JPH1017324A - Production of indium oxide power - Google Patents

Production of indium oxide power

Info

Publication number
JPH1017324A
JPH1017324A JP16992196A JP16992196A JPH1017324A JP H1017324 A JPH1017324 A JP H1017324A JP 16992196 A JP16992196 A JP 16992196A JP 16992196 A JP16992196 A JP 16992196A JP H1017324 A JPH1017324 A JP H1017324A
Authority
JP
Japan
Prior art keywords
indium oxide
indium
powder
oxide powder
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16992196A
Other languages
Japanese (ja)
Inventor
Hiromi Mochida
裕美 持田
Michihiro Tanaka
道広 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP16992196A priority Critical patent/JPH1017324A/en
Publication of JPH1017324A publication Critical patent/JPH1017324A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a high density ITO sintered compact excellent in suitability to sputtering and having high performance by using indium oxide powder obtd. by calcining indium hydroxide powder after hydrothermal treatment ion an acidic or alkaline suspension. SOLUTION: A suspension is prepd. by suspending 20-60% indium hydroxide powder having >=99.99% purity and 0.05-1μm average particle diameter in an acidic soln. of pH2-6 or an alkaline soln. of pH9-13. The suspension is hydrothermally treated at 80-300 deg.C under 2-150kgf/cm<2> pressure for 10-100hr, washing by decantation, filtration and drying at 80-120 deg.C are carried out and the resultant powder is calcined at 500-1,200 deg.C for 1-5hr in vacuum or in an atmosphere contg. gaseous oxygen to obtain the objective indium oxide powder having <=10m<2> /g BET specific surface area, >=90nm average grain diameter, <=3μm of both peak particle diameter of secondary particles and average particle diameter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水熱合成処理を施
すことにより得られる高密度ITOターゲットの原料と
なる酸化インジウム粉末に関する。
[0001] The present invention relates to an indium oxide powder used as a raw material for a high-density ITO target obtained by performing a hydrothermal synthesis treatment.

【0002】[0002]

【従来の技術】近年、液晶ディスプレイを中心としたフ
ラットパネルディスプレイの使用が急速に拡大してお
り、現在、この透明導電膜としてはITO膜が最も使用
されている。ITO膜の製造方法としては、スプレー法
や塗布法などの化学的製法、真空蒸着法やスパッタ法等
の物理的製法が知られているが、操作性の簡便さや得ら
れる膜特性が良好である等の理由からITOターゲット
を用いたスパッタリング法が広く適用されている。特
に、最近ではカラー液晶の普及によるTFT方式の採用
により、高性能なITO膜をより低温で成膜することが
要求されている。
2. Description of the Related Art In recent years, the use of flat panel displays, mainly liquid crystal displays, has been rapidly expanding. At present, ITO films are most used as the transparent conductive film. As a method for producing an ITO film, a chemical production method such as a spray method or a coating method, and a physical production method such as a vacuum evaporation method or a sputtering method are known, but the operability is simple and the obtained film characteristics are good. For these reasons, a sputtering method using an ITO target has been widely applied. In particular, recently, with the adoption of the TFT method due to the spread of color liquid crystals, it has been required to form a high-performance ITO film at a lower temperature.

【0003】このような要求を満足させるためには、I
TOターゲットを高密度化すれば良いことが知られてい
る。
In order to satisfy such demands, I
It is known that the density of the TO target should be increased.

【0004】ところで、ITOターゲットは、通常、酸
化インジウム粉末と酸化錫粉末の混合粉末や前記混合粉
末を焼成して得られるインジウム錫複合酸化物粉末(I
TO粉末)を加圧成形後、焼結して製造されている。酸
化インジウム粉末の製造方法としては、最も一般的な中
和法の他、電解法(特開平6−171937)や炭酸塩
法(特開平4−219315、特開平7−42109)
が知られており、通常これらの方法によって得られた水
酸化インジウム粉末を焼成して得られる。
[0004] The ITO target is usually made of a mixed powder of indium oxide powder and tin oxide powder or an indium tin composite oxide powder (I) obtained by firing the mixed powder.
It is manufactured by press molding and sintering (TO powder). As a method for producing indium oxide powder, in addition to the most common neutralization method, an electrolytic method (JP-A-6-171937) and a carbonate method (JP-A-4-219315, JP-A-7-42109)
Is generally obtained by calcining the indium hydroxide powder obtained by these methods.

