の前半部の処理工程で得られた黒鉛粉末を用
い、この黒鉛粉末100重量部に対し光学的等方性ピッ
チ25重量部をブレンダーに仕込み、実施例1と同様に
5分間処理を行い、均一に混合させた。更に実施例1と
まったく同様にメカノケミカル処理をし、黒鉛粉末の周
囲に該光学的等方性ピッチをコーティングした。これを
実施例1と同様に空気中にて300℃にてコーティング
されたピッチ部分を空気酸化処理した後、全体を解砕し
た。この粉末を窒素雰囲気下1000℃で焼成し、更
に、アルゴン雰囲気下3000℃で熱処理し、平均粒子
径が15.9μmのリチウムイオン系二次電池負極材用
ハイブリッド型炭素材を得た。
Example 2 Using the graphite powder obtained in the first half of the treatment step of Example 1, 25 parts by weight of an optically isotropic pitch was charged into a blender with respect to 100 parts by weight of this graphite powder. Similarly, a treatment was carried out for 5 minutes to uniformly mix them. Further, the same mechanochemical treatment as in Example 1 was carried out to coat the graphite powder with the optically isotropic pitch. This was air-oxidized at 300 ° C. for the pitch portion coated in air in the same manner as in Example 1, and then the whole was crushed. This powder was fired at 1000 ° C. in a nitrogen atmosphere and further heat-treated at 3000 ° C. in an argon atmosphere to obtain a hybrid carbon material for a lithium ion secondary battery negative electrode material having an average particle diameter of 15.9 μm.

【0042】実施例3 偏光顕微鏡下での観察で、晶質部分のニードル状部分の
割合(N率)が、48%であり平均粒子径が18.9μ
mである石炭系コークス100重量部に対して、実施例
1で使用したメソフェーズピッチ25重量部をブレンダ
ーに仕込み5分間処理を行い、均一に混合させた。更に
実施例1とまったく同様にメカノケミカル処理をし、該
コークス粉末の周囲にメソフェーズピッチをコーティン
グした。これを更に実施例1とまったく同様に空気中に
て300℃にてコーティングされたピッチ部分を空気酸
化処理した後、全体を解砕した。この粉末を窒素雰囲気
下1000℃で焼成し、更にアルゴン雰囲気下3000
℃にて熱処理し、平均粒子径が16.3μmのリチウム
イオン系二次電池負極材用ハイブリッド型炭素材を得
た。
Example 3 As a result of observation under a polarizing microscope, the ratio of needle-like portions (N ratio) in the crystalline portion was 48% and the average particle diameter was 18.9 μm.
25 parts by weight of the mesophase pitch used in Example 1 was charged in a blender for 5 minutes with respect to 100 parts by weight of the coal-based coke of m, and the mixture was uniformly mixed. Further, mechanochemical treatment was performed in exactly the same manner as in Example 1 to coat the coke powder with mesophase pitch. The pitch portion coated with this was further air-oxidized at 300 ° C. in air in the same manner as in Example 1, and then the whole was crushed. This powder is fired at 1000 ° C. in a nitrogen atmosphere, and further 3000 times in an argon atmosphere.
Heat treatment was performed at 0 ° C. to obtain a hybrid type carbon material for a lithium ion secondary battery negative electrode material having an average particle diameter of 16.3 μm.

【0043】実施例4 実施例1において、メカノケミカル処理を石川工場
(株)製の大型擂潰機で4時間処理した以外は実施例1
とまったく同様に処理し、平均粒子径15.9μmのリ
チウムイオン系二次電池負極材用ハイブリッド型炭素材
を得た。
Example 4 Example 1 was repeated except that the mechanochemical treatment was carried out for 4 hours by using a large-scale grinding machine manufactured by Ishikawa Plant Co., Ltd.
The treatment was carried out in exactly the same manner as in 1. to obtain a hybrid type carbon material for a lithium ion secondary battery negative electrode material having an average particle diameter of 15.9 μm.

