JP2003103249A - Method and system for treatment of soil, etc., contaminated by organochlorine compound - Google Patents

Method and system for treatment of soil, etc., contaminated by organochlorine compound

Info

Publication number
JP2003103249A
JP2003103249A JP2001303400A JP2001303400A JP2003103249A JP 2003103249 A JP2003103249 A JP 2003103249A JP 2001303400 A JP2001303400 A JP 2001303400A JP 2001303400 A JP2001303400 A JP 2001303400A JP 2003103249 A JP2003103249 A JP 2003103249A
Authority
JP
Japan
Prior art keywords
soil
contaminated
organic chlorine
reaction layer
chlorine compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001303400A
Other languages
Japanese (ja)
Inventor
Shozo Yanagida
祥三 柳田
Yuji Wada
雄二 和田
Kenji Kaneko
賢司 金子
Kazuo Shibui
和夫 澁井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seon Inc
Original Assignee
Seon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seon Inc filed Critical Seon Inc
Priority to JP2001303400A priority Critical patent/JP2003103249A/en
Publication of JP2003103249A publication Critical patent/JP2003103249A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a system for treatment of soil, etc., contaminated by organochlorine compounds by efficiently removing the organochlorine compounds. SOLUTION: In a reaction vessel 1, a metal conveyor 2 is laid as a conveying means. On the top surface of the vessel 1, there are provided a contaminated- soil-charging opening 3 for feeding contaminated soil, etc., from upstream of the conveyor 2, and a reactant-charging opening 4 for feeding iron powder and zeolite. Two microwave radiators 5, 5A are provided downstream of the conveyor 2. A suction pipe 6 communicating with an air-pump is provided between the microwave radiators 5 and 5A. An opening 7 for discharging treated soil, etc., is provided in the lower part of the end of the conveyor 2. A selectors 8 as a soil-collection means is provided consecutively to the opening 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、トリクロロエチレ
ン、ダイオキシン、トリクロロベンゼン等の有害な有機
塩素化合物に汚染された土壌等の浄化方法及び浄化シス
テムに関し、特に有機塩素化合物を効率よく除去するこ
との可能な有機塩素化合物に汚染された土壌等の浄化方
法及び浄化システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and system for cleaning soil contaminated with harmful organic chlorine compounds such as trichlorethylene, dioxins, trichlorobenzene, etc., and more particularly, it enables efficient removal of organic chlorine compounds. The present invention relates to a purification method and a purification system for soil or the like contaminated with various organic chlorine compounds.

【0002】[0002]

【発明が解決しようとする課題】近年、工場跡地の土壌
等が重金属類や化学物質に汚染されていることが明らか
になってきている。このような汚染土壌等のうちゴム、
油脂、樹脂、塗料等の溶剤として広く用いられているト
リクロロエチレンやテトラクロロエチレン等の有機塩素
化合物は、地下水汚染の原因とも言われており、近年そ
の発ガン性が指摘され、環境への放出が制限されてい
る。しかしながら、これら揮発性有機化合物による汚染
は依然として深刻であり、生活環境である土壌等や地下
水の汚染が大きな社会問題となっている。
In recent years, it has become clear that soil and the like on the site of a factory are contaminated with heavy metals and chemical substances. Rubber out of such contaminated soil,
Organochlorine compounds such as trichlorethylene and tetrachloroethylene, which are widely used as solvents for oils, resins, paints, etc., are said to be the cause of groundwater pollution, and their carcinogenicity has been pointed out in recent years, limiting their release to the environment. ing. However, pollution by these volatile organic compounds is still serious, and soil such as living environment and groundwater have become a major social problem.

【0003】一方、ダイオキシン類の有害性も盛んに指
摘され、その分解除去が社会的な課題となっている。こ
のダイオキシン類は、焼却炉から放出される量が多いこ
とから長期間の焼却炉の稼動により焼却炉周辺の土壌に
蓄積される可能性が指摘され、その浄化が切望されてい
る。その他、トリクロロベンゼンなどの有機塩素化合物
も同様に環境に有害であり、環境中への放出が制限され
ている。
On the other hand, the harmfulness of dioxins has been actively pointed out, and their decomposition and removal have become a social issue. The large amount of dioxins released from the incinerator is pointed out that the dioxins may be accumulated in the soil around the incinerator when the incinerator is operated for a long period of time. In addition, organic chlorine compounds such as trichlorobenzene are also harmful to the environment, and their release into the environment is limited.

【0004】このような有害な塩素化合物により汚染さ
れた土壌等の処理方法として特開平8−164376号
公報には、トリクロロエチレン、テトラクロロエチレン
等の有機塩素化合物が混入した土に所定周波数の電磁波
を照射し、前記土を誘電加熱する方法が開示されてい
る。しかしながらこの方法においては、土壌等を直接電
磁波による誘電加熱により加熱しているので、加熱効率
が十分でないために揮発性で沸点が低いトリクロロエチ
レン、テトラクロロエチレン等の有機塩素化合物はある
程度除去されるが、ダイオキシンやトリクロロベンゼン
等の除去効率が低く、またそれ自体有機塩素化合物分解
して除去するものではないという問題点があった。
As a method for treating soil contaminated with such harmful chlorine compounds, Japanese Patent Application Laid-Open No. 8-164376 discloses that soil mixed with organic chlorine compounds such as trichlorethylene and tetrachloroethylene is irradiated with electromagnetic waves of a predetermined frequency. , A method of dielectrically heating the soil is disclosed. However, in this method, since the soil or the like is directly heated by dielectric heating with electromagnetic waves, trichloroethylene, which has a low boiling point and has a low boiling point, such as organic chlorine compounds, is removed due to insufficient heating efficiency. There is a problem that the removal efficiency of chlorobenzene, trichlorobenzene, etc. is low, and that it is not the one that decomposes organic chlorine compounds by itself.

【0005】本発明はかかる課題に鑑みてなされたもの
であり、有機塩素化合物を効率よく除去することの可能
な有機塩素化合物に汚染された土壌等の浄化方法を提供
することを目的とする。また、本発明は有機塩素化合物
を効率よく除去することの可能な有機塩素化合物に汚染
された土壌等の浄化システムを提供することを目的とす
る。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for cleaning soil or the like contaminated with an organic chlorine compound, which is capable of efficiently removing the organic chlorine compound. Another object of the present invention is to provide a purification system for soil or the like contaminated with organic chlorine compounds, which is capable of efficiently removing the organic chlorine compounds.

