JP2003166174A - Reinforcing fiber bundle, woven fabric thereof, prepreg of the same and fiber-reinforced plastic - Google Patents

Reinforcing fiber bundle, woven fabric thereof, prepreg of the same and fiber-reinforced plastic

Info

Publication number
JP2003166174A
JP2003166174A JP2001363599A JP2001363599A JP2003166174A JP 2003166174 A JP2003166174 A JP 2003166174A JP 2001363599 A JP2001363599 A JP 2001363599A JP 2001363599 A JP2001363599 A JP 2001363599A JP 2003166174 A JP2003166174 A JP 2003166174A
Authority
JP
Japan
Prior art keywords
fiber bundle
reinforcing fiber
resin
fine particles
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001363599A
Other languages
Japanese (ja)
Other versions
JP3927795B2 (en
JP2003166174A5 (en
Inventor
Tomoo Sano
智雄 佐野
Toshihiro Kasai
俊宏 笠井
Shinji Matsuoka
新治 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2001363599A priority Critical patent/JP3927795B2/en
Publication of JP2003166174A publication Critical patent/JP2003166174A/en
Publication of JP2003166174A5 publication Critical patent/JP2003166174A5/ja
Application granted granted Critical
Publication of JP3927795B2 publication Critical patent/JP3927795B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reinforcing fiber bundle improving the form stability of the reinforcing fiber bundle and a woven fabric of the reinforcing fiber bundle at room temperature, to facilitate the treatability, and capable of maintaining high drape, and further to provide a woven fabric using the reinforcing fiber bundle, a prepreg of the woven fabric, and a fiber-reinforced plastic using the prepreg. <P>SOLUTION: Fine particles are imparted to the reinforcing fiber bundle. At least the surface layers of the fine particles are composed of an amorphous thermoplastic resin having -10 to 20°C glass transition temperature. The particle is either of the ones of a homogeneous type or a multilayer type, e.g. a core- shell type. In the one of the core-shell type, the core is composed of one of an amorphous resin having ≥30°C glass transition temperature, a crystalline resin having ≥30°C melting point and an inorganic particle. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、形態を維持しつつ
取り扱い性に優れた強化繊維束、その強化繊維束からな
る織物、同織物プリプレグ及びその繊維強化プラスチッ
クに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reinforced fiber bundle which is excellent in handleability while maintaining its shape, a woven fabric comprising the reinforced fiber bundle, a woven prepreg thereof and a fiber reinforced plastic thereof.

【0002】[0002]

【従来の技術】ガラス繊維や炭素繊維、アラミド繊維な
どの強化繊維を用いて形成された織物は、そのほとんど
が樹脂を含浸・硬化させた繊維強化プラスチックとして
使用される。これら織物状繊維強化プラスチックの機械
的特性を最大限に引き出すためには、織物を構成する糸
において蛇行や目ずれ等の乱れが少なく、織形態が安定
していることが要求される。また、織物状繊維強化プラ
スチックは機械的特性と併せて外観の美しさを要求され
る場合も多々存在する。
2. Description of the Related Art Most of woven fabrics made of reinforcing fibers such as glass fibers, carbon fibers and aramid fibers are used as fiber reinforced plastics impregnated and cured with resin. In order to maximize the mechanical properties of these woven fiber-reinforced plastics, it is required that the yarns that form the woven fabric have less disturbance such as meandering and misalignment and that the woven form is stable. Further, in many cases, the woven fiber-reinforced plastic is required to have beautiful appearance as well as mechanical properties.

【0003】強化繊維織物の織形態を維持する手法とし
ては多くの検討がなされており、通常は、強化繊維に低
融点の熱融着性樹脂をカバリングして織物を形成し、次
いでこの織物を加熱して樹脂を融着させる方法がある。
Many studies have been made as a method for maintaining the woven form of a reinforced fiber woven fabric. Usually, a reinforced fiber is covered with a low melting point heat-fusible resin to form a woven fabric, and then this woven fabric is formed. There is a method of heating and fusing the resin.

【0004】また、例えば特開昭64−40632号公
報では、強化繊維束を一方向に又は交差方向に引き揃
え、隣り合う強化繊維束間に交差状に配された第1及び
第2補助糸により織組織を構成して、前記強化繊維束を
一体に保持するとともに、前記第1補助糸または第2補
助糸に沿って、熱可塑性ポリマーを線条に連続または不
連続に付着させ、該熱可塑性ポリマーにより互に交差す
る補助糸同志を接合させている。
Further, for example, in Japanese Patent Laid-Open No. 64-40632, the first and second auxiliary yarns are arranged in a cross shape between adjacent reinforcing fiber bundles by aligning the reinforcing fiber bundles in one direction or in the crossing direction. To form a woven structure by holding the reinforcing fiber bundles together, and to adhere the thermoplastic polymer to the filament continuously or discontinuously along the first auxiliary yarn or the second auxiliary yarn. Auxiliary yarns that cross each other are joined by a plastic polymer.

【0005】さらに、例えば特開平7−314443号
公報によれば、ガラス転移温度が70℃以上である熱硬
化性樹脂又は熱可塑性樹脂からなる形態安定化剤を、炭
素繊維織物の繊維材料重量に対して0.5〜10重量%
の範囲で付着させることにより、プリプレグにおける表
層部のマトリックス樹脂の炭素繊維織物内部への沈降が
防止されるため、プリプレグとしてのタック性が長時間
保持され、また、そのプリプレグを硬化させることによ
り成形品表面の樹脂欠損のない表面平滑性に優れた繊維
強化複合材料が得られるというものである。
Further, for example, according to Japanese Patent Laid-Open No. 7-314443, a morphological stabilizer made of a thermosetting resin or a thermoplastic resin having a glass transition temperature of 70 ° C. or higher is added to the weight of the fiber material of the carbon fiber woven fabric. 0.5 to 10% by weight
By adhering within the range of, the settling of the matrix resin of the surface layer of the prepreg inside the carbon fiber fabric is prevented, so the tackiness as a prepreg is maintained for a long time, and the prepreg is molded by curing. It is possible to obtain a fiber-reinforced composite material having excellent surface smoothness without resin defects on the product surface.

【0006】また、例えば特開平8−158207号公
報には、高耐熱性繊維からなる経糸と緯糸とを織機にセ
ットして織物を製織するとき、その織口と巻き取り部1
との間で前記製織後の織物にホットメルト樹脂を塗布
し、該樹脂を固化して、経糸と緯糸とを結着することに
より、構成繊維が樹脂で被覆されるとともに、経糸と緯
糸とが強固に結着され、織機に仕掛かった状態で織物を
目止することができるため、経糸と緯糸との配列が乱れ
ることなく製織直後の綺麗な布目をそのまま維持した織
物を得ることが可能となるとしている。
Further, for example, in Japanese Unexamined Patent Publication (Kokai) No. 8-158207, when a warp and a weft made of highly heat-resistant fibers are set on a loom to weave a woven fabric, the cloth fell and the take-up portion 1
A hot-melt resin is applied to the woven fabric after the weaving, and the resin is solidified to bind the warp and the weft, whereby the constituent fibers are coated with the resin, and the warp and the weft are Since the fabric is tightly bound and the fabric can be stopped in the state where it is set on the loom, it is possible to obtain a fabric that maintains the beautiful texture immediately after weaving without disturbing the arrangement of the warp and the weft. Is going to be.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述の
強化繊維に低融点の熱融着性樹脂を予めカバリングして
織物を形成する方法では、強化繊維束が熱融着性樹脂で
覆われてしまい、強化繊維束の内部までマトリックス樹
脂が侵入しがたい。また、上記特開平7−314443
号公報に開示された方法では、隣り合う強化繊維束間に
交差状に配されたたて糸及びよこ糸となる第1及び第2
補助糸同士の単なる点接着に過ぎないため、強化繊維束
の断面形状が比較的容易に変形してしまい、特に打ち込
み本数の少ない織物では目開きや目ずれを抑えることが
できない。
However, in the method of forming a woven fabric by previously covering the reinforcing fibers with the low melting point heat-fusible resin, the reinforcing fiber bundles are covered with the heat-fusible resin. , The matrix resin does not easily penetrate into the reinforcing fiber bundle. Further, the above-mentioned Japanese Patent Laid-Open No. 7-314443.
In the method disclosed in the publication, first and second warp yarns and weft yarns arranged in a cross shape between adjacent reinforcing fiber bundles are formed.
Since the auxiliary yarns are simply point-bonded, the cross-sectional shape of the reinforcing fiber bundle is deformed relatively easily, and it is impossible to prevent the openings and the misalignment, especially in the case of a fabric having a small number of hammers.

