JP2003069096A - Continuous oscillation milliwave/sub-milliwave laser based on integrated circuit including intrinsic josephson element - Google Patents

Continuous oscillation milliwave/sub-milliwave laser based on integrated circuit including intrinsic josephson element

Info

Publication number
JP2003069096A
JP2003069096A JP2001255872A JP2001255872A JP2003069096A JP 2003069096 A JP2003069096 A JP 2003069096A JP 2001255872 A JP2001255872 A JP 2001255872A JP 2001255872 A JP2001255872 A JP 2001255872A JP 2003069096 A JP2003069096 A JP 2003069096A
Authority
JP
Japan
Prior art keywords
wave
milliwave
laser
integrated circuit
millimeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001255872A
Other languages
Japanese (ja)
Inventor
Tsutomu Yamashita
努 山下
Kahei O
華兵 王
Baikyo Go
培亨 呉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001255872A priority Critical patent/JP2003069096A/en
Priority to PCT/JP2002/008555 priority patent/WO2003019738A1/en
Publication of JP2003069096A publication Critical patent/JP2003069096A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S1/00Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range
    • H01S1/02Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range solid

Abstract

PROBLEM TO BE SOLVED: To provide a continuous oscillation milliwave/sub-milliwave laser based on an integrated circuit including a continuously oscillating intrinsic Josephson element by integrating teraheltz-band antennas and choke circuits by using a BSCCO single-crystal device. SOLUTION: This continuous oscillation milliwave/sub-milliwave laser is provided with a direct current source IA and a two-dimensional array, on which many (>=10,000 pieces) intrinsic Josephson junction devices 41 connected to the direct current source IA and mounted with teraheltz-band antennas and choke circuits are connected in series and parallel. This laser is caused to generate continuously oscillating milliwave/sub-milliwave laser light by injecting a direct current into the laser from the direct current source IA.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固有ジョセフソン
素子を含む集積回路による連続発振ミリ波・サブミリ波
レーザーに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous wave millimeter-wave / submillimeter-wave laser using an integrated circuit including a unique Josephson device.

【0002】[0002]

【従来の技術】従来、このような分野の技術文献として
は、以下に開示するようなものがあった。
2. Description of the Related Art Heretofore, there have been the following technical literatures in such a field.

【0003】(1)H.B.Wang,et al.,
Appl.Phys.Lett.,78(25),40
10(2001). (2)H.B.Wang,et al.,Phys.R
ev.Lett.,(to be publishe
d). (3)B.Vasili,et al.,Appl.P
hys.Lett.,78(8),1137(200
1). この技術文献(3)によれば、Paula Barba
raらはNbジョセフソン接合集積回路技術を用いて、
以下のようなNbジョセフソン接合アレイを提案してい
る。
(1) H. B. Wang, et al. ,
Appl. Phys. Lett. , 78 (25), 40
10 (2001). (2) H. B. Wang, et al. , Phys. R
ev. Lett. , (To be publicize
d). (3) B. Vasili, et al. , Appl. P
hys. Lett. , 78 (8), 1137 (200
1). According to this technical document (3), Paula Barba
ra et al., using Nb Josephson junction integrated circuit technology,
The following Nb Josephson junction array is proposed.

【0004】図8はかかる従来のNbジョセフソン接合
アレイの構成図であり、図8(a)はその平面図、図8
(b)は図8(a)のA−A′線断面図、図8(c)は
その等価回路図、図9はその電流−電圧特性図であり、
横軸は電圧V(mV)、縦軸は電流I(μA)を示して
いる。
FIG. 8 is a block diagram of such a conventional Nb Josephson junction array, and FIG. 8A is a plan view thereof.
8B is a sectional view taken along the line AA ′ of FIG. 8A, FIG. 8C is an equivalent circuit diagram thereof, and FIG. 9 is a current-voltage characteristic diagram thereof.
The horizontal axis represents voltage V (mV) and the vertical axis represents current I (μA).

【0005】これらの図において、101はジョセフソ
ン接合(JJ)装置、102は下部Nb、103は上部
Nb、104はグランドプレーン、IA は直流電流源、
Lはインダクタンス、Cはキャパシタ、Rは抵抗(負
荷)、XはNbジョセフソン接合である。
In these figures, 101 is a Josephson junction (JJ) device, 102 is a lower Nb, 103 is an upper Nb, 104 is a ground plane, I A is a direct current source,
L is an inductance, C is a capacitor, R is a resistance (load), and X is an Nb Josephson junction.