【0006】[0006]

【課題を解決するための手段】上記目的に鑑み鋭意研究
の結果、本発明者は、トリクロロベンゼン、ダイオキシ
ンなど有機塩素化合物が混入した汚染土壌上に鉄粉を敷
設してマイクロ波を照射してやることにより、まず、鉄
粉がマイクロ波による誘電加熱により迅速に加熱され、
この熱伝導により土壌を効率的に加熱することができ、
これにより土壌中に含まれている有機塩素化合物を揮発
させて除去することができることを見出した。しかもこ
の鉄粉層は素早く有機塩素化合物との反応温度まで上昇
するので揮発した有機塩素化合物はここを通過する際に
還元されて、部分的に脱塩素化され、有機塩素化合物自
体を減少することができ、その後の処理が容易になるこ
とを見出した。しかしながら、鉄粉を敷設しただけで
は、鉄粉が高温になりすぎて焼結したり、あるいは変態
して磁性を失ったりしてしまい、その効果が持続できな
いことから、この鉄粉にゼオライトなどを緩衝材として
混合してやることで好適な温度に維持してやることがで
きることを見出した。これらに基づき本発明に想到し
た。
[Means for Solving the Problems] As a result of earnest research in view of the above object, the present inventor lays iron powder on contaminated soil in which an organic chlorine compound such as trichlorobenzene and dioxin is mixed, and irradiates microwaves. First, iron powder is quickly heated by dielectric heating with microwaves,
By this heat conduction, the soil can be efficiently heated,
It was found that the organic chlorine compounds contained in the soil can be volatilized and removed by this. Moreover, since this iron powder layer quickly rises to the reaction temperature with the organic chlorine compound, the volatilized organic chlorine compound is reduced when passing through it and partially dechlorinated to reduce the organic chlorine compound itself. It has been found that the process can be performed easily and the subsequent processing becomes easy. However, just by laying iron powder, the iron powder becomes too hot and sinters, or it transforms and loses magnetism, and the effect cannot be sustained. It has been found that a suitable temperature can be maintained by mixing as a buffer material. The present invention has been completed based on these.

【0007】本発明の請求項1記載の有機塩素化合物に
汚染された土壌等の浄化方法は、有機塩素化合物が混入
した汚染土壌等上に導電性微粒子と緩衝材とからなる反
応層を形成し、マイクロ波を照射して前記土壌等を誘電
加熱して有機塩素化合物を揮散させ、この揮散した有機
塩素化合物を前記反応層を通過する際に還元するととも
に回収する方法である。
According to the method for purifying soil or the like contaminated with an organochlorine compound according to claim 1 of the present invention, a reaction layer comprising conductive fine particles and a buffer is formed on a contaminated soil or the like contaminated with an organochlorine compound. A method of irradiating the soil or the like by dielectric heating to volatilize an organic chlorine compound, and reduce and recover the volatilized organic chlorine compound when passing through the reaction layer.

【0008】また、請求項2記載の有機塩素化合物に汚
染された土壌等の浄化方法は、前記請求項1において、
前記導電性微粒子が鉄粉であり、前記緩衝材がゼオライ
トである方法である。
A method for cleaning soil contaminated with an organic chlorine compound according to claim 2 is the same as in claim 1 above.
In this method, the conductive fine particles are iron powder and the buffer material is zeolite.

【0009】請求項3記載の有機塩素化合物に汚染され
た土壌等の浄化方法は、前記請求項1又は2において、
前記汚染土壌等又は反応層に活性炭を混合する方法であ
る。
A method for purifying soil or the like contaminated with an organic chlorine compound according to claim 3 is the method according to claim 1 or 2,
This is a method of mixing activated carbon with the contaminated soil or the like or the reaction layer.

【0010】さらに、請求項4記載の有機塩素化合物に
汚染された土壌等の浄化システムは、処理室と、この処
理室内に配置された有機塩素化合物が混入した汚染土壌
等を搬送する搬送手段と、前記汚染土壌等上に導電性微
粒子と緩衝材とを供給する反応層生成手段と、前記汚染
土壌等にマイクロ波を照射するマイクロ波照射手段と、
この処理室に設置された吸引手段と、土壌等回収手段と
を備えるものである。
Further, the purification system for soil contaminated with organochlorine compounds according to claim 4 includes a treatment chamber and a conveying means for conveying contaminated soil contaminated with organochlorine compounds disposed in the treatment chamber. A reaction layer generating means for supplying conductive fine particles and a buffer material onto the contaminated soil or the like, and a microwave irradiation means for irradiating the contaminated soil or the like with a microwave.
The suction means and the soil collecting means installed in this processing chamber are provided.

【0011】[0011]

【発明の実施形態】まず、本発明の有機塩素化合物に汚
染された土壌等の浄化方法について説明する。本発明に
おいて浄化対象となる有機塩素化合物とは、トリクロロ
エチレンやテトラクロロエチレン等の溶剤、ダイオキシ
ン、トリクロロベンゼンなどの常温で固体あるいは液体
の有害な有機塩素化合物であり、場合によってはPCB
などにも適用可能である。また、本明細書中において
「土壌等」とは、焼却場、工場等の周囲及び跡地の土壌
の他、汚染河川、港湾のヘドロ、田畑等も含む。なお、
ヘドロなどの水分を多量に含むものの場合には、加熱効
率が悪いので予め水分を十分に除去しておくのが望まし
い。さらに、本明細書中において「浄化」とは、基本的
には土壌中に含まれている有機塩素化合物を土壌基準値
以下にし、かつこれを大気などの外部環境に放出しない
ことをいう。
BEST MODE FOR CARRYING OUT THE INVENTION First, a method for purifying soil or the like contaminated with an organic chlorine compound of the present invention will be described. In the present invention, the organic chlorine compound to be purified is a solvent such as trichloroethylene or tetrachloroethylene, a harmful organic chlorine compound such as dioxin or trichlorobenzene which is solid or liquid at room temperature, and may be PCB in some cases.
It is also applicable to In the present specification, the term "soils and the like" includes soils around and in the incineration sites, factories and the like, as well as contaminated rivers, sludges in ports, fields and the like. In addition,
In the case of a substance containing a large amount of water such as sludge, it is desirable to remove the water sufficiently in advance because the heating efficiency is poor. Further, in the present specification, "purification" basically means that the organic chlorine compound contained in the soil is made equal to or lower than the soil standard value and is not released to the external environment such as the atmosphere.

【0012】本発明の有機塩素化合物に汚染された土壌
等の浄化方法は、基本的にはこれら有害な有機塩素化合
物が混入した土壌等を加熱する。一般に土砂はマイクロ
波による誘電加熱によりそれ自身発熱するが、磁性成分
を十分に含んでいないので加熱効率が悪く、そのまま直
接マイクロ波を照射しても有機塩素化合物、特にダイオ
キシン、トリクロロベンゼンなどを揮発するに十分な温
度にまでは加熱されない。
In the method for purifying soil or the like contaminated with organic chlorine compounds of the present invention, basically soil or the like containing these harmful organic chlorine compounds is heated. Generally, earth and sand generate heat themselves by dielectric heating by microwaves, but since they do not contain enough magnetic components, heating efficiency is poor, and even if they are directly irradiated with microwaves, organic chlorine compounds, especially dioxins and trichlorobenzene, are volatilized. It is not heated to a temperature sufficient to

