JP4370381B2 - Microwave-solvothermal continuous processing method of harmful organic compounds - Google Patents

Microwave-solvothermal continuous processing method of harmful organic compounds Download PDF

Info

Publication number
JP4370381B2
JP4370381B2 JP14934199A JP14934199A JP4370381B2 JP 4370381 B2 JP4370381 B2 JP 4370381B2 JP 14934199 A JP14934199 A JP 14934199A JP 14934199 A JP14934199 A JP 14934199A JP 4370381 B2 JP4370381 B2 JP 4370381B2
Authority
JP
Japan
Prior art keywords
microwave
solvothermal
organic compounds
reaction
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14934199A
Other languages
Japanese (ja)
Other versions
JP2000334062A (en
Inventor
俊作 加藤
伊藤  功治
博文 曽我
薫 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Instrumentation Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Shikoku Instrumentation Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Instrumentation Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Shikoku Instrumentation Co Ltd
Priority to JP14934199A priority Critical patent/JP4370381B2/en
Publication of JP2000334062A publication Critical patent/JP2000334062A/en
Application granted granted Critical
Publication of JP4370381B2 publication Critical patent/JP4370381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、有機ハロゲン化合物および多環芳香族などの有害有機化合物をマイクロ波照射加熱を行い、沸点以上の温度にすると共に沸騰させないように加圧する条件下、すなわちソルボサーマル条件下で連続的に高速分解・無害化する方法に関するものである。
【0002】
【従来の技術】
有機ハロゲン化合物などの有害物質は毒性が強いだけでなく、極少量でも生殖などに大きく影響する内分泌ホルモン撹乱物質(環境ホルモン)として処理技術の開発が急がれており、地球規模での汚染が大きな社会問題となっている。
【0003】
最近、湿式分解法による有機ハロゲン化合物の分解、特に、超臨界水分解法が注目され、盛んに研究されている。これらの方法では、温度が400〜500℃、圧力100〜300気圧の高温高圧の条件で処理するものである。山崎らはPCBやTCEなどの有機塩素化合物を200から350℃、100気圧程度の低温・低圧の条件で水熱分解している〔N.Yamasaki et al. Env. Sci. Tech., 14(5),550(1990)〕。亜臨界・超臨界水は腐食性が大きく、かつ、有機ハロゲン化合物では腐食性のガスが発生し、耐圧、耐熱、耐食性の良い反応装置が必要である。また、脱塩素剤としてアルカリが用いられるが、超臨界水中は共溶媒性となり、イオン性の物質の溶解度が小さくなり、塩化ナトリウムなどの塩類が析出するため、塩析対策が必要である。
【0004】
炭化ケイ素などの触媒を充填した反応管をマイクロ波照射して所定温度に加熱し、有機塩素化合物などを連続的に注入することにより、有機塩素化合物が効率よく分解されることが知られている。例えば、特開平8−99018、US DOE Report LA-UR-90-3159、LA-12121-MSにおいて、炭化ケイ素をマイクロ波加熱で600℃程度に加熱し、有機ハロゲン化合物などを注入することにより、迅速に塩化水素と二酸化炭素まで分解されることが認められている。この方法は有害有機物の処理などの高濃度分解処理に適しているが、水を多量に含む水溶液系には多量のエネルギーを要し適さない。また、活性炭および銅やクロムを担持した活性炭層に有害有機物質を吸着させた後、マイクロ波を照射して400℃程度に加熱して分解する方法(US DOE Report DOE-HWP-28、AD Report AD-A-253631)等が報告されている。水蒸気などに気体中の有害物質を吸着させてから、マイクロ波照射して分解する方法であり、連続分解および水溶液中の有害物質の分解には適していない。
【0005】
【発明が解決しようとする課題】
本発明においては、より穏和な条件、すなわち、低温低圧、省エネルギー型で、連続的、かつ、安全性の高いクローズドシステムの開発を目指すものである。さらに、高濃度溶液中の有害有機ハロゲン化合物の分解から希薄な水溶液中の有機ハロゲン化合物並びに油など有機溶媒中の有機ハロゲン化合物を効率よく、分解・無害化する方法を提供しようとするものである。
【0006】
【課題を解決するための手段】
有機ハロゲン化合物とアルカリ水溶液を混合し、マイクロ波を照射して沸点以上の温度(180℃以下)、10気圧以下の圧力下で処理すると、有機ハロゲン化合物が分解され、生成する塩化水素はアルカリにより捕捉され、無害化されることを見いだした。しかし、回分法の場合、気相と液相が存在すると加熱により、溶液が沸騰し、気相部分に有害ハロゲン化合物が蒸発するため、100%処理することが困難であった。
【0007】
