JP2003055046A - Piezoelectric ceramic composition, piezoelectric device using the same and producing method therefor - Google Patents

Piezoelectric ceramic composition, piezoelectric device using the same and producing method therefor

Info

Publication number
JP2003055046A
JP2003055046A JP2001238765A JP2001238765A JP2003055046A JP 2003055046 A JP2003055046 A JP 2003055046A JP 2001238765 A JP2001238765 A JP 2001238765A JP 2001238765 A JP2001238765 A JP 2001238765A JP 2003055046 A JP2003055046 A JP 2003055046A
Authority
JP
Japan
Prior art keywords
compound
piezoelectric
weight
main component
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001238765A
Other languages
Japanese (ja)
Inventor
Tetsuya Takahata
哲也 降▲籏▼
Kojiro Okuyama
浩二郎 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001238765A priority Critical patent/JP2003055046A/en
Publication of JP2003055046A publication Critical patent/JP2003055046A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric ceramic composition which has a high mechanical quality coefficient on high electric field driving. SOLUTION: Into the main components of (Pb1-u Au )v (Zn1/3 Nb2/3 )w (Sn1/3 Nb2/3 )x Tiy Zrz }O3 (wherein, A is at least one or more of metallic elements electrode from lanthanum series, 0.85<=u<=0.99, 0.97<=v<=1.03, 0.01<=w<=0.20, 0.01<=x<=0.15, 0.35<=y<=0.48, 0.30<=z<=0.50, and w+x+y+z=1), as assistant components, Mn is incorporated by 0.05 to 2.5 wt.% expressed in terms of MnO2 to 100 wt.% of the main components, and Si by 0.01 to 0.5 wt.% expressed in terms of SiO2 .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は例えば圧電トランス
に用いる圧電磁器組成物およびこれを用いた圧電デバイ
スとその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric ceramic composition used for, for example, a piezoelectric transformer, a piezoelectric device using the same, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、圧電トランスなどの圧電デバイス
に用いる圧電磁器組成物としては、特開昭56−307
14号公報に示されるようにPb(Zn1/3Nb2/3)O
3−PbTiO3−PbZrO3系組成物にMnO2を添加
したものが知られている。
2. Description of the Related Art Conventionally, as a piezoelectric ceramic composition used for a piezoelectric device such as a piezoelectric transformer, Japanese Patent Laid-Open No. 56-307 is known.
Pb (Zn 1/3 Nb 2/3 ) O as disclosed in Japanese Patent No. 14
It is known that MnO 2 is added to a 3- PbTiO 3 -PbZrO 3 based composition.

【0003】[0003]

【発明が解決しようとする課題】近年、圧電デバイスの
高出力化が求められている。これに対し上記圧電材料
は、高電界駆動に伴い機械的品質係数が非線形的に低下
し、内部エネルギー損失により急激に発熱する。そのた
め、大きな出力が得られないという問題点を有してい
た。
In recent years, there has been a demand for higher output piezoelectric devices. On the other hand, the piezoelectric material has a non-linear reduction in mechanical quality coefficient as it is driven by a high electric field, and heat is rapidly generated due to internal energy loss. Therefore, there is a problem that a large output cannot be obtained.

【0004】そこで本発明は高電界駆動時の機械的品質
係数の大きな圧電磁器組成物およびこれを用いた圧電デ
バイスとその製造方法を提供することを目的とするもの
である。
Therefore, an object of the present invention is to provide a piezoelectric ceramic composition having a large mechanical quality factor when driven in a high electric field, a piezoelectric device using the same, and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、以下の構成を有するものである。
In order to achieve the above object, it has the following constitution.

【0006】本発明の請求項1に記載の発明は、主成分
(Pb1-uuv{(Zn1/3Nb2/ 3w(Sn1/3Nb
2/3xTiyZrz}O3(ただし、Aはランタン系列か
ら選ばれる少なくとも一種以上の金属元素、0.85≦
u≦0.99、0.97≦v≦1.03、0.01≦w
≦0.20、0.01≦x≦0.15、0.35≦y≦
0.48、0.30≦z≦0.50、w+x+y+z=
1)に、副成分として前記主成分100重量%に対しM
nをMnO2に換算して0.05〜2.5重量%、Si
をSiO2に換算して0.01〜0.5重量%含有させ
たものであり、大きな機械的品質係数を有し、かつ高電
界駆動時の機械的品質係数の低下が小さいものである。
[0006] According to a first aspect of the present invention, the main component (Pb 1-u A u) v {(Zn 1/3 Nb 2/3) w (Sn 1/3 Nb
2/3 ) x Ti y Zr z } O 3 (where A is at least one metal element selected from the lanthanum series, 0.85 ≦
u ≦ 0.99, 0.97 ≦ v ≦ 1.03, 0.01 ≦ w
≦ 0.20, 0.01 ≦ x ≦ 0.15, 0.35 ≦ y ≦
0.48, 0.30 ≦ z ≦ 0.50, w + x + y + z =
In 1), as an auxiliary component, M is added to 100% by weight of the main component.
Converting n to MnO 2 , 0.05 to 2.5% by weight, Si
Is contained in an amount of 0.01 to 0.5% by weight in terms of SiO 2 , and has a large mechanical quality factor and a small decrease in the mechanical quality factor during high electric field driving.

【0007】本発明の請求項2に記載の発明は、特に、
主成分(Pb1-uuv{(Zn1/3Nb2/3w(Sn
1/3Nb2/3xTiyZrz}O3(ただし、Aはランタン
系列から選ばれる少なくとも一種以上の金属元素、0.
85≦u≦0.99、0.97≦v≦1.03、0.0
1≦w≦0.20、0.01≦x≦0.15、0.35
≦y≦0.48、0.30≦z≦0.50、w+x+y
+z=1)に、副成分として前記主成分100重量%に
対しMnをMnO2に換算して0.05〜2.5重量
%、SiをSiO2に換算して0.01〜0.5重量%
含有させたもので圧電層を形成し、内部電極をAgを含
有する金属で形成した圧電デバイスであり、圧電層は大
きな機械的品質係数を有するので高出力を得ることがで
きる。
The invention according to claim 2 of the present invention is
Main component (Pb 1-u A u ) v {(Zn 1/3 Nb 2/3 ) w (Sn
1/3 Nb 2/3 ) x Ti y Zr z } O 3 (where A is at least one metal element selected from the lanthanum series, 0.
85 ≦ u ≦ 0.99, 0.97 ≦ v ≦ 1.03, 0.0
1 ≦ w ≦ 0.20, 0.01 ≦ x ≦ 0.15, 0.35
≦ y ≦ 0.48, 0.30 ≦ z ≦ 0.50, w + x + y
+ Z = 1), Mn is converted to MnO 2 in an amount of 0.05 to 2.5% by weight, and Si is converted to SiO 2 to be in an amount of 0.01 to 0.5 with respect to 100% by weight of the main component as an auxiliary component. weight%
This is a piezoelectric device in which a piezoelectric layer is formed by containing it, and an internal electrode is formed of a metal containing Ag. The piezoelectric layer has a large mechanical quality factor, so that high output can be obtained.