【0008】一方、上記特開平7−314443号公報
や特開平8−158207号公報に開示された方法で
は、織物のドレープ性が著しく低下し、また樹脂含浸性
も低下する場合が多い。また、このような織物に形状を
与えるために変形させる場合には、接着点が剥離してし
まう場合もある。
On the other hand, in the methods disclosed in the above-mentioned JP-A-7-314443 and JP-A-8-158207, the drape property of the woven fabric is remarkably lowered, and the resin impregnation property is often lowered. Further, when such a woven fabric is deformed in order to give it a shape, the adhesive point may be peeled off.

【0009】本発明は、かかる課題を解決すべくなされ
たものであり、具体的な目的は室温における強化繊維束
及び強化繊維束織物の形態安定性が向上し、その取り扱
い性を容易に、かつ高いドレープ性を維持させることが
可能な強化繊維束、同強化繊維束を用いた織物、同織物
プリプレグ、及び同プリプレグを使った繊維強化プラス
チックを提供することにある。
The present invention has been made to solve the above problems, and a specific object thereof is to improve the morphological stability of a reinforcing fiber bundle and a reinforcing fiber bundle woven fabric at room temperature, and to facilitate its handling. It is an object of the present invention to provide a reinforced fiber bundle capable of maintaining a high drape property, a woven fabric using the reinforced fiber bundle, the woven fabric prepreg, and a fiber reinforced plastic using the prepreg.

【0010】[0010]

【課題を解決するための手段及び作用効果】本発明者ら
は上記目的を達成すべく鋭意検討を行った結果、本発明
に至ったものである。すなわち、本発明は微粒子を付与
された強化繊維束であって、該微粒子の少なくとも表層
がガラス転移温度−10〜+20℃の非晶性熱可塑性樹
脂である強化繊維束、及びそれらを用いた織物、織物プ
リプレグ、繊維強化プラスチックである。これにより、
室温における強化繊維束及び強化繊維束織物の形態安定
性を向上させて取り扱い性を容易とし、かつ高いドレー
プ性を維持させることが可能となる。特に開繊拡幅繊維
束及びその織物においてその効果を発揮する。
MEANS FOR SOLVING THE PROBLEMS AND EFFECTS OF THE INVENTION The inventors of the present invention have achieved the present invention as a result of extensive studies to achieve the above object. That is, the present invention is a reinforcing fiber bundle provided with fine particles, wherein at least the surface layer of the fine particles is an amorphous thermoplastic resin having a glass transition temperature of −10 to + 20 ° C., and a fabric using them. , Woven prepreg, fiber reinforced plastic. This allows
It becomes possible to improve the morphological stability of the reinforced fiber bundle and the reinforced fiber bundle woven fabric at room temperature to facilitate the handling and to maintain the high drapability. Particularly, the effect is exhibited in the spread widened fiber bundle and its woven fabric.

【0011】本発明に用いる強化繊維束としては、ガラ
ス繊維、炭素繊維、アルミナ繊維などの無機繊維束や、
アラミド繊維などの有機繊維束を挙げることができる。
これらは用途に応じて適宜選択することができるが、炭
素繊維は特に軽量で比強度および比弾性率に優れ、さら
に耐熱性、耐薬品性にも優れているため特に好ましい。
The reinforcing fiber bundle used in the present invention includes inorganic fiber bundles such as glass fiber, carbon fiber and alumina fiber,
Organic fiber bundles such as aramid fibers can be mentioned.
These can be appropriately selected depending on the application, but carbon fibers are particularly preferable because they are light in weight, excellent in specific strength and specific elastic modulus, and also excellent in heat resistance and chemical resistance.

【0012】強化繊維束に付与する微粒子は本発明にお
いて最も重要なものである。微粒子は、少なくともその
表層がガラス転移温度−10〜+20℃の非晶性熱可塑
性樹脂であることが必須である。結晶性熱可塑性樹脂で
あると、その融点が常温より低い場合は、高い流動性の
ために強化繊維束及び強化繊維束からなる織物において
十分な形態保持が得られにくく、融点が常温より高い場
合は、強化繊維束及び強化繊維束からなる織物のドレー
プ性が低下してしまい、また、巻き出しや形状賦与など
の強化繊維束あるいは強化繊維織物の変形によって接着
部に大きな応力がかかるため、場合によってはその接着
が剥離してしまう可能性がある。
The fine particles applied to the reinforcing fiber bundle are the most important in the present invention. It is essential that at least the surface layer of the fine particles is an amorphous thermoplastic resin having a glass transition temperature of −10 to + 20 ° C. If the melting point of the crystalline thermoplastic resin is lower than room temperature, it is difficult to obtain sufficient shape retention in the reinforced fiber bundle and the woven fabric composed of the reinforced fiber bundle due to high fluidity, and the melting point is higher than room temperature. Is the case where the drapeability of the reinforced fiber bundle and the woven fabric composed of the reinforced fiber bundle is deteriorated, and a large stress is applied to the adhesive part due to the deformation of the reinforced fiber bundle or the reinforced fiber fabric such as unwinding and shape imparting, Depending on the situation, the adhesion may peel off.

【0013】ここで、該微粒子は均一系でも、多層型、
例えばコア/シェル型でもよく、本発明の要件として
は、均一系であれば微粒子全体がガラス転移温度−10
〜+20℃、コア/シェル型であれば表層となるシェル
のガラス転移温度が−10〜+20℃である。これによ
り、強化繊維束及び強化繊維束からなる織物の形態安定
性の向上と常温におけるドレープ性維持とを両立させる
ことが可能となる。
Here, the fine particles are of a uniform type, a multi-layer type,
For example, a core / shell type may be used, and the requirement of the present invention is that the entire fine particles have a glass transition temperature of −10 if they are homogeneous.
In the case of core / shell type, the glass transition temperature of the shell serving as the surface layer is -10 to + 20 ° C. This makes it possible to improve the morphological stability of the reinforcing fiber bundle and the woven fabric composed of the reinforcing fiber bundle and maintain the drape property at room temperature.

【0014】微粒子表層のガラス転移温度が−10℃よ
り低いと形態安定性が低下し、場合によっては強化繊維
束あるいは強化繊維織物の表面がべとつく可能性もあ
り、取扱い性が低下する可能性がある。微粒子表層のガ
ラス転移温度が+20℃を越えると微粒子表層の樹脂が
常温でガラス状態となるため、強化繊維束及び強化繊維
束からなる織物のドレープ性が低下してしまい、また、
強化繊維束あるいは強化繊維織物の変形によって接着部
に大きな応力がかかるため、場合によってはその接着が
剥離してしまう可能性がある。
If the glass transition temperature of the surface layer of the fine particles is lower than -10 ° C, the morphological stability is lowered, and in some cases, the surface of the reinforced fiber bundle or the reinforced fiber woven fabric may be sticky and the handling property may be lowered. is there. When the glass transition temperature of the fine particle surface layer exceeds + 20 ° C., the resin of the fine particle surface layer becomes a glass state at room temperature, so that the drape property of the reinforcing fiber bundle and the woven fabric composed of the reinforcing fiber bundle deteriorates.
Due to the deformation of the reinforcing fiber bundle or the reinforcing fiber woven fabric, a large stress is applied to the adhesive portion, so that the adhesive may be separated in some cases.

【0015】ここでガラス転移温度は、通常、DSCや
動的粘弾性測定により測定することができるが、コア/
シェル型微粒子においてはその範囲にない。従って、こ
れらのガラス転移温度(Tg)は以下の式により求める
ものとする。 1/(Tg+273)=W1/{100×(Tg1+2
73)}+W2/{100×(Tg2+273)}+…
+Wn/{100×(Tgn+273)} ただし、Tgは非晶性熱可塑性樹脂のガラス転移温度
(℃)、Tg1,Tg2,・・・ ,Tgnは非晶性熱可塑
性樹脂を構成する各モノマーユニットのホモポリマーの
ガラス転移温度(℃)、W1,W2,・・・ ,Wnは非晶
性熱可塑性樹脂を構成する各モノマーユニットの重量分
率(%)である。
The glass transition temperature can be usually measured by DSC or dynamic viscoelasticity measurement.
The range is not within the range for shell type fine particles. Therefore, these glass transition temperatures (Tg) are determined by the following formula. 1 / (Tg + 273) = W1 / {100 × (Tg1 + 2
73)} + W2 / {100 × (Tg2 + 273)} + ...
+ Wn / {100 × (Tgn + 273)} where Tg is the glass transition temperature (° C.) of the amorphous thermoplastic resin, and Tg1, Tg2, ..., Tgn are the monomer units constituting the amorphous thermoplastic resin. The glass transition temperature (° C.), W1, W2, ..., Wn of the homopolymer are weight fractions (%) of each monomer unit constituting the amorphous thermoplastic resin.