【0013】そこで、本発明においては、この土壌等上
に導電性微粒子と緩衝材とからなる反応層を形成する。
この導電性微粒子としては、常温で強い磁性を示すこと
土壌等との分離が容易なことなどの理由から鉄粉、ニッ
ケル粉等を用いることができるが、特に安価な鉄粉を用
いるのが好ましい。また、緩衝材としては特に制限はな
いがゼオライト(沸石)などを用いることができる。こ
の緩衝材は前述した鉄粉等の導電性微粒子と同等もしく
はそれ以下の粒径を有するのが好ましい。上述したよう
な反応層においては、導電性微粒子が体積比で10〜7
0容量%であるのが好ましい。導電性微粒子が10容量
%以下では、有機塩素化合物の分解効率が十分でない一
方、70容量%を越えると後述するマイクロ波の照射に
より反応層が高温になりすぎて導電性微粒子が焼結した
り磁性変態したりする。特に同様の理由により導電性微
粒子が15〜40容量%であるのが好ましい。この反応
層は土壌の1〜5倍程度の厚さに形成するのが望まし
い。このような反応層において、緩衝材として沸石粉末
を用いてこれを鉄粉と混合することにより、沸石粉末が
鉄粉と一体化するので両者を同時に磁選することができ
る。なお、この反応層中には加熱効率の向上等を目的と
して活性炭を混合することができる。活性炭を混合する
場合、その混合割合は反応層全体に対して5容積%以下
程度とすればよく、温度が過剰に上昇しないように後述
するマイクロ波の照射と連動した温度制御を行なうのが
望ましい。
Therefore, in the present invention, a reaction layer composed of conductive fine particles and a buffer is formed on the soil or the like.
As the conductive fine particles, iron powder, nickel powder, or the like can be used because they exhibit strong magnetism at room temperature and can be easily separated from the soil, but it is particularly preferable to use inexpensive iron powder. . The buffer material is not particularly limited, but zeolite (zeolite) or the like can be used. This buffer material preferably has a particle size equal to or smaller than that of the above-mentioned conductive fine particles such as iron powder. In the reaction layer as described above, the conductive fine particles have a volume ratio of 10 to 7
It is preferably 0% by volume. When the conductive fine particles are 10% by volume or less, the decomposition efficiency of the organic chlorine compound is not sufficient, while when it is more than 70% by volume, the reaction layer becomes too hot due to the microwave irradiation described below and the conductive fine particles are sintered. It may be magnetically transformed. Particularly, for the same reason, it is preferable that the conductive fine particles are 15 to 40% by volume. It is desirable that this reaction layer is formed to have a thickness about 1 to 5 times that of soil. In such a reaction layer, by using zeolite powder as a buffer material and mixing this with iron powder, the zeolite powder is integrated with the iron powder, so that both can be magnetically selected at the same time. In addition, activated carbon can be mixed in this reaction layer for the purpose of improving heating efficiency. When the activated carbon is mixed, the mixing ratio may be about 5% by volume or less with respect to the entire reaction layer, and it is desirable to perform temperature control linked with microwave irradiation described later so that the temperature does not excessively rise. .

【0014】次に、有機塩素化合物に汚染された土壌等
上に反応層を形成したらマイクロ波を照射する。このマ
イクロ波の照射をパルスとすればエネルギー効率等にお
いて有利である。そうすると導電性微粒子には電流(電
子)が流れジュール熱により自己発熱して短時間で有機
塩素化合物と反応するに十分な温度にまで加熱する。こ
れにより反応層の下側の土壌等が熱伝導とそれ自身のマ
イクロ波による誘電加熱により効率よく短時間で加熱さ
れる。このとき土壌等中に少量の活性炭などの導電性微
粒子を混ぜておくことにより、より一層急速に土壌等の
温度を上昇させることができる。この土壌等の加熱によ
り土壌等中に含まれている有機塩素化合物が揮散して気
体となり上昇して反応層を通過する。このとき反応層中
の鉄粉は有機塩素化合物と反応するに十分な温度にまで
加熱しているので、鉄粉等の導電性微粒子との接触によ
り電子の授受が生じ、有機塩素化合物は還元されて脱塩
素化される。したがって、塩素化度の少ないもの程この
段階で脱塩素化されて無害化される。すなわち、例えば
トリクロロベンゼン(C63Cl3、TCB)の場合には
→ジクロロベンゼン(C64Cl2、DCB)→モノクロ
ロベンゼン(C65Cl、MCB)→ベンゼン(C66
のように脱塩素化反応が進行し、脱離した塩素は鉄と反
応して塩化鉄となる。そして、完全に脱塩素化されなか
った装置内の有機塩素化合物(TCB、DCB、MCB
など)は、揮発したものを吸引などにより回収して、粒
状のカーボンや鉄粉等の導電性微粒子を充填した二次反
応容器に導入してマイクロ波を照射し、電子の授受によ
る脱塩素化を行い完全に脱塩素化した後外部環境に放出
すればよい。この二次反応器としては、例えば十分な長
さを有するアルミナ製などの筒状部材を用い、この筒状
部材にマイクロ波を照射しながら該筒状部材の一端から
他端に向けて揮発した有機塩素化合物を流通させること
により連続的に二次反応器による完全な脱塩素化を行な
うことができる。なお、難揮発性のダイオキシン(2,
3,7,8−TCDD:bp447℃)やPCB(bp
275〜420℃)などであっても、導電性微粒子を含
む反応層からの熱伝導により土壌等をその沸点以上の温
度に十分な時間保持することにより同様の経過を経て脱
塩素化することでジベンゾパラジオキシン、ビフェニル
として無害化することができる。
Next, when a reaction layer is formed on the soil or the like contaminated with the organic chlorine compound, it is irradiated with microwaves. If the microwave irradiation is pulsed, it is advantageous in energy efficiency and the like. Then, an electric current (electrons) flows through the conductive fine particles and self-heats due to Joule heat and heats up to a temperature sufficient to react with the organic chlorine compound in a short time. As a result, the soil and the like below the reaction layer are efficiently heated in a short time by heat conduction and dielectric heating of the microwave itself. At this time, by mixing a small amount of conductive fine particles such as activated carbon into the soil or the like, the temperature of the soil or the like can be raised more rapidly. By heating the soil or the like, the organic chlorine compound contained in the soil or the like is volatilized and becomes a gas, which rises and passes through the reaction layer. At this time, since the iron powder in the reaction layer is heated to a temperature sufficient to react with the organochlorine compound, transfer of electrons occurs due to contact with the conductive fine particles such as iron powder, and the organochlorine compound is reduced. Are dechlorinated. Therefore, the lower the degree of chlorination, the more dechlorinated and harmless at this stage. That is, for example, in the case of trichlorobenzene (C 6 H 3 Cl 3 , TCB) → dichlorobenzene (C 6 H 4 Cl 2 , DCB) → monochlorobenzene (C 6 H 5 Cl, MCB) → benzene (C 6 H 6 )
As described above, the dechlorination reaction proceeds, and the desorbed chlorine reacts with iron to become iron chloride. Then, the organic chlorine compounds (TCB, DCB, MCB) in the apparatus that have not been completely dechlorinated
Etc.) is collected by suction, etc., and is introduced into a secondary reaction vessel filled with conductive fine particles such as granular carbon or iron powder, irradiated with microwaves, and dechlorinated by electron transfer. After dechlorination, the product may be released to the external environment. As the secondary reactor, for example, a tubular member made of alumina or the like having a sufficient length was used, and the tubular member was irradiated with microwaves and volatilized from one end to the other end of the tubular member. Complete dechlorination can be continuously carried out by the secondary reactor by circulating the organic chlorine compound. In addition, the volatile dioxin (2
3,7,8-TCDD: bp447 ° C.) and PCB (bp
(275-420 ° C.), etc., by dechlorinating after a similar process by keeping the soil or the like at a temperature above its boiling point for a sufficient time by heat conduction from the reaction layer containing conductive fine particles. It can be made harmless as dibenzoparadioxin and biphenyl.

