JP2000048639A - Composite structure gel electrolyte sheet laminated body - Google Patents

Composite structure gel electrolyte sheet laminated body

Info

Publication number
JP2000048639A
JP2000048639A JP10214275A JP21427598A JP2000048639A JP 2000048639 A JP2000048639 A JP 2000048639A JP 10214275 A JP10214275 A JP 10214275A JP 21427598 A JP21427598 A JP 21427598A JP 2000048639 A JP2000048639 A JP 2000048639A
Authority
JP
Japan
Prior art keywords
sea
electrolyte
island
gel electrolyte
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10214275A
Other languages
Japanese (ja)
Inventor
Takashi Namikata
尚 南方
Masaaki Sasayama
昌聡 笹山
Takehiro Koga
健裕 古賀
Satoru Yamazaki
悟 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP10214275A priority Critical patent/JP2000048639A/en
Publication of JP2000048639A publication Critical patent/JP2000048639A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To enhance ion conductivity by laminating a gel electrolyte sheet having two kinds of sea-island structures different in the sea and an island in a freezing state by liquid nitrogen. SOLUTION: In an electrolyte sheet laminated body, a first sea-island structure is a structure that an ion conductive polymer phase is distributed in the sea part and an electrolyte is distributed in the island part. A second sea-island structure is a structure that an ion conductive polymer phase is distributed in the island part and an electrolyte is distributed in the sea part. High mechanical strength and high ion conductivity are attained by forming a complex of an electrolyte sheet having such first/second sea-island structures, when the structures are used for a battery by integrating electrodes and this laminated body, a short circuit between the electrodes can be prevented, and high ion conductivity can be realized. A polyvinylidene fluoride polymer is desirable as a polymer constituting the electrolyte sheet.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、イオン伝導性高分
子材料およびこれをイオン移動媒体として用いた電池に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion conductive polymer material and a battery using the same as an ion transfer medium.

【0002】[0002]

【従来の技術】固体電解質をイオン移動媒体として構成
した固体電池は、従来の電解液をイオン移動媒体とした
電池に比べ、液漏れがないため電池の信頼性、安全性が
向上するとともに、薄膜化や積層体形成の容易さ、電池
形態の自由度が高いこと、パッケージの簡略化、軽量化
が期待されている。この固体電解質材料として、イオン
伝導性のセラミック材料またはポリマー材料が提案され
ている。このうち前者のセラミック系材料はもろい性質
を有し、加工性に乏しく電極との積層体形成が難しい。
一方イオン伝導性ポリマー材料は加工性、柔軟性に優れ
るため固体電解質材料として電極との接合体形成、電極
のイオン授受に伴う電極体積変化に追随した界面保持が
できるなど好ましい。
2. Description of the Related Art A solid battery comprising a solid electrolyte as an ion transfer medium has less liquid leakage than a conventional battery using an electrolyte as an ion transfer medium, so that the reliability and safety of the battery are improved and a thin film is formed. It is expected that simplicity and ease of formation of a laminate, high degree of freedom in battery form, simplification of the package, and weight reduction are expected. As this solid electrolyte material, an ion conductive ceramic material or a polymer material has been proposed. Among them, the former ceramic material has fragile properties, poor workability, and makes it difficult to form a laminate with an electrode.
On the other hand, an ion conductive polymer material is preferable because it is excellent in processability and flexibility because it can be used as a solid electrolyte material because it can form a bonded body with an electrode and maintain an interface that follows a change in electrode volume due to ion transfer of the electrode.

【0003】この固体電解質として、Wrightによ
りポリエチレンオキシドのアルカリ金属塩複合体の報告
(British Polymer Journal、
7巻、319ページ(1975年)以来、ポリエチレン
オキシド、ポリプロピレンオキシドなどのポリアルキレ
ンエーテル系材料を中心とする材料、ポリアクリロニト
リル、ポリフォスファゼン、ポリシロキサンなどの材料
を骨格としたポリマー固体電解質材料が活発に研究され
ている。
As a solid electrolyte, Wright reported an alkali metal salt complex of polyethylene oxide (British Polymer Journal,
Since Volume 7, p. 319 (1975), materials based on polyalkylene ether materials such as polyethylene oxide and polypropylene oxide, and polymer solid electrolyte materials based on materials such as polyacrylonitrile, polyphosphazene and polysiloxane have been developed. Actively researched.

【0004】これらのポリマー固体電解質は通常はポリ
マー中に電解質が固溶した形態をとり、ドライ系ポリマ
ー固体電解質として知られている。また、電解質解離度
を増大させたり、ポリマーの分子運動を促進してイオン
伝導度を向上させるために、電解質溶媒を添加し、ポリ
マー中に電解質および電解質溶媒を含有させたゲル電解
質が知られている(例えば、特許公開昭56−1433
56号)。この電解質溶媒に電解質を溶解させたもの
(以下、電解液と称する)をポリマーに導入する方法と
して、ポリマーと可塑剤を混合して均一溶液とした後固
化成形、可塑剤を一旦抽出してから、電解液を含浸する
か、もしくは該可塑剤を電解液で置換する方法が知られ
ている。また、ポリマーと電解液の均一溶液をキャスト
する方法(例えば、米国特許公報5296318号)も
知られており、ポリマーには電解液に用いられる電解質
溶媒と加温時に均一溶液を形成しやすいポリマーが用い
られ、例えばエチレンカーボネート、プロピレンカーボ
ネート等を電解質溶媒に用いたポリフッ化ビニリデン系
ポリマーが一般的である。しかしながら、従来のゲル電
解質は85℃〜110℃の温度で融解し流動性を示すた
め、電池として短絡を起こす危険があり安全性が問題で
あった。そこで、ポリマー、可塑剤とともに重合性のビ
ニルモノマーを共存させ、この重合性モノマーを架橋さ
せて、可塑剤抽出後電解液を含浸させたゲル電解質も提
案されている(米国特許5429891号)が、この方
法は重合性ビニルモノマーが電気化学的に不安定である
ことおよび架橋時に可塑剤、重合性ビニルモノマーが副
反応を起こしやすいことから電池用材料として問題があ
った。
[0004] These polymer solid electrolytes usually take the form of a solid solution of the electrolyte in a polymer, and are known as dry polymer solid electrolytes. In addition, in order to increase the degree of dissociation of the electrolyte or to promote the molecular motion of the polymer to improve the ionic conductivity, an electrolyte solvent is added, and an electrolyte and a gel electrolyte in which the electrolyte solvent is contained in the polymer are known. (For example, Japanese Patent Publication No. 56-1433)
No. 56). As a method of introducing a solution in which an electrolyte is dissolved in this electrolyte solvent (hereinafter referred to as an electrolyte solution) into a polymer, a polymer and a plasticizer are mixed to form a uniform solution, and then solidification molding, and once the plasticizer is extracted, A method of impregnating with an electrolytic solution or replacing the plasticizer with an electrolytic solution is known. A method of casting a homogeneous solution of a polymer and an electrolyte is also known (for example, US Pat. No. 5,296,318). The polymer includes an electrolyte solvent used for the electrolyte and a polymer which easily forms a uniform solution when heated. For example, polyvinylidene fluoride polymers using ethylene carbonate, propylene carbonate or the like as an electrolyte solvent are generally used. However, since the conventional gel electrolyte melts at a temperature of 85 ° C. to 110 ° C. and exhibits fluidity, there is a danger of causing a short circuit as a battery, and safety is a problem. Therefore, a gel electrolyte in which a polymerizable vinyl monomer coexists with a polymer and a plasticizer, the polymerizable monomer is cross-linked, and a plasticizer is extracted and impregnated with an electrolyte solution has been proposed (US Pat. No. 5,429,891). This method has a problem as a battery material because the polymerizable vinyl monomer is electrochemically unstable and the plasticizer and the polymerizable vinyl monomer easily cause side reactions during crosslinking.