【0016】微粒子表層の樹脂はガラス転移温度−10
〜+20℃の非晶性熱可塑性樹脂であれば特に限定され
ず、任意の樹脂を用いることができる。繊維強化プラス
チックを製造する際のマトリックス樹脂との濡れ性や、
マトリックス樹脂との接着性などの点から、アクリロイ
ル基および/またはメタクリロイル基を含有するモノマ
ーを主成分とする非晶性熱可塑性樹脂が好適に用いられ
る。また、繊維強化プラスチックとしたときの機械的特
性発現やマトリックス樹脂の含浸性から、反応性官能基
としてグリシジル基を含有する樹脂、例えばグリシジル
アクリレート、グリシジルメタクリレートなどをモノマ
ーユニットとして含有する樹脂を好適に用いることがで
きる。
The resin on the surface of the fine particles has a glass transition temperature of -10.
There is no particular limitation as long as it is an amorphous thermoplastic resin having a temperature of up to + 20 ° C, and any resin can be used. Wettability with matrix resin when manufacturing fiber reinforced plastic,
An amorphous thermoplastic resin containing a monomer containing an acryloyl group and / or a methacryloyl group as a main component is preferably used from the viewpoint of adhesion with the matrix resin. Further, from the expression of mechanical properties when used as a fiber reinforced plastic and the impregnability of the matrix resin, a resin containing a glycidyl group as a reactive functional group, for example, a resin containing glycidyl acrylate, glycidyl methacrylate or the like as a monomer unit is suitable Can be used.

【0017】微粒子が多層構造である場合、その芯部、
すなわちコアとしては任意の樹脂や無機粒子などを用い
ることができる。加熱による溶融接着を行う場合、微粒
子の流動を抑えることで、フィラメントの一部を部分的
に接着した状態を保持しやすくなる点、及び繊維強化プ
ラスチックとした際の機械的特性発現の点から、ガラス
転移温度30℃以上の非晶性樹脂や融点30℃以上の結
晶性樹脂、無機粒子などを好適に使用することができ
る。
When the fine particles have a multi-layered structure, their cores,
That is, any resin or inorganic particles can be used as the core. When performing melt-adhesion by heating, by suppressing the flow of fine particles, it becomes easier to maintain a state in which a part of the filament is partially adhered, and from the viewpoint of expressing mechanical properties when made into a fiber-reinforced plastic, An amorphous resin having a glass transition temperature of 30 ° C. or higher, a crystalline resin having a melting point of 30 ° C. or higher, inorganic particles and the like can be preferably used.

【0018】ガラス転移温度30℃以上の非晶性樹脂と
しては、ガラス転移温度30℃以上であれば特に制限は
無く、通常の非晶性熱可塑性樹脂だけでなく、エポキシ
樹脂などの熱硬化性樹脂を用いることも可能である。融
点30℃以上の結晶性樹脂についても特に制限は無い
が、マトリックス樹脂との接着性などの観点からポリア
ミド樹脂やポリエステル樹脂が好適に使用される。無機
粒子についても特に制限はないが、こちらもマトリック
ス樹脂との接着性から、適当な表面処理を施したガラス
マイクロスフィアなどを好適に使用することができる。
The amorphous resin having a glass transition temperature of 30 ° C. or higher is not particularly limited as long as it has a glass transition temperature of 30 ° C. or higher, and not only a usual amorphous thermoplastic resin but also a thermosetting resin such as an epoxy resin. It is also possible to use a resin. The crystalline resin having a melting point of 30 ° C. or higher is not particularly limited, but a polyamide resin or a polyester resin is preferably used from the viewpoint of adhesiveness with the matrix resin and the like. The inorganic particles are also not particularly limited, but glass microspheres and the like that have been subjected to an appropriate surface treatment can be preferably used because of their adhesiveness with the matrix resin.

【0019】微粒子径は平均粒子径が10〜20000
nmであることが好ましい。10nm未満であると、強
化繊維束に付与した際にその多くが強化繊維束内に埋も
れてしまい、強化繊維束間の接着を確実に行うために多
量の微粒子を付与せねばならない。20000nmを越
えると粒子が大きいため、付着斑が起こりやすくなり、
さらに場合によっては、強化繊維束あるいは強化繊維織
物の表面に微細ながら凹凸感が現れる可能性がある。3
0〜10000nmであることがより好適である。
The average particle size is 10 to 20,000.
It is preferably nm. When the thickness is less than 10 nm, most of the particles are buried in the reinforcing fiber bundle when applied to the reinforcing fiber bundle, and a large amount of fine particles must be added to ensure the adhesion between the reinforcing fiber bundles. If the particle size exceeds 20,000 nm, the particles are large and adhesion spots tend to occur,
Further, in some cases, a fine texture may appear on the surface of the reinforcing fiber bundle or the reinforcing fiber fabric. Three
More preferably, it is 0 to 10000 nm.

【0020】微粒子の強化繊維束への付与量は、強化繊
維束の0.1〜5重量%であることが好ましい。0.1
重量%未満では強化繊維束間の接着が不十分となり、5
重量%を越えると繊維強化プラスチックとした際の力学
的特性に影響を与える場合がある。また、微粒子は強化
繊維束の表層全面に付与されていても良いし、一部を選
択して付与されても良い。例えば、扁平形状の強化繊維
束において、その片面のみに微粒子を付与する、一定あ
るいは不規則なピッチで付与部分と非付与部分を作るこ
とも可能である。
The amount of the fine particles applied to the reinforcing fiber bundle is preferably 0.1 to 5% by weight of the reinforcing fiber bundle. 0.1
If it is less than 5% by weight, the adhesion between the reinforcing fiber bundles becomes insufficient, and 5
If it exceeds 5% by weight, the mechanical properties of the fiber-reinforced plastic may be affected. The fine particles may be applied to the entire surface layer of the reinforcing fiber bundle, or a part of them may be selected and applied. For example, in a flat-shaped reinforcing fiber bundle, it is possible to form fine particles only on one surface of the bundle, and to form the added portion and the non-added portion at a constant or irregular pitch.

【0021】微粒子の付与方法としては、微粒子を強化
繊維束に吹き付ける、微粒子エマルジョンを強化繊維束
に塗布等して乾燥させるといった方法を挙げることがで
きるが特に制限はない。微粒子表面のガラス転移温度
(Tg)が低いこと及び微粒子付着量のコントロールか
ら、微粒子をエマルジョン状態で強化繊維束に付与する
方法が好適に使用される。
The method of applying the fine particles may be, for example, a method of spraying the fine particles to the reinforcing fiber bundle or a method of applying the fine particle emulsion to the reinforcing fiber bundle and drying it, but is not particularly limited. Due to the low glass transition temperature (Tg) on the surface of the fine particles and the control of the amount of the fine particles attached, the method of applying the fine particles to the reinforcing fiber bundle in an emulsion state is preferably used.

【0022】このエマルジョンは重合時に乳化、あるい
は重合後に乳化したものいずれでも良いが、重合時に乳
化して得られる微粒子は粒径のコントロールが容易なた
め好適に利用できる。また、エマルジョンの溶媒として
は水が好ましいが、エマルジョンの安定性を損なわない
範囲で少量のアルコール類、ケトン類等の有機溶剤を添
加することも可能である。微粒子をエマルジョンとした
ときの強化繊維への付与方法としては、浸漬、タッチロ
ール、ロールコート、スプレー、噴霧雰囲気中の通過な
どが挙げられるが、特に制限されるものではない。
This emulsion may be either emulsified during polymerization or emulsified after polymerization, but fine particles obtained by emulsification during polymerization can be suitably used because the particle size can be easily controlled. Although water is preferable as the solvent for the emulsion, it is possible to add a small amount of an organic solvent such as alcohols and ketones as long as the stability of the emulsion is not impaired. Examples of the method for applying the fine particles to the reinforcing fibers when they are made into an emulsion include dipping, touch roll, roll coating, spraying, and passage in a spray atmosphere, but are not particularly limited.