【0015】上述したような有機塩素化合物の脱塩素化
反応は、反応層を構成する導電性微粒子が燃焼、焼結せ
ず、かつ導電性を失わない範囲の温度とするのが望まし
く、さらに、前述した難揮発性のダイオキシンの沸点以
上の温度が必要とされる場合もあることから、350〜
450℃の範囲の温度とするのが望ましい。このため、
本発明においては導電性微粒子に緩衝材としてゼオライ
トを添加して反応層における導電性微粒子の密度を小さ
くすることで、反応層の温度を調整している。ただし、
あまり導電性微粒子の密度が小さすぎると反応層を35
0〜450℃の温度とすることが困難となるばかりか、
揮発した有機塩素化合物の気体と導電性微粒子との接触
機会が減少し脱塩素効率が低下するため、前述したとお
り10〜70容量%、特に15〜40容量%とするのが
好ましい。
In the dechlorination reaction of the organic chlorine compound as described above, it is desirable that the temperature is within a range in which the conductive fine particles forming the reaction layer do not burn and sinter, and the conductivity is not lost. The temperature above the boiling point of the above-mentioned hardly volatile dioxin may be required, so 350-
A temperature in the range of 450 ° C is desirable. For this reason,
In the present invention, the temperature of the reaction layer is adjusted by adding zeolite as a buffer to the conductive particles to reduce the density of the conductive particles in the reaction layer. However,
If the density of the conductive fine particles is too low, the reaction layer will be
Not only is it difficult to maintain a temperature of 0 to 450 ° C,
Since the chance of contact between the vaporized organic chlorine compound gas and the conductive fine particles is reduced and the dechlorination efficiency is lowered, it is preferably 10 to 70% by volume, particularly 15 to 40% by volume as described above.

【0016】なお、これらの処理は有機塩素化合物を揮
散させて回収することから土砂の空隙率と反応層の空隙
率とを考慮する必要があり、具体的には反応層の体積を
これら揮散する成分の体積膨張以上に確保する必要があ
る。また、土壌等中に水分が含まれていると水分の揮発
により温度上昇が妨げられ、土壌等の温度上昇に時間が
かかるので、土壌等中の水分はあらかじめ極力少なくし
ておくのが望ましい。
Since these treatments volatilize and recover the organic chlorine compound, it is necessary to consider the porosity of the earth and sand and the porosity of the reaction layer. Specifically, the volume of the reaction layer is volatilized. It is necessary to secure more than the volume expansion of the components. Further, if the soil or the like contains water, the temperature rise is hindered by the volatilization of the water, and it takes time for the temperature of the soil or the like to rise. Therefore, it is desirable to reduce the water content in the soil or the like as much as possible in advance.

【0017】そしてこのようにして土壌等中の有機塩素
化合物を除去した後は、磁選分離などにより導電性微粒
子を分離し、再利用すればよい。なお、ゼオライトにつ
いては前述したように鉄粉等と一体化するので一緒に磁
選分離することが可能であるが、土壌等改良剤としても
用いられるものもあるので、少量土壌等に混入しても問
題ない。
After the organic chlorine compound in the soil or the like is removed in this manner, the conductive fine particles may be separated by magnetic separation or the like and reused. Regarding zeolite, it can be magnetically separated together because it is integrated with iron powder etc. as described above, but since it is also used as a soil improving agent, even if mixed in a small amount of soil etc. no problem.

【0018】次に上述したような本発明の有機塩素化合
物に汚染された土壌等の浄化方法を実施可能な土壌等浄
化システムについて説明する。図1は、本発明の土壌等
浄化システムの一例を示しており、1は処理室たるステ
ンレス製の反応容器であり、この反応容器1内には、搬
送手段たる金属製のコンベア2が横設されていて、反応
容器1の天面には、搬送コンベア2の上流側より汚染土
壌等を供給する汚染土壌等投入口3と、導電性微粒子た
る鉄粉と緩衝材たる沸石とを供給する反応層生成手段た
る反応剤投入口4とが形成されている。さらに、コンベ
ア2の下流側には2個のマイクロ波照射手段たるマイク
ロ波照射装置5,5Aが配置されていて、これらマイク
ロ波照射装置5,5A間には吸引手段としての図示しな
いエアポンプに連通した吸引管6が取り付けられてい
る。さらに反応容器1は、コンベア2の末端において下
方に開口部7を有していて、処理後の土壌等を排出する
構成となっている。また、8は開口部7に連続して設け
られた土壌等回収手段たる選別装置であり、この選別装
置8の下方は図示左側の土壌等排出口9と右側の鉄粉回
収口10とに分岐していて、この分岐上で開口部7の下側
には反時計周りに回動可能に設けられたドラム状の電磁
石11と鉄粉回収口10上で前記ドラム状の電磁石11に摺接
可能の配置されたスクレバー12とが設けられている。
Next, a soil purification system capable of carrying out the method for purifying soil contaminated with the organochlorine compound of the present invention as described above will be explained. FIG. 1 shows an example of a soil purification system according to the present invention. Reference numeral 1 denotes a stainless steel reaction container which is a processing chamber. Inside the reaction container 1, a metal conveyor 2 which is a conveying means is installed horizontally. The reaction vessel 1 is provided with a contaminated soil inlet 3 for supplying contaminated soil and the like from the upstream side of the conveyor 2, and a reaction for supplying iron powder as conductive fine particles and zeolite as a buffer material on the top surface of the reaction container 1. A reactant inlet 4 serving as a layer forming means is formed. Further, two microwave irradiating devices 5, 5A as microwave irradiating means are arranged on the downstream side of the conveyor 2, and an air pump (not shown) as a suction means is connected between these microwave irradiating devices 5, 5A. The suction tube 6 is attached. Furthermore, the reaction container 1 has an opening 7 at the lower end of the conveyor 2 and is configured to discharge the treated soil and the like. Further, 8 is a sorting device which is a means for collecting soil and the like which is continuously provided in the opening 7. The lower part of the sorting device 8 is branched into a soil discharge port 9 on the left side in the figure and an iron powder recovery port 10 on the right side. On this branch, a drum-shaped electromagnet 11 is provided below the opening 7 so as to be rotatable counterclockwise, and the drum-shaped electromagnet 11 can be slidably contacted on the iron powder recovery port 10. And a scrubber 12 arranged in the.