【0005】また、ゲル電解質シートの機械的強度向上
のため、貫通孔をもつポリオレフィン系ポリマー多孔質
媒体中にポリエチレンオキシドなどのイオン伝導性高分
子を導入したポリマー固体電解質(特許公開昭63−1
02104号)や、イオン伝導性高分子ラテックスとイ
オン非伝導性ラテックスの混合体を塗布成形したポリマ
ー固体電解質(特許公開平4−325990号)が提案
されている。ところが、これらの材料はイオン非伝導性
マトリックスを持つためイオン伝導度が低くなり問題で
あった。
Further, in order to improve the mechanical strength of the gel electrolyte sheet, a polymer solid electrolyte in which an ion-conductive polymer such as polyethylene oxide is introduced into a polyolefin polymer porous medium having through holes (Japanese Patent Publication No. 63-1)
No. 02104) and a polymer solid electrolyte obtained by coating and forming a mixture of an ion-conductive polymer latex and an ion-non-conductive latex (Japanese Patent Application Laid-Open No. 4-325990). However, these materials have a problem in that they have an ionic non-conductive matrix and thus have low ionic conductivity.

【0006】[0006]

【発明が解決しようとする課題】本発明は、高いイオン
伝導度を有するゲル電解質シートであり、かつ室温およ
び加熱加工時の機械的強度を兼ね備えたゲル電解質シー
トの提供を目的とし、さらにこの材料を用いた、高速充
放電性、繰り返し充放電性や安全性に優れた電池やキャ
パシターなどの電気化学素子を提供することを目的とす
SUMMARY OF THE INVENTION An object of the present invention is to provide a gel electrolyte sheet having high ionic conductivity and having both room temperature and mechanical strength at the time of heat processing. An object of the present invention is to provide an electrochemical element such as a battery and a capacitor which is excellent in high-speed charge / discharge property, repetitive charge / discharge property and safety using the same.

【0007】[0007]

【課題を解決するための手段】本発明者らは前記課題を
解決するために、ゲル電解質シートの研究を進めた結
果、高いイオン伝導度を有し、高温構造安定性に優れた
複合構造ゲル電解質シートを見出し、さらにそれを用い
て高速充放電性、繰り返し充放電性や安全性に優れた電
池やキャパシターなどの電気化学素子を見出し、本発明
をなすに至った。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have studied a gel electrolyte sheet, and as a result, have found that a composite gel having high ionic conductivity and excellent high-temperature structural stability has been obtained. The present inventors have found an electrolyte sheet, and have further found an electrochemical element such as a battery or a capacitor which is excellent in high-speed charge / discharge property, repetitive charge / discharge property and safety by using the electrolyte sheet, and has accomplished the present invention.

【0008】即ち、本発明は 1, 液体窒素による凍結状態で下記(I)および(I
I)の海島構造を有するゲル電解質シートが積層されて
いることを特徴とする複合構造ゲル電解質シート積層
体。 (I) 海が電解質を溶解した電解質溶媒からなる電解
液を含浸したポリマー相、および島が該電解液からなる
海島構造。 (II)島が電解質を溶解した電解質溶媒からなる電解
液を含浸したポリマー相、および海が該電解液からなる
海島構造。 2、 少なくとも一方の面が(II)の構造であること
を特徴とする1記載の複合構造ゲル電解質シート積層
体。 3、 ポリマーがポリフッ化ビニリデン系ポリマーであ
ることを特徴とする1または2の複合構造ゲル電解質シ
ート積層体。 4, 1〜3いずれかの複合構造ゲル電解質シート積層
体が電極に接合した電気化学素子に関する。
That is, the present invention relates to the following (I) and (I) when frozen in liquid nitrogen.
A composite gel electrolyte sheet laminate, wherein the gel electrolyte sheet having the sea-island structure of I) is laminated. (I) A polymer phase in which the sea is impregnated with an electrolytic solution composed of an electrolyte solvent in which an electrolyte is dissolved, and a sea-island structure in which islands are composed of the electrolytic solution. (II) A polymer phase in which an island is impregnated with an electrolytic solution comprising an electrolyte solvent in which an electrolyte is dissolved, and a sea-island structure in which the sea is composed of the electrolytic solution. 2. The composite gel electrolyte sheet laminate according to 1, wherein at least one surface has the structure of (II). 3. The composite electrolyte gel electrolyte sheet according to 1 or 2, wherein the polymer is a polyvinylidene fluoride-based polymer. The present invention relates to an electrochemical device in which any one of the composite structure gel electrolyte sheet laminates 4 and 1 to 3 is bonded to an electrode.