【0023】本発明の強化繊維束としては開繊拡幅処理
されたものに対して特に好適に用いられる。これは本発
明により、強化繊維織物の織形態だけでなく、強化繊維
束の形態をも良好に保持できるためである。強化繊維束
の開繊拡幅処理方法としては、流体噴射によるもの、案
内手段の搖動によるもの、擦過によるもの、空気吸引に
よるもの、超音波によるもの、高線圧をかけるものなど
を挙げることができるが、特に制限はない。これら開繊
拡幅処理した強化繊維束への微粒子の付与としては、開
繊拡幅処理を行う前の強化繊維束に微粒子を付与し、そ
の後開繊拡幅処理してもよいし、開繊拡幅処理後の強化
繊維束に微粒子を付与しても良い。
The reinforcing fiber bundle of the present invention is particularly preferably used for the one subjected to the spread widening process. This is because, according to the present invention, not only the woven form of the reinforcing fiber woven fabric but also the form of the reinforcing fiber bundle can be favorably maintained. Examples of the method of widening the spread of the reinforcing fiber bundle include a method of ejecting fluid, a method of swinging the guide means, a method of rubbing, a method of sucking air, a method of applying ultrasonic waves, and a method of applying high linear pressure. However, there is no particular limitation. As the application of the fine particles to the reinforcing fiber bundle subjected to the spread widening treatment, the particles may be applied to the reinforcing fiber bundle before the spread widening treatment, and then the spread widening treatment may be performed, or after the spread widening treatment. Fine particles may be added to the reinforcing fiber bundle.

【0024】噴射流体や空気吸引、超音波などの開繊拡
幅処理においては、拡幅処理の際に付与することも可能
である。例えば、噴射流体による開繊拡幅においては、
エマルジョンを直接噴射、あるいはエマルジョンを霧散
させた空気を噴射することなどが可能であり、空気吸引
開繊においては吸引周辺の雰囲気にエマルジョンを霧散
させることなどが可能である。
In the fiber-spreading widening process such as jetting fluid, air suction, ultrasonic waves, etc., it is also possible to add it during the widening process. For example, in widening the spread by spraying fluid,
It is possible to directly inject the emulsion, or to inject air in which the emulsion has been dispersed, and in the air suction opening, the emulsion can be dispersed in the atmosphere around the suction.

【0025】本発明の強化繊維束は、そのまま、フィラ
メントワインド、引抜などの方法により成形されても良
いし、織成により織物としても良く、あるいは一方向又
は多方向に引き揃えてマトリックス樹脂を含浸したプリ
プレグとしても良い。もちろん、織物とした後にマトリ
ックス樹脂を含浸させてプリプレグとしても良い。特
に、強化繊維織物、強化繊維織物プリプレグとして好適
に使用できる。強化繊維織物とする際には、織製した後
に加熱融着することにより、さらに織形態が安定で、か
つドレープ性に優れた織物を得ることができる。
The reinforcing fiber bundle of the present invention may be formed as it is by a method such as filament winding or drawing, a woven fabric may be formed by weaving, or a matrix resin may be impregnated in one direction or in multiple directions. It may be used as a prepreg. Needless to say, a prepreg may be obtained by impregnating a matrix resin with a matrix resin and then impregnating it with a matrix resin. In particular, it can be suitably used as a reinforcing fiber woven fabric or a reinforcing fiber woven prepreg. When forming a reinforced fiber woven fabric, a woven fabric having a more stable woven form and excellent drapability can be obtained by heating and fusing the woven fabric.

【0026】本発明の強化繊維束、強化繊維織物に含浸
させるマトリックス樹脂としては、エポキシ樹脂、不飽
和ポリエステル樹脂、ビニルエステル樹脂、アクリル系
樹脂、BT樹脂など繊維強化プラスチックのマトリック
スとして使用される樹脂であれば特に制限はない。中で
も強化繊維への接着性、繊維強化プラスチックとしたと
きの機械的強度発現などからエポキシ樹脂が好適に使用
される。
As the matrix resin for impregnating the reinforced fiber bundle and the reinforced fiber woven fabric of the present invention, a resin used as a matrix for fiber reinforced plastics such as epoxy resin, unsaturated polyester resin, vinyl ester resin, acrylic resin and BT resin. If so, there is no particular limitation. Above all, an epoxy resin is preferably used because of its adhesiveness to reinforcing fibers and the manifestation of mechanical strength when a fiber-reinforced plastic is used.

【0027】[0027]

【発明の実施形態】以下、本発明の実施形態を代表的な
実施例により具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be specifically described below with reference to typical examples.

【0028】(比較例1)フィラメント数12000本
の炭素繊維(三菱レイヨン(株)製パイロフィルTR5
0S)を空気吸引により開繊拡幅し、トウ幅20mmの
強化繊維束1を得た。強化繊維束1は拡幅状態が不安定
であり、持ち上げるだけでトウ幅が縮んでしまった。
Comparative Example 1 Carbon fiber having 12000 filaments (Pyrofil TR5 manufactured by Mitsubishi Rayon Co., Ltd.)
(0S) was spread by air suction to obtain a reinforcing fiber bundle 1 having a tow width of 20 mm. The expanded state of the reinforcing fiber bundle 1 was unstable, and the toe width was contracted only by lifting.

【0029】たて糸、よこ糸いずれにも強化繊維束1を
用い、たてよこ共に打ち込みピッチ20mmの平織組織
し、強化繊維織物1を作製した。この強化繊維織物1は
非常に形態安定性が低く、触るだけで目ずれやトウ幅の
収縮が起こってしまい、取り扱い性が非常に悪いもので
あった。
The reinforcing fiber bundle 1 was used for both the warp yarn and the weft yarn, and both the warp and weft were made into a plain weave design with a pitch of 20 mm to produce a reinforced fiber woven fabric 1. This reinforced fiber woven fabric 1 had very low morphological stability, and misalignment and contraction of the toe width occurred just by touching it, resulting in very poor handleability.

【0030】(実施例1)コアにメチルメタクリレート
(MMA)/n−ブチルアクリレート(nBA)/エチ
レングリコールジメタクリレート(EDMA)が重量比
で41.4/55.2/3.4、シェルにMMA/n−
BA/メチルアクリレートが重量比で40.6/56.
4/3.0、コア/シェル比40/60なるアクリルエ
マルジョン1を乳化重合で調製した。コアのTgは1.
7℃、シェルのTgは3.8℃と算出された。このエマ
ルジョン1は樹脂分含量が重量分率で約38%であっ
た。また、同エマルジョン1中の樹脂粒子径をレーザー
回折・散乱式粒度分布測定装置HORIBA LA−9
10にて測定したところ、平均で93nmであった。
(Example 1) Methyl methacrylate (MMA) / n-butyl acrylate (nBA) / ethylene glycol dimethacrylate (EDMA) was used in the weight ratio of 41.4 / 55.2 / 3.4, and MMA was used in the shell. / N-
BA / methyl acrylate has a weight ratio of 40.6 / 56.
An acrylic emulsion 1 having a ratio of 4 / 3.0 and a core / shell ratio of 40/60 was prepared by emulsion polymerization. The Tg of the core is 1.
The Tg of the shell was calculated to be 7 ° C and 3.8 ° C. The emulsion 1 had a resin content of about 38% by weight. In addition, the resin particle size in the emulsion 1 was measured by a laser diffraction / scattering particle size distribution measuring device HORIBA LA-9.
When measured at 10, the average was 93 nm.

【0031】強化繊維束1の一表面にエマルジョン1を
スプレー塗布し、乾燥させ、強化繊維束2を得た。強化
繊維束2の粒子付着量は重量分率で約0.6%であっ
た。強化繊維束2は形態的に安定であり、持ち上げても
トウ幅を保持していた。また、強化繊維束2は強化繊維
束1より心持ち硬く感じるものの柔軟性に富むものであ
った。
Emulsion 1 was spray-coated on one surface of reinforcing fiber bundle 1 and dried to obtain reinforcing fiber bundle 2. The amount of particles adhering to the reinforcing fiber bundle 2 was about 0.6% by weight. The reinforcing fiber bundle 2 was morphologically stable and maintained the tow width even when lifted. Further, although the reinforcing fiber bundle 2 felt harder than the reinforcing fiber bundle 1, it was rich in flexibility.