【0019】上述したような本実施例のシステムにより
前述した本発明の土壌等の浄化方法を効果的に実施する
ことができる。すなわち、コンベア2が図中の矢印方向
に駆動した状態でまず汚染土壌等投入口3から処理対象
である有機塩素化合物に汚染された土壌等を投入し、続
いて、反応剤投入口4から鉄粉と沸石と、必要に応じて
活性炭との混合粉を供給する。これにより汚染土壌等層
と反応層とが連続的に形成されながらコンベア2上を移
動する。そうしたらマイクロ波照射装置5,5Aからコ
ンベア2に向けてマイクロ波Wを連続的にあるいはパル
スとして照射する。そうすると、鉄粉に電流(電子)が
流れジュール熱により素早く自己発熱し、次いで反応層
の下側の土壌等が熱伝導とそれ自身のマイクロ波による
誘電加熱により効率よく短時間で加熱される。これによ
り土壌等中に含まれている有機塩素化合物が揮散して気
体となり上昇して反応層を通過する。このとき鉄粉との
接触により電子の授受が生じ、有機塩素化合物は還元さ
れて脱塩素化される。また、反応層の通過だけで有機塩
素化合物の全てが完全に脱塩素化されない場合には吸引
管6から反応容器1内の空気を吸引して有機塩素化合物
を回収し、前述した二次反応器などにより別途処理す
る。なお、このような処理において、土壌等中に少量の
導電性微粒子を混ぜておくことにより一層急速に土壌等
の温度を上昇させることができる。また、コンベア2の
走行面2Aの下側にバーナを設置して土壌等を補助的に
加熱・保温してもよい。
By the system of the present embodiment as described above, the soil purification method of the present invention described above can be effectively implemented. That is, while the conveyor 2 is driven in the direction of the arrow in the figure, first, the soil or the like contaminated with the organochlorine compound to be treated is introduced from the contaminated soil or the like input port 3, and then the reactant input port 4 is used to feed the iron. A mixed powder of powder, zeolite and, if necessary, activated carbon is supplied. As a result, the contaminated soil layer and the reaction layer are continuously formed and move on the conveyor 2. Then, the microwaves W are radiated from the microwave irradiators 5, 5A toward the conveyor 2 continuously or as a pulse. Then, an electric current (electrons) flows through the iron powder to quickly self-heat due to Joule heat, and then the soil and the like below the reaction layer are efficiently heated in a short time by heat conduction and dielectric heating by the microwave of itself. As a result, the organic chlorine compound contained in the soil or the like volatilizes and becomes a gas, which rises and passes through the reaction layer. At this time, transfer of electrons occurs due to contact with the iron powder, and the organic chlorine compound is reduced and dechlorinated. Further, when all of the organic chlorine compounds are not completely dechlorinated only by passing through the reaction layer, the air in the reaction vessel 1 is sucked from the suction pipe 6 to recover the organic chlorine compounds, and the secondary reactor described above is used. Etc. will be processed separately. In such a treatment, the temperature of the soil or the like can be raised more rapidly by mixing a small amount of conductive fine particles in the soil or the like. Further, a burner may be installed below the traveling surface 2A of the conveyor 2 to supplementarily heat and keep warm the soil.

【0020】そして、コンベア2の長さ及運転速度を土
壌等の浄化処理に十分な時間が確保できるものに設定し
ておくことにより、コンベア2の末端部では土壌等の浄
化が完了して開口部7から選別装置8のドラム状の電磁
石11上に落下する。そうすると、この電磁石11は、土壌
等排出口8側に向けて反時計周りに回動しているので、
鉄粉及びこれと一体化している沸石は電磁石11に吸い付
けられる一方、土壌等及び微量の沸石は土壌等排出口8
に落下して回収される。また、電磁石11に吸い付けられ
た鉄粉はスクレバー12に掻き落とされて鉄粉回収口10に
落下することで回収され、再利用に供することができ
る。
By setting the length and operating speed of the conveyor 2 so that sufficient time can be secured for the purification treatment of soil and the like, the soil and the like are completely purified at the end of the conveyor 2 and the opening is performed. It falls from the part 7 onto the drum-shaped electromagnet 11 of the sorting device 8. Then, since the electromagnet 11 is rotated counterclockwise toward the soil discharge port 8 side,
The iron powder and the zeolite mixed with the iron powder are attracted to the electromagnet 11, while the soil and a small amount of the zeolite are discharged from the soil 8
It is dropped and collected. Further, the iron powder sucked by the electromagnet 11 is scraped off by the scrubber 12 and dropped into the iron powder recovery port 10 to be recovered and can be reused.

【0021】以上のように本実施例のシステムを採用す
ることにより本発明の有機塩素化合物に汚染された土壌
等の浄化方法を効果的に実施することができる。
As described above, by adopting the system of this embodiment, the method for purifying soil or the like contaminated with the organic chlorine compound of the present invention can be effectively carried out.

【0022】[0022]

【実施例】以下の具体的実施例により本発明をさらに詳
細に説明する。実施例1、2 丸型ナスフラスコに900℃で焼いた土砂(細砂)20
gと表1に示すように必要に応じて2gの鉄粉と鉄板と
を加えてよく混合し、そこに二硫化炭素に溶解した1−
2−4トリクロロベンゼン(TCB)0.01ml(1
4.6mg)を入れ、よく混練した後二硫化炭素を揮散
させて試料層とした。
The present invention will be described in more detail with reference to the following specific examples. Examples 1 and 2 Earth and sand (fine sand) 20 baked in a round eggplant flask at 900 ° C.
g and as shown in Table 1, 2 g of iron powder and an iron plate were added as necessary and mixed well, and then dissolved in carbon disulfide 1-
2-4 Trichlorobenzene (TCB) 0.01 ml (1
4.6 mg) was added and kneaded well, and then carbon disulfide was volatilized to form a sample layer.

【0023】この試料層上に鉄粉(18g)と表1に示
す量の天然沸石の粉末とをよく混合したものを試料層上
に均一な厚さに載置して反応層とした。
A well-mixed mixture of iron powder (18 g) and the powder of natural zeolite as shown in Table 1 was placed on this sample layer to a uniform thickness to form a reaction layer.

【0024】この反応層に熱電対を設置するとともに丸
型ナスフラスコにテフロン(登録商 標)チューブを挿入
して栓をし、テフロン(登録商標)チューブをアセトン
20mlを入れた洗気ビンに繋ぎ発生する気体を捕集す
るように構成した。
[0024] Round eggplant flask with installing a thermocouple teflon insert (registered trademark) tube was stoppered reaction layer, connecting the Teflon tube bubbler containing the acetone 20ml It was configured to collect the generated gas.

【0025】そしてこの丸型ナスフラスコを電子レンジ
(500W、2.45GHz)に固定して反応層の設定
温度400℃で電子レンジをON/OFFさせて10分
間マイクロ波を照射して処理を行った。この処理条件を
試料層の体積、反応層の体積、反応層における鉄粉の体
積率、洗気ビンの数、反応層/試料層の割合とともに表
1に示す。また、処理後の試料層、反応層、丸型ナスフ
ラスコ(栓を含む)、洗気ビンにおけるベンゼン、クロ
ロベンゼン(MCB)、ジクロロベンゼン(DCB)、
トリクロロベンゼン(TCB)の濃度を測定し、投入し
たトリクロロベンゼンに対する比率(モル比)を算出し
た。結果を物質収支、TCB分解率とともに表2に示
す。実施例3〜5 丸型ナスフラスコに900℃で焼いた土砂(細砂)20
gと二硫化炭素に溶解した1−2−4トリクロロベンゼ
ン(TCB)0.01ml(14.6mg)を入れ、よ
く混練した後二硫化炭素を揮散させて試料層とした。
Then, this round eggplant-shaped flask was fixed in a microwave oven (500 W, 2.45 GHz), the microwave oven was turned on / off at a set temperature of the reaction layer of 400 ° C., and microwave treatment was performed for 10 minutes to perform treatment. It was The processing conditions are shown in Table 1 together with the volume of the sample layer, the volume of the reaction layer, the volume ratio of iron powder in the reaction layer, the number of washing bottles, and the ratio of reaction layer / sample layer. Further, the sample layer after the treatment, the reaction layer, the round eggplant flask (including the stopper), benzene in the washing bottle, chlorobenzene (MCB), dichlorobenzene (DCB),
The concentration of trichlorobenzene (TCB) was measured, and the ratio (molar ratio) to the added trichlorobenzene was calculated. The results are shown in Table 2 together with the mass balance and TCB decomposition rate. Examples 3 to 5 Earth and sand (fine sand) 20 baked at 900 ° C. in a round eggplant flask
Then, 0.01 ml (14.6 mg) of 1-2-4 trichlorobenzene (TCB) dissolved in g and carbon disulfide was added and kneaded well, and then carbon disulfide was volatilized to form a sample layer.