【0005】しかしながら、ITOは難焼結性材料であ
り、これらの粉末を原料として加圧成形後、焼結して
も、その密度を上げることは困難であった。また、IT
O焼結体の密度と原料である酸化インジウム粉末の平均
結晶子径との間の相関については、何ら知られていなか
った。
However, ITO is a material that is difficult to sinter, and it is difficult to increase the density of these powders even if they are pressed and then sintered. Also, IT
No correlation has been known between the density of the O-sintered body and the average crystallite size of the indium oxide powder as the raw material.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、原料
の一部として用いて焼結すると高密度なITO焼結体に
なる酸化インジウム粉末の製造方法を提供することであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing indium oxide powder which becomes a high-density ITO sintered body when used as a part of a raw material and sintered.

【0007】[0007]

【課題を解決するための手段】本発明者らは、鋭意検討
の結果、上記目的が、水酸化インジウム粉末を酸又はア
ルカリによって水熱処理することにより得られることを
見いだした。ここに、本発明は次の通りである。
Means for Solving the Problems As a result of diligent studies, the present inventors have found that the above object can be obtained by hydrothermally treating indium hydroxide powder with an acid or an alkali. Here, the present invention is as follows.

【0008】(1)水酸化インジウム粉末を、酸性懸濁
液を用いて水熱処理した後、仮焼することにより得られ
る酸化インジウム粉末の製造方法。 (2)塩酸、硝酸、硫酸、蓚酸のうち1種又は2種以上
を使用し、pHが2以上6以下の酸性懸濁液を用いるこ
とを特徴とする上記(1)記載の製造方法。 (3)水酸化インジウム粉末を、アルカリ性懸濁液を用
いて水熱処理した後、仮焼することにより得られる酸化
インジウム粉末の製造方法。 (4)水酸化ナトリウム、水酸化カリウム、水酸化カル
シウム、アンモニア水のうち1種又は2種以上を使用
し、pHが9以上13以下のアルカリ性懸濁液を用いる
ことを特徴とする上記(3)記載の製造方法。 (5)圧力2〜150kgf/cm2 、温度80〜30
0℃で水熱処理することを特徴とする上記(1)ないし
(4)記載の製造方法。 (6)酸化インジウム粉末が、BET比表面積10m2
/g以下、平均結晶子90nm以上、二次粒子のピーク
粒径、平均粒径がともに3μm以下であることを特徴と
する上記(1)ないし(5)記載の製造方法。
(1) A method for producing an indium oxide powder obtained by subjecting an indium hydroxide powder to hydrothermal treatment using an acidic suspension and then calcining. (2) The method according to (1), wherein one or more of hydrochloric acid, nitric acid, sulfuric acid, and oxalic acid are used, and an acidic suspension having a pH of 2 to 6 is used. (3) A method for producing indium oxide powder obtained by subjecting indium hydroxide powder to hydrothermal treatment using an alkaline suspension and then calcining. (4) The above-mentioned (3), wherein one or more of sodium hydroxide, potassium hydroxide, calcium hydroxide and aqueous ammonia are used, and an alkaline suspension having a pH of 9 to 13 is used. ). (5) Pressure 2-150 kgf / cm 2 , temperature 80-30
The method according to any one of the above (1) to (4), wherein a hydrothermal treatment is performed at 0 ° C. (6) The indium oxide powder has a BET specific surface area of 10 m 2
/ G, an average crystallite of 90 nm or more, a peak particle diameter of secondary particles, and an average particle diameter of 3 μm or less.

【0009】[0009]

【発明の実施の形態】本発明の請求項1ないし6におけ
る水熱処理に用いられる水酸化インジウム粉末は中和法
や電解法等によって得ることができる。特に、粒径や純
度は限定されないが、望ましくは、平均粒径0.05〜
1μm、純度99.99%以上のものが良い。
BEST MODE FOR CARRYING OUT THE INVENTION The indium hydroxide powder used in the hydrothermal treatment according to claims 1 to 6 of the present invention can be obtained by a neutralization method, an electrolytic method or the like. In particular, the particle size and purity are not limited, but desirably, the average particle size is 0.05 to
Those having a thickness of 1 μm and a purity of 99.99% or more are preferred.

【0010】また、本発明で用いられる酸性懸濁液を作
製するのに用いられる酸は特に限定されないが、水酸イ
オンを一部溶解させるという理由から、好ましくは、塩
酸、硝酸、硫酸、蓚酸のうち1種又は2種以上が良く、
更に、好ましくは硝酸が良い。また、酸性懸濁液のpH
も限定されないが、2以上6以下が好ましく、更に好ま
しくは3以上4以下が良い。pHが2未満であるとイン
ジウムが過剰に溶解し歩留まりが悪くなり、6を越える
と溶解しにくく結晶の生長が起こりにくいからである。
The acid used for preparing the acidic suspension used in the present invention is not particularly limited, but is preferably hydrochloric acid, nitric acid, sulfuric acid, oxalic acid, for partially dissolving the hydroxide ions. One or more of them are good,
Further, nitric acid is preferred. Also, the pH of the acidic suspension
Although not limited, it is preferably 2 or more and 6 or less, and more preferably 3 or more and 4 or less. If the pH is less than 2, indium is excessively dissolved and the yield is deteriorated. If the pH is more than 6, it is difficult to dissolve and the growth of crystals is less likely to occur.

【0011】また、本発明で用いられるアルカリ性懸濁
液を作製するのに用いられるアルカリは特に限定されな
いが、可溶性の錯体を形成させるという理由から、好ま
しくは、水酸化ナトリウム、水酸化カリウム、水酸化カ
ルシウム、アンモニア水のうち1種又は2種以上が良
く、更に、好ましくはアンモニア水が良い。また、アル
カリ性懸濁液のpHも限定されないが、9以上13以下
が好ましく、更に好ましくは10以上12以下が良い。
pHが9未満であるとインジウム錯体を形成しにくく溶
解しずらいため結晶成長が起こりにくいからであり、1
3を越えると試薬を大量に使うので経済的ではないから
である。
The alkali used for preparing the alkaline suspension used in the present invention is not particularly limited, but is preferably sodium hydroxide, potassium hydroxide, water, or the like for forming a soluble complex. One or more of calcium oxide and aqueous ammonia are preferred, and more preferably, aqueous ammonia is preferred. The pH of the alkaline suspension is not limited, but is preferably 9 or more and 13 or less, and more preferably 10 or more and 12 or less.
If the pH is less than 9, it is difficult to form an indium complex and it is difficult to dissolve, so that crystal growth does not easily occur.
If it exceeds 3, it is not economical because a large amount of reagent is used.

【0012】本発明の請求項1ないし6で行われる水熱
処理は、密閉容器からなるオートクレーブを用いて行う
ことができる。その際、撹拌は行っても行わなくても良
いが、望ましくは行った方が良い。
The hydrothermal treatment performed in the first to sixth aspects of the present invention can be performed using an autoclave comprising a closed vessel. At this time, stirring may or may not be performed, but desirably is performed.

【0013】水熱処理時の懸濁液の圧力や温度は特に限
定されないが、好ましくは、圧力2〜150kgf/c
2 、温度80〜300℃が良く、更に好ましくは、圧
力80〜100kgf/cm2 、温度200〜250℃
が良い。圧力が2kgf/cm2 未満だとインジウムが
溶解しにくく生長しずらいからであり、150kgf/
cm2 を越えると装置が大がかりとなり高コストとなる
からであり、また、温度が80℃未満だと結晶生長が起
こりにくいからであり、300℃を越えると耐熱材料の
選定が困難となるからである。反応時間は、上記圧力、
温度の条件下で約10〜100時間が適当である。ま
た、懸濁液における粉末の懸濁液全体に占める重量比
は、20〜60%が適当である。
The pressure and temperature of the suspension during the hydrothermal treatment are not particularly limited, but are preferably 2 to 150 kgf / c.
m 2 , temperature 80-300 ° C., more preferably, pressure 80-100 kgf / cm 2 , temperature 200-250 ° C.
Is good. If the pressure is less than 2 kgf / cm 2 , it is difficult for indium to dissolve and it is difficult to grow.
is because exceeding cm 2 and the device becomes expensive becomes bulky, also, is because temperature is less than 80 ° C. hardly occurs crystal growth, because it exceeds 300 ° C. is selected refractory material is difficult is there. The reaction time is the above pressure,
About 10 to 100 hours under temperature conditions are suitable. The weight ratio of the powder to the entire suspension in the suspension is suitably from 20 to 60%.

【0014】水熱処理後、通常は、デカンテーションに
より洗浄後ろ過し、乾燥工程を経るというプロセスの
後、仮焼を行う。尚、乾燥は通常80〜120℃の温度
で行う。
[0014] After the hydrothermal treatment, usually, after washing by decantation, filtration, and a drying step, calcination is performed. The drying is usually performed at a temperature of 80 to 120 ° C.

【0015】本発明の請求項1ないし6で行われる仮焼
は、真空中、大気中、酸素ガス中等の雰囲気で行うこと
ができるが、安価に酸化物にするという理由から大気雰
囲気が最も好ましい。また、仮焼温度は500〜120
0℃で行うことができ、好ましくは700〜1000℃
が良い。仮焼時間は、上記雰囲気、温度の条件下で約1
〜5時間が適当である。
The calcination according to the first to sixth aspects of the present invention can be performed in an atmosphere such as vacuum, air, or oxygen gas. However, an air atmosphere is most preferable because oxides can be produced at low cost. . The calcination temperature is 500-120.
0 ° C., preferably 700-1000 ° C.
Is good. The calcination time is about 1 under the above atmosphere and temperature conditions.
~ 5 hours is appropriate.

【0016】仮焼して得られる酸化インジウム粉末の粒
径は特に限定されないが、酸化錫との混合性を向上させ
るには分散性が必要であることから、好ましくは二次粒
子の平均粒径0.5〜5μmであり、更に好ましくは平
均粒径0.9〜2μmが良い。
The particle size of the indium oxide powder obtained by calcination is not particularly limited, but the average particle size of the secondary particles is preferably used because dispersibility is required to improve the mixing property with tin oxide. The average particle diameter is preferably 0.5 to 5 μm, more preferably 0.9 to 2 μm.

【0017】本発明の特徴の1つは、水酸化インジウム
粉末をオートクレーブ等を用いて、水熱処理を行い水酸
化インジウムを再結晶化させ、その後、仮焼すると平均
結晶子径が大きく焼結の少ない酸化インジウム粉末を得
ることができ、このような平均結晶子径の大きい酸化イ
ンジウム粉末を酸化錫粉末と混合し焼結すると得られる
焼結体が高密度化するという新たな知見に基づく技術的
思想にある。水熱処理を行うと平均結晶子径が大きくな
るのは、中和法等による水酸化インジウム粉末に、加圧
・高熱処理を行うことにより、粒子が再溶解しながら再
結晶化するため結晶生長が起こり、一次粒子内の結晶子
が生長するためである。また、平均結晶子径が大きい酸
化インジウム粉末を原料の一部として用いて焼結すると
高密度化が図られるのは、一次粒子がしまっており、真
密度が大きく、しかも二次粒子が生長しずらく、分散性
が良いためである。
One of the features of the present invention is that the indium hydroxide powder is subjected to hydrothermal treatment using an autoclave or the like to recrystallize the indium hydroxide, and then, when calcined, the average crystallite diameter becomes large and the sintering becomes difficult. It is possible to obtain a small amount of indium oxide powder, a technical technology based on the new knowledge that when the indium oxide powder having such a large average crystallite diameter is mixed with tin oxide powder and sintered, the resulting sintered body has a high density. In thought. The average crystallite diameter increases when hydrothermal treatment is performed, because the particles are recrystallized while re-dissolving the particles by applying pressure and high heat treatment to indium hydroxide powder by a neutralization method, etc. This occurs because crystallites in the primary particles grow. When indium oxide powder having a large average crystallite diameter is used as a part of the raw material and sintered, a high density is achieved because the primary particles are closed, the true density is large, and the secondary particles grow. This is because the dispersibility is good.

【0018】また、本発明で得られる酸化インジウム粉
末は、容易に高密度化できるという点から、(6)に記
載されている通り、BET比表面積10m2 /g以下、
平均結晶子径90nm以上、二次粒子のピーク粒径、平
均粒径がともに3μm以下が好ましく、更に好ましく
は、BET比表面積8m2 /g以下、平均結晶子径10
0nm以上、二次粒子のピーク粒径が1.5μm以下、
二次粒子の平均粒径が2μm以下が良い。ここで、平均
結晶子径は、X線回折法に基づき回折線のピークの幅か
ら理論的に計算して求めることができる。例えば、平均
結晶子径が大きいと回折ピークが高くなり、又幅は狭く
なって、鋭い明確なピークが現れる。また、二次粒子の
ピーク粒径とは、レーザー分光法、沈降法等で測定した
粒径と重量分布の最大集団により定義される値のことで
ある。また、二次粒子の平均粒径は、例えばマイクロト
ラック法等のレーザー分光法によって測定することがで
きる。ここで、二次粒子とは一次粒子の凝集により形成
される粒子のことをいう。BET比表面積とは、BET
法により測定される単位重量あたりの粒子の表面積のこ
とである。
Further, the indium oxide powder obtained by the present invention can be easily densified, and therefore, as described in (6), has a BET specific surface area of 10 m 2 / g or less.
The average crystallite diameter is preferably 90 nm or more, the peak particle diameter of the secondary particles and the average particle diameter are both preferably 3 μm or less, more preferably 8 m 2 / g or less of BET specific surface area, and the average crystallite diameter is
0 nm or more, the peak particle size of the secondary particles is 1.5 μm or less,
The average particle size of the secondary particles is preferably 2 μm or less. Here, the average crystallite diameter can be theoretically calculated from the peak width of the diffraction line based on the X-ray diffraction method. For example, when the average crystallite diameter is large, the diffraction peak becomes high and the width becomes narrow, and a sharp and clear peak appears. The peak particle diameter of the secondary particles is a value defined by the particle diameter measured by laser spectroscopy, sedimentation method, and the like and the maximum population of the weight distribution. The average particle size of the secondary particles can be measured by, for example, laser spectroscopy such as a microtrack method. Here, the secondary particles refer to particles formed by aggregation of the primary particles. BET specific surface area is BET
It is the surface area of the particles per unit weight measured by the method.

【0019】以下に、実施例及び比較例を記載する。
尚、本発明は本実施例に拘泥されるものではない。
Hereinafter, Examples and Comparative Examples will be described.
The present invention is not limited to the present embodiment.

【0020】[0020]

【実施例及び比較例】[Examples and Comparative Examples]

実施例1 金属インジウムを硝酸で溶解した後、アンモニア水で加
水分解反応を行って得た水酸化インジウム粉末を原料と
して500g用いて、容積5lのオートクレーブにて、
10gの硫酸溶液を用いpH3.0に調整し温度220
℃、圧力30kgf/cm2 で20時間、60rpmで
撹拌させながら水熱処理を行った。しかる後、大気雰囲
気中で800℃で5時間仮焼を行った。このようにして
得られた酸化インジウム粉末の平均結晶子径をX線回折
法を用いて測定すると80nmであり、二次粒子の平均
粒径をマイクロトラック法で測定すると2.0μmであ
った。また、BET比表面積は9.5m2 /gであり、
二次粒子のピーク粒径は0.9μmであった。この粉末
90gを、平均粒径10μmの酸化錫粉末10gとボー
ルミル法にて24時間混合して、酸化インジウム−酸化
錫混合粉末を得た。この混合粉末70gを原料として用
い、1tf/cm2 でプレス成形し、酸素雰囲気中にて
1600℃で3時間焼結を行った。その結果得られたI
TO焼結体の密度をピクノメーター真比重計測法で測定
すると相対密度95%であった。この結果を表1に示し
た。
Example 1 After dissolving metal indium with nitric acid, a hydrolysis reaction was performed with ammonia water, and 500 g of indium hydroxide powder obtained as a raw material was used in a 5-liter autoclave.
The pH was adjusted to 3.0 using 10 g of sulfuric acid solution and the temperature was adjusted to 220.
The hydrothermal treatment was performed while stirring at 60 rpm for 20 hours at 30 ° C. and a pressure of 30 kgf / cm 2 . Thereafter, calcination was performed at 800 ° C. for 5 hours in the air atmosphere. The average crystallite diameter of the indium oxide powder thus obtained was 80 nm when measured by an X-ray diffraction method, and the average particle diameter of the secondary particles was 2.0 μm when measured by a microtrack method. The BET specific surface area is 9.5 m 2 / g,
The peak particle size of the secondary particles was 0.9 μm. 90 g of this powder was mixed with 10 g of tin oxide powder having an average particle size of 10 μm by a ball mill for 24 hours to obtain an indium oxide-tin oxide mixed powder. Using 70 g of the mixed powder as a raw material, the mixture was press-molded at 1 tf / cm 2 and sintered at 1600 ° C. for 3 hours in an oxygen atmosphere. The resulting I
When the density of the TO sintered body was measured by a true pycnometer specific gravity measurement method, the relative density was 95%. The results are shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】実施例2〜5 水熱処理時に酸性又はアルカリ性にするための添加媒
質、同じく水熱処理時のpH、温度、圧力、及び仮焼時
の焼成温度を表1のように変えた他は実施例1と同様に
してITO焼結体を製造し得られた焼結体の密度、及び
仮焼後の酸化インジウム粉末の平均結晶子径等を実施例
1と同様に測定した。この結果を表1に示した。
Examples 2 to 5 Except that the addition medium for making it acidic or alkaline during hydrothermal treatment, and the pH, temperature and pressure during hydrothermal treatment and the calcination temperature during calcination were changed as shown in Table 1, The density of the sintered body obtained by manufacturing the ITO sintered body in the same manner as in Example 1, and the average crystallite diameter of the indium oxide powder after calcination were measured in the same manner as in Example 1. The results are shown in Table 1.

【0023】実施例6 金属インジウムを陽極とし、硝酸アンモニウムを電解液
として電流密度700A/m2 、電解液濃度1モル/l
で電解を行う陽極酸化法にて得た水酸化インジウム粉末
を原料として500g用いて、容積5lのオートクレー
ブにて、25gの塩酸溶液を用いpH2.8に調整し温
度330℃、圧力150kgf/cm2で20時間、5
0rpmで撹拌させながら水熱処理を行った。しかる
後、空気雰囲気中で700℃で4時間仮焼を行った。こ
のようにして得られた酸化インジウム粉末の平均結晶子
径をX線回折法を用いて測定すると108nmであり、
二次粒子の平均粒径をマイクロトラック法で測定すると
0.6μmであった。また、BET比表面積は9.8m
2 /gであり、二次粒子のピーク粒径は1.0μmであ
った。この粉末90gを、平均粒径10μmの酸化錫粉
末10gとボールミル法にて24時間混合して、酸化イ
ンジウム−酸化錫混合粉末を得た。この混合粉末70g
を原料として用い、1tf/cm2 でプレス成形し、酸
素雰囲気中にて1600℃で3時間焼結を行った。その
結果得られたITO焼結体の密度を比重ビン法で測定す
ると相対密度98%であった。この結果を表1に示し
た。
Example 6 A current density of 700 A / m 2 , an electrolyte concentration of 1 mol / l, using metal indium as an anode and ammonium nitrate as an electrolyte.
Using 500 g of indium hydroxide powder obtained by the anodizing method as a raw material, the pH was adjusted to 2.8 using a 25 g hydrochloric acid solution in a 5 L autoclave, and the temperature was 330 ° C. and the pressure was 150 kgf / cm 2. 20 hours at 5
The hydrothermal treatment was performed while stirring at 0 rpm. Thereafter, calcination was performed at 700 ° C. for 4 hours in an air atmosphere. The average crystallite diameter of the indium oxide powder thus obtained was 108 nm when measured using an X-ray diffraction method.
The average particle size of the secondary particles was 0.6 μm as measured by the microtrack method. The BET specific surface area is 9.8m
2 / g, and the peak particle diameter of the secondary particles was 1.0 μm. 90 g of this powder was mixed with 10 g of tin oxide powder having an average particle size of 10 μm by a ball mill for 24 hours to obtain an indium oxide-tin oxide mixed powder. 70 g of this mixed powder
Was press-formed at 1 tf / cm 2 and sintered at 1600 ° C. for 3 hours in an oxygen atmosphere. When the density of the resulting ITO sintered body was measured by the specific gravity bin method, the relative density was 98%. The results are shown in Table 1.

【0024】実施例7〜10 水熱処理時に酸性又はアルカリ性にするための添加媒
質、同じく水熱処理時のpH、温度、圧力、及び仮焼時
の焼成温度を表2のように変えた他は実施例6と同様に
してITO焼結体を製造し得られた焼結体の密度、及び
仮焼後の酸化インジウム粉末の平均粒径及び平均結晶子
径等を実施例6と同様に測定した。この結果を表2に示
した。
Examples 7 to 10 Except that the additive medium for making it acidic or alkaline at the time of hydrothermal treatment, and the pH, temperature and pressure during hydrothermal treatment and the calcination temperature during calcination were changed as shown in Table 2, The density of the sintered body obtained by manufacturing an ITO sintered body in the same manner as in Example 6, and the average particle diameter and average crystallite diameter of the calcined indium oxide powder were measured in the same manner as in Example 6. The results are shown in Table 2.

【0025】[0025]

【表2】 [Table 2]

【0026】実施例11 実施例1〜10で得られたITO焼結体をターゲットと
して用いてDCマグネトロンスパッタリング法で成膜を
行ったところ、ショートの原因となるノジュールが発生
せず、長時間にわたって安定な導電性薄膜が得られた。
Example 11 A film was formed by a DC magnetron sputtering method using the ITO sintered body obtained in Examples 1 to 10 as a target. A stable conductive thin film was obtained.

【0027】比較例1 実施例1〜5で用いた水酸化インジウムと同じ水酸化イ
ンジウム粉末を用いて、水熱処理を行わずに、即仮焼を
行った他は実施例1と同じ工程を径て得たITO焼結体
の密度、及び仮焼後の酸化インジウム粉末の平均結晶子
径等を実施例1と同様に測定した。この結果を表2に併
せて示した。
Comparative Example 1 The same process as in Example 1 was carried out except that the same indium hydroxide powder as used in Examples 1 to 5 was used and calcined immediately without performing hydrothermal treatment. The density of the obtained ITO sintered body, the average crystallite diameter of the indium oxide powder after calcination, and the like were measured in the same manner as in Example 1. The results are shown in Table 2.

【0028】比較例2 実施例6〜10で用いた水酸化インジウムと同じ水酸化
インジウム粉末を用いて、水熱処理を行わずに、即仮焼
を行った他は実施例6と同じ工程を経て得たITO焼結
体の密度、及び仮焼後の酸化インジウム粉末の平均結晶
子径等を実施例1と同様に測定した。この結果を表2に
併せて示した。
Comparative Example 2 The same indium hydroxide powder as indium hydroxide used in Examples 6 to 10 was used, except that it was calcined immediately without hydrothermal treatment, but through the same steps as in Example 6. The density of the obtained ITO sintered body, the average crystallite diameter of the indium oxide powder after calcination, and the like were measured in the same manner as in Example 1. The results are shown in Table 2.