【0006】これらの図に示すように、Nbジョセフソ
ン接合アレイは、1個の接合を有する144個の接合ア
レイからなる。この接合アレイのI−V特性を測定した
ところ、鋭い共振特性を示した。この鋭い共振特性は1
00GHz帯のレーザー発振していることを示している
ことが、検波実験により明らかになった。連続波発振
で、その最大電力Pmax は、 Pmax =3mV×100μA =3×10-7W つまり、最大電力は約0.3μW(10-4W/cm2
であった。
As shown in these figures, the Nb Josephson junction array consists of 144 junction arrays with one junction. When the IV characteristics of this junction array were measured, a sharp resonance characteristic was shown. This sharp resonance characteristic is 1
It was revealed by the detection experiment that the laser oscillation in the 00 GHz band was shown. In continuous wave oscillation, the maximum power P max is P max = 3 mV × 100 μA = 3 × 10 −7 W That is, the maximum power is about 0.3 μW (10 −4 W / cm 2 ).
Met.

【0007】なお、本願発明者らは、既に、BSCCO
単結晶装置(固有ジョセフソン接合装置)とその製造方
法について提案している。
The inventors of the present application have already reported that BSCCO
We propose a single crystal device (inherent Josephson junction device) and its manufacturing method.

【0008】[0008]

【発明が解決しようとする課題】現在の情報通信技術
は、10GHz帯までを使っているが、将来の情報量の
増大に対応するためには、使用周波数を増大させること
が必要である。現在使用中の周波数の100倍がテラヘ
ルツ波であるが、この領域は発振器、伝送路、受信機等
の基本素子が開発されていないため、未開周波数となっ
ている。
The current information communication technology uses up to 10 GHz band, but it is necessary to increase the frequency used in order to cope with the future increase in the amount of information. The terahertz wave is 100 times the frequency currently in use, but this region is an unopened frequency because basic elements such as an oscillator, a transmission line, and a receiver have not been developed.

【0009】本発明は、上記したBSCCO単結晶装置
を用いて、テラヘルツ帯のアンテナとチョーク回路を集
積し、連続発振する固有ジョセフソン素子を含む集積回
路による連続発振ミリ波・サブミリ波レーザーを提供す
ることを目的とする。
The present invention provides a continuous-wave millimeter-wave / sub-millimeter-wave laser using an integrated circuit including a terahertz band antenna and a choke circuit integrated with the above-mentioned BSCCO single crystal device and including a continuous Josephson device. The purpose is to do.

【0010】[0010]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕固有ジョセフソン素子を含む集積回路による連続
発振ミリ波・サブミリ波レーザーであって、直流電流源
と、この直流電流源に接続されるとともに、テラヘルツ
帯のアンテナとチョーク回路が搭載された多数個の固有
ジョセフソン接合装置が直並列に接続される2次元アレ
イとを備え、前記直流電流源から直流電流を注入するこ
とにより、連続発振するミリ波・サブミリ波レーザー光
を生成させる。
In order to achieve the above object, the present invention provides [1] a continuous wave millimeter-wave / submillimeter-wave laser by an integrated circuit including a unique Josephson element, which comprises a direct current source, A direct current source is provided with a two-dimensional array which is connected to the direct current source and which is connected in series and parallel with a large number of unique Josephson junction devices equipped with terahertz band antennas and choke circuits. Is injected to generate continuously oscillating millimeter-wave / submillimeter-wave laser light.

【0011】〔2〕上記〔1〕記載の固有ジョセフソン
素子を含む集積回路による連続発振ミリ波・サブミリ波
レーザーにおいて、前記多数個の固有ジョセフソン接合
装置は10,000個以上であることを特徴とする。
[2] In the continuous wave millimeter-wave / submillimeter-wave laser using the integrated circuit including the unique Josephson element described in [1], the number of the unique Josephson junction devices is 10,000 or more. Characterize.