【0032】たて糸、よこ糸いずれにも強化繊維束2を
用い、たてよこ共に、打ち込みピッチ20mmの平織組
織し、さらに80℃、40secの条件でフュージング
プレスにかけて熱融着させ、強化繊維織物2を作製し
た。この強化繊維織物2は形態安定性が高く、持ち上げ
ても目ずれやトウ幅の収縮が起こらず、取り扱い性の良
いものであった。また、ドレープ性に富み、3インチ紙
管に巻いても織目接着部に剥離などは起こらなかった。
The reinforcing fiber bundle 2 was used for both the warp yarn and the weft yarn. A plain weave design with a driving pitch of 20 mm was used for both the warp and weft, and was further heat fused by applying a fusing press under the conditions of 80 ° C. and 40 sec to form the reinforced fiber woven fabric 2. It was made. The reinforced fiber woven fabric 2 had high morphological stability, and did not cause misalignment or shrinkage of the tow width even when lifted, and was easy to handle. Further, it had a good drape property, and even when it was wound on a 3-inch paper tube, peeling or the like did not occur at the textured adhesive portion.

【0033】(実施例2)粒子付着量が1.5%である
こと以外は実施例1と同様にして、強化繊維束3を得
た。強化繊維束3は形態的に安定であり、持ち上げても
トウ幅を保持していた。また、強化繊維束3は強化繊維
束1より心持ち硬く感じるものの柔軟性に富むものであ
った。
(Example 2) A reinforcing fiber bundle 3 was obtained in the same manner as in Example 1 except that the amount of adhered particles was 1.5%. The reinforcing fiber bundle 3 was morphologically stable and retained the tow width even when lifted. Further, although the reinforcing fiber bundle 3 felt harder than the reinforcing fiber bundle 1, it was rich in flexibility.

【0034】たて糸、よこ糸いずれにも強化繊維束3を
用い、打ち込みピッチ20mmの平織組織し、さらに8
0℃、40secの条件でフュージングプレスにかけて
熱融着させ、強化繊維織物3を作製した。この強化繊維
織物3は形態安定性が高く、持ち上げても目ずれやトウ
幅の収縮が起こらず、取り扱い性の良いものであった。
また、ドレープ性に富み、3インチ紙管に巻いても織目
接着の剥離などは起こらなかった。
The reinforcing fiber bundle 3 was used for both the warp yarn and the weft yarn to form a plain weave design with a driving pitch of 20 mm.
A reinforced fiber woven fabric 3 was produced by applying a fusing press to heat fusion under the conditions of 0 ° C. and 40 sec. The reinforced fiber woven fabric 3 had high morphological stability, and did not cause misalignment or shrinkage of the tow width even when lifted, and was easy to handle.
Further, it had a good drape property, and even when it was wound on a 3-inch paper tube, peeling of the texture adhesion did not occur.

【0035】(比較例2)MMA/エチルアクリレート
(EA)/n−オクチルメルカプタン(n−OM)を重
量比で80/20/0.03なるアクリルエマルジョン
2を乳化重合で調製した。エマルジョン中の樹脂成分の
Tgは71℃と算出された。このエマルジョン2は樹脂
分含量が重量分率で約38%であった。また、エマルジ
ョン中の樹脂粒子径は平均で188nmであった。
(Comparative Example 2) An acrylic emulsion 2 having a weight ratio of MMA / ethyl acrylate (EA) / n-octyl mercaptan (n-OM) of 80/20 / 0.03 was prepared by emulsion polymerization. The Tg of the resin component in the emulsion was calculated to be 71 ° C. The emulsion 2 had a resin content of about 38% by weight. The average particle size of the resin in the emulsion was 188 nm.

【0036】強化繊維束1の一表面にエマルジョン2を
スプレー塗布し、乾燥させ、強化繊維束4を得た。強化
繊維束4の粒子付着量は重量分率で約1.5%であっ
た。強化繊維束4は形態的に安定であり、持ち上げても
トウ幅を保持していたが、強化繊維束1と比べると非常
に硬くなっていた。
The emulsion 2 was spray-coated on one surface of the reinforcing fiber bundle 1 and dried to obtain a reinforcing fiber bundle 4. The amount of particles attached to the reinforcing fiber bundle 4 was about 1.5% by weight. The reinforcing fiber bundle 4 was morphologically stable and retained the tow width even when lifted, but it was much harder than the reinforcing fiber bundle 1.

【0037】たて糸、よこ糸いずれにも強化繊維束4を
用い、たてよこ共に打ち込みピッチ20mmの平織組織
し、さらに120℃、40secの条件でフュージング
プレスにかけて熱融着させ、強化繊維織物4を作製し
た。この強化繊維織物4は形態安定性が高く、持ち上げ
ても目ずれやトウ幅の収縮が起こらず、取り扱い性の良
いものであった。しかし、ドレープ性が低く、3インチ
紙管に巻こうとすると織目接着が剥離してしまい、その
後は目ずれが起きやすくなってしまった。
A reinforcing fiber bundle 4 was used for both the warp yarn and the weft yarn, and both the warp and weft were made into a plain weave design with a driving pitch of 20 mm, and further subjected to heat fusion under a fusing press under the conditions of 120 ° C. and 40 sec to produce a reinforced fiber woven fabric 4. did. The reinforced fiber woven fabric 4 had high morphological stability, and did not cause misalignment or shrinkage of the tow width even when lifted, and was easy to handle. However, the drape property was low, and when it was wound on a 3-inch paper tube, the texture adhesion was peeled off, and after that, misalignment was likely to occur.

【0038】(実施例3)コアにMMA/nBAが重量
比で74/26、シェルにMMA/nBA/メチルアク
リレート(MAA)が重量比で46/50/4、コア/
シェル比40/60なるアクリルエマルジョン3を乳化
重合で調製した。コアのTgは40.9℃、シェルのT
gは3.8℃と算出された。このエマルジョン3は樹脂
分含量が重量分率で約38%であった。また、エマルジ
ョン中の樹脂粒子径を測定したところ、平均で96nm
であった。
(Example 3) MMA / nBA in a weight ratio of 74/26, MMA / nBA / methyl acrylate (MAA) in a shell of 46/50/4 in weight ratio, and core /
Acrylic emulsion 3 having a shell ratio of 40/60 was prepared by emulsion polymerization. Tg of core is 40.9 ° C, T of shell
g was calculated to be 3.8 ° C. The resin content of this emulsion 3 was about 38% by weight. Moreover, when the resin particle size in the emulsion was measured, it was 96 nm on average.
Met.

【0039】強化繊維束1の一表面にエマルジョン3を
スプレー塗布し、乾燥させ、強化繊維束5を得た。強化
繊維束5の粒子付着量は重量分率で約1.5%であっ
た。強化繊維束5は形態的に安定であり、持ち上げても
トウ幅を保持していた。また、強化繊維束5は強化繊維
束1より心持ち硬く感じるものの柔軟性に富むものであ
った。
Emulsion 3 was spray coated on one surface of reinforcing fiber bundle 1 and dried to obtain reinforcing fiber bundle 5. The amount of particles attached to the reinforcing fiber bundle 5 was about 1.5% by weight. The reinforcing fiber bundle 5 was morphologically stable and maintained the tow width even when lifted. Further, although the reinforcing fiber bundle 5 felt to be firmer and harder than the reinforcing fiber bundle 1, it was rich in flexibility.

【0040】たて糸、よこ糸いずれにも強化繊維束5を
用い、実施例1と同様にして、強化繊維織物5を作製し
た。この強化繊維織物5は形態安定性が高く、持ち上げ
ても目ずれやトウ幅の収縮が起こらず、取り扱い性の良
いものであった。また、ドレープ性に富み、3インチ紙
管に巻いても織目接着の剥離などは起こらなかった。
A reinforcing fiber woven fabric 5 was produced in the same manner as in Example 1 using the reinforcing fiber bundle 5 for both the warp yarn and the weft yarn. The reinforced fiber woven fabric 5 had high morphological stability, and did not cause misalignment or shrinkage of the tow width even when lifted, and was easy to handle. Further, it had a good drape property, and even when it was wound on a 3-inch paper tube, peeling of the texture adhesion did not occur.