【0009】以下に、本発明の構成要件について説明す
る。本発明におけるゲル電解質シートの海島構造とは、
電解液を含浸したポリマーからなる相(以下、イオン伝
導性ポリマー相と称する)と、該電解液が相分離した状
態の構造をしており、−30℃〜−10℃でその断面を
観察したときにイオン伝導性ポリマー相と電解液の一方
の相が他方の相の中に孤立した粒子状に分散した状態が
あたかも海島状に見えることから海島構造と言う。
Hereinafter, the constituent requirements of the present invention will be described. The sea-island structure of the gel electrolyte sheet in the present invention,
A phase composed of a polymer impregnated with an electrolytic solution (hereinafter referred to as an ion-conductive polymer phase) and a structure in which the electrolytic solution is phase-separated, and its cross section was observed at −30 ° C. to −10 ° C. Sometimes the state in which one phase of the ion-conductive polymer phase and the electrolyte is dispersed in the other phase in the form of isolated particles looks like a sea-island structure.

【0010】これらの海島構造の観察は、試料を液体窒
素で凍結後凍結割断などによって断面を作製し、この断
面を電子顕微鏡の試料ステージを前記温度に保持しなが
ら試料観察する方法で行うことができる。例えば、ポリ
フッ化ビニリデン系ポリマーとエチレンカーボネート系
電解液を用いた場合の第一の海島構造では、ポリマーが
ポリマーマトリックスとして断面がフラットな形状の海
構造となり、電解液が島構造と判別できる。断面構造に
おける島部の平均粒径は長径と短径の平均径を単純積算
平均として表す。
Observation of these sea-island structures can be performed by freezing a sample in liquid nitrogen, forming a cross section by freezing cleavage, and observing the cross section while holding the sample stage of the electron microscope at the above temperature. it can. For example, in the first sea-island structure in which a polyvinylidene fluoride-based polymer and an ethylene carbonate-based electrolyte are used, the polymer has a polymer matrix to form a sea structure having a flat cross section, and the electrolyte can be discriminated as an island structure. The average particle diameter of the island portion in the cross-sectional structure is represented by a simple integrated average of the average diameter of the major axis and the minor axis.

【0011】本発明は、以下に示す第一、第二の2種類
の海島構造を含むことを特徴とする複合構造のゲル電解
質シートに関するものである。本発明の複合構造を形成
する第一の海島構造は、海島構造の海の部分にイオン伝
導性ポリマー相が分布し、島の部分に電解液が分布する
構造である。また、第二の海島構造は、海島構造の島の
部分にイオン伝導性ポリマー相が分布し、海の部分に電
解液が分布する構造である。
The present invention relates to a gel electrolyte sheet having a composite structure characterized by including the following first and second types of sea-island structures. The first sea-island structure forming the composite structure of the present invention is a structure in which the ion-conductive polymer phase is distributed in the sea portion of the sea-island structure and the electrolyte is distributed in the island portion. Further, the second sea-island structure is a structure in which the ion-conductive polymer phase is distributed in the island portion of the sea-island structure and the electrolyte is distributed in the sea portion.

【0012】これらの構造はそれぞれの効果として、第
一の海島構造は海部を形成するイオン伝導性ポリマー相
が機械的強度を強める効果を有すると考えられる。その
ためには、イオン伝導性ポリマー相の面積が断面積全体
に占める面積の割合が50%以上、好ましくは60%以
上、さらに好ましくは70%以上である。この海部分の
占有面積が全面積に対して50%未満では液相の部分が
大きくなりすぎ、ゲル電解質シートの機械的強度が低下
する。また、加工時にポリマー相が偏析した場合は強度
および性能低下を伴う。逆に面積占有率の上限は100
%でも機械的強度の面からは問題はないが、ポリマーに
含浸する電解液だけではイオン伝導性が不十分となる。
従って、第一の海島構造の島部を形成する電解液はイオ
ン伝導に重要な役割を果たしていると言える。さらに、
この第一の海島構造はゲル電解質シートを電池に応用し
た場合、海部の果たす機械強度が、加工工程上や電池と
して使う際の電極間の短絡を防止に大きな効果を果た
す。島部の平均粒径の上限はゲル電解質シートの厚み未
満であり、好ましくは30μm以下、さらに好ましくは
20μm以下である。そして、平均粒径の下限は、本発
明においては0.01μm以上である。一方、第二の海
島構造は海部を形成する電解液の存在で第一の海島構造
以上にイオン伝導度を高めることができる。この構造の
場合は島部であるイオン伝導性ポリマー相がこの電解液
を保持する構造を形成している。そのため、島部の面積
は断面全体の面積に対して20%以上80%以下が好ま
しい。さらに電池として電極に接合する場合には、電極
表面の形状に追随した変形が可能なため界面接合しやす
く、単なる積層体と異なり、ずれによる短絡が防止で
き、イオン伝導性も良好となり高い電池性能を示す。第
二の海島構造において島部の平均粒径は微細であるほど
イオン伝導性が良好となる。この範囲は好ましくは20
μm以下、さらに好ましくは10μm以下である。ま
た、ポリマー粒子径の下限は本発明においては0.01
μm以上である。このように第一の海島構造はイオン伝
導度を保持しつつ高い機械強度を持ち、第二の海島構造
は高いイオン伝導度を保持しつつ機械強度を持ち、さら
に界面接合性も良好な性質を持つ。
As these structures have respective effects, it is considered that the first sea-island structure has an effect of enhancing the mechanical strength of the ion-conductive polymer phase forming the sea part. For this purpose, the area ratio of the area of the ion-conductive polymer phase to the entire cross-sectional area is 50% or more, preferably 60% or more, and more preferably 70% or more. If the area occupied by the sea portion is less than 50% of the total area, the liquid phase portion becomes too large, and the mechanical strength of the gel electrolyte sheet decreases. Further, when the polymer phase segregates during processing, the strength and performance are reduced. Conversely, the upper limit of the area occupancy is 100
%, There is no problem in terms of mechanical strength, but the ionic conductivity of the electrolyte impregnating the polymer alone is insufficient.
Therefore, it can be said that the electrolytic solution forming the island portion of the first sea-island structure plays an important role in ion conduction. further,
In the first sea-island structure, when the gel electrolyte sheet is applied to a battery, the mechanical strength provided by the sea portion has a great effect in preventing a short circuit between electrodes in a processing step or when used as a battery. The upper limit of the average particle size of the island portion is less than the thickness of the gel electrolyte sheet, preferably 30 μm or less, more preferably 20 μm or less. The lower limit of the average particle size is 0.01 μm or more in the present invention. On the other hand, the second sea-island structure can enhance the ionic conductivity more than the first sea-island structure due to the presence of the electrolyte forming the sea part. In the case of this structure, the ion-conductive polymer phase, which is an island portion, forms a structure that holds the electrolytic solution. Therefore, the area of the island is preferably 20% or more and 80% or less with respect to the area of the entire cross section. Furthermore, when joining to an electrode as a battery, it is possible to deform according to the shape of the electrode surface, so it is easy to join at the interface. Is shown. In the second sea-island structure, the smaller the average particle size of the island portion, the better the ion conductivity. This range is preferably 20
μm or less, more preferably 10 μm or less. The lower limit of the polymer particle diameter is 0.01 in the present invention.
μm or more. Thus, the first sea-island structure has high mechanical strength while maintaining ionic conductivity, and the second sea-island structure has high mechanical strength while maintaining high ionic conductivity, and also has good interfacial bonding properties. Have.