【0044】実施例5 実施例1の黒鉛粉末とメソフェーズピッチの配合を、黒
鉛粉末100重量部に対しメソフェーズピッチ15重量
部にした他は実施例1とまったく同様に処理して、平均
粒子径15.1μmのリチウムイオン系二次電池負極材
用ハイブリッド型炭素材を得た。
Example 5 An average particle diameter of 15 was obtained by treating in exactly the same manner as in Example 1 except that the graphite powder and the mesophase pitch of Example 1 were mixed in an amount of 15 parts by weight of mesophase pitch with respect to 100 parts by weight of the graphite powder. A hybrid carbon material for a negative electrode material of a lithium ion secondary battery having a thickness of 1 μm was obtained.

【0045】比較例1 実施例1で使用した平均粒子径18.4μmの軟化点3
60℃、メソフェーズ量95%のメソフェーズピッチ
を、空気中で昇温しながら最高温度300℃にて1時間
熱処理して不融化を行い、解砕後、不活性雰囲気下10
00℃にて1時間熱処理し、更に黒鉛化炉に移して、ア
ルゴン雰囲気下3000℃で0.5時間熱処理した。こ
れを乾式分級で3μm以下が0%になるように整粒し、
平均粒径15.2μmのリチウムイオン系二次電池負極
材用炭素材を得た。
Comparative Example 1 Softening point 3 with an average particle size of 18.4 μm used in Example 1
Mesophase pitch at 60 ° C and 95% mesophase amount was heat-treated at a maximum temperature of 300 ° C for 1 hour while heating in air to infusibilize, and after crushing, 10 minutes in an inert atmosphere.
It was heat-treated at 00 ° C. for 1 hour, transferred to a graphitizing furnace, and further heat-treated at 3000 ° C. for 0.5 hour in an argon atmosphere. This is sized by dry classification so that the particle size of 3 μm or less becomes 0%,
A carbon material for a negative electrode material of a lithium ion secondary battery having an average particle diameter of 15.2 μm was obtained.

【0046】比較例2 実施例1で使用した黒鉛粉末100重量部に対し、同じ
く実施例1で使用したメソフェーズピッチ40重量部に
した以外は実施例1とまったく同様に処理して、平均粒
子径15.8μmのリチウムイオン系二次電池負極材用
ハイブリッド型炭素材を得た。
Comparative Example 2 100 parts by weight of the graphite powder used in Example 1 was treated in exactly the same manner as in Example 1 except that 40 parts by weight of the mesophase pitch used in Example 1 was used. A 15.8 μm hybrid type carbon material for a lithium ion secondary battery negative electrode material was obtained.

【0047】比較例3 実施例1の最終処理温度を1000℃にした以外は、実
施例1とまったく同様に処理して、平均粒子径15.7
μmのリチウムイオン系二次電池用ハイブリッド型炭素
材を得た。
Comparative Example 3 The same treatment as in Example 1 was carried out except that the final treatment temperature in Example 1 was set to 1000 ° C., and the average particle size was 15.7.
A hybrid carbon material for a lithium ion secondary battery having a thickness of μm was obtained.

【0048】比較例4 実施例1において、メカノケミカル処理を石川工場
(株)製の大型擂潰機で1時間処理した以外は実施例1
とまったく同様に処理して、平均粒子径15.7μmの
リチウムイオン系二次電池負極材用ハイブリッド型炭素
材を得た。
Comparative Example 4 Example 1 was repeated except that the mechanochemical treatment was carried out for 1 hour using a large-scale grinding machine manufactured by Ishikawa Factory Co., Ltd.
The treatment was carried out in exactly the same manner as above to obtain a hybrid carbon material for a lithium ion secondary battery negative electrode material having an average particle diameter of 15.7 μm.

【0049】比較例5 軟化点82℃のキノリン不溶分を含有しないピッチを、
窒素気流下500℃にて36時間熱処理し、揮発分4.
5%のコークスを得た。これを粉砕後、窒素気流下10
00℃にて焼成し、更に黒鉛化炉に移して、アルゴン雰
囲気下3000℃で黒鉛化した。これを、乾式分級で3
μm以下が0%になるように整粒した。得られた黒鉛粉
末は平均粒径16.1μmで、d(002)が0.33
57nmであり、a/b=3.20である。以下、実施
例1と同様にメカノケミカル処理、熱処理をし、平均粒
子径17.1μmのリチウムイオン電池用ハイブリッド
型炭素材を得た。
Comparative Example 5 A pitch containing no quinoline insoluble matter having a softening point of 82 ° C.
Heat-treated at 500 ° C. for 36 hours under a nitrogen stream to remove volatile matter 4.
5% coke was obtained. After crushing this, under a nitrogen stream 10
It was fired at 00 ° C., transferred to a graphitization furnace, and graphitized at 3000 ° C. in an argon atmosphere. This is 3 by dry classification
The particle size was adjusted so that the particle size of less than μm was 0%. The obtained graphite powder had an average particle size of 16.1 μm and d (002) of 0.33.
57 nm and a / b = 3.20. Thereafter, a mechanochemical treatment and a heat treatment were performed in the same manner as in Example 1 to obtain a hybrid carbon material for a lithium ion battery having an average particle diameter of 17.1 μm.