【0026】この試料層上に鉄粉(18g)と表1に示
す量の天然沸石の粉末とをよく混合したものを試料層上
に均一な厚さに載置して反応層とした。
On this sample layer, a mixture of iron powder (18 g) and natural zeolite powder in the amounts shown in Table 1 was well mixed and placed on the sample layer to a uniform thickness to form a reaction layer.

【0027】この反応層に熱電対を設置するとともに丸
型ナスフラスコにテフロン(登録商 標)チューブを挿入
して栓をし、テフロン(登録商標)チューブをアセトン
20mlを入れた洗気ビンに繋ぎ、さらに吸引ポンプと
活性炭を充填した二次反応器とに接続して気体を捕集す
るように構成した。
[0027] Round eggplant flask with installing a thermocouple teflon insert (registered trademark) tube was stoppered reaction layer, connecting the Teflon tube bubbler containing the acetone 20ml Further, it was configured to connect to a suction pump and a secondary reactor filled with activated carbon to collect gas.

【0028】そしてこの丸型ナスフラスコを電子レンジ
(500W、2.45GHz)に固定して反応層の設定
温度400℃で電子レンジをON/OFFさせて10分
間マイクロ波を照射して処理を行った。この処理条件を
試料層の体積、反応層の体積、反応層における鉄粉の体
積率、洗気ビンの数、反応層/試料層の割合とともに表
1に示す。また、処理後の試料層、反応層、丸型ナスフ
ラスコ(栓を含む)、洗気ビンにおけるベンゼン、クロ
ロベンゼン(MCB)、ジクロロベンゼン(DCB)、
トリクロロベンゼン(TCB)の濃度を測定し、投入し
たトリクロロベンゼンに対する比率(モル比)を算出し
た。結果を物質収支、TCB分解率とともに表2に示
す。
Then, this round eggplant-shaped flask was fixed in a microwave oven (500 W, 2.45 GHz), the microwave oven was turned on / off at a set temperature of the reaction layer of 400 ° C., and microwave treatment was performed for 10 minutes to perform treatment. It was The processing conditions are shown in Table 1 together with the volume of the sample layer, the volume of the reaction layer, the volume ratio of iron powder in the reaction layer, the number of washing bottles, and the ratio of reaction layer / sample layer. Further, the sample layer after the treatment, the reaction layer, the round eggplant flask (including the stopper), benzene in the washing bottle, chlorobenzene (MCB), dichlorobenzene (DCB),
The concentration of trichlorobenzene (TCB) was measured, and the ratio (molar ratio) to the added trichlorobenzene was calculated. The results are shown in Table 2 together with the mass balance and TCB decomposition rate.

【0029】また、比較のために実施例4において活性
炭を充填した二次反応器を接続しない以外同様にして処
理を行ったものを実施例5として、同様にベンゼン、ク
ロロベンゼン(MCB)、ジクロロベンゼン(DC
B)、トリクロロベンゼン(TCB)の濃度を測定し、
投入したトリクロロベンゼンに対する比率(モル比)を
算出した。結果を物質収支、TCB分解率とともに表2
に示す。
For comparison, the same treatment as in Example 4 was carried out except that the secondary reactor filled with activated carbon was not connected as Example 5, and benzene, chlorobenzene (MCB) and dichlorobenzene were similarly added. (DC
B), measuring the concentration of trichlorobenzene (TCB),
The ratio (molar ratio) to the charged trichlorobenzene was calculated. The results are shown in Table 2 together with the material balance and TCB decomposition rate.
Shown in.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】実施例1〜実施例5から明らかなように反
応層における鉄粉の体積比率が多いほどTCBの分解率
は高いが、鉄粉の体積比率が39.3%と最も高い実施
例1では温度が高くなりすぎて鉄粉に若干の焼結が認め
られた。また、TCB以外にベンゼン、MCB,DCB
が検出されていることから、本発明の方法により土壌等
中のTCBの脱塩素化と除去とが同時に行われ、これに
よりベンゼンが残留する分だけ有機塩素化合物(MC
B、DCB、TCB)の土壌等への残留量を少なくする
ことができることがわかる。一方、実施例1、2と実施
例3、4と実施例5との比較により二次反応器を使用す
ることにより、TCBの分解率が高められることがわか
る。なお、前述した実験例では電子レンジによりマイク
ロ波の照射を行なっているが、マイクロ波の照射におい
ては加熱ムラが生じやすく、これにより除去率の低下を
招きやすい(試料層への有機塩素化合物の残存率が0%
とならない)。しかしながら、ターンテーブルを採用し
たりコンベアにより移送することでその照射にムラがな
いようにすることで、試料層への有機塩素化合物の残存
率を0%に近づけることができる。
As is clear from Examples 1 to 5, the higher the volume ratio of iron powder in the reaction layer, the higher the decomposition rate of TCB, but the highest volume ratio of iron powder was 39.3%. Then, the temperature became too high, and some sintering was observed in the iron powder. In addition to TCB, benzene, MCB, DCB
Since TCB in the soil and the like is simultaneously detected by the method of the present invention, the organic chlorine compound (MC
It can be seen that the residual amount of B, DCB, TCB) on the soil or the like can be reduced. On the other hand, comparison of Examples 1 and 2 with Examples 3 and 4 and Example 5 reveals that the use of the secondary reactor enhances the decomposition rate of TCB. In the experimental example described above, microwave irradiation is performed by a microwave oven, but heating unevenness is likely to occur in microwave irradiation, which tends to cause a reduction in the removal rate (organic chlorine compound of the sample layer). Remaining rate is 0%
Not). However, by adopting a turntable or transferring it by a conveyor so that the irradiation is uniform, the residual rate of the organic chlorine compound in the sample layer can be brought close to 0%.

【0033】[0033]

【発明の効果】本発明の請求項1記載の有機塩素化合物
に汚染された土壌等の浄化方法は、有機塩素化合物が混
入した汚染土壌等上に導電性微粒子と緩衝材とからなる
反応層を形成し、マイクロ波を照射して前記土壌等を誘
電加熱して有機塩素化合物を揮散させ、この揮散した有
機塩素化合物を前記反応層を通過する際に還元するとと
もに回収する方法であるので、有機塩素化合物の約95
%以上を効率よく除去することができるとともに、除去
されず残留した有機塩素化合物も脱塩素化により一部は
有機化合物となるので汚染土壌等を効果的に浄化するこ
とができる。
The method for cleaning soil contaminated with organochlorine compounds according to claim 1 of the present invention provides a reaction layer comprising conductive fine particles and a buffer material on contaminated soil contaminated with organochlorine compounds. It is a method of forming and irradiating the soil or the like with dielectric heating to volatilize an organic chlorine compound, and the organic chlorine compound thus volatilized is reduced and recovered when passing through the reaction layer. About 95 of chlorine compounds
%, It is possible to efficiently remove the contaminated soil and the like, since not only the organic chlorine compounds that are not removed but also the remaining organic chlorine compounds are partially converted to organic compounds by dechlorination.