【0013】本発明は、第一、第二の海島構造を持つゲ
ル電解質シートを有する複合体とすることで、高機械強
度、高イオン伝導度を達成し、電極と複合構造ゲル電解
質シート積層体を積層一体化した電池に用いた場合には
電極間の短絡を防止し、高いイオン伝導度を達成するこ
とが可能となった。電池において好ましくは、電極界面
付近にイオン伝導度の高い第二の海島構造が分布し、複
合構造ゲル電解質シート積層体の内部側には第一の海島
構造が分布したものである。この構造は、イオン伝導度
の高い第二の海島構造を電極界面に配置することで電極
界面付近のイオン伝導に関与できる電極面積を最大限に
活用することができ、電極界面のインピーダンス低減、
イオン分極の抑制も図ることがでる。そして機械強度を
兼ね備えた第一の海島構造を電解質の内部に配置するこ
とで構造の安定性が達成できる。
The present invention provides a composite having a gel electrolyte sheet having first and second sea-island structures to achieve high mechanical strength and high ionic conductivity, and to provide an electrode and a composite gel electrolyte sheet laminate. When used in a battery integrated with a laminate, a short circuit between the electrodes was prevented, and high ionic conductivity could be achieved. Preferably, in the battery, the second sea-island structure having high ionic conductivity is distributed near the electrode interface, and the first sea-island structure is distributed inside the composite structure gel electrolyte sheet laminate. By arranging the second sea-island structure with high ionic conductivity at the electrode interface, this structure can maximize the electrode area that can participate in ionic conduction near the electrode interface, reduce the impedance at the electrode interface,
It is also possible to suppress ionic polarization. By arranging the first sea-island structure having mechanical strength inside the electrolyte, the stability of the structure can be achieved.

【0014】次に本発明のゲル電解質シートを構成する
ポリマーについて説明する。このポリマーの例として、
ポリエチレンオキシド、ポリプロピレンオキシド、ポリ
テトラメチレングリコールなどの脂肪族ポリエーテル化
合物およびポリエチレンオキシドが分岐したポリフォス
ファゼン、シロキサン系ポリマーなどのポリエーテルを
分子鎖中に含むポリマー、ポリメチルメタクリレート、
ポリメチルアクリレートなどのエステル基を含有するポ
リマー、ポリアクリロニトリル、スチレン−アクリロニ
トリル共重合体などニトリル基を含有するポリマー、ポ
リフッ化ビニリデン系ポリマーを挙げることができる。
Next, the polymer constituting the gel electrolyte sheet of the present invention will be described. As an example of this polymer,
Polyethylene oxide, polypropylene oxide, aliphatic polyether compounds such as polytetramethylene glycol and polyethylene oxide-branched polyphosphazene, a polymer containing a polyether such as a siloxane-based polymer in the molecular chain, polymethyl methacrylate,
Examples thereof include polymers containing ester groups such as polymethyl acrylate, polymers containing nitrile groups such as polyacrylonitrile and styrene-acrylonitrile copolymer, and polyvinylidene fluoride-based polymers.

【0015】このうちポリフッ化ビニリデン系ポリマー
を用いて作製したゲルは高強度、高イオン伝導度を持つ
ため、より好ましい。この例として、ポリ(ビニリデン
フロライド)、ポリ(ヘキサフルオロプロピレン−ビニ
リデンフロライド)共重合体、ポリ(パーフルオロビニ
ルエーテル−ビニリデンフロライド)共重合体、ポリ
(テトラフルオロエチレン−ビニリデンフロライド)共
重合体、ポリ(ヘキサフルオロプロピレンオキシド−ビ
ニリデンフロライド)共重合体、ポリ(ヘキサフルオロ
プロピレンオキシド−テトラフルオロエチレン−ビニリ
デンフロライド)共重合体、ポリ(ヘキサフルオロプロ
ピレン−テトラフルオロエチレン−ビニリデンフロライ
ド)共重合体、ポリ(フルオロエチレン−ビニリデンフ
ロライド)共重合体などの単独体、またはこれらの成分
の混合体を挙げることができるがこれらに限定されるも
のでない。
Among them, a gel prepared using a polyvinylidene fluoride-based polymer is more preferable because it has high strength and high ionic conductivity. Examples of this include poly (vinylidene fluoride), poly (hexafluoropropylene-vinylidene fluoride) copolymer, poly (perfluorovinyl ether-vinylidene fluoride) copolymer, and poly (tetrafluoroethylene-vinylidene fluoride) copolymer. Polymer, poly (hexafluoropropylene oxide-vinylidene fluoride) copolymer, poly (hexafluoropropylene oxide-tetrafluoroethylene-vinylidene fluoride) copolymer, poly (hexafluoropropylene-tetrafluoroethylene-vinylidene fluoride) ) Copolymers, homopolymers such as poly (fluoroethylene-vinylidene fluoride) copolymer, and mixtures of these components, but are not limited thereto.