【0041】(実施例4)コアにMMA/nBA/ED
MAが重量比で46/50/2、シェルにMMA/nB
A/グリシジルメタクリレート(GMA)が重量比で4
2/48/10、コア/シェル比40/60なるアクリ
ルエマルジョン4を乳化重合で調製した。コアのTgは
1.7℃、シェルのTgは3.8℃と算出された。この
エマルジョン4は樹脂分含量が重量分率で約35%であ
った。また、エマルジョン中の樹脂粒子径を測定したと
ころ、平均で119nmであった。
(Embodiment 4) MMA / nBA / ED in the core
MA weight ratio 46/50/2, MMA / nB in shell
A / glycidyl methacrylate (GMA) is 4 by weight
Acrylic emulsion 4 having a ratio of 2/48/10 and a core / shell ratio of 40/60 was prepared by emulsion polymerization. The Tg of the core was calculated to be 1.7 ° C and the Tg of the shell was calculated to be 3.8 ° C. The emulsion 4 had a resin content of about 35% by weight. The resin particle diameter in the emulsion was measured and found to be 119 nm on average.

【0042】強化繊維束1の一表面にエマルジョン4を
スプレー塗布し、乾燥させ、強化繊維束6を得た。強化
繊維束6の粒子付着量は重量分率で約1.6%であっ
た。強化繊維束6は形態的に安定であり、持ち上げても
トウ幅を保持していた。また、強化繊維束6は強化繊維
束1より心持ち硬く感じるものの柔軟性に富むものであ
った。
Emulsion 4 was spray-coated on one surface of reinforcing fiber bundle 1 and dried to obtain reinforcing fiber bundle 6. The amount of particles adhering to the reinforcing fiber bundle 6 was about 1.6% by weight. The reinforcing fiber bundle 6 was morphologically stable and maintained the tow width even when lifted. Moreover, although the reinforcing fiber bundle 6 feels harder than the reinforcing fiber bundle 1, it is rich in flexibility.

【0043】たて糸、よこ糸いずれにも強化繊維束6を
用い、実施例1と同様にして、強化繊維織物6を作製し
た。この強化繊維織物6は形態安定性が高く、持ち上げ
ても目ずれやトウ幅の収縮が起こらず、取り扱い性の良
いものであった。また、ドレープ性に富み、3インチ紙
管に巻いても織目接着の剥離などは起こらなかった。
A reinforcing fiber woven fabric 6 was produced in the same manner as in Example 1 except that the reinforcing fiber bundle 6 was used for both the warp yarn and the weft yarn. The reinforced fiber woven fabric 6 had high morphological stability, and did not cause misalignment or shrinkage of the tow width even when lifted, and was easy to handle. Further, it had a good drape property, and even when it was wound on a 3-inch paper tube, peeling of the texture adhesion did not occur.

【0044】(実施例5)コアにMMA/nBAが重量
比で74/26、シェルにMMA/nBA/GMAが重
量比で42/48/10、コア/シェル比40/60な
るアクリルエマルジョン5を乳化重合で調製した。コア
のTgは40.9℃、シェルのTgは3.8℃と算出さ
れた。このエマルジョン5は樹脂分含量が重量分率で約
33%であった。また、エマルジョン中の樹脂粒子径を
測定したところ、平均で92nmであった。
(Example 5) An acrylic emulsion 5 having a weight ratio of MMA / nBA of 74/26 to the core, a weight ratio of MMA / nBA / GMA of 42/48/10 and a core / shell ratio of 40/60 is used for the shell. Prepared by emulsion polymerization. The Tg of the core was calculated to be 40.9 ° C and the Tg of the shell was calculated to be 3.8 ° C. This emulsion 5 had a resin content of about 33% by weight. The resin particle diameter in the emulsion was measured and found to be 92 nm on average.

【0045】強化繊維束1の一表面にエマルジョン5を
スプレー塗布し、乾燥させ、強化繊維束7を得た。強化
繊維束7の粒子付着量は重量分率で約1.7%であっ
た。強化繊維束7は形態的に安定であり、持ち上げても
トウ幅を保持していた。また、強化繊維束7は強化繊維
束1より心持ち硬く感じるものの柔軟性に富むものであ
った。
Emulsion 5 was spray-coated on one surface of reinforcing fiber bundle 1 and dried to obtain reinforcing fiber bundle 7. The amount of particles attached to the reinforcing fiber bundle 7 was about 1.7% by weight. The reinforcing fiber bundle 7 was morphologically stable and kept the tow width even when lifted. Further, although the reinforcing fiber bundle 7 felt to be firmer and harder than the reinforcing fiber bundle 1, it was rich in flexibility.

【0046】たて糸、よこ糸いずれにも強化繊維束7を
用い、実施例1と同様にして、強化繊維織物7を作製し
た。この強化繊維織物7は形態安定性が高く、持ち上げ
ても目ずれやトウ幅の収縮が起こらず、取り扱い性の良
いものであった。また、ドレープ性に富み、3インチ紙
管に巻いても織目接着の剥離などは起こらなかった。
A reinforcing fiber woven fabric 7 was produced in the same manner as in Example 1 except that the reinforcing fiber bundle 7 was used for both the warp yarn and the weft yarn. The reinforced fiber woven fabric 7 had high morphological stability, and did not cause misalignment or shrinkage of the tow width even when lifted, and was easy to handle. Further, it had a good drape property, and even when it was wound on a 3-inch paper tube, peeling of the texture adhesion did not occur.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 101:00 D06M 101:40 D06M 101:40 B29C 67/14 X (72)発明者 松岡 新治 愛知県名古屋市東区砂田橋四丁目1番60号 三菱レイヨン株式会社商品開発研究所内 Fターム(参考) 4F072 AA04 AA07 AB06 AB08 AB09 AB10 AB28 AC08 AD08 AD09 AD23 AD38 AG03 4F205 AA39 AA41 AA43 AB11C AB28A AD16 HA06 HA14 HA33 HA45 HC05 HF05 HF24 4L033 AA08 AA09 AB01 AB05 AC11 CA18 CA21 CA45 CA55 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) C08L 101: 00 D06M 101: 40 D06M 101: 40 B29C 67/14 X (72) Inventor Shinji Matsuoka Nagoya, Aichi Prefecture 4-60, Sunadabashi, Higashi-ku, Mitsubishi Rayon Co., Ltd. Product Development Laboratory F-term (reference) 4F072 AA04 AA07 AB06 AB08 AB09 AB10 AB28 AC08 AD08 AD09 AD23 AD38 AG03 4F205 AA39 AA41 AA43 AB11C AB28A AD16 HA06 HA14 HA33 HA45 HC05 HF05 HF05 HF05 HF05 HF05 HF05 HF05 HF05 HF05 HF24 4L033 AA08 AA09 AB01 AB05 AC11 CA18 CA21 CA45 CA55