【0012】〔3〕上記〔1〕又は〔2〕記載の固有ジ
ョセフソン素子を含む集積回路による連続発振ミリ波・
サブミリ波レーザーにおいて、前記チョーク回路は、r
fチョーク回路であることを特徴とする。
[3] Continuous oscillation millimeter wave by an integrated circuit including the intrinsic Josephson element according to the above [1] or [2]
In the submillimeter wave laser, the choke circuit is
It is characterized by being an f choke circuit.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0014】図1は本発明にかかる固有ジョセフソン接
合装置(IJJ:Intrinsic Josephs
on Junction装置)の両面加工工程を示す
図、図2は均一なIcを持つ両面加工したIJJ装置の
電流−電圧(I−V)特性図である。
FIG. 1 shows an intrinsic Josephson junction device (IJJ: Intrinsic Josephs) according to the present invention.
on Junction device), and FIG. 2 is a current-voltage (IV) characteristic diagram of a double-sided IJJ device having uniform Ic.

【0015】まず、IJJ装置の両面加工方法について
説明する。
First, a double-sided processing method of the IJJ apparatus will be described.

【0016】まず、図1(a)に示すように、基板
(例えば、シリコン基板)11上に劈開されたBSCC
O単結晶(ジョセフソン接合結晶)12をポリイミドで
固定する。
First, as shown in FIG. 1A, a BSCC cleaved on a substrate (for example, a silicon substrate) 11 is formed.
An O single crystal (Josephson junction crystal) 12 is fixed with polyimide.

【0017】次いで、図1(b)に示すように、第1
のフォトレジスト13をBSCCO単結晶12表面上に
フォトリソグラフィ技術を用いて配置する。そこで、第
1のイオンミリング14により特定の深さまにまで試料
をエッチングする。
Then, as shown in FIG. 1B, the first
Photoresist 13 is placed on the surface of BSCCO single crystal 12 using photolithography. Therefore, the sample is etched to a specific depth by the first ion milling 14.

【0018】次いで、図1(c)に示すように、第2
のフォトレジスト15をBSCCO単結晶12表面上に
フォトリソグラフィ技術を用いて配置する。そして、第
2のフォトレジスト15を用いて第2のイオンミリング
16を行い、固有ジョセフソン接合をつくる。
Then, as shown in FIG. 1C, the second
Photoresist 15 is placed on the surface of the BSCCO single crystal 12 using photolithography. Then, the second ion milling 16 is performed using the second photoresist 15 to form an intrinsic Josephson junction.

【0019】次に、図1(d)に示すように、第2の
フォトレジスト15を除去し、試料を劈開し、裏返した
BSCCO単結晶片17〔図1(e)参照〕を得る。
Next, as shown in FIG. 1 (d), the second photoresist 15 is removed and the sample is cleaved to obtain an inverted BSCCO single crystal piece 17 (see FIG. 1 (e)).

【0020】次に、図1(e)に示すように、新たな
基板18上にそのBSCCO単結晶片17を固定し、フ
ォトリソグラフィ技術を用いて配置する。そして、第3
のフォトレジスト19をBSCCO単結晶片17上に形
成する。
Next, as shown in FIG. 1E, the BSCCO single crystal piece 17 is fixed on a new substrate 18 and arranged by using a photolithography technique. And the third
A photoresist 19 is formed on the BSCCO single crystal piece 17.

【0021】次に、図1(f)に示すように、第3の
フォトレジスト19を用いた第3のイオンミリング20
でIJJ装置21をパターニングする。
Next, as shown in FIG. 1F, the third ion milling 20 using the third photoresist 19 is performed.
Then, the IJJ device 21 is patterned.

【0022】このようにして両面加工したIJJ装置2
1のI−V特性を図2に示す。
The IJJ apparatus 2 which has been processed on both sides in this way
The IV characteristic of No. 1 is shown in FIG.

【0023】この図では、X軸は200mV/目盛(d
iv)、Y軸は200μA/目盛(div)、温度Tは
4.2Kである。ここでは、均一なIcを持つ両面加工
したIJJ装置21の接合数は18個である。
In this figure, the X-axis is 200 mV / scale (d
iv), the Y axis is 200 μA / scale (div), and the temperature T is 4.2K. Here, the number of joints of the double-sided IJJ device 21 having a uniform Ic is 18.

【0024】図3は本発明にかかる固有ジョセフソン素
子を含む集積回路によるミリ波・サブミリ波受信機の構
成図であり、図3(a)はその平面図、図3(b)はそ
の斜視図、図3(c)はその等価回路図である。
FIG. 3 is a block diagram of a millimeter-wave / submillimeter-wave receiver using an integrated circuit including an intrinsic Josephson element according to the present invention. FIG. 3 (a) is its plan view and FIG. 3 (b) is its perspective view. FIG. 3C is an equivalent circuit diagram thereof.