このような状況で鋭意研究した結果、有機ハロゲン化合物あるいは有機ハロゲン化合物を含む溶液とアルカリ水溶液を混合して連続的に反応部に送液する。マイクロ波を連続的に出力を調製しながら照射することにより、沸騰させないで加熱加圧するソルボサーマル条件で連続処理し、室温まで冷却することにより、有害な気体を発生することなく、100%分解・無害化できることを見いだした。 本発明は、有害有機化合物およびそれらを含む溶液をアルカリ水溶液と混合し、反応装置へ連続的に注入し、マイクロ波を照射して沸点以上の温度に加熱すると共に沸騰させないように加圧するソルボサーマル反応条件で連続的に分解・無害化することを特徴とする有害有機化合物のマイクロ波−ソルボサーマル連続処理法を要旨としている。
【0008】
さらに、反応部に酸化チタンなどの触媒を用いることにより、より低温低圧の条件で効率よく処理されることを見いだした。触媒としては酸化チタンの他、酸化鉄、酸化銅、アルミナ、酸化マンガンなどの酸化物およびそれらの複合酸化物、さらには活性炭や粘土鉱物などの多孔質体に酸化物を担持した複合材料などが用いられる。触媒としてはこれらに規定されるものでなく、マイクロ波吸収性を有するものが効果的である。
すなわち本発明は、有害有機化合物およびそれらを含む溶液をアルカリ水溶液と混合し、反応装置の反応部にマイクロ波吸収性および反応分解性の触媒、より具体的には金属酸化物あるいはそれらの複合酸化物、または多孔性物質の表面に当該酸化物をコーティングした複合材料の触媒を装填した当該反応装置へ連続的に注入し、マイクロ波を照射して沸点以上の温度に加熱すると共に沸騰させないように加圧するソルボサーマル反応条件で連続的に分解・無害化することを特徴とする有害有機化合物のマイクロ波−ソルボサーマル連続処理法を要旨としている。
【0009】
マイクロ波照射法として連続照射下に出力調整を行って温度制御する方法およびパルス照射しながら出力調整して温度コントロールする方法がある。連続照射法で効果的に有機塩素化合物の無害化ができるが、パルス照射の方がより効果的で、効率よく分解できることを見いだした。
すなわち本発明は、有害有機化合物およびそれらを含む溶液をアルカリ水溶液と混合し、反応装置の反応部にマイクロ波吸収性および反応分解性の触媒、より具体的には金属酸化物あるいはそれらの複合酸化物、または多孔性物質の表面に当該酸化物をコーティングした複合材料の触媒を装填した当該反応装置へ連続的に注入し、マイクロ波を連続あるいはパルス照射して沸点以上の温度に加熱すると共に沸騰させないように加圧するソルボサーマル反応条件で連続的に分解・無害化することを特徴とする有害有機化合物のマイクロ波−ソルボサーマル連続処理法を要旨としている。
【0010】
以上のとおり、本発明は、有機ハロゲン化合物等有害有機化合物を加圧条件下でマイクロ波照射して分解し、無害化する技術を提供するものである。
【0011】
【発明の実施の形態】
有害有機化合物の代表例としてはジクロルメタン、クロロホルム、四塩化炭素、トリクロルエタンなどのパラフィン系およびクロルベンゼン、ジクロルベンゼンやPCB、ダイオキシン等の芳香族系などの有機塩素化合物および有機臭素化合物や有機フッ素化合物などの有機ハロゲン化合物のマイクロ波−ソルボサーマル分解による無害化処理があげられるが、それに限定されるものではなく、多環芳香族などの有害有機化合物の分解・無害化にも適用が可能である。
【0012】
有機ハロゲン化合物などの有害有機化合物の廃棄物、有害有機化合物の含まれる廃水・廃油のみならず、焼却炉飛灰などの無害化に適用するものである。
有機ハロゲン化合物等の有害有機化合物を含む廃液とアルカリ水溶液を混合したもの、あるいは両溶液を反応部に連続的に送液し、沸騰させない加圧条件下(温度:120〜180℃、圧力:数気圧〜10気圧、滞留時間:数分〜数十分)でマイクロ波照射処理を行うものである。マイクロ波照射は連続照射でも効果的であるが、パルス照射がより効果的である。
【0013】
有機ハロゲン化合物の濃厚廃液とアルカリ水溶液を連続的に混合しながら反応部に送液し、マイクロ波照射して分解・無害化する。
有害有機化合物を含む廃油処理の場合、炭酸ナトリウムなどの粉末状アルカリを混合してマイクロ波反応装置に送液し処理する。
【0014】
有機塩素化合物はアルカリ水溶液中でマイクロ波加熱により分解され、無害化するが、濃厚廃液の場合、排水基準以下にするためには滞留時間を長くする必要がある。酸化チタンなどの触媒を添加することにより、短時間に効率よく分解・無害化される。
触媒の添加方法として粉末状のものを溶液中に懸濁させて送液処理した後、沈殿分離する方法、粒状、繊維状、ハニカム状の充填した反応管をマイクロ波照射装置内に設置し、反応溶液を送給して処理するものである。
【0015】
【実施例】
次に本発明を実施例に基づいて説明するが、本発明は当該実施例によって何ら限定されるものでない。
【0016】
実施例1
試作したマイクロ波−ソルボサーマル連続反応装置はマイクロ波出力1.5kWのオーブン型の装置である。反応部は耐圧ガラス製の蛇管(耐圧:10気圧)でオーブンの上部にガラス製蛇管冷却器を付け、その先にフラクションコレクターを取り付けて流出液を分取した。反応部の容積は100ml、送水管、反応部、冷却部を含めた系全体の容積は400mlである。マイクロ波の最大出力は1.5kWで、連続照射の他パルス照射が可能であり、パルス間隔は自由に設定できる。
この反応装置に1N水酸化ナトリウム水溶液にジクロルメタンを溶解し、100ppmの試料溶液を調整したものを反応部に所定速度で試料溶液を連続的に送水し、マイクロ波出力50%、温度180℃、圧力10気圧の条件で流速を変えてマイクロ波処理した。流速は20ml/minおよび5ml/minで、それぞれの反応部の滞留時間は5分および20分である。
得られた結果を図1に示す。装置容積分(400ml)が流出した時の流出液中の濃度は滞留時間5分では、2ppm、滞留時間5分の場合は0.2ppm以下となり、分解率は98%、99.8%以上に達した。従来の水熱分解法(250℃)に比べ、低い反応温度で分解できることが分かった。
【0017】
比較例1
回分式反応容器にジクロルメタン試料溶液(100ppm)100mlを充填し、反応温度150℃、4気圧および180℃、10気圧の条件で所定時間マイクロ波照射処理を行った。反応終了後、反応溶液中の残存濃度をGC-MSで分析した。
その結果、表1および図2に示すように、連続法では反応温度150℃、滞留時間20分で残存濃度が排水基準の0.2ppm以下になり、分解率は99.8%であったが、回分式では150℃では分解率が75%であり、180℃においても20分で残存濃度10ppmであり、分解率は90%にとどまった。
【0018】
【表1】