【0050】比較例6 実施例1と同じ黒鉛粉末100重量部に対し、ノボラッ
ク型ストレートフェノール樹脂20重量部にした以外は
実施例1とまったく同様に処理して、平均粒子径16.
9μmのリチウムイオン電池負極材用ハイブリッド型炭
素材を得た。これらの各実施例及び比較例によって得ら
れた結果を表1に纏めて示す。
Comparative Example 6 100 parts by weight of the same graphite powder as in Example 1 was treated in exactly the same manner as in Example 1 except that 20 parts by weight of novolac type straight phenol resin was used, and the average particle size was 16.
A 9 μm hybrid type carbon material for a negative electrode material of a lithium ion battery was obtained. The results obtained in each of these Examples and Comparative Examples are summarized in Table 1.

【0051】電池性能試験 各実施例及び比較例によって得られた炭素粉末100重
量部とポリフッ化ビニリデン10重量部に、Nーメチル
ー2ーピロリドンを混合後ペースト化した。このペース
トをドクターブレードを用いて銅箔上に塗布した後に1
50℃で1時間乾燥後、1t/cm2 でプレスし、厚さ
80μmの電極シートとした。対極と参照極にLi金属
を用い、電解液として1M−LiClO4 /EC:ME
C(体積比1:1)、及び1M−LiClO4 /PC:
EC:MEC(体積比1:1:2)の2種類を用いて、
各々の三極式ビーカーセルを構成し、充放電試験を行っ
た。充放電試験は以下に述べる条件で行った。充電条件
は、電流密度0.5mA/cm2 で10mVになるまで
充電し、電圧が10mVになった時に定電圧充電に切り
換え、電流値が0.001mAになるまで充電した。放
電条件は、電流密度0.5mA/cm2 で1.5Vまで
放電した。測定環境温度は30℃で、測定範囲は0.0
1〜1.5Vである。得られた炭素粉末の平均層面間隔
はX線回折(「日本学術振興会法」に準拠)により求め
た。表1には、各測定結果を併せて示した。
Battery Performance Test N-methyl-2-pyrrolidone was mixed with 100 parts by weight of the carbon powders obtained in each of the examples and comparative examples and 10 parts by weight of polyvinylidene fluoride to form a paste. After applying this paste onto copper foil using a doctor blade, 1
After drying at 50 ° C. for 1 hour, it was pressed at 1 t / cm 2 to obtain an electrode sheet having a thickness of 80 μm. Li metal was used for the counter electrode and the reference electrode, and 1M-LiClO 4 / EC: ME was used as the electrolytic solution.
C (volume ratio 1: 1), and 1M-LiClO 4 / PC:
Using two types of EC: MEC (volume ratio 1: 1: 2),
Each three-electrode type beaker cell was constructed and a charge / discharge test was conducted. The charge / discharge test was performed under the conditions described below. The charging condition was that the current density was 0.5 mA / cm 2 until it reached 10 mV, and when the voltage reached 10 mV, it was switched to constant voltage charging and the current value reached 0.001 mA. The discharge conditions were a current density of 0.5 mA / cm 2 and discharge to 1.5 V. Measurement environment temperature is 30 ℃, measurement range is 0.0
It is 1 to 1.5V. The average inter-layer spacing of the obtained carbon powder was determined by X-ray diffraction (in accordance with "Japan Society for the Promotion of Science"). Table 1 also shows each measurement result.