【0025】この図において、21は本発明にかかる両
面加工した多数の接合を有するIJJ装置(高さhは概
ね25.5nm)、30は基板、31はボータイアンテ
ナ、32はrfチョーク回路、33は照射されるサブミ
リ波、34は電圧端子、35は電流端子である。
In this figure, 21 is an IJJ device (height h is about 25.5 nm) having a large number of double-sided joints according to the present invention, 30 is a substrate, 31 is a bowtie antenna, 32 is an rf choke circuit, 33 Is a submillimeter wave to be irradiated, 34 is a voltage terminal, and 35 is a current terminal.

【0026】図1及び図2に示された本発明にかかるI
JJ装置21を、図3に示すように、アンテナ31やr
fチョーク回路32が形成された基板(集積回路基板)
30に集積化する。
I according to the invention shown in FIGS. 1 and 2.
As shown in FIG. 3, the JJ device 21 includes an antenna 31 and an r
A substrate on which the f choke circuit 32 is formed (integrated circuit substrate)
Integrated into 30.

【0027】そこで、このIJJ装置21の接合にサブ
ミリ波33を基板30側から照射すると、図4に示すよ
うに、明確なシャピロステップを観測できる。
Therefore, when the submillimeter wave 33 is applied to the joint of the IJJ device 21 from the substrate 30 side, a clear Shapiro step can be observed as shown in FIG.

【0028】図4において、照射周波数fFIR =1.6
THzに対応するジョセフソン電圧v=φ0 FIR N=
3.4×N(mV)が発生している。ここでNは接合数
であり、X軸は10mV/目盛(div)、Y軸は2μ
A/目盛(div)、温度は6Kである。
In FIG. 4, the irradiation frequency f FIR = 1.6
Josephson voltage corresponding to THz v = φ 0 f FIR N =
3.4 × N (mV) is generated. Here, N is the number of joints, the X axis is 10 mV / scale (div), and the Y axis is 2 μ.
A / division (div), temperature is 6K.

【0029】図4から明らかなように、明確なゼロクロ
ス電圧が見られる。これはIJJ装置21とテラヘルツ
(THz)波の結合が極めて良好であることを示してお
り、テラヘルツ(THz)波検出器として実現できるこ
とを示している。
As is clear from FIG. 4, a clear zero-cross voltage can be seen. This indicates that the coupling between the IJJ device 21 and the terahertz (THz) wave is extremely good, and it can be realized as a terahertz (THz) wave detector.

【0030】そこで、従来技術(3)に示したPaul
a BarbaraらのNbジョセフソン接合集積回路
技術をも考慮して、本発明の固有ジョセフソン素子を含
む集積回路による連続発振ミリ波・サブミリ波レーザー
を得ることができた。
Therefore, Paul shown in the prior art (3) is used.
In consideration of the Nb Josephson junction integrated circuit technology of a Barbara et al., a continuous wave millimeter-wave / submillimeter-wave laser can be obtained by an integrated circuit including the unique Josephson device of the present invention.

【0031】図5は本発明の実施例を示す高温超伝導体
IJJを用いて作製した連続波テラヘルツ(THz)帯
レーザーの構成図であり、図5(a)はその平面図、図
5(b)は図5(a)のA部断面図、図5(c)はその
等価回路図、図6はその連続波THz帯レーザーのI−
V特性図であり、横軸は電圧(0.5V/目盛)、縦軸
は電流(1mA/目盛)を示している。図7はそのI−
V特性の模式図である。
FIG. 5 is a constitutional view of a continuous wave terahertz (THz) band laser produced by using a high temperature superconductor IJJ showing an embodiment of the present invention. FIG. 5 (a) is a plan view thereof and FIG. 5B is a sectional view of the portion A in FIG. 5A, FIG. 5C is an equivalent circuit diagram thereof, and FIG. 6 is I-of the continuous wave THz band laser.
FIG. 6 is a V characteristic diagram, in which the horizontal axis represents voltage (0.5 V / scale) and the vertical axis represents current (1 mA / scale). Figure 7 shows its I-
It is a schematic diagram of V characteristics.