Figure 0004370381
【0019】
実施例2
ジクロルメタンのマイクロ波−ソルボサーマル連続分解における反応温度および滞留時間の影響を調べた。ジクロルメタン試料水溶液を連続的にマイクロ波照射装置の反応部に送液した。ジクロルメタン濃度:100ppm、1000ppm、水酸化ナトリウム濃度:0.5、1N、反応温度120、150、170℃、滞留時間10、20、30分の条件で実験した。本実験では反応中沸騰させないために、若干加圧条件で処理した。流出量が送液部、反応部、冷却部の容積の1.5倍程度になったときの濃度を測定し、分解率を求めた結果を表2および表3に示す。反応温度120℃においてもジクロルメタンは滞留時間20分で93%以上分解した。本実験のアルカリの濃度が0.5Nから1N、滞留時間20分から30分では分解率に大差なく、安定的な運転条件ではほぼ100%分解できた。試料濃度100ppm、1000ppmでも分解率ではほぼ等しかった。
【0020】
【表2】
ジクロルメタンの分解率(ジクロルメタン濃度100ppm)
Figure 0004370381
【0021】
【表3】
ジクロルメタンの分解率(ジクロルメタン濃度1000ppm)
Figure 0004370381
【0022】
実施例3
ジクロルメタン100ppm試料溶液100ml(NaOH1N)を回分式反応容器の充填し、二酸化チタンをゾルゲル法で表面に沈積させた管状に成形した粘土鉱物を装填し、マイクロ波照射してジクロルメタンの分解率を求めた。結果を表4に示す。触媒を添加することにより、分解率が20%程度向上することが認められた。
【0023】
【表4】
触媒添加の効果
Figure 0004370381
【0024】
実施例4
ジクロルメタン1000ppmの試料溶液を連続的に反応装置に滞留時間10分になるように送液し、マイクロ波を連続的あるいは2秒間隔のパルス照射を行い、ジクロルメタン分解のパルス照射効果を調べた。NaOH濃度1N、反応温度120℃、圧力10気圧の条件で実験を行った。結果を図3に示すようにパルス照射の方が分解率が高く、残存濃度が著しく低くなった。
【0025】
実施例5
トリクロルエチレン(CHCl=CCl2)100ppmのアルカリ水溶液(NaOH:1N)を連続的に反応部に送液し、流速を変えて、マイクロ波連続照射処理を行った。結果、120℃においても図4に示すように滞留時間10分で分解率99.2%に達した。
【0026】
【発明の効果】
以上に説明したように、本発明によれば、マイクロ波−ソルボサーマル連続反応処理により、ジクロルメタンやトリクロルエチレンなどの有機塩素化合物が低温、低圧の条件で簡単に分解することは明らかである。本発明法の特徴は連続反応処理法であること、反応部に必要に応じて触媒を共存させ、マイクロ波を連続、好ましくはパルス照射して処理するものであり、実用化に適した処理方法である。 本発明の実験では120〜180℃、10気圧、アルカリ濃度0.5〜2Nの条件で実証試験を行ったが、それにとらわれるものではなく、反応温度およびアルカリ濃度の高い方が高速、大容量処理が可能となり、残存濃度を低減できることは言うまでもないが、低温・低圧の条件でも触媒添加およびパルス照射により、高速分解処理が可能と考えている。
【図面の簡単な説明】
【図1】 実施例1のジクロルメタンの連続分解の結果を説明する図面である。
【図2】 比較例1のジクロルメタンの回分処理の結果を説明する図面である。
【図3】 MWパルスの照射効果を説明する図面である。
【図4】 MW−ST法によるトリクロロエチレンの分解結果を説明する図面である。[0001]
BACKGROUND OF THE INVENTION
In the present invention, harmful organic compounds such as organic halogen compounds and polycyclic aromatics are heated by microwave irradiation so that the temperature is higher than the boiling point and pressurized so as not to boil , that is, continuously under solvothermal conditions. It relates to a method for rapid decomposition and detoxification.
[0002]
[Prior art]
Hazardous substances such as organohalogen compounds are not only highly toxic, but treatment technologies are urgently being developed as endocrine hormone disruptors (environmental hormones) that greatly affect reproduction even in extremely small amounts. It is a big social problem.
[0003]
Recently, decomposition of organic halogen compounds by wet decomposition, particularly supercritical water decomposition, has attracted attention and has been actively studied. In these methods, the treatment is performed under conditions of a high temperature and a high pressure of a temperature of 400 to 500 ° C. and a pressure of 100 to 300 atm. Yamazaki et al. Hydrocracked organochlorine compounds such as PCB and TCE under conditions of low temperature and low pressure of 200 to 350 ° C. and about 100 atm [N. Yamasaki et al. Env. Sci. Tech., 14 (5 ), 550 (1990)]. Subcritical / supercritical water is highly corrosive, and organic halogen compounds generate corrosive gases, and reactors with good pressure resistance, heat resistance, and corrosion resistance are required. In addition, alkali is used as a dechlorination agent, but it becomes co-solvent in supercritical water, so that the solubility of ionic substances is reduced and salts such as sodium chloride are precipitated, so that countermeasures against salting out are necessary.
[0004]
It is known that a reaction tube filled with a catalyst such as silicon carbide is irradiated with microwaves and heated to a predetermined temperature, and an organic chlorine compound is continuously injected, whereby the organic chlorine compound is efficiently decomposed. . For example, in JP-A-8-99018, US DOE Report LA-UR-90-3159, LA-12121-MS, silicon carbide is heated to about 600 ° C. by microwave heating, and an organic halogen compound or the like is injected. It has been shown to rapidly decompose to hydrogen chloride and carbon dioxide. This method is suitable for high-concentration decomposition treatment such as treatment of harmful organic substances, but is not suitable for an aqueous solution system containing a large amount of water because it requires a large amount of energy. In addition, after toxic organic substances are adsorbed on activated carbon and activated carbon layer supporting copper and chromium, it is decomposed by heating to about 400 ° C by microwave irradiation (US DOE Report DOE-HWP-28, AD Report AD-A-253631) has been reported. This is a method in which a harmful substance in a gas is adsorbed to water vapor or the like and then decomposed by microwave irradiation, and is not suitable for continuous decomposition and decomposition of a harmful substance in an aqueous solution.
[0005]
[Problems to be solved by the invention]