【0052】[0052]

【表1】 [Table 1]

【0053】表1に示された各測定結果から明らかなよ
うに、本発明の実施例では、いずれも電解液がPC:E
C:MEC=1:1:2の評価においても、放電容量が
320mAh/g以上で、充放電効率が90%以上と高
く、良好のものが得られた。
As is clear from the measurement results shown in Table 1, in all the examples of the present invention, the electrolytic solution was PC: E.
Also in the evaluation of C: MEC = 1: 1: 2, the discharge capacity was 320 mAh / g or more, and the charge / discharge efficiency was 90% or higher, which was good.

【0054】[0054]

【発明の効果】本発明によれば、炭素質または黒鉛質で
あるコア材の粒子表面にメカノケミカル法により非晶質
ピッチもしくは晶質ピッチを被覆後、不融化、炭素化、
黒鉛化することによって、PCを混合させた電解液での
初回充放電容量が良好であり、リチウムイオン二次電池
の使用可能範囲が広がるという利点がある。
According to the present invention, after the amorphous or crystalline pitch is coated on the particle surface of the carbonaceous or graphitic core material by the mechanochemical method, the infusibilization, carbonization,
The graphitization has an advantage that the initial charge / discharge capacity in the electrolytic solution containing PC is good and the usable range of the lithium ion secondary battery is widened.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 片岡 恭子 滋賀県近江八幡市鷹飼町南4−2−2 Fターム(参考) 4G046 EA02 EB06 EC02 EC06 5H029 AJ03 AJ07 AK03 AL07 AM03 AM07 AM16 DJ16 DJ17 DJ18 HJ05 HJ13 5H050 AA08 AA13 BA17 CA07 CB08 DA03 DA09 EA08 FA17 FA18 FA19 FA20 GA02 GA22 GA27 HA05 HA13 HA14    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kyoko Kataoka             4-2-2 Minami, Takakaicho, Omihachiman City, Shiga Prefecture F-term (reference) 4G046 EA02 EB06 EC02 EC06                 5H029 AJ03 AJ07 AK03 AL07 AM03                       AM07 AM16 DJ16 DJ17 DJ18                       HJ05 HJ13                 5H050 AA08 AA13 BA17 CA07 CB08                       DA03 DA09 EA08 FA17 FA18                       FA19 FA20 GA02 GA22 GA27                       HA05 HA13 HA14