【0032】これらの図において、40は基板、41は
本発明にかかるIJJ装置、42はそのIJJ装置41
が直列に接続された行配線、43はその行の各IJJ装
置と交差する列配線、44は電圧端子、45は電流端
子、IA は直流電流源、Cはキャパシタ、Lはインダク
タンス、Reは放射抵抗であり、マトリックス状の2次
元アレイを構成している。
In these figures, 40 is a substrate, 41 is an IJJ apparatus according to the present invention, and 42 is the IJJ apparatus 41.
There row wiring connected in series, 43 column lines intersecting with each IJJ device of the line, the voltage terminals 44, 45 is current terminal, I A DC current source, C is a capacitor, L is inductance, Re is Radiation resistance, which constitutes a matrix-shaped two-dimensional array.

【0033】図5に示すように、IJJ装置41を直並
列に10,000個集積した平面回路を作製する。その
2次元のIJJ装置アレイに直流電流源から直流電流を
供給すると、図6に示すような鋭い共振特性がみられ、
レーザー発振していることがわかる。すなわち、図7に
示すように、ΔVはφ0 0 であり、電流を増加する
と、各列が左から順番に電圧発生、f0 で共振してい
る。最大放射電力Pmax は、ここでは、Pmax =2mA
×0.8V=1.6mW=1.6×10-3Wとなる。
As shown in FIG. 5, a planar circuit in which 10,000 IJJ devices 41 are integrated in series and parallel is manufactured. When a direct current is supplied to the two-dimensional IJJ device array from a direct current source, a sharp resonance characteristic as shown in FIG. 6 is observed,
You can see that the laser is oscillating. That is, as shown in FIG. 7, ΔV is φ 0 f 0 , and when the current is increased, each column sequentially generates voltage from the left and resonates at f 0 . The maximum radiated power P max here is P max = 2 mA
× 0.8V = 1.6 mW = 1.6 × 10 −3 W

【0034】この場合の周波数は、約400GHzであ
り、出力電力は約1.6mW(16W/cm2 )であっ
た。その特徴は、IJJ装置が積層構造のため容易に1
0,000個以上の集積化が可能であることであり、そ
の出力は、理論的には個数のN2 に比例する。実験結果
では6乗倍大となる。
The frequency in this case was about 400 GHz, and the output power was about 1.6 mW (16 W / cm 2 ). Its feature is that the IJJ device has a laminated structure, so
It is possible to integrate more than 10,000, and the output is theoretically proportional to the number N 2 . The experimental result is 6 times larger.

【0035】本発明によれば、固有ジョセフソン接合
(IJJ)装置(単結晶素子)を二次元アレイに並べる
集積回路とした。因みに、横幅は150μmである。
According to the present invention, an intrinsic Josephson junction (IJJ) device (single crystal element) is arranged in a two-dimensional array. Incidentally, the width is 150 μm.

【0036】そして、テラヘルツ帯のアンテナとチョー
ク回路のついた10,000個以上の単結晶素子アレイ
が作製され、その結果、直流電流を注入するとテラヘル
ツ波発光超伝導レーザーとなることが明らかとなった。
Then, 10,000 or more single crystal element arrays with terahertz band antennas and choke circuits were produced. As a result, it became clear that when a direct current was injected, a terahertz wave emitting superconducting laser was obtained. It was

【0037】本発明によれば、超伝導単結晶接合集積回
路技術により、テラヘルツ波用の連続波レーザー発振器
を構成することができる。
According to the present invention, a continuous wave laser oscillator for terahertz waves can be constructed by the superconducting single crystal junction integrated circuit technology.

【0038】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
The present invention is not limited to the above embodiments, and various modifications can be made based on the spirit of the present invention, and these modifications are not excluded from the scope of the present invention.

【0039】[0039]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、多数(10,000個以上)の固有ジョセフソ
ン素子とテラヘルツ帯のアンテナ、チョーク回路を搭載
した集積回路に直流電流を供給し、連続発振するミリ波
・サブミリ波レーザー光を生成されるテラヘルツ波発光
超伝導レーザー、つまり、連続発振ミリ波・サブミリ波
レーザーを実現できる。
As described above in detail, according to the present invention, a direct current is applied to an integrated circuit equipped with a large number (10,000 or more) of unique Josephson elements, terahertz band antennas, and choke circuits. It is possible to realize a terahertz wave emitting superconducting laser that supplies and continuously oscillates millimeter-wave / submillimeter-wave laser light, that is, continuous-wave millimeter-wave / submillimeter-wave laser.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかるIJJ装置の両面加工工程を示
す図である。
FIG. 1 is a diagram showing a double-sided processing step of an IJJ apparatus according to the present invention.