The present invention aims to develop a milder condition, that is, a low temperature, low pressure, energy saving, continuous and highly safe closed system. Furthermore, the present invention aims to provide a method for efficiently decomposing and detoxifying organic halogen compounds in dilute aqueous solutions and organic halogen compounds in organic solvents such as oils from decomposition of harmful organic halogen compounds in high-concentration solutions. .
[0006]
[Means for Solving the Problems]
When an organic halogen compound and an aqueous alkali solution are mixed, treated with microwaves at a temperature higher than the boiling point (180 ° C. or lower) and a pressure of 10 atmospheric pressure or lower, the organic halogen compound is decomposed, and the generated hydrogen chloride is generated by the alkali. Found to be captured and detoxified. However, in the case of the batch method, if a gas phase and a liquid phase exist, the solution boils by heating and the harmful halogen compound evaporates in the gas phase portion, so that it is difficult to treat 100%.
[0007]
As a result of earnest research in such a situation, a solution containing an organic halogen compound or an organic halogen compound and an alkaline aqueous solution are mixed and continuously fed to the reaction section. By irradiating microwaves while continuously adjusting the output, it is continuously processed under solvothermal conditions that heat and pressurize without boiling, and cooled to room temperature, so that no harmful gas is generated and 100% decomposition and I found that it can be detoxified. The present invention is a solvothermal in which harmful organic compounds and solutions containing them are mixed with an alkaline aqueous solution, continuously injected into a reaction apparatus, heated to a temperature above the boiling point by microwave irradiation and pressurized so as not to boil. The summary is a microwave-solvothermal continuous processing method of harmful organic compounds characterized by continuous decomposition and detoxification under reaction conditions.
[0008]
Furthermore, it has been found that by using a catalyst such as titanium oxide in the reaction part, it can be efficiently processed under conditions of lower temperature and lower pressure. Catalysts include titanium oxide, oxides such as iron oxide, copper oxide, alumina, and manganese oxide, and composite oxides thereof, and composite materials that carry oxides in porous bodies such as activated carbon and clay minerals. Used. The catalyst is not limited to these, and a catalyst having microwave absorption is effective.
That is, the present invention mixes a harmful organic compound and a solution containing them with an alkaline aqueous solution, and in the reaction part of the reactor, a microwave-absorbing and reaction-decomposable catalyst, more specifically a metal oxide or a composite oxidation thereof. objects or porous substance surface the oxide continuously injected to the coated the reactor loaded with catalyst composite materials in the not boiled with heating by microwave irradiation to a temperature above the boiling point, The summary is a microwave-solvothermal continuous processing method of harmful organic compounds characterized by being continuously decomposed and detoxified under pressurized solvothermal reaction conditions.
[0009]
As a microwave irradiation method, there are a method of controlling temperature by adjusting output under continuous irradiation and a method of controlling temperature by adjusting output while irradiating with pulses. The continuous irradiation method can effectively detoxify organochlorine compounds, but it has been found that pulsed irradiation is more effective and can be decomposed efficiently.
That is, the present invention mixes a harmful organic compound and a solution containing them with an alkaline aqueous solution, and in the reaction part of the reactor, a microwave-absorbing and reaction-decomposable catalyst, more specifically a metal oxide or a composite oxidation thereof. objects or porous substance surface the oxide coated composite materials of the catalyst continuously injected into the loaded said reactor to a, and heated continuously or pulsed microwave irradiation to a temperature above the boiling point In addition, the present invention is summarized as a microwave-solvothermal continuous treatment method for harmful organic compounds, characterized in that it is continuously decomposed and detoxified under solvothermal reaction conditions under which pressure is applied so as not to boil .
[0010]