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛質であるコア材の粒子表面が、黒鉛
骨格で形成される基底面(100)面及び/又はアモル
ファスな被膜部分で覆われた全体が黒鉛からなることを
特徴とするリチウムイオン系二次電池用負極材。
1. Lithium characterized in that the surface of particles of a core material made of graphite is entirely covered with a basal plane (100) surface formed of a graphite skeleton and / or an amorphous coating film portion and is made of graphite. Negative electrode material for ionic secondary batteries.
【請求項2】 前記コア材の粒子の長径aと短径bとの
比a/bが、2以下の炭素質の粒子であることを特徴と
する請求項1に記載のリチウムイオン系二次電池用負極
材。
2. The lithium ion secondary particle according to claim 1, wherein the core material particles are carbonaceous particles having a ratio a / b of a major axis a and a minor axis b of 2 or less. Negative electrode material for batteries.
【請求項3】 前記コア材の粒度が5〜50μmで、か
つ3μm以下の粒子の存在割合が3容量%以下であるこ
とを特徴とする請求項1または2に記載のリチウムイオ
ン系二次電池用負極材。
3. The lithium ion secondary battery according to claim 1, wherein the core material has a particle size of 5 to 50 μm, and the abundance ratio of particles of 3 μm or less is 3% by volume or less. Negative electrode material.
【請求項4】 炭素質または黒鉛質のコア材の粒子表面
にメカノケミカル法によりスキン材として非晶質ピッチ
または晶質ピッチを被覆後、更に不融化、炭素化及び黒
鉛化処理をして粒子表面が黒鉛骨格で形成される基底面
(100)面及び/又はアモルファスな被膜部分で覆わ
れた全体が黒鉛からなることを特徴とするリチウムイオ
ン系二次電池用負極材の製造方法。
4. The particles of a carbonaceous or graphitic core material are coated with amorphous pitch or crystalline pitch as a skin material by a mechanochemical method, and then subjected to infusibilization, carbonization and graphitization. A method for producing a negative electrode material for a lithium ion secondary battery, wherein the surface is a basal plane (100) surface formed of a graphite skeleton and / or the whole is covered with an amorphous coating film part made of graphite.
【請求項5】 前記コア材の粒子の長径aと短径bとの
比a/bが、2以下の炭素質の粒子であることを特徴と
する請求項4に記載のリチウムイオン系二次電池用負極
材の製造方法。
5. The lithium ion secondary particle according to claim 4, wherein the core material particles are carbonaceous particles having a ratio a / b of a major axis a and a minor axis b of 2 or less. Manufacturing method of negative electrode material for battery.
【請求項6】 前記コア材が偏光顕微鏡下での観察にお
いて晶質部分のニードル状部分の割合が50%以下の石
油系及び石炭系焼成コークスの粉末、生コークスの粉
末、メソフェーズピッチ粉末の炭素化物または黒鉛化物
から選ばれる請求項4または5に記載のリチウムイオン
系二次電池用負極材の製造方法。
6. The carbon of petroleum-based and coal-based calcined coke powder, raw coke powder, and mesophase pitch powder, wherein the core material has a needle-like portion of a crystalline portion of 50% or less when observed under a polarization microscope. 7. The method for producing a negative electrode material for a lithium ion secondary battery according to claim 4, which is selected from a compound and a graphitized product.
【請求項7】 前記コア材の粒度が5〜50μmで、か
つ3μm以下の粒子の存在割合が3容量%以下であるこ
とを特徴とする請求項4ないし6のいずれか1項に記載
のリチウムイオン系二次電池用負極材の製造方法。
7. The lithium according to claim 4, wherein the core material has a particle size of 5 to 50 μm, and the existence ratio of particles of 3 μm or less is 3% by volume or less. A method for manufacturing a negative electrode material for an ionic secondary battery.
【請求項8】 前記スキン材が、光学的等方性または異
方性メソフェーズピッチで、かつ軟化点が200℃以
上、400℃以下であることを特徴とする請求項4ない
し7のいずれか1項に記載のリチウムイオン系二次電池
用負極材の製造方法。
8. The skin material according to claim 4, wherein the skin material has an optically isotropic or anisotropic mesophase pitch and a softening point of 200 ° C. or higher and 400 ° C. or lower. Item 8. A method for producing a negative electrode material for a lithium ion secondary battery according to item.
【請求項9】 前記メカノケミカル処理を、コア材とス
キン材の重量比が100:10〜30で混合磨砕処理す
ることを特徴とする請求項4ないし8のいずれか1項に
記載のリチウムイオン系二次電池用負極材の製造方法。
9. The lithium according to any one of claims 4 to 8, wherein the mechanochemical treatment is a mixing and grinding treatment with a weight ratio of the core material and the skin material of 100: 10 to 30. A method for manufacturing a negative electrode material for an ionic secondary battery.
【請求項10】 請求項4から9のいずれか1項に記載
の製造方法により得られた負極材を用いたことを特徴と
するリチウムイオン系二次電池。
10. A lithium ion secondary battery using the negative electrode material obtained by the manufacturing method according to claim 4.
JP2001370322A 2001-12-04 2001-12-04 Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material Expired - Fee Related JP3709987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001370322A JP3709987B2 (en) 2001-12-04 2001-12-04 Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001370322A JP3709987B2 (en) 2001-12-04 2001-12-04 Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material

Publications (2)

Publication Number Publication Date
JP2003173774A true JP2003173774A (en) 2003-06-20
JP3709987B2 JP3709987B2 (en) 2005-10-26

Family

ID=19179563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001370322A Expired - Fee Related JP3709987B2 (en) 2001-12-04 2001-12-04 Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material

Country Status (1)