【図2】本発明にかかる均一なIcを持つ両面加工した
IJJ装置の電流−電圧(I−V)特性図である。
FIG. 2 is a current-voltage (IV) characteristic diagram of a double-sided IJJ device having uniform Ic according to the present invention.

【図3】本発明にかかるアンテナやrfチョーク回路と
共に集積化されたミリ波・サブミリ波受信機を示す図で
ある。
FIG. 3 is a diagram showing a millimeter wave / submillimeter wave receiver integrated with an antenna and an rf choke circuit according to the present invention.

【図4】本発明にかかる基板側から1.6Hzのサブミ
リ波を照射したときのI−V特性図である。
FIG. 4 is an IV characteristic diagram when a submillimeter wave of 1.6 Hz is irradiated from the substrate side according to the present invention.

【図5】本発明の実施例を示す高温超伝導体IJJを用
いて作製した連続波THz帯レーザーの構成図である。
FIG. 5 is a configuration diagram of a continuous wave THz band laser manufactured by using a high temperature superconductor IJJ showing an example of the present invention.

【図6】本発明の実施例を示す高温超伝導体IJJを用
いて作製した連続波THz帯レーザーの電流−電圧特性
図である。
FIG. 6 is a current-voltage characteristic diagram of a continuous wave THz band laser produced by using a high temperature superconductor IJJ showing an example of the present invention.

【図7】図6のI−V特性の模式図である。FIG. 7 is a schematic view of the IV characteristic of FIG.

【図8】従来のNbジョセフソン接合アレイの構成図で
ある。
FIG. 8 is a configuration diagram of a conventional Nb Josephson junction array.

【図9】従来のNbジョセフソン接合アレイの電流−電
圧特性図である。
FIG. 9 is a current-voltage characteristic diagram of a conventional Nb Josephson junction array.

【符号の説明】[Explanation of symbols]

11 基板(例えば、シリコン基板) 12 BSCCO単結晶(ジョセフソン接合結晶) 13 第1のフォトレジスト 14 第1のイオンミリング 15 第2のフォトレジスト 16 第2のイオンミリング 17 裏返したBSCCO単結晶片 18 新たな基板 19 第3のフォトレジスト 20 第3のイオンミリング 21,41 IJJ装置 30,40 基板(集積回路基板) 31 アンテナ(ボータイアンテナ) 32 rfチョーク回路 33 照射されるサブミリ波 34,44 電圧端子 35,45 電流端子 42 行配線 43 列配線 IA 直流電流源 C キャパシタ L インダクタンス11 substrate (for example, silicon substrate) 12 BSCCO single crystal (Josephson junction crystal) 13 first photoresist 14 first ion milling 15 second photoresist 16 second ion milling 17 flipped BSCCO single crystal piece 18 New substrate 19 Third photoresist 20 Third ion milling 21,41 IJJ equipment 30,40 Substrate (integrated circuit board) 31 Antenna (bowtie antenna) 32 rf choke circuit 33 Irradiated submillimeter wave 34,44 Voltage terminal 35, 45 Current terminal 42 Row wiring 43 Column wiring I A DC current source C Capacitor L Inductance

フロントページの続き Fターム(参考) 4M113 AA01 AA06 AA16 AA25 AC12 AD36 BC04 CA36 Continued front page    F-term (reference) 4M113 AA01 AA06 AA16 AA25 AC12                       AD36 BC04 CA36