【0008】本発明の請求項3に記載の発明は、特に、
圧電層となる原料を950〜1050℃で仮焼した後シ
ート成形し、Agを含有する内部電極と交互に積層し、
一体焼成することにより、Agと圧電層を構成する原料
との反応を抑制し、所望の特性を有する圧電デバイスを
得ることができる。
The invention according to claim 3 of the present invention is
A raw material to be a piezoelectric layer is calcined at 950 to 1050 ° C., then formed into a sheet, and alternately laminated with an internal electrode containing Ag,
By integrally firing, the reaction between Ag and the raw material forming the piezoelectric layer can be suppressed, and a piezoelectric device having desired characteristics can be obtained.

【0009】本発明の請求項4に記載の発明は、特に、
圧電層となる原料を仮焼し、平均粒径0.4〜1.1μ
mに調整後、シート成形するものであり、低温で焼結す
るためAgを含有する内部電極との一体焼成がさらに容
易になる。
The invention according to claim 4 of the present invention is
The raw material for the piezoelectric layer is calcined, and the average particle size is 0.4 to 1.1μ
After being adjusted to m, it is formed into a sheet, and since it is sintered at a low temperature, integral firing with the internal electrode containing Ag is further facilitated.

【0010】本発明の請求項5に記載の発明は、特に、
Si化合物以外の原料を仮焼し、仮焼後Si化合物を添
加するものである。Si化合物は高温で仮焼すると硬化
するため、後工程の作業が困難となるのでSi化合物が
硬化しすぎないような温度で仮焼する必要が有る。しか
しながらSi化合物を仮焼後に添加することにより、S
i化合物を添加した時よりも高温で仮焼できるため、積
層体焼成時のAgと圧電層を構成する原料との反応を更
に抑制することができる。
The invention according to claim 5 of the present invention is
Raw materials other than the Si compound are calcined, and the Si compound is added after the calcining. Since the Si compound is hardened when it is calcined at a high temperature, it becomes difficult to carry out the work in the subsequent steps, so that it is necessary to calcine the Si compound at a temperature at which the Si compound is not too hard. However, by adding a Si compound after calcination, S
Since the calcination can be performed at a higher temperature than when the i compound is added, it is possible to further suppress the reaction between Ag and the raw material forming the piezoelectric layer during firing of the laminate.

【0011】本発明の請求項6に記載の発明は、特に、
平均粒径0.05〜0.2μmのSi化合物を用いるも
のであり、仮焼体にSi化合物を分散させやすくなる。
The invention according to claim 6 of the present invention is
Since a Si compound having an average particle diameter of 0.05 to 0.2 μm is used, the Si compound can be easily dispersed in the calcined body.

【0012】[0012]

【発明の実施の形態】(実施の形態1)以下、実施の形
態1を用いて、本発明の特に請求項1に記載の発明につ
いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION (Embodiment 1) In the following, the invention described in claim 1 of the present invention will be described with reference to Embodiment 1.

【0013】まず、出発原料として化学的に高純度のP
bO、La23、Nd23、Pr23、Sm23、Zn
O、SnO2、Nb25、TiO2、ZrO2を組成式
(Pb 1-uuv{(Zn1/3Nb2/3w(Sn1/3Nb
2/3xTiyZrz}O3において(表1)に示す組成と
なるように秤量する。また前記組成式で示した主成分1
00重量%に対し、副成分としてSiO2とMnO2
(表1)に示す割合となるように秤量する。
First, as a starting material, chemically highly pure P is used.
bO, La2O3, Nd2O3, Pr2O3, Sm2O3, Zn
O, SnO2, Nb2OFive, TiO2, ZrO2The composition formula
(Pb 1-uAu)v{(Zn1/3Nb2/3)w(Sn1/3Nb
2/3)xTiyZrz} O3And the composition shown in (Table 1)
Weigh so that In addition, the main component 1 shown in the above composition formula
SiO2 as an auxiliary component for 100% by weight2And MnO2To
Weigh so that the ratio shown in (Table 1) is obtained.

【0014】[0014]

【表1】 [Table 1]

【0015】次にこれらの原料をジルコニアボールを媒
介としてボールミルにより湿式混合した。尚、出発原料
として前述した各成分元素の酸化物以外に水酸化物、炭
酸塩、アルコキシド等焼結後の組成が(表1)に示すよ
うになるのであればいずれを用いてもよい。
Next, these raw materials were wet mixed by a ball mill using zirconia balls as a medium. In addition to the oxides of the above-mentioned respective component elements, any of the above-mentioned oxides of the respective components may be used as the starting material as long as the composition after sintering such as hydroxide, carbonate and alkoxide is as shown in Table 1.

【0016】また試料番号の右に記された(*)は本発
明の特許請求の範囲外の比較例の試料であることを示
す。
The mark (*) on the right of the sample number indicates that the sample is a comparative example outside the scope of the claims of the present invention.

【0017】次に得られた混合物をボールミルから取り
出して乾燥した後、空気中において950〜1050℃
で2時間仮焼した。
Next, the obtained mixture was taken out from the ball mill and dried, and then in air at 950 to 1050 ° C.
It was calcined for 2 hours.

【0018】次に得られた仮焼粉体を湿式粉砕し、粉砕
泥しょうを乾燥した後、ポリビニールアルコール溶液を
添加して造粒した。
Next, the obtained calcined powder was wet pulverized, the pulverized slurry was dried, and then a polyvinyl alcohol solution was added to granulate.

【0019】次に得られた造粒粉体を、金型とプレスを
用いて直径20mm、厚さ約2mmの円板に成形した。
Next, the obtained granulated powder was molded into a disk having a diameter of 20 mm and a thickness of about 2 mm by using a mold and a press.

【0020】次に得られた成形体を、空気中において7
00℃で1時間保持してバインダーアウトを行った後、
空気中において1000〜1200℃で2時間保持して
焼成した。
Next, the obtained molded body was placed in air for 7 days.
After holding at 00 ° C for 1 hour to perform binder out,
Firing was carried out by holding in air at 1000 to 1200 ° C. for 2 hours.