【0034】また、請求項2記載の有機塩素化合物に汚
染された土壌等の浄化方法は、前記請求項1において、
前記導電性微粒子が鉄粉であり、前記緩衝材がゼオライ
トである方法であり、鉄粉は安価、無害で強磁性である
ので、効率よく土壌等を加熱することができる。またゼ
オライトは無害であるので、そのまま土壌等中に残留し
ても問題ない。
The method for cleaning soil contaminated with an organic chlorine compound according to claim 2 is the same as in claim 1 above.
This is a method in which the conductive fine particles are iron powder and the buffer material is zeolite. Since iron powder is inexpensive, harmless, and ferromagnetic, it is possible to efficiently heat soil and the like. Further, since zeolite is harmless, there is no problem even if it remains in the soil as it is.

【0035】請求項3記載の有機塩素化合物に汚染され
た土壌等の浄化方法は、前記請求項1又は2において、
前記汚染土壌等又は反応層に活性炭を混合する方法であ
るので、さらに効率よく有機塩素化合物を効率よく除去
することができる。
A method for purifying soil or the like contaminated with an organic chlorine compound according to claim 3 is the same as in claim 1 or 2 above.
Since this is a method of mixing activated carbon with the contaminated soil or the like or the reaction layer, the organic chlorine compound can be removed more efficiently.

【0036】そして、請求項4記載の有機塩素化合物に
汚染された土壌等の浄化システムは、処理室と、処理室
内に配置された有機塩素化合物が混入した汚染土壌等を
搬送する搬送手段と、前記汚染土壌等上に導電性微粒子
と緩衝材とを供給する反応層生成手段と、前記汚染土壌
等にマイクロ波を照射するマイクロ波照射手段と、この
処理室に設置された吸引手段と、土壌等回収手段とを備
えるものであるので、有機塩素化合物の約95%以上を
効率よく除去することができるとともに、除去されず残
留した有機塩素化合物も脱塩素化により一部は有機化合
物となるので汚染土壌等を効果的に浄化することができ
る。
The purification system for soil or the like contaminated with organic chlorine compounds according to claim 4 includes a processing chamber, and a transportation means for transporting contaminated soil or the like mixed with the organic chlorine compound disposed in the processing chamber, A reaction layer generating means for supplying conductive fine particles and a buffer material onto the contaminated soil or the like, a microwave irradiating means for irradiating the contaminated soil or the like with a microwave, a suction means installed in this processing chamber, and a soil. Since it is equipped with an equal recovery means, it is possible to efficiently remove about 95% or more of the organic chlorine compound, and part of the organic chlorine compound remaining without being removed becomes an organic compound by dechlorination. It is possible to effectively purify contaminated soil and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による機塩素化合物に汚染さ
れた土壌等の浄化システムを示す概略図である。
FIG. 1 is a schematic diagram showing a purification system for soil contaminated with organic chlorine compounds according to an embodiment of the present invention.

【符号の簡単な説明】[Simple explanation of symbols]

1 応容器(処理室) 2 コンベア(搬送手段) 3 汚染土壌等投入口 4 反応剤投入口(反応層生成手段) 5,5A マイクロ波照射装置(マイクロ波照射手段) 6 吸引管(吸引手段) 8 選別装置(土壌等回収手段) 1 Response container (processing room) 2 conveyors (transportation means) 3 Contaminated soil input port 4 Reagent input port (reaction layer generating means) 5,5A microwave irradiation device (microwave irradiation means) 6 Suction tube (suction means) 8 Sorting device (soil collection means)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B09C 1/08 B09B 3/00 ZAB C07B 35/06 304K C07C 25/10 (72)発明者 澁井 和夫 新潟県新潟市青山新町24番地18 Fターム(参考) 2E191 BA12 BA13 BB01 BC01 BD11 4D004 AA41 AB06 AB07 CA22 CA37 CA47 CB33 CB46 CC11 4G075 AA22 AA37 BA06 CA26 CA51 DA02 EB31 ED11 FC11 4H006 AA05 BA19 BA71 BA95 EA21─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B09C 1/08 B09B 3/00 ZAB C07B 35/06 304K C07C 25/10 (72) Inventor Kazuo Shibui Niigata 24F, Aoyama Shinmachi, Niigata 18F Term (Reference) 2E191 BA12 BA13 BB01 BC01 BD11 4D004 AA41 AB06 AB07 CA22 CA37 CA47 CB33 CB46 CC11 4G075 AA22 AA37 BA06 CA26 CA51 DA02 EB31 ED11 FC11 4H006 AA05 BA19 BA71 BA95 EA21 EA21

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 有機塩素化合物が混入した汚染土壌等上
に導電性微粒子と緩衝材とからなる反応層を形成し、マ
イクロ波を照射して前記反応層を誘電加熱するとともに
前記土壌等を加熱して有機塩素化合物を揮散させ、この
揮散した有機塩素化合物を前記反応層を通過する際に還
元しながら回収することを特徴とする有機塩素化合物に
汚染された土壌等の浄化方法。
1. A reaction layer comprising conductive fine particles and a buffer material is formed on a contaminated soil or the like in which an organic chlorine compound is mixed, and microwaves are irradiated to dielectrically heat the reaction layer and heat the soil or the like. Then, the organic chlorine compound is volatilized, and the volatilized organic chlorine compound is recovered while being reduced when passing through the reaction layer.
【請求項2】 前記導電性微粒子が鉄粉であり、前記緩
衝材がゼオライトであることを特徴とする請求項1記載
の有機塩素化合物に汚染された土壌等の浄化方法。
2. The method for purifying soil or the like contaminated with an organic chlorine compound according to claim 1, wherein the conductive fine particles are iron powder and the buffer material is zeolite.
【請求項3】 前記汚染土壌等又は反応層に活性炭を混
合することを特徴とする請求項1又は2記載の有機塩素
化合物に汚染された土壌等の浄化方法。
3. The method for cleaning soil contaminated with organochlorine compounds according to claim 1, wherein activated carbon is mixed with the contaminated soil or the reaction layer.
【請求項4】 処理室と、この処理室内に配置された有
機塩素化合物が混入した汚染土壌等を搬送する搬送手段
と、前記汚染土壌等上に導電性微粒子と緩衝材とを供給
する反応層生成手段と、前記汚染土壌等にマイクロ波を
照射するマイクロ波照射手段と、この処理室に設置され
た吸引手段と、土壌等回収手段とを備えることを特徴と
する有機塩素化合物に汚染された土壌等の浄化システ
ム。
4. A processing chamber, a transportation means for transporting a contaminated soil mixed with an organic chlorine compound, which is disposed in the processing chamber, and a reaction layer for supplying conductive fine particles and a buffer material onto the contaminated soil. Contaminated with an organochlorine compound characterized by comprising a generating means, a microwave irradiating means for irradiating the contaminated soil with microwaves, a suction means installed in this processing chamber, and a soil collecting means. Soil purification system.
JP2001303400A 2001-09-28 2001-09-28 Method and system for treatment of soil, etc., contaminated by organochlorine compound Pending JP2003103249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001303400A JP2003103249A (en) 2001-09-28 2001-09-28 Method and system for treatment of soil, etc., contaminated by organochlorine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001303400A JP2003103249A (en) 2001-09-28 2001-09-28 Method and system for treatment of soil, etc., contaminated by organochlorine compound