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 微粒子を付与された強化繊維束であっ
て、 前記微粒子の少なくとも表層がガラス転移温度−10〜
+20℃の非晶性熱可塑性樹脂であることを特徴とする
強化繊維束。
1. A reinforcing fiber bundle provided with fine particles, wherein at least the surface layer of the fine particles has a glass transition temperature of -10 to 10.
A reinforcing fiber bundle characterized by being an amorphous thermoplastic resin at + 20 ° C.
【請求項2】 前記微粒子が表層と芯部とを有し、当該
芯部が、ガラス転移温度30℃以上の非晶性樹脂である
ことを特徴とする請求項1記載の強化繊維束。
2. The reinforcing fiber bundle according to claim 1, wherein the fine particles have a surface layer and a core portion, and the core portion is an amorphous resin having a glass transition temperature of 30 ° C. or higher.
【請求項3】 前記微粒子の芯部が融点30℃以上の結
晶性樹脂であることを特徴とする請求項1記載の強化繊
維束。
3. The reinforcing fiber bundle according to claim 1, wherein the core of the fine particles is a crystalline resin having a melting point of 30 ° C. or higher.
【請求項4】 前記微粒子の芯部が無機微粒子であるこ
とを特徴とする請求項1記載の強化繊維束。
4. The reinforcing fiber bundle according to claim 1, wherein the core of the fine particles is inorganic fine particles.
【請求項5】 前記微粒子中の樹脂がアクリロイル基又
はメタクリロイル基を含有するモノマーを主成分とする
重合体であることを特徴とする請求項1〜4の強化繊維
束。
5. The reinforcing fiber bundle according to claim 1, wherein the resin in the fine particles is a polymer containing a monomer containing an acryloyl group or a methacryloyl group as a main component.
【請求項6】 前記微粒子中に反応基としてグリシジル
基を含有することを特徴とする請求項1〜5記載の強化
繊維束。
6. The reinforcing fiber bundle according to claim 1, wherein the fine particles contain a glycidyl group as a reactive group.
【請求項7】 請求項1〜6記載の微粒子がエマルジョ
ンとして供されることを特徴とする強化繊維束。
7. A reinforcing fiber bundle comprising the fine particles according to claim 1 as an emulsion.
【請求項8】 前記微粒子の付着量が強化繊維束の0.
1〜5重量%であることを特徴とする請求項1〜7記載
の強化繊維束。
8. The adhesion amount of the fine particles is 0.
It is 1 to 5 weight%, The reinforcing fiber bundle of Claims 1-7 characterized by the above-mentioned.
【請求項9】 繊維が開繊拡幅処理されていることを特
徴とする請求項1〜8記載の強化繊維束。
9. The reinforcing fiber bundle according to claim 1, wherein the fiber has been subjected to an opening widening process.
【請求項10】前記強化繊維が炭素繊維であることを特
徴とする請求1〜9記載の強化繊維束。
10. The reinforcing fiber bundle according to claim 1, wherein the reinforcing fibers are carbon fibers.
【請求項11】前記微粒子の平均粒子径が10〜200
00nmであることを特徴とする請求項1〜10のいず
れかに記載の強化繊維束。
11. The average particle size of the fine particles is 10 to 200.
It is 00 nm, The reinforcing fiber bundle in any one of Claims 1-10 characterized by the above-mentioned.
【請求項12】 請求項1〜11いずれかに記載の強化
繊維束を織製して得られることを特徴とする織物。
12. A woven fabric obtained by weaving the reinforcing fiber bundle according to any one of claims 1 to 11.
【請求項13】 請求項1〜11いずれかに記載の強化
繊維束を織製して得られる織物を加熱融着させることに
よって得られる目止め織物。
13. A filling fabric obtained by heating and fusing a fabric obtained by weaving the reinforcing fiber bundle according to any one of claims 1 to 11.
【請求項14】 請求項12又は13記載の織物に樹脂
を含浸させてなることを特徴とするプリプレグ。
14. A prepreg obtained by impregnating the woven fabric according to claim 12 or 13 with a resin.
【請求項15】 前記織物に含浸させる樹脂がエポキシ
樹脂であることを特徴とする請求項14記載のプリプレ
グ。
15. The prepreg according to claim 14, wherein the resin with which the fabric is impregnated is an epoxy resin.
【請求項16】 請求項12又は13記載の織物に樹脂
を含浸させ、その樹脂を硬化させて得られること特徴と
する繊維強化プラスチック。
16. A fiber-reinforced plastic obtained by impregnating the woven fabric according to claim 12 or 13 with a resin and curing the resin.
JP2001363599A 2001-11-29 2001-11-29 Carbon fiber bundle and its textile fabric Expired - Lifetime JP3927795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001363599A JP3927795B2 (en) 2001-11-29 2001-11-29 Carbon fiber bundle and its textile fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001363599A JP3927795B2 (en) 2001-11-29 2001-11-29 Carbon fiber bundle and its textile fabric

Publications (3)

Publication Number Publication Date
JP2003166174A true JP2003166174A (en) 2003-06-13
JP2003166174A5 JP2003166174A5 (en) 2005-07-21
JP3927795B2 JP3927795B2 (en) 2007-06-13

Family

ID=19173916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001363599A Expired - Lifetime JP3927795B2 (en) 2001-11-29 2001-11-29 Carbon fiber bundle and its textile fabric

Country Status (1)

Country Link
JP (1) JP3927795B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005231151A (en) * 2004-02-18 2005-09-02 Maruhachi Kk Reinforcing fiber orientation sheet for composite material, multi-axial laminated reinforcing fiber sheet using it and its manufacturing method
JP2006130698A (en) * 2004-11-02 2006-05-25 Maruhachi Kk Multi-axial laminated reinforcing fiber sheet, its manufacturing method and long inclined reinforcing fiber sheet
JP2011121372A (en) * 2011-01-24 2011-06-23 Maruhachi Kk Multi-shaft laminate reinforced fiber sheet manufacturing method, long inclination reinforced fiber sheet, and multi-shaft laminate reinforced fiber sheet
JP2011231414A (en) * 2010-04-23 2011-11-17 Matsumoto Yushi Seiyaku Co Ltd Sizing agent for reinforcing fiber, synthetic fiber strand, and fiber reinforced composite material
EP2458084A1 (en) * 2003-07-31 2012-05-30 Mitsubishi Rayon Co., Ltd. Carbon fiber bundle, method for producing the same, and thermoplastic resin composition and molded article thereof
WO2013058200A1 (en) * 2011-10-21 2013-04-25 松本油脂製薬株式会社 Sizing agent for carbon fibers, carbon fiber strand, and fiber-reinforced composite material
WO2013172318A1 (en) * 2012-05-15 2013-11-21 帝人株式会社 Reinforcing carbon fiber bundle, manufacturing process therefor, and composite-manufacturing process using same
WO2014045981A1 (en) * 2012-09-20 2014-03-27 帝人株式会社 Reinforcing fiber bundle and composite material using same
JP2014529532A (en) * 2011-08-26 2014-11-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Manufacturing method of molded product
JP2016064648A (en) * 2014-09-23 2016-04-28 ザ・ボーイング・カンパニーThe Boeing Company Placement of modifier material in resin-rich pockets to mitigate microcracking in composite structure
JP2016065349A (en) * 2014-09-23 2016-04-28 ザ・ボーイング・カンパニーThe Boeing Company Polymer nanoparticle for regulating permeability and fiber volume fraction of complex
JP2017538048A (en) * 2014-12-02 2017-12-21 シントマー ドイチェラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Polymer latex composition for fiber bonding
JP2018529851A (en) * 2015-09-25 2018-10-11 ジーエス カルテックス コーポレイション Manufacturing method of fiber reinforced resin composite material, fiber reinforced resin composite material and molded product
US10465051B2 (en) 2014-09-23 2019-11-05 The Boeing Company Composition having mechanical property gradients at locations of polymer nanoparticles
US10662302B2 (en) 2014-09-23 2020-05-26 The Boeing Company Polymer nanoparticles for improved distortion capability in composites
US10808123B2 (en) 2014-09-23 2020-10-20 The Boeing Company Nanoparticles for improving the dimensional stability of resins
US10995187B2 (en) 2014-09-23 2021-05-04 The Boeing Company Composite structure having nanoparticles for performance enhancement

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6485358A (en) * 1986-09-02 1989-03-30 Sequa Corp Binder for fiber of fabric
JPH0299656A (en) * 1988-09-09 1990-04-11 Natl Starch & Chem Corp Two-stage heat-resistant binder for nonwoven fabric
JPH04300365A (en) * 1991-03-27 1992-10-23 Kanebo Nsc Ltd Resin cotton and polymer emulsion to be used therefor
JPH06298876A (en) * 1993-03-12 1994-10-25 Shell Internatl Res Maatschappij Bv Latex composition containing polymer particle having core/shell structure
JPH09151215A (en) * 1995-09-28 1997-06-10 Asahi Chem Ind Co Ltd Polymer emulsion and fiber treatment composition
JPH09228248A (en) * 1996-02-14 1997-09-02 Toray Ind Inc Carbon fiber, its production and prepreg produced by using the carbon fiber
JPH11293119A (en) * 1998-04-09 1999-10-26 Asahi Chem Ind Co Ltd Aqueous resin dispersion composition
JP2000169663A (en) * 1998-12-03 2000-06-20 Kanegafuchi Chem Ind Co Ltd Elastomer composition and thermoplastic resin composition including the same
JP2001181357A (en) * 1999-10-12 2001-07-03 Kuraray Co Ltd Multi-layer structured polymer particle and its production method and use
JP2001226850A (en) * 2000-02-10 2001-08-21 Mitsubishi Rayon Co Ltd Reinforcing fiber fabric, method for producing the same and prepreg using the reinforcing fiber fabric
JP2003082117A (en) * 2001-07-04 2003-03-19 Toray Ind Inc Carbon fiber reinforcement, and preform and composite material prepared therefrom