【0021】次に得られた焼成体を直径約16mm、厚
さ1mmの円板に加工した後、その両主面に銀電極を焼
き付け、100℃の絶縁油中で3kV/mmの直流電界
を印加して分極処理を施した。
Next, the fired body obtained was processed into a disk having a diameter of about 16 mm and a thickness of 1 mm, and silver electrodes were baked on both main surfaces thereof, and a DC electric field of 3 kV / mm was applied in insulating oil at 100 ° C. It was applied and polarized.

【0022】次いで得られた円板試料の直径方向の振動
の機械的品質係数Qmをインピーダンスアナライザーを
用いた共振***振法による測定から求め、(表1)に印
加電圧が5VのときのQm値を示した。
Next, the mechanical quality factor Qm of the vibration in the diameter direction of the obtained disk sample was obtained from the measurement by the resonance anti-resonance method using an impedance analyzer, and (Table 1) shows the Qm value when the applied voltage is 5V. showed that.

【0023】(表1)に示す結果から明らかなように、
本発明の実施の形態1における圧電磁器組成物に対応す
る試料は、高電界駆動時(5V)に1100以上の高い
Qm値を示している。これに対し、(*)を付した本発
明範囲外の比較例試料は高電界駆動時のQm値が100
0以下と小さい。
As is clear from the results shown in (Table 1),
The sample corresponding to the piezoelectric ceramic composition according to the first embodiment of the present invention exhibits a high Qm value of 1100 or more when driven by a high electric field (5 V). On the other hand, the comparative samples with an asterisk (*) out of the range of the present invention had a Qm value of 100 when driven in a high electric field.
It is as small as 0 or less.

【0024】また本発明の圧電磁器組成物は、(表1)
に示すように1150℃でも十分な焼結性を有するもの
であり、例えばAg−Pd電極との同時焼成も可能なも
のである。
Further, the piezoelectric ceramic composition of the present invention is (Table 1)
As shown in (1), it has sufficient sinterability even at 1150 ° C., and can be co-fired with, for example, an Ag—Pd electrode.

【0025】以上のように本実施の形態1における圧電
磁器組成物は、主成分(Pb1-uuv{(Zn1/3Nb
2/3w(Sn1/3Nb2/3xTiyZrz}O3(ただし、
Aはランタン系列から選ばれる少なくとも一種以上の金
属元素で、0.85≦u≦0.99、0.97≦v≦
1.03、0.01≦w≦0.20、0.01≦x≦
0.15、0.35≦y≦0.48、0.30≦z≦
0.50、w+x+y+z=1)に、副成分として前記
主成分100重量%に対しMnをMnO2に換算して
0.05〜2.5重量%、SiをSiO2に換算して
0.01〜0.5重量%含有させたものであり、大きな
機械的品質係数を有し、かつ高電界駆動時の機械的品質
係数の低下が小さいという効果を奏するものである。
As described above, the piezoelectric ceramic composition according to the first embodiment has the main component (Pb 1 -u A u ) v {(Zn 1/3 Nb
2/3 ) w (Sn 1/3 Nb 2/3 ) x Ti y Zr z } O 3 (however,
A is at least one metal element selected from the lanthanum series, and 0.85 ≦ u ≦ 0.99, 0.97 ≦ v ≦
1.03, 0.01 ≦ w ≦ 0.20, 0.01 ≦ x ≦
0.15, 0.35 ≦ y ≦ 0.48, 0.30 ≦ z ≦
0.50, w + x + y + z = 1), and Mn is converted to MnO 2 in an amount of 0.05 to 2.5% by weight and Si is converted to SiO 2 to be 0.01 to 0.01% with respect to 100% by weight of the main component as an auxiliary component. .About.0.5% by weight, and has an effect of having a large mechanical quality factor and a small decrease in the mechanical quality factor during high electric field driving.

【0026】尚、上記実施の形態1で示した(表1)の
組成は一例であり、上記組成を満たす圧電磁器組成物で
あれば本発明の目的を達成するものである。
The composition of Table 1 shown in the first embodiment is an example, and any piezoelectric ceramic composition satisfying the above composition achieves the object of the present invention.

【0027】(実施の形態2)以下、実施の形態2を用
いて、本発明の特に請求項2、3、4に記載の発明につ
いて説明する。
(Embodiment 2) In the following, Embodiment 2 will be used to explain the invention particularly set forth in claims 2, 3, and 4.

【0028】図1は本発明の実施の形態2における圧電
デバイスである圧電トランスの斜視図、図2は図1のA
−B間の断面図、図3は図1のC−D間の断面図であ
り、1は積層体、2a,2bは内部電極、3a,3bは
入力電極となる外部電極、4a,4bは出力電極となる
外部電極を示す。以上のように構成された圧電トランス
について以下に説明する。
FIG. 1 is a perspective view of a piezoelectric transformer which is a piezoelectric device according to a second embodiment of the present invention, and FIG. 2 is A in FIG.
-B is a cross-sectional view, FIG. 3 is a cross-sectional view between C-D of FIG. 1, 1 is a laminated body, 2a and 2b are internal electrodes, 3a and 3b are external electrodes serving as input electrodes, 4a and 4b are The external electrode used as an output electrode is shown. The piezoelectric transformer configured as above will be described below.

【0029】まず、出発原料として化学的に高純度のP
bO、La23、Nd23、Pr23、Sm23、Zn
O、SnO2、Nb25、TiO2、ZrO2を組成式
(Pb 1-uuv{(Zn1/3Nb2/3w(Sn1/3Nb
2/3xTiyZrz}O3において(表2)に示す組成と
なるように秤量する。
First, as a starting material, chemically high purity P is used.
bO, La2O3, Nd2O3, Pr2O3, Sm2O3, Zn
O, SnO2, Nb2OFive, TiO2, ZrO2The composition formula
(Pb 1-uAu)v{(Zn1/3Nb2/3)w(Sn1/3Nb
2/3)xTiyZrz} O3And the composition shown in (Table 2)
Weigh so that

【0030】[0030]

【表2】 [Table 2]

【0031】また前記組成式で示した主成分100重量
%に対し、副成分としてSiO2とMnO2を(表2)に
示す割合となるように秤量する。
Further, SiO 2 and MnO 2 as auxiliary components are weighed so that the ratios shown in Table 2 are based on 100% by weight of the main component shown in the above composition formula.

【0032】尚、実施の形態1と同様に出発原料として
前述した各成分元素の酸化物以外に水酸化物、炭酸塩、
アルコキシド等焼結後の組成が(表2)に示すようにな
るのであればいずれを用いてもよい。
As in the first embodiment, as a starting material, in addition to the oxides of the above-mentioned respective component elements, hydroxide, carbonate,
Any material such as alkoxide may be used as long as the composition after sintering is as shown in (Table 2).