【0029】比較例3 比較例1〜2で得られたITO焼結体をターゲットとし
て用いてDCマグネトロンスパッタリング法で成膜を行
ったところ、ショートの原因となるノジュールが多く発
生し、得られた膜の導電特性も悪かった。
Comparative Example 3 When a film was formed by a DC magnetron sputtering method using the ITO sintered body obtained in Comparative Examples 1 and 2 as a target, a number of nodules causing a short circuit were generated, and the obtained film was obtained. The conductive properties of the film were also poor.

【0030】以上により、本実施例のITO焼結体はい
ずれも密度が90%以上であり、高特性であることがあ
きらかである。
As described above, all of the ITO sintered bodies of the present embodiment have a density of 90% or more and clearly have high characteristics.

【0031】[0031]

【発明の効果】表1から明らかなように、本発明の酸化
インジウム粉末を用いると、容易に、スパッタリング特
性等に優れた高性能な高密度ITO焼結体が得られる。
As is clear from Table 1, when the indium oxide powder of the present invention is used, a high-performance high-density ITO sintered body excellent in sputtering characteristics and the like can be easily obtained.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】水酸化インジウム粉末を、酸性懸濁液を用
いて水熱処理した後、仮焼することにより得られる酸化
インジウム粉末の製造方法。
1. A method for producing an indium oxide powder obtained by subjecting an indium hydroxide powder to hydrothermal treatment using an acidic suspension and then calcining it.
【請求項2】塩酸、硝酸、硫酸、蓚酸のうち1種又は2
種以上を使用し、pHが2以上6以下の酸性懸濁液を用
いることを特徴とする請求項1記載の製造方法。
2. One or two of hydrochloric acid, nitric acid, sulfuric acid and oxalic acid.
The method according to claim 1, wherein an acidic suspension having a pH of 2 or more and 6 or less is used.
【請求項3】水酸化インジウム粉末を、アルカリ性懸濁
液を用いて水熱処理した後、仮焼することにより得られ
る酸化インジウム粉末の製造方法。
3. A method for producing an indium oxide powder obtained by subjecting an indium hydroxide powder to a hydrothermal treatment using an alkaline suspension and then calcining.
【請求項4】水酸化ナトリウム、水酸化カリウム、水酸
化カルシウム、アンモニア水のうち1種又は2種以上を
使用し、pHが9以上13以下のアルカリ性懸濁液を用
いることを特徴とする請求項3記載の製造方法。
4. The method according to claim 1, wherein one or more of sodium hydroxide, potassium hydroxide, calcium hydroxide and aqueous ammonia is used, and an alkaline suspension having a pH of 9 to 13 is used. Item 3. The production method according to Item 3.
【請求項5】圧力2〜150kgf/cm2 、温度80
〜300℃で水熱処理することを特徴とする請求項1な
いし4記載の製造方法。
5. A pressure of 2 to 150 kgf / cm 2 and a temperature of 80.
The method according to any one of claims 1 to 4, wherein a hydrothermal treatment is performed at a temperature of 300 to 300 ° C.
【請求項6】酸化インジウム粉末が、BET比表面積1
0m2 /g以下、平均結晶子径90nm以上、二次粒子
のピーク粒径、平均粒径がともに3μm以下であること
を特徴とする請求項1ないし5記載の製造方法。
6. An indium oxide powder having a BET specific surface area of 1
0 m 2 / g or less, an average crystallite size 90nm or more, the peak particle diameter of the secondary particles, the production method of claims 1 to 5, wherein the average particle diameter of both 3μm or less.
JP16992196A 1996-06-28 1996-06-28 Production of indium oxide power Withdrawn JPH1017324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16992196A JPH1017324A (en) 1996-06-28 1996-06-28 Production of indium oxide power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16992196A JPH1017324A (en) 1996-06-28 1996-06-28 Production of indium oxide power

Publications (1)

Publication Number Publication Date
JPH1017324A true JPH1017324A (en) 1998-01-20

Family

ID=15895427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16992196A Withdrawn JPH1017324A (en) 1996-06-28 1996-06-28 Production of indium oxide power

Country Status (1)