Publications (1)

Publication Number Publication Date
JP2003103249A true JP2003103249A (en) 2003-04-08

Family

ID=19123491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001303400A Pending JP2003103249A (en) 2001-09-28 2001-09-28 Method and system for treatment of soil, etc., contaminated by organochlorine compound

Country Status (1)

Country Link
JP (1) JP2003103249A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003226512A (en) * 2001-11-28 2003-08-12 Ueda Shikimono Kojo:Kk Photocatalytic activated carbon, colored photocatalytic activated carbon, coloring activated carbon, deodorant and/adsorption product using them, and soil cleaning method
WO2003074204A1 (en) * 2002-03-06 2003-09-12 Nippon Steel Corporation Method of treating contaminated soil for converting the soil to harmless soil and applicator
CN100352567C (en) * 2004-04-26 2007-12-05 阿斯特古股份有限公司 Method for improving polluted soil
KR100870447B1 (en) 2008-07-15 2008-11-25 주식회사 윈텍에이티에스 Soil restoration apparatus
KR100870445B1 (en) 2008-07-14 2008-11-25 주식회사 윈텍에이티에스 Soil restoration apparatus
WO2009110071A1 (en) * 2008-03-05 2009-09-11 日本スピンドル製造株式会社 Treating apparatus for solid containing hazardous substance such as organohalogen compound
KR100993290B1 (en) * 2009-10-30 2010-11-09 고려대학교 산학협력단 Apparatus for recovering a valuable element
US8037617B2 (en) 2007-03-26 2011-10-18 Russell Gary Kossowan Contaminated soil remediation apparatus
CN102764755A (en) * 2011-05-05 2012-11-07 武汉数通科技有限公司 Continuous microwave soil remediation device
CN107716537A (en) * 2017-09-08 2018-02-23 水利部交通运输部国家能源局南京水利科学研究院 A kind of advanced oxidation reaction unit for purifying petroleum-contaminated soil
CN107913902A (en) * 2017-12-27 2018-04-17 成都新柯力化工科技有限公司 A kind of method using the efficient rehabilitating soil of laser
CN108262346A (en) * 2017-12-27 2018-07-10 江苏盖亚环境科技股份有限公司 A kind of system repaired for the multiple stirring oxidation of dystopy soil
CN109127701A (en) * 2018-09-29 2019-01-04 新冶高科技集团有限公司 A kind of microwave thermal desorption soil restoring device
CN114273411A (en) * 2022-01-05 2022-04-05 北京高能时代环境技术股份有限公司 Combined restoration system and restoration method for organic polluted site

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003226512A (en) * 2001-11-28 2003-08-12 Ueda Shikimono Kojo:Kk Photocatalytic activated carbon, colored photocatalytic activated carbon, coloring activated carbon, deodorant and/adsorption product using them, and soil cleaning method
WO2003074204A1 (en) * 2002-03-06 2003-09-12 Nippon Steel Corporation Method of treating contaminated soil for converting the soil to harmless soil and applicator
CN100352567C (en) * 2004-04-26 2007-12-05 阿斯特古股份有限公司 Method for improving polluted soil
US8037617B2 (en) 2007-03-26 2011-10-18 Russell Gary Kossowan Contaminated soil remediation apparatus
WO2009110071A1 (en) * 2008-03-05 2009-09-11 日本スピンドル製造株式会社 Treating apparatus for solid containing hazardous substance such as organohalogen compound
KR100870445B1 (en) 2008-07-14 2008-11-25 주식회사 윈텍에이티에스 Soil restoration apparatus
KR100870447B1 (en) 2008-07-15 2008-11-25 주식회사 윈텍에이티에스 Soil restoration apparatus
US8981268B2 (en) 2009-10-30 2015-03-17 Korea University Research And Business Foundation Apparatus for recovering valuable elements
KR100993290B1 (en) * 2009-10-30 2010-11-09 고려대학교 산학협력단 Apparatus for recovering a valuable element
CN102764755A (en) * 2011-05-05 2012-11-07 武汉数通科技有限公司 Continuous microwave soil remediation device
CN107716537A (en) * 2017-09-08 2018-02-23 水利部交通运输部国家能源局南京水利科学研究院 A kind of advanced oxidation reaction unit for purifying petroleum-contaminated soil
CN107913902A (en) * 2017-12-27 2018-04-17 成都新柯力化工科技有限公司 A kind of method using the efficient rehabilitating soil of laser
CN108262346A (en) * 2017-12-27 2018-07-10 江苏盖亚环境科技股份有限公司 A kind of system repaired for the multiple stirring oxidation of dystopy soil
CN109127701A (en) * 2018-09-29 2019-01-04 新冶高科技集团有限公司 A kind of microwave thermal desorption soil restoring device
CN114273411A (en) * 2022-01-05 2022-04-05 北京高能时代环境技术股份有限公司 Combined restoration system and restoration method for organic polluted site
CN114273411B (en) * 2022-01-05 2022-11-25 北京高能时代环境技术股份有限公司 Combined restoration system and restoration method for organic polluted site

Similar Documents

Publication Publication Date Title
JP2003103249A (en) Method and system for treatment of soil, etc., contaminated by organochlorine compound
US10751770B2 (en) Remediation of contaminated soil and water using enhanced stimulators
CA2669497A1 (en) Electromagnetic treatment of contaminated materials
EP0575180A1 (en) Decontamination process
WO2001062368A1 (en) Adsorption powder for removing mercury from high temperature, high moisture gas streams
JP2012161768A (en) Apparatus for cleaning contaminated soil and method for cleaning soil
JP7278784B2 (en) Coal ash processing system and method
JP5311007B2 (en) Heat treatment system and heat treatment method
Liu et al. Application of microwave irradiation in the removal of polychlorinated biphenyls from soil contaminated by capacitor oil
JP2004202290A (en) Method for treating soil or the like contaminated with organic chlorine compound
JP2002533201A (en) Equipment that separates each component from the substrate
WO2021070011A1 (en) System and method for treating contaminated solid material
JP3553624B2 (en) CFC decomposition method
JP4370381B2 (en) Microwave-solvothermal continuous processing method of harmful organic compounds
US20220250943A1 (en) Microwave drying apparatus for the minimization of drinking water plant residuals
JP2013043150A (en) Sludge treatment method and sludge treatment equipment
AU2021208710B2 (en) PFAS processing
JP2001276817A (en) Contaminated oil effluent treating device
JP2002336650A (en) Method of treating waste combustion gas
JP2003285043A (en) Method for cleaning material polluted with chemical substance
JP2006026460A (en) Method of detoxifying polluted substance
JP2005169291A (en) Treating device for organic halogen compound
JP2002282838A (en) Purification method of contaminated waste and purification equipment
WO1997000129A1 (en) Treatment of contaminated soils
JP7182829B1 (en) Method for decomposing and carbonizing organochlorine compounds, and apparatus for decomposing and carbonizing the same