Country Link
JP (1) JP3709987B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004075319A1 (en) * 2003-02-20 2004-09-02 Mitsubishi Chemical Corporation Active substance for negative electrode of lithium secondary battery, negative electrode of lithium secondary battery and lithium secondary battery
WO2004075318A1 (en) * 2003-02-20 2004-09-02 Mitsubishi Chemical Corporation Negative electrode of lithium secondary battery and lithium secondary battery
WO2005078829A1 (en) * 2004-02-12 2005-08-25 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same, and lithium secondary battery
KR100886529B1 (en) 2007-05-29 2009-03-02 엘에스엠트론 주식회사 Anode material of secondary battery and secondary battery using the same
US7816037B2 (en) 2002-01-25 2010-10-19 Toyo Tanso Co., Ltd. Anode material for lithium ion secondary battery
JP2011519332A (en) * 2008-03-31 2011-07-07 コノコフィリップス カンパニー Anode powder for batteries
JP2011258421A (en) * 2010-06-09 2011-12-22 Nippon Carbon Co Ltd Negative electrode active material for lithium ion secondary battery and negative electrode
WO2013088712A1 (en) * 2011-12-16 2013-06-20 Jfeケミカル株式会社 Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP2013168391A (en) * 2008-04-24 2013-08-29 Posco Chemtec Carbon negative electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
KR101396847B1 (en) 2011-11-25 2014-05-20 지에스칼텍스 주식회사 Anode active material comprising natural graphite particle with improved strength and litium secondary battery employed with the same
CN103943860A (en) * 2014-04-25 2014-07-23 焦作聚能能源科技有限公司 Negative pole material for lithium ion power and energy storage battery, as well as preparation method and battery thereof
JP2014225421A (en) * 2012-06-13 2014-12-04 Jfeケミカル株式会社 Method for producing amorphous carbon particle, amorphous carbon particle, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
CN104300150A (en) * 2014-05-07 2015-01-21 河南中联高科新能源有限公司 Asphalt-based nanoporous carbon material, negative material thereof, and lithium ion battery
JP2016028999A (en) * 2014-07-24 2016-03-03 Jfeケミカル株式会社 Method for producing hardly graphitizable carbon material, negative electrode material for lithium-ion secondary battery, and lithium-ion secondary battery
JP2016056095A (en) * 2011-12-16 2016-04-21 Jfeケミカル株式会社 Method for producing amorphous carbon particle
CN112670471A (en) * 2020-12-21 2021-04-16 宁波杉杉新材料科技有限公司 Graphite negative electrode material, lithium ion battery and preparation method and application of graphite negative electrode material
CN114146635A (en) * 2021-11-25 2022-03-08 广东凯金新能源科技股份有限公司 Pre-granulation method of graphite negative electrode material
CN116632249A (en) * 2023-07-26 2023-08-22 中创新航科技集团股份有限公司 Lithium ion battery