【0033】また試料番号の右に記された(*)は本発
明の特許請求の範囲外の比較例の試料であることを示
す。
The mark (*) on the right side of the sample number indicates that the sample is a comparative example outside the scope of the claims of the present invention.

【0034】次に、実施の形態1と同様に上記原料を湿
式混合し、得られた混合物をボールミルから取り出して
乾燥した後、空気中において950〜1050℃で2時
間仮焼した。次に得られた仮焼体をボールミルにより湿
式混合および湿式粉砕をし、得られた粉砕泥しょうをボ
ールミルから取り出して乾燥した後、これにバインダー
と可塑剤および溶剤を添加してスラリーにし、ドクター
ブレード法によりシート成形してグリーンシートを作製
した。このグリーンシートを矩形形状に切断した後、上
面に内部電極2a,2bとしてAg:Pd=70:30
のAg−Pdペーストをスクリーン印刷した。
Next, as in the first embodiment, the above raw materials were wet mixed, the resulting mixture was taken out from the ball mill, dried, and then calcined in air at 950 to 1050 ° C. for 2 hours. Next, the obtained calcined body is wet-mixed and pulverized by a ball mill, and the obtained pulverized mud is taken out from the ball mill and dried, and then a binder, a plasticizer and a solvent are added to form a slurry, and a doctor is used. A green sheet was produced by forming the sheet by the blade method. After cutting this green sheet into a rectangular shape, Ag: Pd = 70: 30 is formed on the upper surface as internal electrodes 2a and 2b.
The Ag-Pd paste of was printed by screen printing.

【0035】上記のようにして得た内部電極2a,2b
を印刷したグリーンシートと内部電極なしのグリーンシ
ートとを適宜、複数枚重ねてプレス後切断し、グリーン
積層体を作製した。ここで内部電極2a,2bは、前記
グリーン積層体の短手方向の両端面に一層毎に交互に露
出するようにした。このグリーン積層体を空気中におい
て500℃でバインダーアウトを行った後、空気中にお
いて1025〜1100℃で2時間保持して一体焼成
し、ほぼ直方体状の圧電トランスの形状を持った積層体
1を作製した。
The internal electrodes 2a, 2b obtained as described above
A plurality of green sheets printed with and green sheets without internal electrodes were appropriately stacked, pressed and then cut to prepare a green laminate. Here, the internal electrodes 2a and 2b were alternately exposed on both end faces in the lateral direction of the green laminated body, layer by layer. This green laminated body was subjected to binder out in air at 500 ° C., then held in air at 1025 to 1100 ° C. for 2 hours to be integrally fired to obtain a laminated body 1 having a substantially rectangular parallelepiped piezoelectric transformer shape. It was made.

【0036】次に得られた積層体1の内部電極2a,2
bの露出した面に外部電極3a,3bを、積層体1の長
手方向の端面に外部電極4a,4bを銀焼付により形成
した。次に100℃の絶縁油中で3kV/mmの直流電
界を印加して、内部電極2a,2bに挟まれた圧電層を
積層体1の厚み方向に分極処理を施し、さらに外部電極
3aと4a、3bと4b間で積層体1の長手方向に分極
処理を施した。
Next, the internal electrodes 2a, 2 of the obtained laminated body 1
The external electrodes 3a and 3b were formed on the exposed surface of b, and the external electrodes 4a and 4b were formed on the end faces of the laminate 1 in the longitudinal direction by silver baking. Next, a DC electric field of 3 kV / mm is applied in insulating oil at 100 ° C., the piezoelectric layer sandwiched between the internal electrodes 2a and 2b is polarized in the thickness direction of the laminate 1, and the external electrodes 3a and 4a are further polarized. Polarization treatment was performed in the longitudinal direction of the laminate 1 between 3b and 4b.

【0037】こうして得られた圧電トランスの入力電力
と出力電力の損失の度合いを示す効率(%)を(表2)
に示す。
The efficiency (%) showing the degree of loss of input power and output power of the piezoelectric transformer thus obtained is shown in Table 2
Shown in.

【0038】(表2)に示す結果から明らかなように、
本発明の実施の形態2における圧電トランスは90%以
上の高い効率を示す。またこのように1150℃未満の
焼成温度で高い効率を示すため、融点の低いAg−Pd
を内部電極2a,2bとして用いることができる。
As is clear from the results shown in (Table 2),
The piezoelectric transformer according to the second embodiment of the present invention exhibits a high efficiency of 90% or more. In addition, since high efficiency is exhibited at a firing temperature of less than 1150 ° C, Ag-Pd having a low melting point is used.
Can be used as the internal electrodes 2a and 2b.

【0039】以上のように本実施の形態2における圧電
デバイス及びその製造方法は、圧電層が大きな機械的品
質係数を有するので、高出力の圧電デバイスを得るとい
う効果を奏するものである。
As described above, the piezoelectric device and the manufacturing method thereof according to the second embodiment have an effect of obtaining a high-output piezoelectric device because the piezoelectric layer has a large mechanical quality factor.

【0040】また特に圧電層となる原料を950〜10
50℃で仮焼し、ある程度反応させておくことにより、
グリーン積層体を焼成する際、内部電極2a,2bと圧
電層との反応が抑制され、所望の特性を有する圧電デバ
イスを得ることができる。
In particular, the raw material for the piezoelectric layer is 950 to 10
By calcining at 50 ° C and allowing it to react to some extent,
When firing the green laminated body, the reaction between the internal electrodes 2a and 2b and the piezoelectric layer is suppressed, and a piezoelectric device having desired characteristics can be obtained.

【0041】尚、外部電極3a,3b,4a,4bの形
成前の積層体1について、厚さの最大値をtmax、最小
値をtminとしたとき、100×(tmax−tmin)/t
min(%)を求め、これを寸法精度として評価したもの
を図4に示した。この結果から明らかなように本発明の
実施の形態2における圧電トランスは、特に、圧電層と
なる原料を950℃以上で仮焼し、ある程度反応させて
からグリーンシートを作製することにより、グリーン積
層体を焼成する際の収縮が抑制されるため、寸法精度の
良い積層構造の圧電トランスが得られる。一方、仮焼温
度が1050℃を超えるとPb成分の蒸発の影響で圧電
特性が低下するため好ましくない。従って、仮焼温度は
950〜1050℃とすることが好ましい。
Regarding the laminated body 1 before the formation of the external electrodes 3a, 3b, 4a, 4b, where the maximum thickness is t max and the minimum thickness is t min , 100 × (t max −t min ) / T
Fig. 4 shows the min (%) obtained and evaluated as the dimensional accuracy. As is clear from this result, in the piezoelectric transformer according to the second embodiment of the present invention, in particular, the raw material to be the piezoelectric layer is calcined at 950 ° C. or higher, and after reacting to some extent, a green sheet is produced, thereby forming a green laminated sheet. Since shrinkage during firing of the body is suppressed, a piezoelectric transformer having a laminated structure with good dimensional accuracy can be obtained. On the other hand, if the calcination temperature exceeds 1050 ° C., the piezoelectric characteristics deteriorate due to the effect of evaporation of the Pb component, which is not preferable. Therefore, the calcination temperature is preferably 950 to 1050 ° C.