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(a)直流電流源と、(b)該直流電流源
に接続されるとともに、テラヘルツ帯のアンテナとチョ
ーク回路が搭載された多数個の固有ジョセフソン接合装
置が直並列に接続される二次元アレイとを備え、(c)
前記直流電流源から直流電流を注入することにより、連
続発振するミリ波・サブミリ波レーザー光を生成させる
固有ジョセフソン素子を含む集積回路による連続発振ミ
リ波・サブミリ波レーザー。
1. A direct current source, and (b) a large number of unique Josephson junction devices, which are connected to the direct current source and have a terahertz band antenna and a choke circuit, connected in series and parallel. And a two-dimensional array
A continuous wave millimeter-wave / submillimeter-wave laser by an integrated circuit including an intrinsic Josephson element that generates continuous-wave millimeter-wave / submillimeter-wave laser light by injecting a direct current from the DC current source.
【請求項2】 請求項1記載の固有ジョセフソン素子を
含む集積回路による連続発振ミリ波・サブミリ波レーザ
ーにおいて、前記多数個の固有ジョセフソン接合装置は
10,000個以上であることを特徴とする固有ジョセ
フソン素子を含む集積回路による連続発振ミリ波・サブ
ミリ波レーザー。
2. A continuous wave millimeter-wave / submillimeter-wave laser using an integrated circuit including the unique Josephson device according to claim 1, wherein the number of the unique Josephson junction devices is 10,000 or more. Continuous-wave millimeter-wave / submillimeter-wave laser using an integrated circuit that includes a unique Josephson device
【請求項3】 請求項1又は2記載の固有ジョセフソン
素子を含む集積回路による連続発振ミリ波・サブミリ波
レーザーにおいて、前記チョーク回路は、rfチョーク
回路であることを特徴とする固有ジョセフソン素子を含
む集積回路による連続発振ミリ波・サブミリ波レーザ
ー。
3. A continuous oscillation millimeter-wave / submillimeter-wave laser using an integrated circuit including the intrinsic Josephson device according to claim 1, wherein the choke circuit is an rf choke circuit. Continuous wave millimeter-wave / sub-millimeter-wave laser with integrated circuit including
JP2001255872A 2001-08-27 2001-08-27 Continuous oscillation milliwave/sub-milliwave laser based on integrated circuit including intrinsic josephson element Pending JP2003069096A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001255872A JP2003069096A (en) 2001-08-27 2001-08-27 Continuous oscillation milliwave/sub-milliwave laser based on integrated circuit including intrinsic josephson element
PCT/JP2002/008555 WO2003019738A1 (en) 2001-08-27 2002-08-26 Cw-oscillation millimeter wave/submillimeter wave laser composed of integrated circuit including intrinsic josephson device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001255872A JP2003069096A (en) 2001-08-27 2001-08-27 Continuous oscillation milliwave/sub-milliwave laser based on integrated circuit including intrinsic josephson element

Publications (1)

Publication Number Publication Date
JP2003069096A true JP2003069096A (en) 2003-03-07

Family

ID=19083773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001255872A Pending JP2003069096A (en) 2001-08-27 2001-08-27 Continuous oscillation milliwave/sub-milliwave laser based on integrated circuit including intrinsic josephson element

Country Status (2)

Country Link
JP (1) JP2003069096A (en)
WO (1) WO2003019738A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210585A (en) * 2005-01-27 2006-08-10 National Institute For Materials Science New type terahertz oscillator using laminated josephson junction
JP2006344761A (en) * 2005-06-09 2006-12-21 National Institute Of Advanced Industrial & Technology Coplanar-waveguide josephson junction array structure, digital-analog converter using it, junction array for programmable josephson voltage standard, chip for josephson voltage standard and josephson voltage generation device
JP2013004717A (en) * 2011-06-16 2013-01-07 Nippon Signal Co Ltd:The Terahertz detector
WO2014012981A1 (en) * 2012-07-17 2014-01-23 Thales Oscillator comprising josephson junctions having high-temperature superconducting electrodes, heterodyne detector including such an oscillator and method for manufacturing such an oscillator

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7486250B2 (en) 2004-02-16 2009-02-03 The Boeing Company Composite dipole array
US7532652B2 (en) 2007-02-20 2009-05-12 The Boeing Company Laser thermal management systems and methods
US7796092B2 (en) 2007-05-24 2010-09-14 The Boeing Company Broadband composite dipole antenna arrays for optical wave mixing
US8035550B2 (en) 2008-07-03 2011-10-11 The Boeing Company Unbalanced non-linear radar
US8130160B2 (en) 2008-07-03 2012-03-06 The Boeing Company Composite dipole array assembly
US8106810B2 (en) 2008-07-03 2012-01-31 The Boeing Company Millimeter wave filters