As described above, the present invention provides a technique for decomposing and detoxifying harmful organic compounds such as organic halogen compounds by microwave irradiation under pressurized conditions.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Representative examples of harmful organic compounds include paraffinic compounds such as dichloromethane, chloroform, carbon tetrachloride, trichloroethane, and aromatic chlorine compounds such as chlorobenzene, dichlorobenzene, PCB, dioxin, organic bromine compounds, and organic fluorine. Detoxification treatment by microwave-solvothermal decomposition of organic halogen compounds such as compounds, but is not limited to this, it can also be applied to decomposition and detoxification of harmful organic compounds such as polycyclic aromatics is there.
[0012]
Applicable to detoxification of wastes of hazardous organic compounds such as organic halogen compounds, waste water and waste oil containing harmful organic compounds, as well as incinerator fly ash.
A mixture of a waste liquid containing a toxic organic compound such as an organic halogen compound and an alkaline aqueous solution, or a solution in which both solutions are continuously fed to the reaction part and are not boiled (temperature: 120 to 180 ° C., pressure: several The microwave irradiation treatment is performed at a pressure of 10 to 10 atmospheres and a residence time of several minutes to several tens of minutes. Microwave irradiation is effective even with continuous irradiation, but pulsed irradiation is more effective.
[0013]
A concentrated waste solution of an organic halogen compound and an aqueous alkali solution are continuously mixed and sent to the reaction section, and decomposed and rendered harmless by microwave irradiation.
In the case of waste oil treatment containing harmful organic compounds, powdery alkali such as sodium carbonate is mixed and sent to a microwave reactor for treatment.
[0014]
Organochlorine compounds are decomposed and detoxified by microwave heating in an alkaline aqueous solution, but in the case of a concentrated waste liquid, it is necessary to lengthen the residence time in order to make it less than the drainage standard. By adding a catalyst such as titanium oxide, it is efficiently decomposed and detoxified in a short time.
As a method for adding a catalyst, a powdered material is suspended in a solution and sent to a liquid, followed by precipitation separation, a granular, fibrous, honeycomb-filled reaction tube is installed in a microwave irradiation device, The reaction solution is fed and processed.
[0015]
【Example】
EXAMPLES Next, although this invention is demonstrated based on an Example, this invention is not limited at all by the said Example.
[0016]
Example 1
The prototype microwave-solvothermal continuous reaction apparatus is an oven-type apparatus with a microwave output of 1.5 kW. The reaction part was a pressure-resistant glass serpentine (withstand pressure: 10 atm), a glass serpentine cooler was attached to the upper part of the oven, and a fraction collector was attached to the end of the oven to collect the effluent. The volume of the reaction section is 100 ml, and the total volume of the system including the water pipe, the reaction section, and the cooling section is 400 ml. The maximum output of the microwave is 1.5 kW, pulse irradiation other than continuous irradiation is possible, and the pulse interval can be set freely.
In this reactor, dichloromethane was dissolved in 1N aqueous sodium hydroxide solution, and a 100 ppm sample solution was prepared. The sample solution was continuously fed to the reaction part at a predetermined rate, and the microwave output was 50%, the temperature was 180 ° C., the pressure was Microwave treatment was performed at a flow rate of 10 atm. The flow rates are 20 ml / min and 5 ml / min, and the residence times of the respective reaction parts are 5 minutes and 20 minutes.
The obtained results are shown in FIG. The concentration in the effluent when the device volume (400 ml) flows out is 2 ppm for a residence time of 5 minutes, 0.2 ppm or less for a residence time of 5 minutes, and the decomposition rate is 98%, 99.8% or more. Reached. It was found that the decomposition can be carried out at a lower reaction temperature than the conventional hydrothermal decomposition method (250 ° C.).
[0017]
Comparative Example 1
A batch type reaction vessel was filled with 100 ml of a dichloromethane sample solution (100 ppm) and subjected to microwave irradiation treatment for a predetermined time under conditions of reaction temperatures of 150 ° C., 4 atm, 180 ° C., and 10 atm. After completion of the reaction, the residual concentration in the reaction solution was analyzed by GC-MS.