【0042】また(表2)に示した試料番号32の組成
について、仮焼体を粉砕した時の平均粒径を検討した結
果を図5に示す。試料番号32の圧電体は、焼結体密度
が7800kg/m3以上であると焼結性に優れたもの
となる。また本実施の形態2において、内部電極2a,
2bとして用いたAg−Pdは1100℃以下で焼成す
ることが望ましい。従って図5によると平均粒径を1.
1μmの場合は、優れた特性の圧電トランスを得るため
に焼成温度を1100℃とすることが望ましい。平均粒
径が0.4μmの場合は1050℃に下げることができ
る。このように仮焼体の平均粒径を小さくすることによ
り、焼成温度を下げることができる。焼成温度を下げる
ことができると、内部電極2a,2bとして融点の低
い、銀を含有する金属の使用範囲を広げることができる
のである。
Further, with respect to the composition of sample No. 32 shown in (Table 2), the result of examining the average particle size when the calcined body was crushed is shown in FIG. The piezoelectric body of Sample No. 32 has excellent sinterability when the sintered body density is 7800 kg / m 3 or more. In the second embodiment, the internal electrodes 2a,
The Ag-Pd used as 2b is preferably fired at 1100 ° C or lower. Therefore, according to FIG. 5, the average particle size is 1.
In the case of 1 μm, it is desirable to set the firing temperature to 1100 ° C. in order to obtain a piezoelectric transformer having excellent characteristics. When the average particle size is 0.4 μm, it can be lowered to 1050 ° C. By thus reducing the average particle size of the calcined body, the firing temperature can be lowered. If the firing temperature can be lowered, the range of use of the metal containing silver having a low melting point as the internal electrodes 2a and 2b can be expanded.

【0043】しかしながら、平均粒径が1.1μmより
も大きいと焼成温度を1100℃よりも高くしなければ
圧電層は焼結性が不十分となり、焼成温度を1100℃
よりも高くすると、内部電極2a,2bが溶解してしま
う。これを防ぐには内部電極2a,2bのPd比率を上
げれば良いのであるが、内部電極2a,2bのコストが
上がってしまう。
However, if the average particle size is larger than 1.1 μm, the sinterability of the piezoelectric layer becomes insufficient unless the firing temperature is set higher than 1100 ° C., and the firing temperature is 1100 ° C.
If it is higher than this, the internal electrodes 2a and 2b will be dissolved. To prevent this, the Pd ratio of the internal electrodes 2a and 2b should be increased, but the cost of the internal electrodes 2a and 2b will increase.

【0044】また、平均粒径が0.4μm未満では、通
常の方法では成形が困難になり好ましくない。従ってA
gの含有率の高い金属を内部電極2a,2bとして用い
るため、仮焼体の平均粒径は0.4〜1.1μmとする
ことが好ましい。
On the other hand, if the average particle size is less than 0.4 μm, it becomes difficult to mold by an ordinary method, which is not preferable. Therefore A
Since a metal having a high g content is used as the internal electrodes 2a and 2b, the average particle size of the calcined body is preferably 0.4 to 1.1 μm.

【0045】このことは、試料番号32の組成を有する
圧電体だけでなく、本発明の他の組成の圧電体において
も同様のことが言える。
The same can be said for not only the piezoelectric body having the composition of sample No. 32 but also the piezoelectric body having the other composition of the present invention.

【0046】(実施の形態3)以下、実施の形態3を用
いて、本発明の特に請求項5、6に記載の発明について
説明する。
(Third Embodiment) The third embodiment of the present invention will be described below with reference to claims 5 and 6 of the present invention.

【0047】まず実施の形態2の(表2)に示した試料
番号32の組成となるように秤量した出発原料におい
て、SiO2以外の出発原料をジルコニアボールを用い
たボールミルにより湿式混合した。得られた混合物をボ
ールミルから取り出して乾燥した後、空気中において9
50〜1050℃で2時間仮焼した。得られた仮焼体
と、特に平均粒径0.05〜0.2μmのSiO2を前
述したボールミルにより湿式混合および湿式粉砕をし、
以後、実施の形態2と同様にして積層構造の圧電トラン
スを作製した。
First, of the starting materials weighed so as to have the composition of sample No. 32 shown in (Table 2) of the second embodiment, the starting materials other than SiO 2 were wet mixed by a ball mill using zirconia balls. The obtained mixture was taken out of the ball mill and dried, and then dried in air at 9
It was calcined at 50 to 1050 ° C. for 2 hours. The obtained calcined body and, particularly, SiO 2 having an average particle size of 0.05 to 0.2 μm are wet-mixed and pulverized by the ball mill described above,
After that, a piezoelectric transformer having a laminated structure was manufactured in the same manner as in the second embodiment.

【0048】SiO2を最初の原料混合の時点で入れた
場合、950℃以上の高温で仮焼した場合に仮焼体の硬
化が著しく、その後の粉砕が通常の方法では困難となる
ため、粉砕方法を変えない限り有効な仮焼成温度の範囲
(950〜1050℃)での仮焼が困難である。一方、
仮焼後にSiO2を添加することにより仮焼体の硬化が
あまり進まないため、通常の粉砕方法のままで粉砕が可
能となる。従って、SiO2以外の原料を仮焼した後、
SiO2を添加することが望ましい。
When SiO 2 is added at the time of the first raw material mixing, the calcined body is significantly hardened when it is calcined at a high temperature of 950 ° C. or higher, and the subsequent pulverization becomes difficult by the usual method. Unless the method is changed, it is difficult to perform calcination within an effective calcination temperature range (950 to 1050 ° C). on the other hand,
By adding SiO 2 after the calcination, the calcination body does not harden so much, so that the pulverization can be performed with the usual pulverization method. Therefore, after calcination of raw materials other than SiO 2 ,
It is desirable to add SiO 2 .

【0049】尚SiO2を均一に拡散させ反応させるに
は、平均粒径0.2μm以下のSiO2を使用して混合
することが望ましい。しかしながら0.05μm未満に
なると逆に凝集が起こり分散性が悪くなる。従ってSi
2は平均粒径0.05〜0.2μmのものを用いるこ
とが好ましい。
[0049] are reacted to uniformly diffuse the SiO 2 addition, it is desirable to mix using a mean particle size 0.2μm or less of SiO 2. However, when the thickness is less than 0.05 μm, on the contrary, aggregation occurs and the dispersibility deteriorates. Therefore Si
O 2 having an average particle diameter of 0.05 to 0.2 μm is preferably used.

【0050】以上のように本実施の形態3における圧電
デバイスの製造方法は、Si化合物を仮焼後に添加する
ことにより、通常の粉砕方法のままでもSi化合物を始
めから添加した時よりも高温で仮焼できるため、グリー
ン積層体の焼成時の内部電極2a,2bと圧電層を構成
する原料との反応を更に抑制することができるという効
果を奏するものである。
As described above, in the method of manufacturing the piezoelectric device according to the third embodiment, the Si compound is added after the calcination so that the Si compound is added at a higher temperature than when the Si compound is added from the beginning even with the usual crushing method. Since it can be calcined, there is an effect that the reaction between the internal electrodes 2a and 2b and the raw material forming the piezoelectric layer during firing of the green laminated body can be further suppressed.

【0051】また特に、平均粒径0.05〜0.2μm
のSi化合物を用いることにより、仮焼体にSi化合物
を分散させやすくなるという効果も奏する。
In particular, the average particle size is 0.05 to 0.2 μm.
The use of the Si compound also has the effect of making it easier to disperse the Si compound in the calcined body.

【0052】なお、実施の形態3においては、一つの圧
電トランスについてのみ説明したが、上記以外にも本発
明の範囲内の組成の圧電層を有する圧電トランスであれ
ば同様の効果が得られる。
Although only one piezoelectric transformer has been described in the third embodiment, the same effect can be obtained with a piezoelectric transformer having a piezoelectric layer having a composition within the scope of the present invention in addition to the above.

【0053】また、実施の形態2,3においては、本発
明の圧電磁器組成物を用いた圧電トランスを説明した
が、本発明の圧電磁器組成物の適用は、圧電トランスに
限定されるものではなく、超音波振動子、アクチュエー
タをはじめとする多くの圧電デバイスに対して適用でき
るものである。
Although the piezoelectric transformer using the piezoelectric ceramic composition of the present invention has been described in the second and third embodiments, the application of the piezoelectric ceramic composition of the present invention is not limited to the piezoelectric transformer. Instead, it can be applied to many piezoelectric devices such as ultrasonic transducers and actuators.

【0054】[0054]

【発明の効果】以上のように本発明は、主成分(Pb
1-uuv{(Zn1/3Nb2/3w(Sn 1/3Nb2/3x
TiyZrz}O3(ただし、Aはランタン系列から選ば
れる少なくとも一種以上の金属元素で、0.85≦u≦
0.99、0.97≦v≦1.03、0.01≦w≦
0.20、0.01≦x≦0.15、0.35≦y≦
0.48、0.30≦z≦0.50、w+x+y+z=
1)に、副成分として前記主成分100重量%に対しM
nをMnO2に換算して0.05〜2.5重量%、Si
をSiO2に換算して0.01〜0.5重量%含有させ
た圧電磁器組成物であり、大きな機械的品質係数を有
し、かつ高電界駆動時の機械的品質係数の低下が小さい
という効果を奏するものである。
As described above, according to the present invention, the main component (Pb
1-uAu)v{(Zn1/3Nb2/3)w(Sn 1/3Nb2/3)x
TiyZrz} O3(However, A is selected from the lantern series
At least one kind of metal element, 0.85 ≦ u ≦
0.99, 0.97 ≦ v ≦ 1.03, 0.01 ≦ w ≦
0.20, 0.01 ≦ x ≦ 0.15, 0.35 ≦ y ≦
0.48, 0.30 ≦ z ≦ 0.50, w + x + y + z =
In 1), M is added as an auxiliary component to 100% by weight of the main component.
n is MnO20.05 to 2.5% by weight, Si
SiO2In 0.01 to 0.5% by weight
Piezoelectric ceramic composition with a large mechanical quality factor
And the deterioration of the mechanical quality factor during high electric field driving is small.
That is the effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態2における圧電トランスの
斜視図
FIG. 1 is a perspective view of a piezoelectric transformer according to a second embodiment of the present invention.

【図2】図1のA−B間の断面図FIG. 2 is a sectional view taken along the line AB in FIG.

【図3】図1のC−D間の断面図FIG. 3 is a sectional view taken along the line C-D in FIG.

【図4】本発明の実施の形態2における積層体の仮焼温
度と寸法精度の関係を示した図
FIG. 4 is a diagram showing a relationship between calcination temperature and dimensional accuracy of a laminated body according to the second embodiment of the present invention.

【図5】本発明の実施の形態2における積層体の焼成温
度と焼結体密度の関係を示した図
FIG. 5 is a diagram showing a relationship between a firing temperature and a sintered body density of a laminated body according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 積層体 2a 内部電極 2b 内部電極 3a 外部電極 3b 外部電極 4a 外部電極 4b 外部電極 1 stack 2a Internal electrode 2b internal electrode 3a External electrode 3b External electrode 4a External electrode 4b External electrode

