JP2002246664A - Single crystal inherent josephson junction terahertz detector - Google Patents

Single crystal inherent josephson junction terahertz detector

Info

Publication number
JP2002246664A
JP2002246664A JP2001036427A JP2001036427A JP2002246664A JP 2002246664 A JP2002246664 A JP 2002246664A JP 2001036427 A JP2001036427 A JP 2001036427A JP 2001036427 A JP2001036427 A JP 2001036427A JP 2002246664 A JP2002246664 A JP 2002246664A
Authority
JP
Japan
Prior art keywords
josephson junction
single crystal
terahertz
terahertz detector
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001036427A
Other languages
Japanese (ja)
Inventor
Kahei O
華兵 王
Tsutomu Yamashita
努 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001036427A priority Critical patent/JP2002246664A/en
Publication of JP2002246664A publication Critical patent/JP2002246664A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a single crystal inherent Josephson junction terahertz detector for surely connecting a terahertz signal system and an inherent Josephson junction device. SOLUTION: The single crystal inherent Josephson junction terahertz detector comprises a substrate 1, an all superconductive Bi2Sr2CaCu2O3 single crystal inherent Josephson junction device 4 that is mounted on the substrate 1 and is produced by a double-sided machining process, and an antenna 3 that is integrated at the Josephson junction device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アンテナを結合し
たBi2 Sr2 CaCu2 8 単結晶固有ジョセフソン
接合テラヘルツ検出器に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to Bi 2 Sr 2 CaCu 2 O 8 single crystal intrinsic Josephson junction terahertz detector coupled to the antenna.

【0002】[0002]

【従来の技術】一般的に高温超伝導固有ジョセフソン接
合装置は、高いギャップ電圧により、テラヘルツ帯で動
作可能であると目されており、有望なものである。
2. Description of the Related Art Generally, a high-temperature superconducting intrinsic Josephson junction device is expected to be operable in a terahertz band with a high gap voltage, and is promising.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記し
た高温超伝導固有ジョセフソン接合装置は1テラヘルツ
以上の周波数において、直接応答は固有ジョセフソン接
合では報告されていない。その主要な問題は、従来のメ
サ型固有ジョセフソン接合が通常大きな土台(同一の材
料)の上に乗った構造をしていることであり、準光学シ
ステムを用いてテラヘルツ信号と固有ジョセフソン接合
とを結合させることを非常に困難にしている。
However, no direct response has been reported for the above-mentioned high-temperature superconducting intrinsic Josephson junction device at a frequency of 1 THz or more in the intrinsic Josephson junction. The main problem is that conventional mesa-type intrinsic Josephson junctions are usually mounted on a large base (the same material), and the terahertz signal and the intrinsic Making it very difficult to combine

【0004】本発明は、上記問題点を除去し、テラヘル
ツ信号系と固有ジョセフソン接合装置とを確実に結合さ
せることができる単結晶固有ジョセフソン接合テラヘル
ツ検出器を提供することを目的とする。
An object of the present invention is to provide a single crystal intrinsic Josephson junction terahertz detector capable of reliably coupling a terahertz signal system and an intrinsic Josephson junction device, eliminating the above problems.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕単結晶固有ジョセフソン接合テラヘルツ検出器で
あって、基板と、この基板上に形成される両面加工プロ
セスで作製された全超伝導Bi2 Sr2 CaCu2 8
単結晶固有ジョセフソン接合装置と、このジョセフソン
接合装置に集積化されるアンテナを具備することを特徴
とする。
According to the present invention, there is provided a single crystal intrinsic Josephson junction terahertz detector comprising: a substrate; and a double-side processing process formed on the substrate. Superconducting Bi 2 Sr 2 CaCu 2 O 8 produced by
It is characterized by comprising a single crystal intrinsic Josephson junction device and an antenna integrated in the Josephson junction device.

【0006】〔2〕上記〔1〕記載の単結晶固有ジョセ
フソン接合テラヘルツ検出器において、前記アンテナに
接続されるrfチョークフィルタが集積化されることを
特徴とする。
[2] In the single crystal intrinsic Josephson junction terahertz detector according to [1], an rf choke filter connected to the antenna is integrated.