As a result, as shown in Table 1 and FIG. 2, in the continuous method, the residual concentration was 0.2 ppm or less of the waste water standard at a reaction temperature of 150 ° C. and a residence time of 20 minutes, and the decomposition rate was 99.8%. In the batch system, the decomposition rate was 75% at 150 ° C., the residual concentration was 10 ppm at 20 minutes even at 180 ° C., and the decomposition rate was only 90%.
[0018]
[Table 1]
Figure 0004370381
[0019]
Example 2
The effects of reaction temperature and residence time on microwave-solvothermal continuous decomposition of dichloromethane were investigated. The aqueous dichloromethane sample solution was continuously fed to the reaction part of the microwave irradiation apparatus. Dichloromethane concentration: 100 ppm, 1000 ppm, sodium hydroxide concentration: 0.5, 1N, reaction temperature 120, 150, 170 ° C., residence time 10, 20, 30 minutes. In this experiment, in order not to boil during the reaction, it was treated under slightly pressurized conditions. Tables 2 and 3 show the results of measuring the concentration when the outflow amount is about 1.5 times the volume of the liquid feeding part, the reaction part, and the cooling part, and obtaining the decomposition rate. Even at a reaction temperature of 120 ° C., dichloromethane was decomposed by 93% or more with a residence time of 20 minutes. When the alkali concentration in this experiment was 0.5 N to 1 N and the residence time was 20 to 30 minutes, the decomposition rate was not significantly different, and almost 100% decomposition was possible under stable operating conditions. Even at sample concentrations of 100 ppm and 1000 ppm, the decomposition rate was almost equal.
[0020]
[Table 2]
Dichloromethane decomposition rate (dichloromethane concentration 100ppm)
Figure 0004370381
[0021]
[Table 3]
Dichloromethane decomposition rate (dichloromethane concentration 1000ppm)
Figure 0004370381
[0022]
Example 3
100 ml of dichloromethane 100ppm sample solution (NaOH 1N) was filled into a batch reaction vessel, and clay mineral formed into a tube with titanium dioxide deposited on the surface by sol-gel method was loaded, and microwave decomposition was performed to determine the decomposition rate of dichloromethane. . The results are shown in Table 4. It was found that the decomposition rate was improved by about 20% by adding the catalyst.
[0023]
[Table 4]
Effect of catalyst addition
Figure 0004370381
[0024]
Example 4
A sample solution of 1000 ppm of dichloromethane was continuously sent to the reactor so that the residence time was 10 minutes, and microwave irradiation was performed continuously or pulsed at intervals of 2 seconds to investigate the pulse irradiation effect of the decomposition of dichloromethane. The experiment was conducted under the conditions of a NaOH concentration of 1 N, a reaction temperature of 120 ° C., and a pressure of 10 atm. As shown in FIG. 3, the pulse irradiation has a higher decomposition rate and the residual concentration is significantly lower as shown in FIG.
[0025]
Example 5
Trichloroethylene (CHCl = CCl 2 ) 100 ppm alkaline aqueous solution (NaOH: 1N) was continuously fed to the reaction section, and the flow rate was changed to perform continuous microwave irradiation treatment. As a result, even at 120 ° C., the decomposition rate reached 99.2% with a residence time of 10 minutes as shown in FIG.
[0026]
【The invention's effect】
As described above, according to the present invention, it is clear that organic chlorine compounds such as dichloromethane and trichloroethylene are easily decomposed under low temperature and low pressure conditions by the microwave-solvothermal continuous reaction treatment. The feature of the method of the present invention is that it is a continuous reaction treatment method, a catalyst is allowed to coexist in the reaction part as necessary, and treatment is carried out by continuous microwave irradiation, preferably pulse irradiation, which is suitable for practical use. It is. In the experiment of the present invention, a verification test was performed under the conditions of 120 to 180 ° C., 10 atm, and an alkali concentration of 0.5 to 2N. Needless to say, the residual concentration can be reduced, but it is thought that high-speed decomposition treatment is possible by addition of a catalyst and pulse irradiation even under conditions of low temperature and low pressure.
[Brief description of the drawings]
1 is a drawing for explaining the results of continuous decomposition of dichloromethane in Example 1. FIG.
2 is a drawing for explaining the results of batch treatment of dichloromethane in Comparative Example 1. FIG.
FIG. 3 is a drawing for explaining the irradiation effect of MW pulses.
FIG. 4 is a drawing for explaining the results of decomposition of trichlorethylene by the MW-ST method.