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6485358A (en) * 1986-09-02 1989-03-30 Sequa Corp Binder for fiber of fabric
JPH0299656A (en) * 1988-09-09 1990-04-11 Natl Starch & Chem Corp Two-stage heat-resistant binder for nonwoven fabric
JPH04300365A (en) * 1991-03-27 1992-10-23 Kanebo Nsc Ltd Resin cotton and polymer emulsion to be used therefor
JPH06298876A (en) * 1993-03-12 1994-10-25 Shell Internatl Res Maatschappij Bv Latex composition containing polymer particle having core/shell structure
JPH09151215A (en) * 1995-09-28 1997-06-10 Asahi Chem Ind Co Ltd Polymer emulsion and fiber treatment composition
JPH09228248A (en) * 1996-02-14 1997-09-02 Toray Ind Inc Carbon fiber, its production and prepreg produced by using the carbon fiber
JPH11293119A (en) * 1998-04-09 1999-10-26 Asahi Chem Ind Co Ltd Aqueous resin dispersion composition
JP2000169663A (en) * 1998-12-03 2000-06-20 Kanegafuchi Chem Ind Co Ltd Elastomer composition and thermoplastic resin composition including the same
JP2001181357A (en) * 1999-10-12 2001-07-03 Kuraray Co Ltd Multi-layer structured polymer particle and its production method and use
JP2001226850A (en) * 2000-02-10 2001-08-21 Mitsubishi Rayon Co Ltd Reinforcing fiber fabric, method for producing the same and prepreg using the reinforcing fiber fabric
JP2003082117A (en) * 2001-07-04 2003-03-19 Toray Ind Inc Carbon fiber reinforcement, and preform and composite material prepared therefrom

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458084A1 (en) * 2003-07-31 2012-05-30 Mitsubishi Rayon Co., Ltd. Carbon fiber bundle, method for producing the same, and thermoplastic resin composition and molded article thereof
US8221840B2 (en) 2003-07-31 2012-07-17 Mitsubishi Rayon Co., Ltd. Method for producing a carbon fiber bundle
JP2005231151A (en) * 2004-02-18 2005-09-02 Maruhachi Kk Reinforcing fiber orientation sheet for composite material, multi-axial laminated reinforcing fiber sheet using it and its manufacturing method
JP2006130698A (en) * 2004-11-02 2006-05-25 Maruhachi Kk Multi-axial laminated reinforcing fiber sheet, its manufacturing method and long inclined reinforcing fiber sheet
JP2011231414A (en) * 2010-04-23 2011-11-17 Matsumoto Yushi Seiyaku Co Ltd Sizing agent for reinforcing fiber, synthetic fiber strand, and fiber reinforced composite material
JP2011121372A (en) * 2011-01-24 2011-06-23 Maruhachi Kk Multi-shaft laminate reinforced fiber sheet manufacturing method, long inclination reinforced fiber sheet, and multi-shaft laminate reinforced fiber sheet
JP2014529532A (en) * 2011-08-26 2014-11-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Manufacturing method of molded product
US9932703B2 (en) 2011-10-21 2018-04-03 Matsumoto Yushi-Seiyaku Co., Ltd. Carbon fiber sizing agent, carbon fiber strand, and fiber-reinforced composite
KR20140079849A (en) * 2011-10-21 2014-06-27 마쓰모토유시세이야쿠 가부시키가이샤 Sizing agent for carbon fibers, carbon fiber strand, and fiber-reinforced composite material
WO2013058200A1 (en) * 2011-10-21 2013-04-25 松本油脂製薬株式会社 Sizing agent for carbon fibers, carbon fiber strand, and fiber-reinforced composite material
KR101940485B1 (en) 2011-10-21 2019-01-22 마쓰모토유시세이야쿠 가부시키가이샤 Sizing agent for carbon fibers, carbon fiber strand, and fiber-reinforced composite material
WO2013172318A1 (en) * 2012-05-15 2013-11-21 帝人株式会社 Reinforcing carbon fiber bundle, manufacturing process therefor, and composite-manufacturing process using same
US9732195B2 (en) 2012-05-15 2017-08-15 Teijin Limited Reinforcing carbon fiber bundle, method for manufacturing the same and method for manufacturing composite using the same
WO2014045981A1 (en) * 2012-09-20 2014-03-27 帝人株式会社 Reinforcing fiber bundle and composite material using same
JP2016064648A (en) * 2014-09-23 2016-04-28 ザ・ボーイング・カンパニーThe Boeing Company Placement of modifier material in resin-rich pockets to mitigate microcracking in composite structure
JP2016065349A (en) * 2014-09-23 2016-04-28 ザ・ボーイング・カンパニーThe Boeing Company Polymer nanoparticle for regulating permeability and fiber volume fraction of complex
US10465051B2 (en) 2014-09-23 2019-11-05 The Boeing Company Composition having mechanical property gradients at locations of polymer nanoparticles
US10472472B2 (en) 2014-09-23 2019-11-12 The Boeing Company Placement of modifier material in resin-rich pockets to mitigate microcracking in a composite structure
US10662302B2 (en) 2014-09-23 2020-05-26 The Boeing Company Polymer nanoparticles for improved distortion capability in composites
US10808123B2 (en) 2014-09-23 2020-10-20 The Boeing Company Nanoparticles for improving the dimensional stability of resins
US10995187B2 (en) 2014-09-23 2021-05-04 The Boeing Company Composite structure having nanoparticles for performance enhancement
JP2017538048A (en) * 2014-12-02 2017-12-21 シントマー ドイチェラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Polymer latex composition for fiber bonding
JP2018529851A (en) * 2015-09-25 2018-10-11 ジーエス カルテックス コーポレイション Manufacturing method of fiber reinforced resin composite material, fiber reinforced resin composite material and molded product

Also Published As

Publication number Publication date
JP3927795B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
JP2003166174A (en) Reinforcing fiber bundle, woven fabric thereof, prepreg of the same and fiber-reinforced plastic
EP0361796B1 (en) Method of producing a formable composite material
JP3821467B2 (en) Reinforcing fiber base material for composite materials
CA1279986C (en) Reinforcing material
JP4233560B2 (en) Manufacturing method of prepreg
KR100367039B1 (en) Repair method of existing structures and anisotropic fabrics used here
US20060121805A1 (en) Non-woven, uni-directional multi-axial reinforcement fabric and composite article
HU227725B1 (en) A woven carbon fiber fabric, a fiber reinforced plastic molding obtained by using the woven fabric, and a production method of the molding
TW201938350A (en) Thermoplastic resin-coated reinforced fiber composite yarn, method of producing the composite yarn, continuous fiber-reinforced resin molded article, method of producing composite material molded article
JP2001226850A (en) Reinforcing fiber fabric, method for producing the same and prepreg using the reinforcing fiber fabric
JP2002249984A (en) Rolled material of reinforcing fiber cloth, method and apparatus for producing the same
RU2295447C2 (en) Reinforcing material with the filaments of the enlarged volume
JPWO2020137442A1 (en) Resin integrated reinforced fiber sheet and its manufacturing method
JP3405497B2 (en) Reinforced fiber sheet for structural reinforcement
JP2000336577A (en) Sizing agent for carbon fiber, sizing of carbon fiber, carbon fiber subjected to sizing treatment, sheetlike material with the same carbon fiber and fiber-reinforced composite material
JP3633221B2 (en) Unidirectional reinforced fabric and repair or reinforcement method
JP2006328292A (en) Prepreg for honeycomb cocuring and its manufacturing method
JPH08142238A (en) Unidirectional reinforcing fiber composite base material and manufacture thereof
JPS609142B2 (en) Manufacturing method of glass cloth for reinforcing plastics
JPS62288633A (en) Composite material of continuous carbon fiber and polyolefin resin
JP2000220302A (en) Repairing and reinforcing method for structure
JP2005264366A (en) Reinforcing fiber fabric roll and method for producing the same
EP0598591A2 (en) Fibre-reinforced sheet for reinforcement
JP3099730B2 (en) Unidirectional reinforcing fiber composite substrate
JP6620255B1 (en) Prepreg and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070305

R151 Written notification of patent or utility model registration

Ref document number: 3927795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term