【0016】また、ポリマーが架橋構造を有することが
強度、耐熱性、電気化学素子性能の点でさらに好まし
い。例えば、ポリフッ化ビニリデン系ポリマーを架橋す
る方法として、電子線、ガンマ線、X線、紫外線、赤外
線などの輻射エネルギー照射、ラジカル開始剤を含有さ
せて反応架橋させる方法、アルカリ処理(脱HF)処理
後反応性基を反応架橋させる方法、などを用いることが
できる。例えば電子線照射を用いる場合の架橋条件とし
て、この照射量が充分でない場合架橋効果が充分でな
く、照射量が多すぎる場合ポリマー構造が崩壊するため
好ましくない。この照射量は5Mrad以上100Mr
ad以下であることが好ましい。このようなポリマーの
架橋によって複合構造のゲル電解質膜が高強度となり加
工性に好ましい性質を付与できる。また、これを用いた
電気化学素子においても電極間の短絡を抑制することが
でき素子の安全性が高められ好ましい。
Further, it is more preferable that the polymer has a crosslinked structure in view of strength, heat resistance, and performance of an electrochemical device. For example, as a method of cross-linking a polyvinylidene fluoride-based polymer, irradiation of radiation energy such as electron beam, gamma ray, X-ray, ultraviolet ray, or infrared ray, a method of containing and reacting a radical initiator to cross-link, and after alkali treatment (de-HF treatment) A method in which a reactive group is reactively crosslinked can be used. For example, as the cross-linking conditions when using electron beam irradiation, if the irradiation amount is not sufficient, the cross-linking effect is not sufficient, and if the irradiation amount is too large, the polymer structure is undesirably collapsed. This irradiation amount is 5Mrad or more and 100Mr.
It is preferably equal to or less than ad. The cross-linking of such a polymer makes the gel electrolyte membrane having a composite structure high in strength, and can impart favorable properties to workability. Further, in an electrochemical device using the same, a short circuit between the electrodes can be suppressed, and the safety of the device is improved, which is preferable.

【0017】次に、本発明の複合構造ゲル電解質シート
積層体に含有される電解液について説明する。本発明の
複合構造ゲル電解質シート積層体に含有される電解液は
電解質溶媒と電解質からなる。この電解質溶媒として、
エチレンカーボネート、プロピレンカーボネート、ビチ
レンカーボネートなどの環状カーボネート、ジメチルカ
ーボネート、メチルエチルカーボネートなどの鎖状カー
ボネート、テトラヒドロフラン、メチルテトラヒドロフ
ランなどのエーテル、γ−ブチルラクトン、プロピオラ
クトン、酢酸メチルなどのエステル、アセトニトリル、
プロピオニトリルなどのニトリル化合物、炭化水素など
の有機低分子化合物、シリコンオイル、オリゴエチレン
グリコール、ポリエチレンオキシド、ポリプロピレンオ
キシドなどの脂肪族エーテル化合物、ポリアクリロニト
リル、脂肪族ポリエステル、脂肪族ポリカーボネートな
どの極性基含有高分子有機化合物を挙げることができ
る。
Next, the electrolytic solution contained in the composite gel electrolyte sheet laminate of the present invention will be described. The electrolytic solution contained in the composite structure gel electrolyte sheet laminate of the present invention comprises an electrolyte solvent and an electrolyte. As this electrolyte solvent,
Cyclic carbonates such as ethylene carbonate, propylene carbonate and bitylene carbonate, chain carbonates such as dimethyl carbonate and methyl ethyl carbonate, ethers such as tetrahydrofuran and methyl tetrahydrofuran, esters such as γ-butyl lactone, propiolactone and methyl acetate, and acetonitrile ,
Nitrile compounds such as propionitrile, organic low-molecular compounds such as hydrocarbons, polar groups such as silicone oil, aliphatic ether compounds such as oligoethylene glycol, polyethylene oxide and polypropylene oxide, polyacrylonitrile, aliphatic polyester and aliphatic polycarbonate Containing high molecular organic compounds.

【0018】一方、電解質としては有機酸、有機塩、無
機酸、無機塩のいずれも使用可能である。この例として
テトラフルオロホウ酸、過塩素酸、硫酸、リン酸、フッ
化水素酸、塩酸などの無機酸、トリフルオロメタンスル
ホン酸、トリフルオロプロピルスルホン酸、ビス(トリ
フルオロメタンスルホニル)イミド酸、酢酸、チルフル
オロ酢酸、プロピオン酸などの有機酸、およびこれら有
機酸、無機酸の金属塩が挙げられる。これらは単独で用
いることもできるし、複数の電解質を混合して用いるこ
ともできる。さらにパーフルオロスルホン酸系ポリマー
やパーフルオロカルボン酸系ポリマー、あるいはこれら
の金属塩も本発明の電解質として使用できる。これら電
解質のカチオンとしてプロトン、アルカリ金属カチオ
ン、アルカリ土類金属カチオン、遷移金属カチオン、希
土類金属カチオンなどから選ばれるカチオンを一種類
で、また複数混合して使用することができる。このカチ
オン種は使用する用途によって異なるため限定されな
い。例えば、本発明の複合構造ゲル電解質シート積層体
をリチウムイオン二次電池に使用する場合は、添加する
電解質としてリチウム塩を使用することが好ましい。特
にリチウムイオン二次電池に利用する場合、充放電を繰
り返し行う必要から、電解質に電気化学的安定性に富む
リチウム塩を選ぶことが好ましく、この例として、CF
3SO3Li、C49SO3Li、(CF3SO22NL
i、LiBF4、LiPF6、LiClO4、LiAsF6
等を挙げることができる。本発明の複合構造ゲル電解質
シート積層体における電解液含量は全体重量に対して3
0重量%以上、98重量%以下である。より好ましくは
40重量%以上97重量%以下であり、さらに好ましく
は50重量%以上95重量%以下の範囲である。電解液
含量が30%未満ではイオン伝導度が低く、98%を越
える場合は機械強度低下を引き起こす。その内、第一の
海島構造の電解液含量は30%以上90%以下であり、
好ましくは40%以上85%以下である。また第二の海
島構造の電解液含量は、40%以上98%以下であり、
好ましくは50%以上97%以下である。また、複合構
造ゲル電解質シート積層体の厚みは特に制限はないが一
般的には10μm以上500μm以下が好ましい。
On the other hand, any of organic acids, organic salts, inorganic acids, and inorganic salts can be used as the electrolyte. Examples thereof include inorganic acids such as tetrafluoroboric acid, perchloric acid, sulfuric acid, phosphoric acid, hydrofluoric acid and hydrochloric acid, trifluoromethanesulfonic acid, trifluoropropylsulfonic acid, bis (trifluoromethanesulfonyl) imidic acid, acetic acid, Examples include organic acids such as tylfluoroacetic acid and propionic acid, and metal salts of these organic acids and inorganic acids. These can be used alone, or a plurality of electrolytes can be mixed and used. Further, a perfluorosulfonic acid-based polymer or perfluorocarboxylic acid-based polymer, or a metal salt thereof can also be used as the electrolyte of the present invention. As the cation of these electrolytes, one kind of cation selected from protons, alkali metal cations, alkaline earth metal cations, transition metal cations, rare earth metal cations and the like can be used alone, or a mixture of a plurality of them can be used. The cationic species is not limited because it varies depending on the use. For example, when the composite gel electrolyte sheet laminate of the present invention is used for a lithium ion secondary battery, it is preferable to use a lithium salt as an electrolyte to be added. In particular, when used for a lithium ion secondary battery, it is preferable to select a lithium salt having high electrochemical stability for the electrolyte since charge and discharge must be repeatedly performed.
3 SO 3 Li, C 4 F 9 SO 3 Li, (CF 3 SO 2 ) 2 NL
i, LiBF 4 , LiPF 6 , LiClO 4 , LiAsF 6
And the like. The electrolyte content of the composite structure gel electrolyte sheet laminate of the present invention is 3 to the total weight.
0 wt% or more and 98 wt% or less. The content is more preferably from 40% by weight to 97% by weight, and further preferably from 50% by weight to 95% by weight. If the electrolyte content is less than 30%, the ionic conductivity is low, and if it exceeds 98%, the mechanical strength is reduced. Among them, the electrolyte content of the first sea-island structure is 30% or more and 90% or less,
Preferably it is 40% or more and 85% or less. The electrolyte content of the second sea-island structure is 40% or more and 98% or less,
Preferably it is 50% or more and 97% or less. The thickness of the composite gel electrolyte sheet laminate is not particularly limited, but is generally preferably 10 μm or more and 500 μm or less.

【0019】次に本発明の複合構造ゲル電解質シート積
層体の作製方法を説明する。まず第一の海島構造、第二
の海島構造のゲル電解質シートそれぞれの作製方法につ
いて説明し、その次に複合シートの作製方法について説
明する。第一の海島構造を持つゲル電解質シートは、た
とえば市販のポリフッ化ビニリデンシートに電子線照射
して三次元化を行いフロンを含浸して発泡体とした後、
加熱延伸して得た発泡体シートに電解液を含浸させるこ
とで得ることができる。
Next, a method for producing the composite structure gel electrolyte sheet laminate of the present invention will be described. First, a method for producing each of the gel electrolyte sheets having the first sea-island structure and the second sea-island structure will be described, and then a method for preparing a composite sheet will be described. The gel electrolyte sheet having the first sea-island structure is, for example, a commercially available polyvinylidene fluoride sheet, which is irradiated with an electron beam to form a three-dimensional foam and impregnated with chlorofluorocarbon to form a foam.
It can be obtained by impregnating an electrolytic solution into a foam sheet obtained by heating and stretching.

【0020】一方、第二の海島構造を持つゲル電解質シ
ートは、ポリフッ化ビニリデンを電解液に加温下溶解し
た液をガラス板上にキャストして得ることができる。そ
して、このようにして作製した第一、第二の海島構造を
持つゲル電解質シートを複数枚重ねることで複合体とす
ることができる。ゲル電解質シート間の接触を高めるた
めに、重ねたものを加熱プレスすることも可能である。
また、第一の海島構造を持つゲル電解質シートを加熱プ
レスし、加熱温度と加熱時間を制御することでシート内
に温度勾配を持たせ、部分的に第一の海島構造を第二の
海島構造に変化させ本発明の複合構造ゲル電解質シート
積層体を製造することもできる。例えば、第一の海島構
造を電極で挟みこみ、用いるポリマーの融点以上で加熱
ロールプレスを行えば、第一の海島構造の電極に面した
側が第二の海島構造に構造変化をおこし、電極との接着
強度があがると共に、電極面側に配置された第二の海島
構造によりイオン伝導度も向上する効果がある。この場
合の構造変化を起こさせるための条件は、具体的には用
いるポリマーが電解液を含んだ状態の融点以上であるこ
とが好ましく、より好ましくは融点以上、融点+30℃
以下の温度域である。また加温する時間は処理法によっ
て異なるので限定されないが、例えば加圧ロールプレス
あるいは加圧プレスを行う場合は0.1秒以上10分以
下の間が好ましく、加熱時間を制御することでゲル電解
質シート内に温度勾配を持たせることが可能となり構造
変化の領域を自由に制御することができる。その他にも
第一の海島構造のゲル電解質シート表面に加温下ポリマ
ーを電解液に溶解した液を塗布して後、室温固化するこ
とにより第二の海島構造を配置する複合構造ゲル電解質
シート積層体を形成することも可能である。
On the other hand, the gel electrolyte sheet having the second sea-island structure can be obtained by casting a solution obtained by dissolving polyvinylidene fluoride in an electrolytic solution while heating it on a glass plate. Then, a composite can be obtained by laminating a plurality of gel electrolyte sheets having the first and second sea-island structures thus produced. It is also possible to heat press the stacks to increase the contact between the gel electrolyte sheets.
Also, the gel electrolyte sheet having the first sea-island structure is heated and pressed, and the heating temperature and the heating time are controlled to give a temperature gradient within the sheet, and the first sea-island structure is partially changed to the second sea-island structure. To produce the composite structure gel electrolyte sheet laminate of the present invention. For example, if the first sea-island structure is sandwiched between electrodes and a heating roll press is performed at a temperature equal to or higher than the melting point of the polymer to be used, the side of the first sea-island structure facing the electrode undergoes a structural change to the second sea-island structure, and And the second sea-island structure disposed on the electrode surface side has an effect of improving ionic conductivity. In this case, the condition for causing the structural change is, specifically, the polymer used is preferably at least the melting point of the state including the electrolyte, more preferably the melting point or more, and the melting point + 30 ° C.
The temperature range is as follows. The heating time is not limited because it varies depending on the treatment method. For example, in the case of performing a pressure roll press or a pressure press, the time is preferably 0.1 second or more and 10 minutes or less. A temperature gradient can be provided in the sheet, and the region of the structural change can be freely controlled. In addition, a composite gel electrolyte sheet laminate in which the second sea-island structure is arranged by applying a solution prepared by dissolving a polymer in an electrolytic solution under heating on the surface of a gel electrolyte sheet having the first sea-island structure and then solidifying it at room temperature It is also possible to form a body.

【0021】また、ゲル電解質の寸法安定化、強度向上
などの目的でポリマーに無機フィラーを含有させること
もできる。この例として、アルミナ、シリカ、ムライ
ト、マイカ、マグネシア、フッ化カルシウム、フッ化マ
グネシウム、窒化ケイ素、酸化セリウム、酸化鉄、酸化
チタン、アルカリ金属やアルカリ土類金属チタン酸複合
酸化物、ダイアモンドなどが挙げられる。フィラ−とし
て電子伝導性でない材料が好ましく、イオン伝導性を有
するフィラ−の場合は電解質膜としてイオンの透過性が
高められるので好ましいものとなる。このフィラ−の形
状として、球状、角状、針状、板状などが挙げられる。
Further, the polymer may contain an inorganic filler for the purpose of stabilizing the size of the gel electrolyte and improving the strength. Examples of this include alumina, silica, mullite, mica, magnesia, calcium fluoride, magnesium fluoride, silicon nitride, cerium oxide, iron oxide, titanium oxide, alkali metal and alkaline earth metal titanate composite oxides, diamond and the like. No. As the filler, a material that is not electronically conductive is preferable. In the case of a filler having ion conductivity, it is preferable because the permeability of ions is increased as an electrolyte membrane. Examples of the shape of the filler include a sphere, a square, a needle, and a plate.

【0022】また、本発明の複合構造ゲル電解質シート
積層体のイオン伝導度は10-6S/cm以上であること
が好ましく、さらに好ましくは10-5S/cm以上、最
も好ましくは10-3S/cm以上である。次に本発明の
複合構造ゲル電解質シート積層体を用いた、電気化学素
子について説明する。
The ionic conductivity of the composite gel electrolyte sheet laminate of the present invention is preferably 10 -6 S / cm or more, more preferably 10 -5 S / cm or more, and most preferably 10 -3 S / cm or more. S / cm or more. Next, an electrochemical device using the composite structure gel electrolyte sheet laminate of the present invention will be described.

【0023】電気化学素子がリチウムイオン二次電池の
場合、電極の正極および負極にリチウムイオン吸蔵放出
可能な物質を用いる。この正極物質として、負極に対し
て高い電位を有する材料、この例としては、コバルト酸
リチウム、ニッケル酸リチウム、マンガン酸リチウム、
Co、Ni、Mn、Feの複合リチウム酸化物、結晶性
リチウムバナジウム複合酸化物、アモルファス状リチウ
ムバナジウム複合酸化物、リチウムニオブ複合酸化物な
どの酸化物、リチウムチタン複合硫化物、リチウムモリ
ブデン複合硫化物、リチウムニオブ複合セレン化物など
の金属カルコゲナイド、ポリピロール、ポリチオフェ
ン、ポリアニリン、ポリアセン誘導体、ポリアセチレ
ン、ポリチエニレンビニレン、ポリアリレンビニレン、
ジチオール誘導体、ジスルフィド誘導体などの有機化合
物を挙げることができる。
When the electrochemical element is a lithium ion secondary battery, a material capable of inserting and extracting lithium ions is used for the positive electrode and the negative electrode of the electrode. As the positive electrode material, a material having a higher potential than the negative electrode, such as lithium cobaltate, lithium nickelate, lithium manganate,
Co, Ni, Mn, Fe complex lithium oxide, crystalline lithium vanadium complex oxide, amorphous lithium vanadium complex oxide, oxide such as lithium niobium complex oxide, lithium titanium complex sulfide, lithium molybdenum complex sulfide Metal chalcogenides such as lithium niobium composite selenide, polypyrrole, polythiophene, polyaniline, polyacene derivatives, polyacetylene, polythienylenevinylene, polyarylenevinylene,
Organic compounds such as dithiol derivatives and disulfide derivatives can be mentioned.

【0024】また負極として、上記正極に対して低い電
位を有する材料を用いる。この例として、金属リチウ
ム、アルミ・リチウム合金、マグネシウム・アルミ・リ
チウム合金などの金属リチウム、AlSb、Mg2
e、NiSi2 などの金属間化合物、グラファイト、コ
ークス、低温焼成高分子などの炭素系材料、SnM系酸
化物(MはSi,Ge,Pbを表す。)、Si1−y
M′yOz(M′はW,Sn,Pb,Bなどを表す。0
<y<1、0<z<3)の複合酸化物、酸化チタン、酸
化鉄などの金属酸化物のリチウム固溶体、リチウムマン
ガン窒化物、リチウム鉄窒化物、リチウムコバルト窒化
物、リチウムニッケル窒化物、リチウム銅窒化物、リチ
ウムボロンナイトライド、リチウムアルミナイトライ
ド、リチウムシリコンナイトライド等の窒化物などのセ
ラミックス等が挙げられる。ただし、リチウムイオンを
負極で還元して金属リチウムとして利用する場合は、導
電性を有する材料であればよいので、上記に限定されな
い。
As the negative electrode, a material having a lower potential than the above positive electrode is used. Examples of this include metallic lithium such as metallic lithium, aluminum / lithium alloy, magnesium / aluminum / lithium alloy, AlSb, Mg 2 G
e, intermetallic compounds such as NiSi 2, graphite, coke, carbon-based materials such as low-temperature sintered polymer, SNM based oxide (representing M is Si, Ge, and Pb.), Si 1 -y
M'yOz (M 'represents W, Sn, Pb, B, etc. 0
A composite oxide of <y <1, 0 <z <3), a lithium solid solution of a metal oxide such as titanium oxide or iron oxide, lithium manganese nitride, lithium iron nitride, lithium cobalt nitride, lithium nickel nitride, Ceramics such as nitrides such as lithium copper nitride, lithium boron nitride, lithium aluminum nitride, and lithium silicon nitride are exemplified. However, when lithium ions are reduced at the negative electrode and used as metallic lithium, the material is not limited to the above, as long as the material has conductivity.