Claims (4)

有害有機化合物およびそれらを含む溶液をアルカリ水溶液と混合し、反応装置へ連続的に注入し、マイクロ波を照射して沸点以上の温度に加熱すると共に沸騰させないように加圧するソルボサーマル反応条件で連続的に分解・無害化することを特徴とする有害有機化合物のマイクロ波−ソルボサーマル連続処理法。Hazardous organic compounds and solutions containing them are mixed with an aqueous alkaline solution, continuously injected into the reactor, heated to a temperature above the boiling point by microwave irradiation, and continuously under solvothermal reaction conditions in which pressure is applied to prevent boiling. A continuous microwave-solvothermal treatment method for harmful organic compounds, characterized in that it is decomposed and rendered harmless. 上記の反応装置の反応部にマイクロ波吸収性および反応分解性の触媒を装填する請求項1の有害有機化合物のマイクロ波−ソルボサーマル連続処理法。  The microwave-solvothermal continuous processing method for harmful organic compounds according to claim 1, wherein a microwave-absorbing and reaction-decomposable catalyst is loaded in the reaction section of the reactor. 触媒として金属酸化物あるいはそれらの複合酸化物、または多孔性物質の表面に当該酸化物をコーティングした複合材料を用いる請求項1または2の有害有機化合物のマイクロ波−ソルボサーマル連続処理法。Solvothermal continuous treatment - Microwave metal oxide or a composite oxide thereof, or a porous substance such oxide using the coated composite materials toxic organic compounds according to claim 1 or 2 on the surface of the catalyst. マイクロ波を連続あるいはパルス照射する請求項1、2または3の有害有機化合物のマイクロ波−ソルボサーマル連続処理法。  The microwave-solvothermal continuous processing method of harmful organic compounds according to claim 1, wherein the microwave is continuously or pulsed.
JP14934199A 1999-05-28 1999-05-28 Microwave-solvothermal continuous processing method of harmful organic compounds Expired - Fee Related JP4370381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14934199A JP4370381B2 (en) 1999-05-28 1999-05-28 Microwave-solvothermal continuous processing method of harmful organic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14934199A JP4370381B2 (en) 1999-05-28 1999-05-28 Microwave-solvothermal continuous processing method of harmful organic compounds