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256833A (en) * 1997-03-13 1998-09-25 Nippon Telegr & Teleph Corp <Ntt> Superconductive intrinsic josephson junction array element oscillator
JP2000514957A (en) * 1996-07-23 2000-11-07 オクセル・オクサイド・エレクトロニクス・テクノロジー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Josephson junction array device and manufacturing method thereof
JP2002050931A (en) * 2000-08-03 2002-02-15 Japan Science & Technology Corp High frequency oscillator using copper oxide superconducting single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514957A (en) * 1996-07-23 2000-11-07 オクセル・オクサイド・エレクトロニクス・テクノロジー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Josephson junction array device and manufacturing method thereof
JPH10256833A (en) * 1997-03-13 1998-09-25 Nippon Telegr & Teleph Corp <Ntt> Superconductive intrinsic josephson junction array element oscillator
JP2002050931A (en) * 2000-08-03 2002-02-15 Japan Science & Technology Corp High frequency oscillator using copper oxide superconducting single crystal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210585A (en) * 2005-01-27 2006-08-10 National Institute For Materials Science New type terahertz oscillator using laminated josephson junction
JP2006344761A (en) * 2005-06-09 2006-12-21 National Institute Of Advanced Industrial & Technology Coplanar-waveguide josephson junction array structure, digital-analog converter using it, junction array for programmable josephson voltage standard, chip for josephson voltage standard and josephson voltage generation device
JP4595069B2 (en) * 2005-06-09 2010-12-08 独立行政法人産業技術総合研究所 Quasi-planar waveguide type Josephson junction array structure, digital-analog converter using the same, programmable array for Josephson voltage standard, chip for Josephson voltage standard, Josephson voltage generator
JP2013004717A (en) * 2011-06-16 2013-01-07 Nippon Signal Co Ltd:The Terahertz detector
WO2014012981A1 (en) * 2012-07-17 2014-01-23 Thales Oscillator comprising josephson junctions having high-temperature superconducting electrodes, heterodyne detector including such an oscillator and method for manufacturing such an oscillator
FR2993706A1 (en) * 2012-07-17 2014-01-24 Thales Sa OSCILLATOR COMPRISING JOSEPHSON JUNCTION WITH HIGH-TEMPERATURE SUPERCONDUCTING ELECTRODES, HETERODYNE DETECTOR COMPRISING SUCH OSCILLATOR, AND METHOD OF MANUFACTURING SUCH OSCILLATOR

Also Published As

Publication number Publication date
WO2003019738A1 (en) 2003-03-06

Similar Documents

Publication Publication Date Title
US4344052A (en) Distributed array of Josephson devices with coherence
US7205021B2 (en) Optical antenna array for harmonic generation, mixing and signal amplification
Horii et al. Harmonic control by photonic bandgap on microstrip patch antenna
Kleiner et al. Terahertz emission from Bi2Sr2CaCu2O8+ x intrinsic Josephson junction stacks
US7610071B2 (en) Tunable, superconducting, surface-emitting teraherz source
US6049308A (en) Integrated resonant tunneling diode based antenna
JP2003069096A (en) Continuous oscillation milliwave/sub-milliwave laser based on integrated circuit including intrinsic josephson element
McIntosh et al. Terahertz measurements of resonant planar antennas coupled to low‐temperature‐grown GaAs photomixers
Galin et al. Direct visualization of phase-locking of large Josephson junction arrays by surface electromagnetic waves
Amiri et al. Low phase-noise self-oscillating cross-coupled active antenna
Van Ta et al. Structure dependence of oscillation characteristics of structure-simplified resonant-tunneling-diode terahertz oscillator
JP2006210585A (en) New type terahertz oscillator using laminated josephson junction
JP2002246664A (en) Single crystal inherent josephson junction terahertz detector
JP2822953B2 (en) Superconducting circuit manufacturing method
Takemoto-Kobayashi et al. Monolithic high-T/sub c/superconducting phase shifter at 10 GHz
JP2003069095A (en) Milliwave/sub-milliwave receiver based on integrated circuit including intrinsic josephson element
JP2003069097A (en) Quantum voltage reference device based on integrated circuit including intrinsic josephson element
Palmer et al. Coherent effects in series arrays of proximity effect superconducting bridges
Steup et al. A quasioptical doubler-array
Lin et al. A 4* 4 spatial power-combining array with strongly coupled oscillators in multi-layer structure
WO2023248370A1 (en) Superconducting quantum circuit
Saeedkia et al. A submilliwatt terahertz high-temperature superconductive photomixer array source: Analysis and design
Alhussini et al. Polyimide as Antenna Substrate for THz InP-Based Resonant Tunnelling Diode Oscillators
JP2829378B2 (en) Superconductor electromagnetic wave generation method and device
JP2021177531A (en) High-temperature superconducting terahertz light source

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120228