【0007】[0007]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づき詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0008】図1は本発明の実施例を示すアンテナとr
fチョークフィルタとともに集積された固有ジョセフソ
ン接合装置の概略図である。
FIG. 1 shows an antenna and an antenna according to an embodiment of the present invention.
FIG. 4 is a schematic diagram of an intrinsic Josephson junction device integrated with an f choke filter.

【0009】この図において、1はシリコン基板、2は
そのシリコン基板1上に形成されるrf(radio
frequency)チョークフィルタ、3はそのシリ
コン基板1上に形成される平面ボータイアンテナ、4は
そのシリコン基板1上に形成されるBSCCO単結晶
(固有ジョセフソン接合装置)であり、このBSCCO
単結晶(ジョセフソン接合装置)4は30nmの高さを
有し、複数層4Aからなり、上部電極4Bと下部電極4
Cを有する。
In this figure, reference numeral 1 denotes a silicon substrate, and 2 denotes an rf (radio) formed on the silicon substrate 1.
frequency choke filter, 3 is a plane bowtie antenna formed on the silicon substrate 1, 4 is a BSCCO single crystal (unique Josephson junction device) formed on the silicon substrate 1, and the BSCCO
The single crystal (Josephson junction device) 4 has a height of 30 nm, is composed of a plurality of layers 4A, and has an upper electrode 4B and a lower electrode 4A.
C.

【0010】ここで、典型的なものでは、接合のa−b
面の寸法をサブミクロンまで下げることができ、一方、
c軸方向の厚さを数十から数百Åにすることができる。
Here, in a typical case, a-b
Surface dimensions can be reduced to submicron, while
The thickness in the c-axis direction can be several tens to several hundreds of degrees.

【0011】また、以下の改善がなされた。The following improvements have been made.

【0012】BSCCOの薄片に対して両面加工プロ
セスを用いることにより、大きな土台構造が無く、直接
基板上に配置した新形の固有ジョセフソン接合装置4を
作製した。
By using a double-sided processing process for the BSCCO flakes, a new intrinsic Josephson bonding apparatus 4 having no large base structure and directly disposed on a substrate was manufactured.

【0013】上部と下部の両方の電極4B,4Cが超
伝導である。
Both the upper and lower electrodes 4B, 4C are superconducting.

【0014】超伝導又は常伝導は、アンテナ(アンテ
ナの種類はボータイアンテナに限られない)3とrfチ
ョークフィルタ2が固有ジョセフソン接合4とともに集
積化されている。
In the superconducting or normal conducting mode, an antenna (the type of antenna is not limited to a bowtie antenna) 3 and an rf choke filter 2 are integrated together with an intrinsic Josephson junction 4.

【0015】シリコン基板1は固有ジョセフソン接合
を保持するために使われ、それ故、テラヘルツ信号を自
由空間側とシリコン基板1側から照射することができ
る。
The silicon substrate 1 is used to maintain the intrinsic Josephson junction, and therefore, can emit a terahertz signal from the free space side and the silicon substrate 1 side.

【0016】図2は本発明に係る固有ジョセフソン接合
装置の製造工程図である。
FIG. 2 is a manufacturing process diagram of the unique Josephson bonding apparatus according to the present invention.

【0017】(1)まず、図2(a)に示すように、基
板(例えば、シリコン基板)11上に劈開されたBSC
CO単結晶12をポリイミドで固定する。
(1) First, as shown in FIG. 2A, a BSC cleaved on a substrate (for example, a silicon substrate) 11
The CO single crystal 12 is fixed with polyimide.

【0018】(2)次に、図2(b)に示すように、第
1のフォトレジスト13をBSCCO単結晶12表面上
にフォトリソグラフィ技術を用いて配置する。そこで、
第1のイオンミリング14により特定の深さにまで試料
をエッチングする。
(2) Next, as shown in FIG. 2B, a first photoresist 13 is arranged on the surface of the BSCCO single crystal 12 by using a photolithography technique. Therefore,
The sample is etched to a specific depth by the first ion milling 14.

【0019】(3)次に、図2(c)に示すように、第
2のフォトレジスト15をBSCCO単結晶12表面上
にフォトリソグラフィ技術を用いて配置する。そして、
第2のフォトレジスト15を用いて第2のイオンミリン
グ16を行い、固有ジョセフソン接合をつくる。
(3) Next, as shown in FIG. 2C, a second photoresist 15 is disposed on the surface of the BSCCO single crystal 12 by using a photolithography technique. And
A second ion milling 16 is performed using the second photoresist 15 to form a unique Josephson junction.

【0020】(4)次に、図2(d)に示すように、第
2のフォトレジスト15を除去し、試料を劈開し、裏返
したBSCCO単結晶片17を得る。
(4) Next, as shown in FIG. 2D, the second photoresist 15 is removed, the sample is cleaved, and an inverted BSCCO single crystal piece 17 is obtained.

【0021】(5)次に、図2(e)に示すように、新
たな基板18上にその単結晶片17を固定し、フォトリ
ソグラフィ技術を用いて配置する。そして、第3のフォ
トレジスト19をBSCCO単結晶片17上に形成す
る。
(5) Next, as shown in FIG. 2E, the single crystal piece 17 is fixed on a new substrate 18 and arranged by using a photolithography technique. Then, a third photoresist 19 is formed on the BSCCO single crystal piece 17.

【0022】(6)次いで、図2(f)に示すように、
第3のフォトレジスト19を用いた第3のイオンミリン
グ20でBSCCO単結晶装置をパターニングする。
(6) Next, as shown in FIG.
The BSCCO single crystal device is patterned by the third ion milling 20 using the third photoresist 19.

【0023】(7)最後に、図2(g)に示すように、
第3のフォトレジスト19を剥離してから、下部電極2
1及び上部電極22を形成して、固有ジョセフソン接合
装置を得る。
(7) Finally, as shown in FIG.
After removing the third photoresist 19, the lower electrode 2
1 and the upper electrode 22 are formed to obtain an intrinsic Josephson junction device.

【0024】図3は本発明に係る4μm×4μmのa−
b面の寸法をもつ試料(BSCCO単結晶)の電流−電
圧特性を示す図である。
FIG. 3 shows a 4 μm × 4 μm a-layer according to the present invention.
It is a figure which shows the current-voltage characteristic of the sample (BSCCO single crystal) which has a dimension of b surface.

【0025】この図に示すように、約20本の分岐構造
が見られ、これらは、わずか300Åの厚さの固有ジョ
セフソン接合スタックに依ることを意味する。
As shown in this figure, there are about 20 bifurcated structures, which means that they rely on a unique Josephson junction stack of only 300 ° thick.

【0026】以下、本発明のテラヘルツ検出と実現可能
な応用について説明する。
Hereinafter, the terahertz detection of the present invention and possible applications will be described.

【0027】テラヘルツ検出システムでは、平面ボータ
イアンテナ3、シリコン基板1、延長半球シリコンレン
ズが準光学系を形成する。放射はCO2 レーザーにより
光学的にポンピングされた遠赤外レーザーである。テラ
ヘルツ応答は周波数fFIR が1.6266THzと2.
5253THzのレーザーを照射して測定された。どち
らの場合にもNhfFIR /2eの電圧で非常に明瞭なシ
ャピロステップが観察された。ここでNは分岐の次数で
あり、2e/h=484MHz/μVである。
In the terahertz detection system, the plane bowtie antenna 3, the silicon substrate 1, and the extended hemispherical silicon lens form a quasi-optical system. Radiation is far infrared laser which is optically pumped by a CO 2 laser. The terahertz response has a frequency f FIR of 1.6266 THz and 2.
It was measured by irradiating a 5253 THz laser. In both cases, a very sharp Shapiro step was observed at a voltage of Nhf FIR / 2e. Here, N is the branch order, and 2e / h = 484 MHz / μV.

【0028】図4は本発明に係る1.6THzの照射下
での電流−電圧特性を示す図である。
FIG. 4 is a diagram showing current-voltage characteristics under irradiation of 1.6 THz according to the present invention.

【0029】この図において、Nが13までの電流−電
圧特性を示している。動作温度は、4.2Kから液体窒
素温度までの範囲を網羅する。また、100GHzと2
00GHzの電磁波を試料に照射したところ、両方の周
波数で応答が非常に高感度であった。
In this figure, the current-voltage characteristics when N is up to 13 are shown. The operating temperature covers the range from 4.2K to liquid nitrogen temperature. In addition, 100GHz and 2GHz
When the sample was irradiated with an electromagnetic wave of 00 GHz, the response was very high at both frequencies.

【0030】結果は、固有ジョセフソン接合装置が高周
波応用に非常によく適していることをはっきりと確認し
たものである。そのため、電波天文観測や、次世代超高
周波帯情報技術(IT)の他、多くの分野で実現可能な
以下のような応用が挙げられる。たとえば、 テラヘルツミキサー 分光器(数GHzから数THzまで) 高周波DAコンバーター 電圧標準器 テラヘルツ発振器などである。
The results clearly confirm that the intrinsic Josephson junction device is very well suited for high frequency applications. Therefore, in addition to radio astronomy observation and next-generation ultrahigh frequency band information technology (IT), there are the following applications that can be realized in many fields. For example, a terahertz mixer spectrometer (from several GHz to several THz), a high frequency DA converter, a voltage standard, a terahertz oscillator, and the like.

【0031】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
It should be noted that the present invention is not limited to the above embodiment, and various modifications can be made based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

【0032】[0032]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、テラヘルツ信号と固有ジョセフソン接合装置と
を確実に結合させることができる単結晶固有ジョセフソ
ン接合テラヘルツ検出器を得ることができる。
As described above in detail, according to the present invention, it is possible to obtain a single-crystal intrinsic Josephson junction terahertz detector which can reliably couple a terahertz signal and an intrinsic Josephson junction device. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示すアンテナとrfチョーク
フィルタとともに集積された固有ジョセフソン接合装置
の概略図である。
FIG. 1 is a schematic diagram of an intrinsic Josephson junction device integrated with an antenna and an rf choke filter showing an embodiment of the present invention.

【図2】本発明に係る固有ジョセフソン接合装置の製造
工程図である。
FIG. 2 is a manufacturing process diagram of the unique Josephson bonding apparatus according to the present invention.

【図3】本発明に係る4μm×4μmのa−b面の寸法
を持つ試料(BSCCO単結晶)の電流−電圧特性を示
す図である。
FIG. 3 is a diagram showing current-voltage characteristics of a sample (BSCCO single crystal) having an a-b plane dimension of 4 μm × 4 μm according to the present invention.

【図4】本発明に係る1.6THzの照射下での電流−
電圧特性を示す図である。
FIG. 4 shows the current under irradiation at 1.6 THz according to the present invention.
FIG. 4 is a diagram illustrating voltage characteristics.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 rfチョークフィルタ 3 平面ボータイアンテナ 4 BSCCO単結晶(固有ジョセフソン接合装置) 4A 複数層 4B 上部電極 4C 下部電極 11 基板(例えば、シリコン基板) 12 BSCCO単結晶 13 第1のフォトレジスト 14 第1のイオンミリング 15 第2のフォトレジスト 16 第2のイオンミリング 17 裏返したBSCCO単結晶片 18 新たな基板 19 第3のフォトレジスト 20 第3のイオンミリング 21 下部電極 22 上部電極 Reference Signs List 1 silicon substrate 2 rf choke filter 3 plane bowtie antenna 4 BSCCO single crystal (intrinsic Josephson junction device) 4A multiple layers 4B upper electrode 4C lower electrode 11 substrate (for example, silicon substrate) 12 BSCCO single crystal 13 first photoresist 14 First ion milling 15 Second photoresist 16 Second ion milling 17 Inverted BSCCO single crystal piece 18 New substrate 19 Third photoresist 20 Third ion milling 21 Lower electrode 22 Upper electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板と、該基板上に搭載される両面加工
プロセスで作製された全超伝導Bi2 Sr2 CaCu2
8 単結晶固有ジョセフソン接合装置と、該ジョセフソ
ン接合装置に集積化されるアンテナを具備することを特
徴とする単結晶固有ジョセフソン接合テラヘルツ検出
器。
1. A substrate and an all-superconducting Bi 2 Sr 2 CaCu 2 produced by a double-sided process mounted on the substrate.
A single crystal intrinsic Josephson junction terahertz detector comprising: an O 8 single crystal intrinsic Josephson junction apparatus; and an antenna integrated in the Josephson junction apparatus.
【請求項2】 請求項1記載の単結晶固有ジョセフソン
接合テラヘルツ検出器において、前記アンテナに接続さ
れるrfチョークフィルタが集積化されることを特徴と
する単結晶固有ジョセフソン接合テラヘルツ検出器。
2. The single crystal intrinsic Josephson junction terahertz detector according to claim 1, wherein an rf choke filter connected to the antenna is integrated.
JP2001036427A 2001-02-14 2001-02-14 Single crystal inherent josephson junction terahertz detector Pending JP2002246664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001036427A JP2002246664A (en) 2001-02-14 2001-02-14 Single crystal inherent josephson junction terahertz detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001036427A JP2002246664A (en) 2001-02-14 2001-02-14 Single crystal inherent josephson junction terahertz detector

Publications (1)

Publication Number Publication Date
JP2002246664A true JP2002246664A (en) 2002-08-30

Family

ID=18899702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001036427A Pending JP2002246664A (en) 2001-02-14 2001-02-14 Single crystal inherent josephson junction terahertz detector

Country Status (1)

Country Link
JP (1) JP2002246664A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092788A1 (en) 2003-04-11 2004-10-28 Riken Tera-hertz wave transmitting optical component, tera-hertz wave optical system, tera-hertz band wave processing device and method
JP2012109652A (en) * 2010-11-15 2012-06-07 Nippon Signal Co Ltd:The Terahertz detector
JP2013004717A (en) * 2011-06-16 2013-01-07 Nippon Signal Co Ltd:The Terahertz detector
CN105576115A (en) * 2015-12-24 2016-05-11 南京大学 Fabrication method of double-sided junction and high-temperature super-conduction Bi<2>Sr<2>CaCu<2>O<8+Delta> (BSCCO) terahertz source
CN107123730A (en) * 2017-04-12 2017-09-01 南京大学 A kind of Bi2Sr2CaCu2O8The preparation method of single Josephson surface knot
CN114039201A (en) * 2021-11-10 2022-02-11 中国科学院上海技术物理研究所 Fractal butterfly terahertz antenna

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223934A (en) * 1997-02-07 1998-08-21 Seiko Epson Corp Superconducting device and manufacturing method
JPH1174573A (en) * 1997-08-28 1999-03-16 Matsushita Electric Ind Co Ltd Superconductinc element circuit, its manufacture and superconducting device
JP2000091654A (en) * 1998-09-10 2000-03-31 Japan Science & Technology Corp Manufacture of high-temperature single electron pair tunnel element using layered oxide superconducting material
JP2000216447A (en) * 1999-01-26 2000-08-04 Japan Science & Technology Corp Manufacture of stereoscopic electronic element using anisotropic worked material and its manufacture device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223934A (en) * 1997-02-07 1998-08-21 Seiko Epson Corp Superconducting device and manufacturing method
JPH1174573A (en) * 1997-08-28 1999-03-16 Matsushita Electric Ind Co Ltd Superconductinc element circuit, its manufacture and superconducting device
JP2000091654A (en) * 1998-09-10 2000-03-31 Japan Science & Technology Corp Manufacture of high-temperature single electron pair tunnel element using layered oxide superconducting material
JP2000216447A (en) * 1999-01-26 2000-08-04 Japan Science & Technology Corp Manufacture of stereoscopic electronic element using anisotropic worked material and its manufacture device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092788A1 (en) 2003-04-11 2004-10-28 Riken Tera-hertz wave transmitting optical component, tera-hertz wave optical system, tera-hertz band wave processing device and method
JP2012109652A (en) * 2010-11-15 2012-06-07 Nippon Signal Co Ltd:The Terahertz detector
JP2013004717A (en) * 2011-06-16 2013-01-07 Nippon Signal Co Ltd:The Terahertz detector
CN105576115A (en) * 2015-12-24 2016-05-11 南京大学 Fabrication method of double-sided junction and high-temperature super-conduction Bi<2>Sr<2>CaCu<2>O<8+Delta> (BSCCO) terahertz source
CN105576115B (en) * 2015-12-24 2018-04-17 南京大学 A kind of preparation method of two-sided knot high-temperature superconductor BSCCO THz sources
CN107123730A (en) * 2017-04-12 2017-09-01 南京大学 A kind of Bi2Sr2CaCu2O8The preparation method of single Josephson surface knot
CN114039201A (en) * 2021-11-10 2022-02-11 中国科学院上海技术物理研究所 Fractal butterfly terahertz antenna
CN114039201B (en) * 2021-11-10 2023-11-07 中国科学院上海技术物理研究所 Fractal butterfly terahertz antenna

Similar Documents

Publication Publication Date Title
Kooi et al. A 275–425-GHz tunerless waveguide receiver based on AlN-barrier SIS technology
Noguchi et al. An SIS mixer using two junctions connected in parallel
Yu et al. Series YBCO grain boundary Josephson junctions as a terahertz harmonic mixer
JP2002246664A (en) Single crystal inherent josephson junction terahertz detector
JP2003069096A (en) Continuous oscillation milliwave/sub-milliwave laser based on integrated circuit including intrinsic josephson element
Kroug et al. SIS mixer fabrication for ALMA Band10
JP4772193B2 (en) Manufacturing method of superconducting electronic device
JP2822953B2 (en) Superconducting circuit manufacturing method
Kooi et al. The development of an 850 GHz waveguide receiver using tuned sis junctions on 1µm Si 3 N 4 membranes
Lichtenberger et al. Nb-Al-Al/sub 2/O/sub 3/-Nb junctions with inductive tuning elements for a very low noise 205-250 GHz heterodyne receiver
Uzawa et al. Quasi-optical NbN/AlN/NbN mixers in submillimeter wave band
JP3022098B2 (en) Array antenna and its manufacturing method
de Lange et al. A low‐noise micromachined millimeter‐wave heterodyne mixer using Nb superconducting tunnel junctions
JP5282862B2 (en) SIS element, SIS mixer, element for superconducting integrated circuit, and method for manufacturing SIS element
JPH10256833A (en) Superconductive intrinsic josephson junction array element oscillator
JPH0964643A (en) Superconductive oscillator and its production
Mattauch et al. Recent results on: Surface-channel Schottky, InGaAs Schottky, and Nb based SIS mixer element research
JP2003069095A (en) Milliwave/sub-milliwave receiver based on integrated circuit including intrinsic josephson element
Taylor et al. Planar dipole-fed mixer arrays for imaging at millimeter and submillimeter wavelengths
Shimakage et al. Millimeter and submillimeter wave responses of YBa/sub 2/Cu/sub 3/O/sub 7/step-edge Josephson junctions
JP2003069097A (en) Quantum voltage reference device based on integrated circuit including intrinsic josephson element
Kohjiro et al. An octave bandwidth SIS mixer for accurate and compact terahertz spectrometers
Boussaha et al. Terahertz-frequency waveguide HEB mixers for spectral line astronomy
Boussaha et al. Scalable terahertz-frequency HEB mixers
Chen et al. Response properties at 2.525 terahertz using high-T/sub c/Josephson junctions on silicon bicrystal substrates

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120221