Publications (2)

Publication Number Publication Date
JP2000334062A JP2000334062A (en) 2000-12-05
JP4370381B2 true JP4370381B2 (en) 2009-11-25

Family

ID=15473004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14934199A Expired - Fee Related JP4370381B2 (en) 1999-05-28 1999-05-28 Microwave-solvothermal continuous processing method of harmful organic compounds

Country Status (1)

Country Link
JP (1) JP4370381B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1413826A1 (en) * 2002-10-22 2004-04-28 Institut Francais Du Petrole Process and apparatus for the micro-wave treatment of solid residues from the thermal degradation of a charge containing organic matter
JP2006143773A (en) * 2004-11-16 2006-06-08 Kobe Steel Ltd Method for dechlorination treatment of waste plastic
CN100366340C (en) * 2005-10-14 2008-02-06 济南大学 Catalyst for degrading water organic pollutant by microwave
JPWO2007141911A1 (en) * 2006-06-06 2009-10-15 新日鐵化学株式会社 Method for dehalogenating organic compounds
KR100753906B1 (en) 2006-10-24 2007-08-31 한국원자력연구원 Method of carbon source recovery for biological nutrient treatment from sludge and method of sludge reduction
JP5907776B2 (en) * 2012-03-30 2016-04-26 東京電力株式会社 Processing method of large equipment contaminated with PCB and processing apparatus used therefor

Also Published As

Publication number Publication date
JP2000334062A (en) 2000-12-05

Similar Documents

Publication Publication Date Title
US10751770B2 (en) Remediation of contaminated soil and water using enhanced stimulators
JP4370381B2 (en) Microwave-solvothermal continuous processing method of harmful organic compounds
JP2003103249A (en) Method and system for treatment of soil, etc., contaminated by organochlorine compound
JP2010259496A (en) Decomposition treatment method for organic halogen compound and decomposition treatment device
JP2008200544A (en) Melt treatment method of waste
JP2008029967A (en) Method and apparatus for treating contaminants
JP2004201967A (en) Method and apparatus for treating organohalogen compound
JP2004202290A (en) Method for treating soil or the like contaminated with organic chlorine compound
JP2007307431A (en) Soil treatment method and soil treatment apparatus
SURI et al. Effect of process variables on sonochemical destruction of aqueous trichloroethylene
JP3811705B2 (en) Exhaust gas treatment method and equipment
JP2001259607A (en) Treatment method and apparatus for heavy metal or organic chlorine compound
JP2948581B1 (en) Harmless organic substance harmless treatment method and heavy metal harmless treatment method
JP2002336650A (en) Method of treating waste combustion gas
JP2005169291A (en) Treating device for organic halogen compound
US5688335A (en) Contaminant removal from material
JP4138559B2 (en) Method for treating organohalogen compounds
JP5324798B2 (en) Method for treating processing residue containing contaminants, and container used therefor
JP3642995B2 (en) Processing apparatus, processing method, and method for producing detoxified object to be processed
JP3816218B2 (en) Method and apparatus for decomposing organic compounds containing halogen atoms and / or sulfur atoms
JP4160065B2 (en) Soil treatment equipment
JP2004313932A (en) Method for cleaning wastewater containing harmful organic matter
JP4163823B2 (en) Ground purification method
JP4057303B2 (en) Halogenated hydrocarbon decomposition treatment equipment
JP3697183B2 (en) Operation control system for hazardous substance treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

LAPS Cancellation because of no payment of annual fees
R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370