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816037B2 (en) 2002-01-25 2010-10-19 Toyo Tanso Co., Ltd. Anode material for lithium ion secondary battery
WO2004075318A1 (en) * 2003-02-20 2004-09-02 Mitsubishi Chemical Corporation Negative electrode of lithium secondary battery and lithium secondary battery
US7208248B2 (en) 2003-02-20 2007-04-24 Mitsubushi Chemical Corporation Negative-electrode active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
WO2004075319A1 (en) * 2003-02-20 2004-09-02 Mitsubishi Chemical Corporation Active substance for negative electrode of lithium secondary battery, negative electrode of lithium secondary battery and lithium secondary battery
WO2005078829A1 (en) * 2004-02-12 2005-08-25 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same, and lithium secondary battery
KR100886529B1 (en) 2007-05-29 2009-03-02 엘에스엠트론 주식회사 Anode material of secondary battery and secondary battery using the same
JP2011519332A (en) * 2008-03-31 2011-07-07 コノコフィリップス カンパニー Anode powder for batteries
JP2013168391A (en) * 2008-04-24 2013-08-29 Posco Chemtec Carbon negative electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP2011258421A (en) * 2010-06-09 2011-12-22 Nippon Carbon Co Ltd Negative electrode active material for lithium ion secondary battery and negative electrode
KR101396847B1 (en) 2011-11-25 2014-05-20 지에스칼텍스 주식회사 Anode active material comprising natural graphite particle with improved strength and litium secondary battery employed with the same
US20140295284A1 (en) * 2011-12-16 2014-10-02 Jfe Chemical Corporation Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
US9735421B2 (en) 2011-12-16 2017-08-15 Jfe Chemical Corporation Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2013144632A (en) * 2011-12-16 2013-07-25 Jfe Chemical Corp Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
KR20140093987A (en) * 2011-12-16 2014-07-29 제이에프이 케미칼 가부시키가이샤 Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
WO2013088712A1 (en) * 2011-12-16 2013-06-20 Jfeケミカル株式会社 Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
CN104114488A (en) * 2011-12-16 2014-10-22 杰富意化学株式会社 Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
KR101667125B1 (en) * 2011-12-16 2016-10-17 제이에프이 케미칼 가부시키가이샤 Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2016104698A (en) * 2011-12-16 2016-06-09 Jfeケミカル株式会社 Amorphous carbon particle
EP2792637A4 (en) * 2011-12-16 2015-08-19 Jfe Chemical Corp Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP2016056095A (en) * 2011-12-16 2016-04-21 Jfeケミカル株式会社 Method for producing amorphous carbon particle
JP2014225421A (en) * 2012-06-13 2014-12-04 Jfeケミカル株式会社 Method for producing amorphous carbon particle, amorphous carbon particle, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
CN103943860A (en) * 2014-04-25 2014-07-23 焦作聚能能源科技有限公司 Negative pole material for lithium ion power and energy storage battery, as well as preparation method and battery thereof
CN104300150A (en) * 2014-05-07 2015-01-21 河南中联高科新能源有限公司 Asphalt-based nanoporous carbon material, negative material thereof, and lithium ion battery
JP2016028999A (en) * 2014-07-24 2016-03-03 Jfeケミカル株式会社 Method for producing hardly graphitizable carbon material, negative electrode material for lithium-ion secondary battery, and lithium-ion secondary battery
CN112670471A (en) * 2020-12-21 2021-04-16 宁波杉杉新材料科技有限公司 Graphite negative electrode material, lithium ion battery and preparation method and application of graphite negative electrode material
CN112670471B (en) * 2020-12-21 2022-02-15 宁波杉杉新材料科技有限公司 Graphite negative electrode material, lithium ion battery and preparation method and application of graphite negative electrode material
CN114146635A (en) * 2021-11-25 2022-03-08 广东凯金新能源科技股份有限公司 Pre-granulation method of graphite negative electrode material
CN116632249A (en) * 2023-07-26 2023-08-22 中创新航科技集团股份有限公司 Lithium ion battery
CN116632249B (en) * 2023-07-26 2023-09-29 中创新航科技集团股份有限公司 Lithium ion battery

Also Published As

Publication number Publication date
JP3709987B2 (en) 2005-10-26

Similar Documents

Publication Publication Date Title
US9647262B2 (en) Core-shell type anode active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same
JP6511726B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP3709987B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
KR20200129176A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101609459B1 (en) Carbon-silicon composite and manufacturing mehtod of the same
WO2013084506A1 (en) Composite graphite particles and use of same
Su et al. Silicon, flake graphite and phenolic resin-pyrolyzed carbon based Si/C composites as anode material for lithium-ion batteries
TW201841418A (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2018110263A1 (en) Composite graphite particles, method for producing same, and use thereof
JP2004196609A (en) Production method for composite graphite particle, composite graphite particle, cathode material for lithium ion secondary battery, and lithium ion secondary battery
CN112542587A (en) Graphite material, secondary battery, and electronic device
CN111656582A (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2011060467A (en) Negative electrode material for lithium ion secondary battery and method for manufacturing the same
JP2000348720A (en) Graphite carbon material for lithium ion secondary battery negative electrode material including thereon graphite having graphitization higher than that of inside graphite, and manufacture thereof
JPH10294111A (en) Graphite carbon material coated with graphite for lithium secondary battery negative electrode material and its manufacture
JP2004103405A (en) Raw material for carbonaceous material, silicon-containing carbonaceous material, negative electrode material of secondary battery, and lithium secondary battery
KR101417588B1 (en) Anode active material with high electrical conductivity and method for preparing the same
KR101592773B1 (en) Anode active material and secondary battery comprising the same
WO2019064547A1 (en) Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
CN111656584A (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN114937758B (en) Negative electrode active material, negative electrode plate containing same and battery
JP2003176115A (en) Method of manufacturing graphite powder, graphite powder and lithium ion secondary battery
JP2004059386A (en) Production method for carbon-coated graphite particle, carbon-coated graphite particle, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
KR101122938B1 (en) Preparation method of electrode active material particle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3709987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees