JP2003054949A - Sn-CONTAINING In OXIDE AND MANUFACTURING METHOD THEREOF, COATING MATERIAL USING THE SAME AND CONDUCTIVE COATING FILM - Google Patents

Sn-CONTAINING In OXIDE AND MANUFACTURING METHOD THEREOF, COATING MATERIAL USING THE SAME AND CONDUCTIVE COATING FILM

Info

Publication number
JP2003054949A
JP2003054949A JP2001245701A JP2001245701A JP2003054949A JP 2003054949 A JP2003054949 A JP 2003054949A JP 2001245701 A JP2001245701 A JP 2001245701A JP 2001245701 A JP2001245701 A JP 2001245701A JP 2003054949 A JP2003054949 A JP 2003054949A
Authority
JP
Japan
Prior art keywords
oxide
axis diameter
particles
hydroxide
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001245701A
Other languages
Japanese (ja)
Other versions
JP4982691B2 (en
Inventor
Tatsumi Inamura
稲村辰美
Norio Mogi
茂木謙雄
Yoshifumi Horikawa
堀川義史
Koichiro Ejima
江島光一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2001245701A priority Critical patent/JP4982691B2/en
Priority to US10/108,618 priority patent/US6908574B2/en
Priority to TW091106612A priority patent/TWI311983B/en
Priority to KR1020020031689A priority patent/KR100670621B1/en
Publication of JP2003054949A publication Critical patent/JP2003054949A/en
Application granted granted Critical
Publication of JP4982691B2 publication Critical patent/JP4982691B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a Sn-containing In oxide particle capable of being applied for a large sized cathode ray tube and a high precision electrode of a display device by coating system, exhibiting high translucency and conductivity and having an acicular or a plate like shape. SOLUTION: A Sn-containing In hydroxide is obtained by adding an alkali solution into a hydrochloric acid solution containing In and Sn to adjust to pH 3, elevating the liquid temperature up to 90 deg.C, further adding the alkali solution to adjust to pH 7.5, filtering, dehydrating and drying. The Sn-containing In oxide having a plate-like shape of 0.041 μm major axial diameter, 0.025 μm minor axial diameter and the axial ratio (major axial diameter/minor axial diameter) of 1.64 is obtained by charging the resultant Sn-containing In hydroxide into a tubular furnace and firing at 600 deg.C under an atmosphere where steam and NH3 are added into gaseous nitrogen for 2 hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はSn含有In酸化物
(ITOということがある。)とその製造方法に関し、
さらにそれを用いた塗料ならびに導電性塗膜に関するも
のである。
TECHNICAL FIELD The present invention relates to a Sn-containing In oxide (sometimes referred to as ITO) and a method for producing the same,
Further, it relates to a paint and a conductive coating film using the same.

【0002】[0002]

【従来の技術】Sn含有In酸化物はITOとも呼ば
れ、可視光に対する透光性と高い導電性を示すことから
各種表示デバイスや太陽電池などの透明導電膜として用
いられている。このITOを用いた透明導電膜の製法と
しては、スパッタ法などの物理的方法、粒子分散液また
は有機化合物を塗布する塗布法が知られている。このう
ち塗布法による膜は、スパッタ法などの物理的方法によ
る膜に比べて導電性が多少低いものの、真空装置等の高
価な装置を用いることなく大面積や複雑形状の成膜が可
能であり低コストとなる特徴がある。さらにこの塗布法
の中でも粒子分散法は有機化合物を熱分解する方法に比
べ比較的低温のプロセスで成膜でき、導電性も得られる
ことからブラウン管の電磁波シールド膜として広く用い
られており、LCDやELなどの表示デバイスの透明電
極への用途も検討されている。しかしながら、この粒子
分散法による塗膜はスパッタ膜などに比べてまだ導電性
が低く、ブラウン管の大型化や表示デバイスの高精細電
極用にはいまだ対応できないため、これらの用途にも対
応できる、透光性を保ちかつ導電性の向上した塗膜を実
現するITO粒子の出現が望まれている。
2. Description of the Related Art Sn-containing In oxide, which is also called ITO, is used as a transparent conductive film for various display devices and solar cells because it has a property of transmitting visible light and high conductivity. As a method for producing a transparent conductive film using this ITO, a physical method such as a sputtering method and a coating method for coating a particle dispersion liquid or an organic compound are known. Of these, the film formed by the coating method has somewhat lower conductivity than the film formed by a physical method such as the sputtering method, but it is possible to form a large area or a complicated shape without using an expensive device such as a vacuum device. It has a feature of low cost. Further, among the coating methods, the particle dispersion method is widely used as an electromagnetic wave shield film for cathode ray tubes because it can form a film in a process at a relatively low temperature as compared with a method of thermally decomposing an organic compound and can obtain conductivity. Applications for transparent electrodes of display devices such as EL are also under study. However, the coating film obtained by this particle dispersion method is still less conductive than sputtered films, etc., and it is still not applicable to the enlargement of cathode ray tubes and high-definition electrodes of display devices. It has been desired to develop ITO particles that can realize a coating film that retains its light property and has improved conductivity.

【0003】導電性塗膜においては、ITO粒子同士の
接触により導電経路が形成されるため、この導電経路が
得られやすい(すなわち、ITO粒子同士の接触面が多
くなるような)粒子の形状として、フレーク状や針状、
板状の粒子を用いることによって導電性を向上させる
(すなわち抵抗を低下させる)ことができる。種々の粒
子形状を得る試みとしては、 (A)長軸長5μm以上、長軸/短軸の軸比5以上の針
状ITO粒子を得る方法(特開平7−232920、特
開平7−235214) (B)長さ1〜100μm、幅0.2〜20μm、厚み
0.01〜2μmの短冊状酸化チタン粒子に導電性微粒
子を被覆する方法(特開平8−217446) (C)長軸0.2〜0.95μm、短軸0.02〜0.
1μm、アスペクト比4以上の針状ITOの製法(特開
平6−80422)などの製法が知られている。しか
し、(A)については得られるITO粒子が大きく、抵
抗値は低減されるものの、透過率等の光学特性が悪く、
特に散乱光が多く発生し塗膜のヘイズが大きくなるとい
う問題がある。(B)については短冊状であり接触点が
得られると考えられるが、粒子が大きく(A)と同様の
問題があり、さらに、導電性が低い酸化チタン粒子を導
電性材料で被覆するので粒子内抵抗が高く塗膜において
充分な導電性が得られない。また、(C)については
(A)よりも微粒子であり光学特性は多少改善される
が、可視光の波長(400〜700nm)の1/2のサ
イズより大きく、塗膜中に粒子が充填された場合に散乱
光が発生し、可視光の充分な光透過率、ヘイズ防止を図
ることができないという問題がある。
In a conductive coating film, since a conductive path is formed by contact between ITO particles, the conductive path is easily obtained (that is, the contact surface between ITO particles is increased). , Flakes and needles,
The conductivity can be improved (that is, the resistance can be reduced) by using the plate-like particles. As an attempt to obtain various particle shapes, (A) a method of obtaining acicular ITO particles having a major axis length of 5 μm or more and a major axis / minor axis axial ratio of 5 or more (JP-A-7-232920, JP-A-7-235214) (B) A method of coating rectangular titanium oxide particles having a length of 1 to 100 μm, a width of 0.2 to 20 μm and a thickness of 0.01 to 2 μm with conductive fine particles (JP-A-8-217446) (C) Long axis 0. 2 to 0.95 μm, minor axis 0.02 to 0.
A manufacturing method such as a manufacturing method of needle-like ITO having 1 μm and an aspect ratio of 4 or more (Japanese Patent Laid-Open No. 6-80422) is known. However, regarding (A), although the obtained ITO particles are large and the resistance value is reduced, the optical characteristics such as transmittance are poor,
In particular, there is a problem that a large amount of scattered light is generated and the haze of the coating film increases. Regarding (B), it is considered that the contact point can be obtained because it has a strip shape, but the particles are large and have the same problem as (A). Furthermore, since titanium oxide particles having low conductivity are coated with a conductive material, the particles are The internal resistance is high and sufficient electrical conductivity cannot be obtained in the coating film. Further, (C) is finer particles than (A) and its optical characteristics are slightly improved, but it is larger than half the size of the wavelength of visible light (400 to 700 nm) and particles are filled in the coating film. In that case, there is a problem that scattered light is generated, and it is impossible to achieve sufficient light transmittance of visible light and haze prevention.

【0004】[0004]

【発明が解決しようとする課題】本発明は、粒子分散液
を塗布して高い透光性と導電性を示す塗膜を形成するの
に最適な、針状または板状の形状を有するSn含有In
酸化物を提供することを課題とするものである。
DISCLOSURE OF THE INVENTION According to the present invention, a Sn-containing Sn having a needle-like or plate-like shape, which is most suitable for applying a particle dispersion to form a coating film having high translucency and conductivity. In
It is an object to provide an oxide.

【0005】[0005]

【課題を解決するための手段】本発明者等は上記課題を
解決するためには、Sn含有In酸化物の粒子について
その大きさ、さらには軸比を規定した針状または板状の
形状とすることにより、塗膜において導電材としてのS
n含有In酸化物粒子同士の接触面を多くして導電性を
向上し、また散乱光を抑制することが可能と考えて鋭意
研究した結果、SnとInとを含有する酸性水溶液にア
ルカリを添加して2段階以上で中和を行うことにより、
凝集のない微細なSn含有In酸化物をつくりだすこと
に成功し、従来に比べて導電性を向上させるとともに前
記散乱光を抑制させることができた。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have found that Sn-containing In oxide particles have a needle-like or plate-like shape that defines the size and the axial ratio. By doing so, S as a conductive material in the coating film
As a result of diligent research, it was thought that it is possible to improve the conductivity by suppressing the scattered light by increasing the contact surfaces between the n-containing In oxide particles, and as a result, add an alkali to the acidic aqueous solution containing Sn and In. By neutralizing in two or more steps,
We succeeded in producing a fine Sn-containing In oxide without aggregation, and were able to improve the conductivity and suppress the scattered light as compared with the prior art.

【0006】すなわち本発明は第1に、長軸径が0.2
μm以下、短軸径が0.1μm以下であって、針状また
は板状の形状を有することを特徴とするSn含有In酸
化物;第2に、前記長軸径が0.1μm以下、前記短軸
径が0.05μm以下である、第1記載のSn含有In
酸化物;第3に、前記長軸径/前記短軸径の軸比が1.
5〜10である、第1または2記載のSn含有In酸化
物;第4に、第1、2または3に記載のSn含有In酸
化物粒子を溶媒中または樹脂を含有した溶媒中に分散さ
せたことを特徴とする塗料;第5に、第1、2または3
に記載のSn含有In酸化物粒子を導電材として含有す
ることを特徴とする導電性塗膜;第6に、SnとInと
を含有する酸性水溶液にアルカリを添加して予備中和し
た液を昇温させ、次いでアルカリを添加して中和し、得
られたSn含有In水酸化物を焼成することを特徴とす
る、第1、2または3に記載のSn含有In酸化物の製
造方法;第7に、前記酸性水溶液中の酸がHCl、HN
またはHSOであり、前記アルカリがNH
H、NaOHまたはKOHである、第6記載の製造方
法;第8に、前記予備中和後液のpHが2〜4であり、
前記中和後液のpHが7〜8である、第6または7記載
の製造方法;第9に、前記予備中和が液温45℃以下に
おいて行われ、前記中和が液温50℃以上において行わ
れる、第6、7または8記載の製造方法;第10に、前
記焼成が水蒸気を含有する不活性ガス中または水蒸気と
還元性ガスとを含有する不活性ガス中で300〜100
0℃において前記Sn含有In水酸化物粒子の形状異方
性を維持して行われる、第6、7、8または9記載の製
造方法、を提供するものである。
That is, the first aspect of the present invention is that the major axis diameter is 0.2.
μm or less, minor axis diameter is 0.1 μm or less, and has a needle-like or plate-like shape Sn-containing In oxide; second, the major axis diameter is 0.1 μm or less; The Sn-containing In according to the first aspect, which has a minor axis diameter of 0.05 μm or less.
Oxide; Third, the axial ratio of the major axis diameter / the minor axis diameter is 1.
5-10, Sn-containing In oxide according to the first or second; Fourth, the Sn-containing In oxide particles according to the first, 2 or 3 are dispersed in a solvent or a solvent containing a resin. Paints characterized by: Fifth, first, second or third
6. A conductive coating film containing the Sn-containing In oxide particles according to claim 6 as a conductive material; and sixth, a solution obtained by preliminarily neutralizing an acidic aqueous solution containing Sn and In by adding an alkali. A method for producing an Sn-containing In oxide as described in the first, the second or the third, characterized in that the temperature is raised and then an alkali is added to neutralize and the obtained Sn-containing In hydroxide is calcined. Seventh, when the acid in the acidic aqueous solution is HCl, HN
O 3 or H 2 SO 4 , and the alkali is NH 4 O
H, NaOH or KOH, the production method according to the sixth; eighth, the pH of the pre-neutralization solution is 2 to 4,
The method according to the sixth or seventh aspect, wherein the pH of the post-neutralization liquid is 7 to 8; ninth, the preliminary neutralization is performed at a liquid temperature of 45 ° C. or lower, and the neutralization is a liquid temperature of 50 ° C. or higher. The manufacturing method according to the sixth, the seventh or the eighth, wherein the firing is performed in an inert gas containing steam or in an inert gas containing steam and a reducing gas at 300 to 100.
The production method according to the sixth, seventh, eighth, or ninth, which is performed at 0 ° C. while maintaining the shape anisotropy of the Sn-containing In hydroxide particles.

【0007】[0007]

【発明の実施の形態】Sn含有In酸化物粒子はつぎの
各工程によって製造することができる。 (1)原料酸性水溶液の調製 Inを塩酸で溶解した塩化インジウム水溶液にさらに塩
化第二錫を溶解して出発溶液である酸性水溶液を調製す
るのが好ましい。液中のIn濃度は2〜50g/Lが好
ましく、2〜30g/Lがさらに好ましい。50g/L
を超えると酸化物の前駆体となる水酸化物粒子が凝集し
てしまって針状化または板状化が抑制され、一方で2g
/L未満では微細な塊状粒子しか得られない。また、S
n含有量は最終の酸化物中のSn含有量がSnO換算
で2〜20wt%(単に、%という。)が好ましく、5
〜10%がさらに好ましい。2〜20%の範囲を外れる
と酸化物の導電性が低下する。使用する酸は塩酸(HC
lということがある。)に限らず、硝酸(HNOとい
うことがある。)、硫酸(HSOということがあ
る。)等が用いられる。また、予備中和工程と中和工程
で用いるアルカリとしてはNHOH(アンモニアまた
はNHということがある。)、NaOH、KOH等が
用いられる。ただし、炭酸塩系のアルカリは水酸化物粒
子が微細塊状化しやすく所望の形状を得るのが困難であ
る。アルカリの添加にあたっては、希釈したアルカリ水
溶液として用いるのが好ましい。また、添加アルカリ量
は酸性水溶液中のIn、Sn塩を加水分解する当量が必
要であり、さらに過剰の酸分を中和するため当量比以上
にするのが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Sn-containing In oxide particles can be manufactured by the following steps. (1) Preparation of Raw Material Acidic Aqueous Solution It is preferable to further dissolve stannic chloride in an indium chloride aqueous solution obtained by dissolving In in hydrochloric acid to prepare an acidic aqueous solution as a starting solution. The In concentration in the liquid is preferably 2 to 50 g / L, more preferably 2 to 30 g / L. 50 g / L
If it exceeds, the hydroxide particles which are the precursors of the oxides are aggregated and the formation of needles or plates is suppressed, while 2g
If it is less than / L, only fine agglomerated particles can be obtained. Also, S
As for the n content, the Sn content in the final oxide is preferably 2 to 20 wt% (simply referred to as%) in terms of SnO 2 , and 5
10% is more preferable. When it is out of the range of 2 to 20%, the conductivity of the oxide is lowered. The acid used is hydrochloric acid (HC
Sometimes called l. ), Nitric acid (sometimes referred to as HNO 3 ), sulfuric acid (sometimes referred to as H 2 SO 4 ), and the like are used. Moreover, NH 4 OH (sometimes referred to as ammonia or NH 3 ), NaOH, KOH or the like is used as the alkali used in the preliminary neutralization step and the neutralization step. However, with carbonate-based alkali, the hydroxide particles tend to agglomerate into fine particles and it is difficult to obtain the desired shape. When adding the alkali, it is preferable to use it as a diluted alkali aqueous solution. Further, the amount of alkali to be added needs to be an equivalent amount for hydrolyzing In and Sn salts in the acidic aqueous solution, and is preferably equal to or more than the equivalent ratio in order to neutralize excess acid content.

【0008】(2)予備中和および中和 まず、前駆体であるSn含有In水酸化物の生成にあた
り、上記酸性水溶液の液温が好ましくは45℃以下、さ
らに好ましくは25℃以下において、前記アルカリを添
加して、好ましくはpH2〜4に予備中和する。さら
に、その後の中和にあたっては、30分〜2時間で昇温
し液温を好ましくは50℃以上、さらに好ましくは80
〜95℃に昇温して前記アルカリを添加し、好ましくは
pH7〜8に中和してSn含有In水酸化物を沈殿さ
せ、これを濾過、洗浄、乾燥する。SnとInを含有す
る酸性水溶液を、まず予備中和により微粒子核を生成さ
せ、次いでこれを核として高温の中和過程で成長させ、
針状または板状の水酸化物粒子を生成させる。予備中和
の中和率(全In量を1とした場合の予備中和で沈殿す
るIn量の比率をいう。)、温度、pH等の条件により
形状を制御する。また、予備中和時、中和時の温度域を
使い分けることにより、所望の粒径、形状の粒子を比較
的均一に生成できる。また、微粒子核の熟成等の操作を
加えることによってより均一化できる。
(2) Pre-neutralization and Neutralization First, when the Sn-containing In hydroxide as a precursor is produced, the above-mentioned acidic aqueous solution is preferably heated at a liquid temperature of 45 ° C. or lower, more preferably 25 ° C. or lower. Add alkali to pre-neutralize to preferably pH 2-4. Further, in the subsequent neutralization, the temperature is raised in 30 minutes to 2 hours and the liquid temperature is preferably 50 ° C or higher, more preferably 80 ° C.
The temperature is raised to ˜95 ° C., the alkali is added, and preferably neutralized to pH 7 to 8 to precipitate Sn-containing In hydroxide, which is filtered, washed and dried. An acidic aqueous solution containing Sn and In is first subjected to pre-neutralization to generate fine particle nuclei, which are then used as nuclei to grow in a high temperature neutralization process,
Produces acicular or plate-shaped hydroxide particles. The shape is controlled by conditions such as the neutralization ratio of pre-neutralization (the ratio of the amount of In precipitated by pre-neutralization when the total amount of In is 1), temperature, pH and the like. Further, by appropriately using the temperature range during the pre-neutralization and the neutralization, particles having a desired particle size and shape can be generated relatively uniformly. Further, it can be made more uniform by adding an operation such as aging of fine particle nuclei.

【0009】(3)Sn含有In水酸化物 こうして得られた水酸化物は、次の焼成工程において焼
結するため最終の酸化物よりも大きい粒子とし、長軸径
が0.05〜0.3μm、短軸径が0.01〜0.2μ
m、軸比が1.5〜10の針状または板状の粒子とす
る。
(3) Sn-containing In Hydroxide The hydroxide thus obtained is made into particles larger than the final oxide because it is sintered in the next firing step, and has a major axis diameter of 0.05-0. 3 μm, minor axis diameter 0.01-0.2 μ
m and an axial ratio of 1.5 to 10 are needle-like or plate-like particles.

【0010】(4)焼成 このSn含有In水酸化物を焼成し、脱水分解、焼結を
行うことによって前記水酸化物粒子の形状異方性を維持
して針状または板状の酸化物粒子を得る。この焼成によ
り酸素欠損を導入し導電性を高めた酸化物が得られる。
酸化雰囲気中の焼成でも一応導電性を有する酸化物粒子
が得られるが、所定の求めるべき抵抗値より一桁高い抵
抗値になってしまう。焼成雰囲気は水蒸気を含有する窒
素等の不活性ガス中が好ましく、NH等の還元性ガス
も含有するのがさらに好ましい。焼成温度は水酸化物の
サイズ、形状、焼成雰囲気ガスにあわせ設定するが、温
度が高いほど、水蒸気が多いほど、還元性が強いほど、
焼結がすすみ、得られる酸化物の異方性が低くなる。焼
成温度は300〜1000℃が好ましく、300〜70
0℃がさらに好ましい。上記の温度、雰囲気での焼成に
よって水酸化物粒子の形状異方性を維持して目的の酸化
物粒子を得ることができる。ただし、300℃未満の温
度では水酸化物の分解が不充分であり、1000℃を超
えると水酸化物粒子の形状異方性を維持することが困難
になるとともに、粒子間焼結による凝集が多くなり、分
散性が低下する。また水酸化物の脱水分解後の粒子は結
晶性が悪く、結晶成長しないと粒子内の結晶子間の抵抗
により導電性が低くなる。焼結を促進するために焼成雰
囲気に水蒸気を添加し、さらに導電性を高めるために還
元性のNHやHを含有させるのが好ましい。
(4) Firing This Sn-containing In hydroxide is fired, dehydrated and decomposed and sintered to maintain the shape anisotropy of the hydroxide particles, and acicular or plate-shaped oxide particles. To get By this firing, an oxide having oxygen conductivity introduced and oxygen conductivity enhanced can be obtained.
Although oxide particles having conductivity are obtained even by firing in an oxidizing atmosphere, the resistance value is one digit higher than a predetermined resistance value to be obtained. The firing atmosphere is preferably an inert gas such as nitrogen containing water vapor, and more preferably a reducing gas such as NH 3 . The firing temperature is set according to the size and shape of the hydroxide and the firing atmosphere gas, but the higher the temperature, the more water vapor, and the stronger the reducing property,
Sintering proceeds and the anisotropy of the resulting oxide becomes low. The firing temperature is preferably 300 to 1000 ° C, and 300 to 70 ° C.
0 ° C. is more preferable. By firing at the above temperature and atmosphere, the shape anisotropy of the hydroxide particles can be maintained and the target oxide particles can be obtained. However, if the temperature is lower than 300 ° C., the decomposition of the hydroxide is insufficient, and if it exceeds 1000 ° C., it becomes difficult to maintain the shape anisotropy of the hydroxide particles, and agglomeration due to inter-particle sintering causes And the dispersibility decreases. Further, the particles after the dehydration decomposition of the hydroxide have poor crystallinity, and unless the crystals grow, the conductivity becomes low due to the resistance between the crystallites in the particles. It is preferable to add water vapor to the firing atmosphere in order to promote the sintering and to further contain reducing NH 3 or H 2 in order to enhance the conductivity.

【0011】(5)Sn含有In酸化物粒子 本発明の酸化物粒子は、長軸径が0.2μm以下、好ま
しくは0.1μm以下、短軸径が0.1μm以下、好ま
しくは0.05μm以下であって、針状または板状の形
状を有するSn含有In酸化物であり、さらに、前記長
軸径/前記短軸径の軸比について1.5〜10が好まし
く、2〜5がさらに好ましい。Sn含有In酸化物粒子
の長軸径は、0.2μmを超えると可視光の散乱が発生
し、透過率等の光学特性が低下するので、0.2μm以
下とする。特に、長軸径が0.1μm以下では可視光の
散乱が一層抑制される。また、短軸径は、0.1μmを
超えると粒子同士の接触面が低く、塗膜導電性が低いの
で、0.1μm以下とする。特に、0.05μm以下で
は塗膜導電性が一層向上する。さらに、長軸径/短軸径
の軸比が1.5〜10の範囲を外れると導電性、分散
性、粒子内結晶性が低下し、特に1.5未満では形状異
方性の効果、抵抗値の低下等の効果が得られない。X線
回折による(222)面の半価幅より算出した好ましい
結晶子径Dxは150Å以上であり、比表面積から求め
られる球形換算径Dbetとの比 Dx/Dbetが0.45
以上で、透過電子顕微鏡(TEMということがある。)
観察で粒子内の結晶子が少ないほど粒子としての抵抗は
低くなると考えられる。
(5) Sn-containing In oxide particles The oxide particles of the present invention have a major axis diameter of 0.2 μm or less, preferably 0.1 μm or less, and a minor axis diameter of 0.1 μm or less, preferably 0.05 μm. The following is a Sn-containing In oxide having a needle-like or plate-like shape, and further, the axial ratio of the major axis diameter / the minor axis diameter is preferably 1.5 to 10, and further 2 to 5 preferable. When the major axis diameter of the Sn-containing In oxide particles exceeds 0.2 μm, visible light is scattered and optical characteristics such as transmittance are deteriorated, so the length is set to 0.2 μm or less. In particular, when the major axis diameter is 0.1 μm or less, scattering of visible light is further suppressed. If the minor axis diameter exceeds 0.1 μm, the contact surface between particles is low and the coating film conductivity is low, so the minor axis diameter is set to 0.1 μm or less. In particular, when the thickness is 0.05 μm or less, the coating film conductivity is further improved. Furthermore, when the axial ratio of the major axis diameter / the minor axis diameter is out of the range of 1.5 to 10, the conductivity, dispersibility, and intra-particle crystallinity are lowered, and particularly when it is less than 1.5, the effect of shape anisotropy, The effect of lowering the resistance value cannot be obtained. The preferable crystallite diameter Dx calculated from the full width at half maximum of the (222) plane by X-ray diffraction is 150 Å or more, and the ratio Dx / Dbet to the spherical equivalent diameter Dbet obtained from the specific surface area is 0.45.
Above, a transmission electron microscope (sometimes called TEM).
It is considered by observation that the smaller the number of crystallites in the particles, the lower the resistance as particles.

【0012】(6)塗料、導電性塗膜 上記ITO粒子を溶媒中に分散させて塗料化しこれを塗
布して溶媒を揮発させ、膜を固定して成膜することによ
り透光性の高い、低抵抗の塗膜を得ることができる。塗
料化の方法は従来の方法を使用することができ、溶媒と
してアルコール、ケトン、エーテル等の有機溶媒、分散
剤として界面活性剤、カップリング剤等を添加し、ビー
ズミル等の分散装置を用いて分散させる。また、バイン
ダーとなる結合材(有機系、無機系)を添加するか、I
TO塗料成膜後バインダーを成膜して固定してもよい。
(6) Paint, Conductive Coating The above ITO particles are dispersed in a solvent to form a paint, which is applied to volatilize the solvent, and the film is fixed to form a film having high translucency. A low resistance coating film can be obtained. A conventional method can be used as a coating method, and an organic solvent such as alcohol, ketone, or ether is added as a solvent, a surfactant as a dispersant, a coupling agent, or the like is added, and a dispersing device such as a bead mill is used. Disperse. In addition, a binder (organic or inorganic) that serves as a binder is added, or
After forming the TO coating film, a binder may be formed and fixed.

【0013】[0013]

【実施例】以下に実施例、比較例により本発明をさらに
説明するが、本発明の技術的範囲はこれら実施例に限定
されるものではない。
The present invention will be further described below with reference to Examples and Comparative Examples, but the technical scope of the present invention is not limited to these Examples.

【0014】[ 実施例1]Inを18%含む塩酸溶液2
00gを純水で2.9Lとし、さらに塩化第二錫を5.
4g添加して混合溶液として出発溶液の酸性水溶液を調
製しガラスビーカーに仕込んだ。25%NH水150
gを純水1350gで希釈し、このアルカリ溶液を上記
酸性水溶液に添加する。まず、はじめに液温20℃の酸
性水溶液にアルカリ溶液を17分間添加してpH3に予
備中和する。次いで、液温を90℃まで昇温し残りのア
ルカリ溶液を60分間かけて添加する。最終のpHは
7.5であった。これを濾過、脱水、乾燥してSn含有
In水酸化物の沈殿を得た。このSn含有In水酸化物
のTEM写真を図−1に示す。この水酸化物の長軸径は
0.077μm、短軸径は0.028μm、長軸径/短
軸径の軸比は2.8であった。次いで、このSn含有I
n水酸化物を管状炉に入れ、1.5vol%の水蒸気と
0.05vol%のNHガスとを含有する窒素ガスの雰
囲気中で600℃にて2時間焼成した。得られたSn含
有In酸化物のTEM写真を図−2に示す。この得られ
たSn含有In酸化物粒子は長軸径が0.041μm、
短軸径が0.025μm、長軸径/短軸径の軸比が1.
64の板状形状の粒子であった。なお、長軸径、短軸径
の求め方としては、TEM写真中の50個の粒子の長軸
径、短軸径をノギスで実測して、倍率換算しその平均値
を求めた。さらに軸比は前記の長軸径と短軸径の比率よ
り算出した。得られた粉体の比表面積をBET1点法にて測
定したところ27.5m/gであった。また、結晶子
径Dxは210Åであり、Dx/Dbetは0.68であ
った。
[Example 1] Hydrochloric acid solution 2 containing 18% In
00 g was made up to 2.9 L with pure water, and stannic chloride was added to 5.
4 g was added to prepare an acidic aqueous solution as a starting solution as a mixed solution, and the mixture was placed in a glass beaker. 25% NH 3 water 150
g is diluted with 1350 g of pure water, and this alkaline solution is added to the acidic aqueous solution. First, an alkaline solution is added to an acidic aqueous solution having a liquid temperature of 20 ° C. for 17 minutes to pre-neutralize it to pH 3. Next, the liquid temperature is raised to 90 ° C. and the remaining alkaline solution is added over 60 minutes. The final pH was 7.5. This was filtered, dehydrated, and dried to obtain a Sn-containing In hydroxide precipitate. A TEM photograph of this Sn-containing In hydroxide is shown in FIG. The major axis diameter of this hydroxide was 0.077 μm, the minor axis diameter was 0.028 μm, and the major axis / minor axis diameter axial ratio was 2.8. Then, this Sn-containing I
The n-hydroxide was placed in a tubular furnace and fired at 600 ° C. for 2 hours in an atmosphere of nitrogen gas containing 1.5 vol% steam and 0.05 vol% NH 3 gas. A TEM photograph of the obtained Sn-containing In oxide is shown in FIG. The obtained Sn-containing In oxide particles have a major axis diameter of 0.041 μm,
The minor axis diameter is 0.025 μm, and the major axis diameter / minor axis diameter axial ratio is 1.
The particles were 64 plate-shaped particles. The major axis diameter and the minor axis diameter were determined by measuring the major axis diameter and the minor axis diameter of 50 particles in the TEM photograph with a caliper and converting the magnification to obtain the average value. Further, the axial ratio was calculated from the ratio of the major axis diameter and the minor axis diameter. The specific surface area of the obtained powder was measured by the BET one-point method, and it was 27.5 m 2 / g. The crystallite diameter Dx was 210Å and Dx / Dbet was 0.68.

【0015】この粉末5gと混合溶剤20g(エタノー
ル:プロパノール=7:3)及び分散剤としてアニオン
系界面活性剤を0.25gを遊星ボールミル(フリッチ
ェ製P−5型、容器容量80ml、PSZ0.3mmボー
ル)に入れ、回転数300rpmで30分間回転させ
て、この分散液にコロイダルシリカとエタノールを加え
て、ITO粉末の含有量が2%、シリカ含有量が2%、
残部がエタノール及びプロパノールである塗料を作成
し、ガラス板にスピンコートした後、200℃で30分
間乾燥し、膜厚0.3μmの透明導電性膜を作成した。
作成した膜の抵抗値を測定したところ、抵抗値が5KΩ
/□であった。また、分光光度計にて透過率を測定した
ところ透過率は90%(波長540nm)であり、良好な透
明導電性膜が得られた。
5 g of this powder, 20 g of a mixed solvent (ethanol: propanol = 7: 3) and 0.25 g of an anionic surfactant as a dispersant were added to a planetary ball mill (P-5 type manufactured by Fritsch, container volume 80 ml, PSZ 0.3 mm). Ball) and rotated at a rotation speed of 300 rpm for 30 minutes, colloidal silica and ethanol are added to this dispersion liquid to make the content of ITO powder 2%, the content of silica 2%,
A paint having the balance of ethanol and propanol was prepared, spin-coated on a glass plate and dried at 200 ° C. for 30 minutes to prepare a transparent conductive film having a thickness of 0.3 μm.
When the resistance value of the formed film was measured, the resistance value was 5 KΩ.
It was / □. When the transmittance was measured with a spectrophotometer, the transmittance was 90% (wavelength 540 nm), and a good transparent conductive film was obtained.

【0016】[ 実施例2]実施例1と同様にして、酸性
水溶液、アルカリ溶液を調製した。まず、はじめに液温
20℃の酸性水溶液にアルカリ溶液を15分間添加し、
pH3.5に予備中和した。次いで、液温を90℃まで
昇温し残りのアルカリ溶液を60分間かけて添加する。
最終のpHは7.5であった。これを濾過、脱水、乾燥し
てSn含有In水酸化物を得た。このSn含有In水酸
化物のTEM写真を図−3に示す。得られたSn含有I
n水酸化物粒子は長軸径が0.246μm、短軸径が
0.062μm、長軸径/短軸径の軸比は4であった。
次いで、このSn含有In水酸化物を管状炉に入れ、
1.5vol%の水蒸気を含有する窒素ガスの雰囲気中で
700℃にて2時間焼成した。得られたSn含有In酸
化物粒子のTEM写真を図−4に示す。得られたSn含
有In酸化物粒子は長軸径が0.075μm、短軸径が
0.029μm、長軸径/短軸径の軸比が2.6の針状
形状の粒子であった。得られた粉体の比表面積をBET1点
法にて測定したところ33m2/gであった。また、Dx
は165Åであり、Dx/Dbetは0.64であった。
この粉末を実施例1と同様にしてスピンコートし、膜厚
0.3μmの透明導電性膜を作成した。作成した膜の抵
抗値を測定したところ、抵抗値が4KΩ/□であった。
また、分光光度計にて透過率を測定したところ透過率は
90%(波長540nm)であり、良好な透明導電性膜が得
られた。
Example 2 In the same manner as in Example 1, an acidic aqueous solution and an alkaline solution were prepared. First, first add an alkaline solution to an acidic aqueous solution at a liquid temperature of 20 ° C. for 15 minutes,
Pre-neutralized to pH 3.5. Next, the liquid temperature is raised to 90 ° C. and the remaining alkaline solution is added over 60 minutes.
The final pH was 7.5. This was filtered, dehydrated, and dried to obtain Sn-containing In hydroxide. A TEM photograph of this Sn-containing In hydroxide is shown in FIG. Obtained Sn-containing I
The n-hydroxide particles had a major axis diameter of 0.246 μm, a minor axis diameter of 0.062 μm, and an axial ratio of major axis diameter / minor axis diameter of 4.
Then, the Sn-containing In hydroxide was placed in a tubular furnace,
Firing was performed at 700 ° C. for 2 hours in an atmosphere of nitrogen gas containing 1.5 vol% steam. A TEM photograph of the obtained Sn-containing In oxide particles is shown in FIG. The obtained Sn-containing In oxide particles were needle-shaped particles having a major axis diameter of 0.075 μm, a minor axis diameter of 0.029 μm, and an axial ratio of major axis diameter / minor axis diameter of 2.6. The specific surface area of the obtained powder was 33 m 2 / g as measured by the BET one-point method. Also, Dx
Was 165Å and Dx / Dbet was 0.64.
This powder was spin-coated in the same manner as in Example 1 to form a transparent conductive film having a thickness of 0.3 μm. When the resistance value of the formed film was measured, the resistance value was 4 KΩ / □.
When the transmittance was measured with a spectrophotometer, the transmittance was 90% (wavelength 540 nm), and a good transparent conductive film was obtained.

【0017】[ 比較例1]実施例1と同様にして、酸性水
溶液、アルカリ溶液を調製した。液温35℃の酸性水溶
液に60分間かけてアルカリ溶液を添加し、最終のpHが
7.5であった。これを濾過、脱水、乾燥してSn含有
In水酸化物を得た。このSn含有In水酸化物のTE
M写真を図−5に示す。得られたSn含有In水酸化物
粒子は長軸径が0.039μm、短軸径が0.032μ
mの凝集体となっていた。次いで、このSn含有In水
酸化物を管状炉に入れ、1.5vol%の水蒸気と0.0
5vol%NHとを含有する窒素ガスの雰囲気中で64
5℃で2時間焼成した。得られたSn含有In酸化物T
EM写真を図−6に示す。この得られたSn含有In酸
化物粒子は塊状形状であった。得られた粉体の比表面積
をBET1点法にて測定したところ28m2/gであった。ま
た、Dxは260Åであり、Dx/Dbetは0.86で
あった。この粉末を実施例1と同様にしてスピンコート
し、膜厚0.3μmの透明導電性膜を作成した。作成し
た膜の抵抗値を測定したところ、抵抗値が20KΩ/□
であった。また、分光光度計にて透過率を測定したとこ
ろ透過率は90%(波長540nm)であり、実施例1、2
と異なり、Sn含有In酸化物同士が点接触となり、塗
膜抵抗値が上がる結果となった。
Comparative Example 1 An acidic aqueous solution and an alkaline solution were prepared in the same manner as in Example 1. The alkaline solution was added to the acidic aqueous solution at a liquid temperature of 35 ° C. over 60 minutes, and the final pH was 7.5. This was filtered, dehydrated, and dried to obtain Sn-containing In hydroxide. TE of this Sn-containing In hydroxide
The M photograph is shown in FIG. The obtained Sn-containing In hydroxide particles have a major axis diameter of 0.039 μm and a minor axis diameter of 0.032 μm.
It was an aggregate of m. Next, this Sn-containing In hydroxide was put into a tubular furnace, and 1.5 vol% steam and 0.0
64 in an atmosphere of nitrogen gas containing 5 vol% NH 3
It was baked at 5 ° C. for 2 hours. The obtained Sn-containing In oxide T
The EM photograph is shown in Fig. 6. The obtained Sn-containing In oxide particles had a massive shape. The specific surface area of the obtained powder was 28 m 2 / g as measured by the BET 1-point method. Further, Dx was 260Å and Dx / Dbet was 0.86. This powder was spin-coated in the same manner as in Example 1 to form a transparent conductive film having a thickness of 0.3 μm. When the resistance value of the formed film was measured, the resistance value was 20 KΩ / □
Met. Further, the transmittance was 90% (wavelength 540 nm) when measured with a spectrophotometer.
Unlike the above, the Sn-containing In oxides were point-contacted with each other, resulting in an increase in coating film resistance value.

【0018】[ 比較例2]中和時の液温を50℃とした
以外は比較例1と同様にしてSn含有In水酸化物を得
た。このSn含有In水酸化物のTEM写真を図−7に
示す。得られたSn含有In水酸化物粒子は長軸径が
0.215μm、短軸径が0.105μm、軸比が2.
1となっていた。次いで、これを窒素ガス雰囲気中にて
700℃で2時間焼成した。焼成後のSn含有In酸化
物のTEM写真を図−8に示した。得られたSn含有I
n酸化物は長軸径が0.270μm、短軸径が0.15
0μm、軸比が1.8の粗大な粒子となっていた。得ら
れた粉体の比表面積をBET1点法にて測定したところ1
3.6m2/gであった。また、Dxは270Åであり、
Dx/Dbetは0.43であった。この粉末を実施例1
と同様にしてスピンコートし、膜厚0.3μmの導電性
膜を作成した。透過率は70%と低く、抵抗値は15K
Ω/□と高いものであった。
[Comparative Example 2] An Sn-containing In hydroxide was obtained in the same manner as in Comparative Example 1 except that the liquid temperature at the time of neutralization was 50 ° C. Fig. 7 shows a TEM photograph of this Sn-containing In hydroxide. The obtained Sn-containing In hydroxide particles have a major axis diameter of 0.215 μm, a minor axis diameter of 0.105 μm, and an axial ratio of 2.
It was 1. Then, this was baked at 700 ° C. for 2 hours in a nitrogen gas atmosphere. A TEM photograph of the Sn-containing In oxide after firing is shown in FIG. Obtained Sn-containing I
n oxide has a major axis diameter of 0.270 μm and a minor axis diameter of 0.15
The particles were coarse particles having a diameter of 0 μm and an axial ratio of 1.8. When the specific surface area of the obtained powder was measured by the BET 1-point method, it was 1
It was 3.6 m 2 / g. Also, Dx is 270Å,
Dx / Dbet was 0.43. This powder was used in Example 1.
Spin coating was performed in the same manner as in 1. to form a conductive film having a thickness of 0.3 μm. The transmittance is as low as 70% and the resistance is 15K.
It was as high as Ω / □.

【0019】[0019]

【発明の効果】本発明によれば、長軸径および短軸径が
所定値以下、軸比が所定範囲の針状または板状の形状を
有するSn含有In酸化物粒子を得ることができ、この
粒子を含有する導電性塗膜は粒子同士の接触面が増加し
導電性、透光性とも優れたものであり、ブラウン管の大
型化及び表示デバイスの高精細電極用へ塗布方式で対応
することができ低コスト化を実現できる。
According to the present invention, Sn-containing In oxide particles having a needle-like or plate-like shape having a major axis diameter and a minor axis diameter of not more than predetermined values and an axial ratio of a predetermined range can be obtained, The conductive coating film containing these particles has excellent conductivity and translucency because the contact surface between particles increases, and it is necessary to support the enlargement of cathode ray tubes and the coating method for high definition electrodes of display devices. Therefore, cost reduction can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1におけるSn含有In水酸化物粒子の
透過電子顕微鏡写真である(撮影条件:200.0KV
×100K、図中下方の白抜き直線は50nmを示
す)。
1 is a transmission electron micrograph of Sn-containing In hydroxide particles in Example 1 (imaging condition: 200.0 KV
× 100K, the white straight line in the lower part of the figure indicates 50 nm).

【図2】実施例1におけるSn含有In酸化物粒子の透
過電子顕微鏡写真である(撮影条件:200.0KV×
100K、図中下方の白抜き直線は50nmを示す)。
FIG. 2 is a transmission electron micrograph of Sn-containing In oxide particles in Example 1 (shooting condition: 200.0 KV ×).
100 K, the white straight line in the lower part of the figure indicates 50 nm).

【図3】実施例2におけるSn含有In水酸化物粒子の
透過電子顕微鏡写真である(撮影条件:200.0KV
×30K、図中下方の白抜き直線は200nmを示
す)。
3 is a transmission electron micrograph of Sn-containing In hydroxide particles in Example 2 (imaging condition: 200.0 KV
× 30K, the white straight line in the lower part of the figure indicates 200 nm).

【図4】実施例2におけるSn含有In酸化物粒子の透
過電子顕微鏡写真である(撮影条件:200.0KV×
100K、図中下方の白抜き直線は50nmを示す)。
FIG. 4 is a transmission electron micrograph of Sn-containing In oxide particles in Example 2 (shooting condition: 200.0 KV ×).
100 K, the white straight line in the lower part of the figure indicates 50 nm).

【図5】比較例1におけるSn含有In水酸化物粒子の
透過電子顕微鏡写真である(撮影条件:200.0KV
×100K、図中下方の白抜き直線は50nmを示
す)。
5 is a transmission electron micrograph of Sn-containing In hydroxide particles in Comparative Example 1 (imaging condition: 200.0 KV
× 100K, the white straight line in the lower part of the figure indicates 50 nm).

【図6】比較例1におけるSn含有In酸化物粒子の透
過電子顕微鏡写真である(撮影条件:200.0KV×
100K、図中下方の白抜き直線は50nmを示す)。
6 is a transmission electron micrograph of Sn-containing In oxide particles in Comparative Example 1 (shooting condition: 200.0 KV ×).
100 K, the white straight line in the lower part of the figure indicates 50 nm).

【図7】比較例2におけるSn含有In水酸化物粒子の
透過電子顕微鏡写真である(撮影条件:200.0KV
×50K、図中下方の白抜き直線は100nmを示
す)。
7 is a transmission electron micrograph of Sn-containing In hydroxide particles in Comparative Example 2 (imaging condition: 200.0 KV
× 50K, the white straight line in the lower part of the figure indicates 100 nm).

【図8】比較例2におけるSn含有In酸化物粒子の透
過電子顕微鏡写真である(撮影条件:200.0KV×
30K、図中下方の白抜き直線は200nmを示す)。
8 is a transmission electron micrograph of Sn-containing In oxide particles in Comparative Example 2 (shooting condition: 200.0 KV ×).
30K, the white straight line in the lower part of the figure indicates 200 nm).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀川義史 東京都千代田区丸の内一丁目8番2号 同 和鉱業株式会社内 (72)発明者 江島光一郎 東京都千代田区丸の内一丁目8番2号 同 和鉱業株式会社内 Fターム(参考) 4J038 EA011 HA216 KA08 KA18 NA20    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshifumi Horikawa             1-8-2 Marunouchi, Chiyoda-ku, Tokyo             Within Wa Mining Co., Ltd. (72) Inventor Koichiro Ejima             1-8-2 Marunouchi, Chiyoda-ku, Tokyo             Within Wa Mining Co., Ltd. F-term (reference) 4J038 EA011 HA216 KA08 KA18                       NA20

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 長軸径が0.2μm以下、短軸径が0.
1μm以下であって、針状または板状の形状を有するこ
とを特徴とするSn含有In酸化物。
1. The major axis diameter is 0.2 μm or less, and the minor axis diameter is 0.
An Sn-containing In oxide, which has a needle-like or plate-like shape and is 1 μm or less.
【請求項2】 前記長軸径が0.1μm以下、前記短軸
径が0.05μm以下である、請求項1記載のSn含有
In酸化物。
2. The Sn-containing In oxide according to claim 1, wherein the major axis diameter is 0.1 μm or less and the minor axis diameter is 0.05 μm or less.
【請求項3】 前記長軸径/前記短軸径の軸比が1.5
〜10である、請求項1または2記載のSn含有In酸
化物。
3. The axial ratio of the major axis diameter / the minor axis diameter is 1.5.
The Sn-containing In oxide according to claim 1 or 2, which is 10 to 10.
【請求項4】 請求項1、2または3に記載のSn含有
In酸化物粒子を溶媒中または樹脂を含有した溶媒中に
分散させたことを特徴とする塗料。
4. A paint comprising the Sn-containing In oxide particles according to claim 1, 2 or 3 dispersed in a solvent or a solvent containing a resin.
【請求項5】 請求項1、2または3に記載のSn含有
In酸化物粒子を導電材として含有することを特徴とす
る導電性塗膜。
5. A conductive coating film containing the Sn-containing In oxide particles according to claim 1, 2 or 3 as a conductive material.
【請求項6】 SnとInとを含有する酸性水溶液にア
ルカリを添加して予備中和した液を昇温させ、次いでア
ルカリを添加して中和し、得られたSn含有In水酸化
物を焼成することを特徴とする、請求項1、2または3
に記載のSn含有In酸化物の製造方法。
6. A solution obtained by preliminarily neutralizing an acidic aqueous solution containing Sn and In by adding an alkali to the solution and then neutralizing the solution by adding an alkali to obtain an Sn-containing In hydroxide. Firing, characterized in that it is fired.
7. The method for producing a Sn-containing In oxide according to [4].
【請求項7】 前記酸性水溶液中の酸がHCl、HNO
またはHSOであり、前記アルカリがNH
H、NaOHまたはKOHである、請求項6記載の製造
方法。
7. The acid in the acidic aqueous solution is HCl or HNO.
3 or H 2 SO 4 , and the alkali is NH 4 O.
The production method according to claim 6, which is H, NaOH or KOH.
【請求項8】 前記予備中和後液のpHが2〜4であ
り、前記中和後液のpHが7〜8である、請求項6また
は7記載の製造方法。
8. The production method according to claim 6, wherein the pre-neutralized solution has a pH of 2 to 4, and the post-neutralized solution has a pH of 7 to 8.
【請求項9】 前記予備中和が液温45℃以下において
行われ、前記中和が液温50℃以上において行われる、
請求項6、7または8記載の製造方法。
9. The pre-neutralization is performed at a liquid temperature of 45 ° C. or lower, and the neutralization is performed at a liquid temperature of 50 ° C. or higher.
The manufacturing method according to claim 6, 7, or 8.
【請求項10】 前記焼成が水蒸気を含有する不活性ガ
ス中または水蒸気と還元性ガスとを含有する不活性ガス
中で300〜1000℃において前記Sn含有In水酸
化物粒子の形状異方性を維持して行われる、請求項6、
7、8または9記載の製造方法。
10. The shape anisotropy of the Sn-containing In hydroxide particles at 300 to 1000 ° C. in an inert gas containing water vapor or an inert gas containing water vapor and a reducing gas whose firing is performed. 7. The method according to claim 6, wherein
7. The production method according to 7, 8 or 9.
JP2001245701A 2001-08-13 2001-08-13 Sn-containing In oxide, method for producing the same, paint using the same, and conductive coating film Expired - Lifetime JP4982691B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001245701A JP4982691B2 (en) 2001-08-13 2001-08-13 Sn-containing In oxide, method for producing the same, paint using the same, and conductive coating film
US10/108,618 US6908574B2 (en) 2001-08-13 2002-03-28 Tin-containing indium oxides, a process for producing them, a coating solution using them and electrically conductive coatings formed of them
TW091106612A TWI311983B (en) 2001-08-13 2002-04-02 Tin-containing indium oxides, a process for producing them, a coating solution using them and electrically conductive coatings formed of them
KR1020020031689A KR100670621B1 (en) 2001-08-13 2002-06-05 Tin-containing indium oxides, a process for producing them, a coating solution using them and electrically conductive coatings formed of them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001245701A JP4982691B2 (en) 2001-08-13 2001-08-13 Sn-containing In oxide, method for producing the same, paint using the same, and conductive coating film

Publications (2)

Publication Number Publication Date
JP2003054949A true JP2003054949A (en) 2003-02-26
JP4982691B2 JP4982691B2 (en) 2012-07-25

Family

ID=19075400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001245701A Expired - Lifetime JP4982691B2 (en) 2001-08-13 2001-08-13 Sn-containing In oxide, method for producing the same, paint using the same, and conductive coating film

Country Status (1)

Country Link
JP (1) JP4982691B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225256A (en) * 2005-01-19 2006-08-31 Mitsubishi Materials Corp Indium tin oxide precursor, indium tin oxide film, and method for production thereof
JP2007254235A (en) * 2006-03-24 2007-10-04 Dowa Holdings Co Ltd Ito powder, and method for manufacturing the same, coating material for ito conductive film, and transparent conductive film
JP2008050234A (en) * 2006-08-28 2008-03-06 Dowa Holdings Co Ltd Indium tin oxide powder and method for producing the same, coating material for indium tin oxide conductive film, and transparent conductive film
JP2009503866A (en) * 2005-07-29 2009-01-29 ワールド・プロパティーズ・インコーポレイテッド Needle-like ITO for LED arrays
JP2010076952A (en) * 2008-09-24 2010-04-08 Dowa Electronics Materials Co Ltd METHOD FOR PRODUCING Sn-CONTAINING In OXIDE AND METHOD FOR PRODUCING CONDUCTIVE COATING MATERIAL
JP2011063494A (en) * 2009-09-18 2011-03-31 Mitsubishi Materials Corp Cylindrical indium tin oxide powder and method for producing the same
JP2011063495A (en) * 2009-09-18 2011-03-31 Mitsubishi Materials Corp Heat ray shielding composition containing cylindrical indium tin oxide powder and method for producing the same
JP2014152086A (en) * 2013-02-12 2014-08-25 Mitsubishi Materials Corp Method for producing indium tin oxide powder
WO2014168245A1 (en) * 2013-04-12 2014-10-16 三菱マテリアル株式会社 Indium tin oxide powder, dispersion of same or coating material comprising same, transparent electrically conductive film, and method for producing indium tin oxide powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680422A (en) * 1992-08-31 1994-03-22 Fuji Titan Kogyo Kk Production of acicular conductive powder
JPH08302246A (en) * 1995-05-09 1996-11-19 Sumitomo Osaka Cement Co Ltd Coating for forming transparent membrane having high electroconductivity and high membrane strength, formation of transparent membrane having high electroconductivity and membrane, strength, and cathode ray tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680422A (en) * 1992-08-31 1994-03-22 Fuji Titan Kogyo Kk Production of acicular conductive powder
JPH08302246A (en) * 1995-05-09 1996-11-19 Sumitomo Osaka Cement Co Ltd Coating for forming transparent membrane having high electroconductivity and high membrane strength, formation of transparent membrane having high electroconductivity and membrane, strength, and cathode ray tube

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225256A (en) * 2005-01-19 2006-08-31 Mitsubishi Materials Corp Indium tin oxide precursor, indium tin oxide film, and method for production thereof
JP2009503866A (en) * 2005-07-29 2009-01-29 ワールド・プロパティーズ・インコーポレイテッド Needle-like ITO for LED arrays
JP2007254235A (en) * 2006-03-24 2007-10-04 Dowa Holdings Co Ltd Ito powder, and method for manufacturing the same, coating material for ito conductive film, and transparent conductive film
JP4617506B2 (en) * 2006-03-24 2011-01-26 Dowaエレクトロニクス株式会社 ITO powder and manufacturing method thereof, coating material for ITO conductive film, and transparent conductive film
JP2008050234A (en) * 2006-08-28 2008-03-06 Dowa Holdings Co Ltd Indium tin oxide powder and method for producing the same, coating material for indium tin oxide conductive film, and transparent conductive film
JP4686776B2 (en) * 2006-08-28 2011-05-25 Dowaエレクトロニクス株式会社 ITO powder and manufacturing method thereof, coating material for ITO conductive film, and transparent conductive film
KR101352727B1 (en) 2006-08-28 2014-01-16 도와 일렉트로닉스 가부시키가이샤 ITO powder and method for manufacturing same, coating material for electroconductive ITO film, and transparent electroconductive film
JP2010076952A (en) * 2008-09-24 2010-04-08 Dowa Electronics Materials Co Ltd METHOD FOR PRODUCING Sn-CONTAINING In OXIDE AND METHOD FOR PRODUCING CONDUCTIVE COATING MATERIAL
JP2011063494A (en) * 2009-09-18 2011-03-31 Mitsubishi Materials Corp Cylindrical indium tin oxide powder and method for producing the same
JP2011063495A (en) * 2009-09-18 2011-03-31 Mitsubishi Materials Corp Heat ray shielding composition containing cylindrical indium tin oxide powder and method for producing the same
JP2014152086A (en) * 2013-02-12 2014-08-25 Mitsubishi Materials Corp Method for producing indium tin oxide powder
WO2014168245A1 (en) * 2013-04-12 2014-10-16 三菱マテリアル株式会社 Indium tin oxide powder, dispersion of same or coating material comprising same, transparent electrically conductive film, and method for producing indium tin oxide powder

Also Published As

Publication number Publication date
JP4982691B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
TWI640479B (en) Mathod for manufacturing composite-tungsten-oxide nanoparticles
JP4134314B2 (en) Method for producing conductive powder
JP4018974B2 (en) Tin oxide powder, method for producing the same, and method for producing high-density indium tin oxide target using the same
JP2009084122A (en) Ito powder and its manufacturing method, coating material for transparent electroconductive material, and transparent electroconductive film
US6908574B2 (en) Tin-containing indium oxides, a process for producing them, a coating solution using them and electrically conductive coatings formed of them
WO2023098706A1 (en) Zinc-doped indium oxide powder, sputtering target material, and preparation methods therefor
JP3936655B2 (en) Indium oxide powder, method for producing the same, and method for producing high-density indium tin oxide target using the same
JP4982691B2 (en) Sn-containing In oxide, method for producing the same, paint using the same, and conductive coating film
JP5233007B2 (en) Paint for transparent conductive material and method for producing transparent conductive film
JP3314388B2 (en) Method for producing indium hydroxide, indium oxide and ITO sintered body
WO2004089829A1 (en) Composite indium oxide particle, method for producing same, conductive coating material, conductive coating film, and conductive sheet
JP4134313B2 (en) Method for producing conductive powder
JP2007284716A (en) Nickel nanowire and production method therefor
CN109502643B (en) Boron-magnesium co-doped VO2Powder and preparation method and application thereof
JP5070554B2 (en) ITO powder, transparent conductive film and method for forming the same
JPH1017324A (en) Production of indium oxide power
JP3324164B2 (en) Indium oxide powder, method for producing the same, and method for producing ITO sintered body
JP6952051B2 (en) Method for manufacturing infrared shielding material and tin oxide particles
KR100455280B1 (en) Method of preparing indium tin oxide(ITO)
JP4251448B2 (en) Aluminum-substituted tin-containing indium oxide particles and method for producing the same, and conductive paint, conductive coating film and conductive sheet using the particles
KR101117309B1 (en) Method for producing indium tin oxides fine powder
KR101287804B1 (en) Method of manufacturing indium tin oxide target
CN115818740B (en) Synthetic method of ruthenium dioxide nano powder
JP2001220137A (en) Tin-doped indium oxide powder and its manufacturing method
JP5153541B2 (en) Method for producing Sn-containing In oxide and method for producing conductive paint

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120321

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120321

R150 Certificate of patent or registration of utility model

Ref document number: 4982691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term