Country Link
JP (1) JPH1017324A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100474846B1 (en) * 2002-03-22 2005-03-09 삼성코닝 주식회사 Indium oxide powder, manufacturing method thereof, and manufacturing method of high density indium tin oxide target using the same
US7799312B2 (en) 2002-03-22 2010-09-21 Samsung Corning Precision Glass Co., Ltd. Method for manufacturing high-density indium tin oxide target, methods for preparing tin oxide powder and indium oxide powder used therefor
KR100993171B1 (en) 2008-08-27 2010-11-09 고려대학교 산학협력단 Gas sensor using nano-porous indium oxide spherical structure and fabrication method thereof
CN102963922A (en) * 2012-10-26 2013-03-13 河南圣玛斯光电科技有限公司 Hydrothermal synthesis method for indium oxide with cubic crystal structure
JP2017047353A (en) * 2015-08-31 2017-03-09 パナソニックIpマネジメント株式会社 Method for recovering indium
CN106732517A (en) * 2016-11-28 2017-05-31 青岛科技大学 A kind of preparation method of the indium hydroxide photochemical catalyst with regular cube structure
JP2020066566A (en) * 2018-10-26 2020-04-30 株式会社アルバック Manufacturing method of indium oxide powder
JP2020066565A (en) * 2018-10-26 2020-04-30 株式会社アルバック Manufacturing method of indium oxide powder
JP2021138594A (en) * 2020-03-06 2021-09-16 ▲鄭▼州大学 Preparation method of indium oxide spherical powder capable of controllable grain shape

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100474846B1 (en) * 2002-03-22 2005-03-09 삼성코닝 주식회사 Indium oxide powder, manufacturing method thereof, and manufacturing method of high density indium tin oxide target using the same
US7799312B2 (en) 2002-03-22 2010-09-21 Samsung Corning Precision Glass Co., Ltd. Method for manufacturing high-density indium tin oxide target, methods for preparing tin oxide powder and indium oxide powder used therefor
KR100993171B1 (en) 2008-08-27 2010-11-09 고려대학교 산학협력단 Gas sensor using nano-porous indium oxide spherical structure and fabrication method thereof
CN102963922A (en) * 2012-10-26 2013-03-13 河南圣玛斯光电科技有限公司 Hydrothermal synthesis method for indium oxide with cubic crystal structure
JP2017047353A (en) * 2015-08-31 2017-03-09 パナソニックIpマネジメント株式会社 Method for recovering indium
CN106732517A (en) * 2016-11-28 2017-05-31 青岛科技大学 A kind of preparation method of the indium hydroxide photochemical catalyst with regular cube structure
JP2020066566A (en) * 2018-10-26 2020-04-30 株式会社アルバック Manufacturing method of indium oxide powder
JP2020066565A (en) * 2018-10-26 2020-04-30 株式会社アルバック Manufacturing method of indium oxide powder
JP2021138594A (en) * 2020-03-06 2021-09-16 ▲鄭▼州大学 Preparation method of indium oxide spherical powder capable of controllable grain shape

Similar Documents

Publication Publication Date Title
JP4018974B2 (en) Tin oxide powder, method for producing the same, and method for producing high-density indium tin oxide target using the same
US9350020B2 (en) Metal phosphate containing manganese and method for its production
KR20080078864A (en) Methods for production of metal oxide nano particles, and nano particles and preparations produced thereby
CA2848964A1 (en) Metal phosphates and process for the preparation thereof
CN111740167A (en) Nano titanium aluminum lithium phosphate solid electrolyte, preparation method thereof, lithium ion battery and electric equipment
JP3936655B2 (en) Indium oxide powder, method for producing the same, and method for producing high-density indium tin oxide target using the same
US6051166A (en) Indium oxide-tin oxide powders and method for producing the same
EP2840068B1 (en) Manganese (iii, iv)-tetraoxide particles and method for their production
JPH1017324A (en) Production of indium oxide power
JP5233007B2 (en) Paint for transparent conductive material and method for producing transparent conductive film
EP1777198A1 (en) Fine barium titanate particles
JP3314388B2 (en) Method for producing indium hydroxide, indium oxide and ITO sintered body
US5866493A (en) Method of manufacturing a sintered body of indium tin oxide
CN110817966A (en) Preparation method of spherical manganese carbonate
JP4841029B2 (en) Tin oxide-added indium oxide powder and method for producing the same
JP3289335B2 (en) Method for producing indium oxide powder and ITO sintered body
CN111094189A (en) Method for preparing electrode active material
JPH11292548A (en) Tricobalt tetroxide and its production
JPH09183620A (en) Bismuth oxycarbonate powder and its production
JP4982691B2 (en) Sn-containing In oxide, method for producing the same, paint using the same, and conductive coating film
JPH11322336A (en) Production of tin oxide powder
JP3173440B2 (en) Method for producing tin oxide powder
Srisombat et al. Chemical synthesis of magnesium niobate powders
JPH11322335A (en) Gallium oxide and its production
JPH1179745A (en) Production of indium oxide powder for ito target

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030902