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G031 AA07 AA11 AA12 AA14 AA19 AA26 AA30 AA31 AA32 AA39 BA10 CA03 GA01 GA03    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4G031 AA07 AA11 AA12 AA14 AA19                       AA26 AA30 AA31 AA32 AA39                       BA10 CA03 GA01 GA03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 主成分(Pb1-uuv{(Zn1/3Nb
2/3w(Sn1/3Nb2 /3xTiyZrz}O3(ただし、
Aはランタン系列から選ばれる少なくとも一種以上の金
属元素で、0.85≦u≦0.99、0.97≦v≦
1.03、0.01≦w≦0.20、0.01≦x≦
0.15、0.35≦y≦0.48、0.30≦z≦
0.50、w+x+y+z=1)に、副成分として前記
主成分100重量%に対しMnをMnO2に換算して
0.05〜2.5重量%、SiをSiO2に換算して
0.01〜0.5重量%含有させた圧電磁器組成物。
1. A main component (Pb 1-u A u ) v {(Zn 1/3 Nb
2/3) w (Sn 1/3 Nb 2 /3) x Ti y Zr z} O 3 ( where
A is at least one metal element selected from the lanthanum series, and 0.85 ≦ u ≦ 0.99, 0.97 ≦ v ≦
1.03, 0.01 ≦ w ≦ 0.20, 0.01 ≦ x ≦
0.15, 0.35 ≦ y ≦ 0.48, 0.30 ≦ z ≦
0.50, w + x + y + z = 1), and Mn is converted to MnO 2 in an amount of 0.05 to 2.5% by weight and Si is converted to SiO 2 to be 0.01 to 0.01% with respect to 100% by weight of the main component as an auxiliary component. A piezoelectric ceramic composition containing 0.5% by weight.
【請求項2】 圧電層と、Agを含有する内部電極とを
この内部電極が表面に露出するように交互に積層した積
層体と、この積層体の前記内部電極の露出した面に設け
た外部電極とを備え、前記圧電層は主成分(Pb
1-uuv{(Zn1/3Nb2/3w(Sn1/3Nb2/3x
TiyZrz}O3(ただし、Aはランタン系列から選ば
れる少なくとも一種以上の金属元素で、0.85≦u≦
0.99、0.97≦v≦1.03、0.01≦w≦
0.20、0.01≦x≦0.15、0.35≦y≦
0.48、0.30≦z≦0.50、w+x+y+z=
1)に、副成分として前記主成分100重量%に対しM
nをMnO2に換算して0.05〜2.5重量%、Si
をSiO2に換算して0.01〜0.5重量%含有させ
た圧電磁器組成物からなる圧電デバイス。
2. A laminated body in which a piezoelectric layer and an internal electrode containing Ag are alternately laminated so that the internal electrode is exposed on the surface, and an external surface provided on the exposed surface of the internal electrode of the laminated body. An electrode, and the piezoelectric layer comprises a main component (Pb
1-u A u ) v {(Zn 1/3 Nb 2/3 ) w (Sn 1/3 Nb 2/3 ) x
Ti y Zr z } O 3 (where A is at least one metal element selected from the lanthanum series, and 0.85 ≦ u ≦
0.99, 0.97 ≦ v ≦ 1.03, 0.01 ≦ w ≦
0.20, 0.01 ≦ x ≦ 0.15, 0.35 ≦ y ≦
0.48, 0.30 ≦ z ≦ 0.50, w + x + y + z =
In 1), as an auxiliary component, M is added to 100% by weight of the main component.
Converting n to MnO 2 , 0.05 to 2.5% by weight, Si
A piezoelectric device comprising a piezoelectric ceramic composition containing 0.01 to 0.5% by weight of SiO 2 converted to SiO 2 .
【請求項3】 Pb化合物、A化合物(Aはランタン系
列の金属元素から選ばれる一種類以上の元素)、Zn化
合物、Nb化合物、Sn化合物、Ti化合物、Zr化合
物、Mn化合物、Si化合物を混合、仮焼して仮焼体を
得る第1の工程と、次にこの仮焼体を用いてセラミック
シートを作製する第2の工程と、次に前記セラミックシ
ートとAgを含有する内部電極とを交互に前記内部電極
の端部が表面に露出するように積層して積層体を得る第
3の工程と、次いでこの積層体を焼成して前記内部電極
の露出した面に外部電極を形成する第4の工程とを備
え、前記セラミックシートは主成分(Pb1-uu
v{(Zn1/3Nb2/3w(Sn1/ 3Nb2/3xTiyZr
z}O3(ただし、Aはランタン系列から選ばれる少なく
とも一種以上の金属元素で、0.85≦u≦0.99、
0.97≦v≦1.03、0.01≦w≦0.20、
0.01≦x≦0.15、0.35≦y≦0.48、
0.30≦z≦0.50、w+x+y+z=1)に副成
分として前記主成分100重量%に対しMnをMnO2
に換算して0.05〜2.5重量%、SiをSiO2
換算して0.01〜0.5重量%含有させた圧電磁器組
成物であり、前記第1の工程における仮焼温度は950
〜1050℃である圧電デバイスの製造方法。
3. A Pb compound, an A compound (A is one or more kinds of elements selected from lanthanum series metal elements), a Zn compound, an Nb compound, a Sn compound, a Ti compound, a Zr compound, a Mn compound, and a Si compound are mixed. , A first step of calcination to obtain a calcinated body, a second step of producing a ceramic sheet using this calcinated body, and then an internal electrode containing the ceramic sheet and Ag. A third step of alternately laminating the internal electrodes so that the end portions are exposed on the surface to obtain a laminated body, and then firing the laminated body to form external electrodes on the exposed surfaces of the internal electrodes. 4), and the ceramic sheet is the main component (Pb 1 -u A u ).
v {(Zn 1/3 Nb 2/3) w (Sn 1/3 Nb 2/3) x Ti y Zr
z } O 3 (where A is at least one metal element selected from the lanthanum series, 0.85 ≦ u ≦ 0.99,
0.97 ≦ v ≦ 1.03, 0.01 ≦ w ≦ 0.20,
0.01 ≦ x ≦ 0.15, 0.35 ≦ y ≦ 0.48,
0.30 ≦ z ≦ 0.50, w + x + y + z = 1), and Mn is MnO 2 with respect to 100% by weight of the main component as an auxiliary component.
The composition is a piezoelectric ceramic composition containing 0.05 to 2.5% by weight of Si and 0.01 to 0.5% by weight of Si converted to SiO 2 , and the calcination temperature in the first step. Is 950
A method for manufacturing a piezoelectric device having a temperature of 1050 ° C.
【請求項4】 第1の工程後第2の工程前に仮焼体を平
均粒径0.4〜1.1μmに調整する工程を設ける請求
項3に記載の圧電デバイスの製造方法。
4. The method for manufacturing a piezoelectric device according to claim 3, further comprising a step of adjusting the calcined body to have an average particle size of 0.4 to 1.1 μm after the first step and before the second step.
【請求項5】 Pb化合物、A化合物(Aはランタン系
列の金属元素から選ばれる一種類以上の元素)、Zn化
合物、Nb化合物、Sn化合物、Ti化合物、Zr化合
物、Mn化合物を混合、仮焼して仮焼体を得る第1の工
程と、次にこの仮焼体を用いてセラミックシートを作製
する第2の工程と、次に前記セラミックシートとAgを
含有する内部電極とを交互に前記内部電極の端部が表面
に露出するように積層して積層体を得る第3の工程と、
次いでこの積層体を焼成して前記内部電極の露出した面
に外部電極を形成する第4の工程とを備え、前記第1の
工程における仮焼温度は950〜1050℃で、第1の
工程後第2の工程前に前記仮焼体にSi化合物を添加
し、前記セラミックシートは主成分(Pb1-uu
v{(Zn1/3Nb2/3w(Sn1/3Nb2/3xTiyZr
z}O3(ただし、Aはランタン系列から選ばれる少なく
とも一種以上の金属元素、0.85≦u≦0.99、
0.97≦v≦1.03、0.01≦w≦0.20、
0.01≦x≦0.15、0.35≦y≦0.48、
0.30≦z≦0.50、w+x+y+z=1)に、副
成分として前記主成分100重量%に対しMnをMnO
2に換算して0.05〜2.5重量%、SiをSiO2
換算して0.01〜0.5重量%含有させた圧電磁器組
成物からなる圧電デバイスの製造方法。
5. A Pb compound, an A compound (A is one or more kinds of elements selected from lanthanum series metal elements), a Zn compound, an Nb compound, a Sn compound, a Ti compound, a Zr compound, and a Mn compound are mixed and calcined. To obtain a calcined body, and then a second step of producing a ceramic sheet using this calcined body, and then the ceramic sheet and the Ag-containing internal electrode are alternately formed as described above. A third step of obtaining a laminated body by laminating so that the ends of the internal electrodes are exposed on the surface;
And a fourth step of forming an external electrode on the exposed surface of the internal electrode by firing the laminated body, and the calcination temperature in the first step is 950 to 1050 ° C., and after the first step. Before the second step, a Si compound is added to the calcined body, and the ceramic sheet contains the main component (Pb 1 -u A u ).
v {(Zn 1/3 Nb 2/3 ) w (Sn 1/3 Nb 2/3 ) x Ti y Zr
z } O 3 (where A is at least one metal element selected from the lanthanum series, 0.85 ≦ u ≦ 0.99,
0.97 ≦ v ≦ 1.03, 0.01 ≦ w ≦ 0.20,
0.01 ≦ x ≦ 0.15, 0.35 ≦ y ≦ 0.48,
0.30 ≦ z ≦ 0.50, w + x + y + z = 1), and Mn is MnO based on 100% by weight of the main component as an auxiliary component.
A method for producing a piezoelectric device comprising a piezoelectric ceramic composition containing 0.05 to 2.5 wt% in terms of 2 and 0.01 to 0.5 wt% in terms of Si as SiO 2 .
【請求項6】 Si化合物の平均粒径は0.05〜0.
2μmである請求項5に記載の圧電デバイスの製造方
法。
6. The average particle diameter of the Si compound is 0.05 to 0.
The method for manufacturing a piezoelectric device according to claim 5, wherein the thickness is 2 μm.
JP2001238765A 2001-08-07 2001-08-07 Piezoelectric ceramic composition, piezoelectric device using the same and producing method therefor Pending JP2003055046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001238765A JP2003055046A (en) 2001-08-07 2001-08-07 Piezoelectric ceramic composition, piezoelectric device using the same and producing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001238765A JP2003055046A (en) 2001-08-07 2001-08-07 Piezoelectric ceramic composition, piezoelectric device using the same and producing method therefor

Publications (1)

Publication Number Publication Date
JP2003055046A true JP2003055046A (en) 2003-02-26

Family

ID=19069630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001238765A Pending JP2003055046A (en) 2001-08-07 2001-08-07 Piezoelectric ceramic composition, piezoelectric device using the same and producing method therefor

Country Status (1)

Country Link
JP (1) JP2003055046A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481717B1 (en) * 2001-12-27 2005-04-11 주식회사 에스세라 Piezoelectric ceramic composition and piezoelectric device using the same
KR101248797B1 (en) 2010-09-30 2013-04-03 티디케이가부시기가이샤 Piezoelectric porcelain and piezoelectric element having the same, and piezoelectric device having the piezoelectric element
CN112552047A (en) * 2020-11-25 2021-03-26 海鹰企业集团有限责任公司 high-Curie-temperature 'transmitting-receiving' dual-purpose PZT ternary system piezoelectric ceramic material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481717B1 (en) * 2001-12-27 2005-04-11 주식회사 에스세라 Piezoelectric ceramic composition and piezoelectric device using the same
KR101248797B1 (en) 2010-09-30 2013-04-03 티디케이가부시기가이샤 Piezoelectric porcelain and piezoelectric element having the same, and piezoelectric device having the piezoelectric element
CN112552047A (en) * 2020-11-25 2021-03-26 海鹰企业集团有限责任公司 high-Curie-temperature 'transmitting-receiving' dual-purpose PZT ternary system piezoelectric ceramic material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4039029B2 (en) Piezoelectric ceramics, piezoelectric element, and multilayer piezoelectric element
TW554556B (en) Piezoelectric ceramic, method of manufacturing thereof and piezoelectric device
JP3958668B2 (en) Piezoelectric ceramic composition, piezoelectric element, and method for manufacturing piezoelectric element
JP2007258280A (en) Laminated piezoelectric element
JP2001019542A (en) Piezoelectric ceramic and piezoelectric device by using the same
JP5651452B2 (en) Piezoelectric / electrostrictive ceramics sintered body
JP5506731B2 (en) Method for manufacturing piezoelectric element
JP6175528B2 (en) Piezoelectric device
JP4748291B2 (en) Laminate displacement element
JP5462090B2 (en) Piezoelectric / electrostrictive ceramics sintered body
JP2004075448A (en) Piezoelectric ceramic composition, method of manufacturing piezoelectric ceramic composition and piezoelectric ceramic part
JP2003055046A (en) Piezoelectric ceramic composition, piezoelectric device using the same and producing method therefor
JP2001253772A (en) Piezoelectric porcelain composition and method for manufacture the same
JP4804709B2 (en) PZT composition capable of low-temperature sintering and piezoelectric ceramic device using the same
JP5183986B2 (en) Piezoelectric / electrostrictive element, piezoelectric / electrostrictive ceramic composition, and piezoelectric motor
CN116589277A (en) Piezoelectric ceramic, ceramic electronic component, and method for manufacturing piezoelectric ceramic
JP7491713B2 (en) Piezoelectric element, piezoelectric actuator, and piezoelectric transformer
JP2002293624A (en) Piezoelectric ceramic, production method therefor and piezoelectric element
WO2023032326A1 (en) Piezoelectric ceramic composition, piezoelectric ceramics, piezoelectric element, and tactile module
JP5651453B2 (en) Piezoelectric / electrostrictive ceramics sintered body
JP3332205B2 (en) Piezoelectric ceramic composition and laminated piezoelectric transformer
JP4798898B2 (en) Piezoelectric ceramic composition, piezoelectric resonator, and multilayer piezoelectric element
JP2009114049A (en) Piezoelectric/electrostrictive ceramic composition and piezoelectric/electrostrictive element
JP4506187B2 (en) Piezoelectric ceramic composition and piezoelectric element
JP2005183701A (en) Piezoelectric element and its manufacturing method