【0025】電池に用いる正極電極および負極電極は、
上記の材料を所定の形状に成型加工して用いられる。例
えば、基盤上に電解析出、蒸着、スパッタリング、CV
Dによって電極を作製した後成型加工したもの、焼結体
から成型加工したもの、溶融加工したもの、微粉を圧縮
して加工したもの、微粉状の電極材料をバインダーの溶
解した溶剤に分散させ、その分散体をシート状の担持体
上に塗工後乾燥させて得られたものを成型加工するもの
などが用いられる。このバインダー材料としては、ポリ
ビニリデンフロライド、ポリ(ヘキサフルオロプロピレ
ン−ビニリデンフロライド)共重合体などポリフッ化ビ
ニリデン系樹脂、ポリテトラフルオロエチレンなどのフ
ッ素系ポリマー、スチレン−ブタジエン共重合体、スチ
レン−アクリロニトリル共重合体、スチレン−アクリロ
ニトリル−ブタジエン共重合体などの炭化水素系ポリマ
ー、ポリマー前駆体、金属などが用いられ、本発明の架
橋構造を有するポリフッ化ビニリデン系樹脂をバインダ
ーに用いることもできる。
The positive electrode and the negative electrode used for the battery are:
The above-mentioned material is used after being formed into a predetermined shape. For example, electrolytic deposition, deposition, sputtering, CV on a substrate
D after forming the electrode by D, molded, sintered from the sintered body, melt processed, compressed and processed fine powder, fine powder electrode material is dispersed in a solvent in which the binder is dissolved, A dispersion obtained by coating the dispersion on a sheet-like support and then drying the resulting dispersion is used. Examples of the binder material include polyvinylidene fluoride, polyvinylidene fluoride resin such as poly (hexafluoropropylene-vinylidene fluoride) copolymer, fluorine polymer such as polytetrafluoroethylene, styrene-butadiene copolymer, styrene- A hydrocarbon-based polymer such as an acrylonitrile copolymer, a styrene-acrylonitrile-butadiene copolymer, a polymer precursor, a metal, or the like is used, and the polyvinylidene fluoride resin having a crosslinked structure of the present invention can be used as a binder.

【0026】電池の形態は、正極と負極が複合構造ゲル
電解質シート積層体を介して接合した電池要素およびそ
の集合体(以下、電池要素集合体と称する)を有する。
その際、電池要素集合体を有する電池は使用目的により
電池要素を並列または/および直列に接続することも可
能である。また、電池要素をロール状、折り畳み状にし
た構造とすることもできる。また、必要があれば電極に
電流取り出し、注入のための外部端子接続部分、電流電
圧制御素子、発熱時に電極接続を阻止する機能素子を設
けることができる。また、電池に防湿防止、構造保護な
どの保護層を設けたりパッケージ化することもできる。
The battery has a battery element in which a positive electrode and a negative electrode are joined via a composite gel electrolyte sheet laminate, and an assembly thereof (hereinafter, referred to as a battery element assembly).
At this time, the battery having the battery element assembly may have the battery elements connected in parallel or / and in series depending on the purpose of use. In addition, a structure in which the battery element is rolled or folded may be used. If necessary, an electrode can be provided with an external terminal connection portion for taking out and injecting current, a current-voltage control element, and a functional element for preventing electrode connection when heat is generated. Further, the battery may be provided with a protective layer such as moisture proof prevention and structural protection, or may be packaged.

【0027】本発明の複合構造ゲル電解質シート積層体
は、リチウムイオン二次電池に限らずアルカリ電池、鉛
電池、ニッケル水素電池、燃料電池などの各種電池、キ
ャパシター、電気化学センサー、エレクトロクロミック
デイスプレー素子などのイオン移動媒体として応用する
ことも可能であり、工業的価値が高い製品を提供できる
ため好ましいものとなる。
The composite-structured gel electrolyte sheet laminate of the present invention is not limited to lithium ion secondary batteries, but includes various batteries such as alkaline batteries, lead batteries, nickel-metal hydride batteries, and fuel cells, capacitors, electrochemical sensors, and electrochromic displays. It is also possible to apply it as an ion transfer medium such as an element, and it is preferable because a product having high industrial value can be provided.

【0028】[0028]

【発明の実施の形態】以下実施例によって本発明をさら
に詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail with reference to the following examples.

【0029】[0029]

【実施例1】ポリ(フッ化ビニリデン−ヘキサフルオロ
プロピレン)共重合体(ヘキサフルオロプロピレン含量
3重量%、エルフアトケム社製カイナ−ル2850)の
長尺シ−ト(厚み80μm、幅500mm)に電子線照
射(照射量10Mrad)を行い架橋処理した後、フロ
ン(HFC−134a)を7重量部含浸、加熱延伸処理
して得られた発泡体シート(発泡倍率4倍、厚み80μ
m)を幅100mmに切断する。続いて、電解液として
エチレンカ−ボネ−ト、γ−ブチルラクトンを体積比
1:1で混合したLiBF4 の1.5モル/リットル溶
液を60℃の温度で加熱含浸させて第一の海島構造のゲ
ル電解質シート(電解液含量75重量%、平均厚み65
μm)を作製した。
Example 1 A long sheet (thickness: 80 μm, width: 500 mm) of a poly (vinylidene fluoride-hexafluoropropylene) copolymer (hexafluoropropylene content: 3% by weight, Kynal 2850 manufactured by Elphatochem Co., Ltd.) After irradiation with X-rays (irradiation amount: 10 Mrad) and crosslinking treatment, a foam sheet (foaming ratio: 4 times, thickness: 80 μm) obtained by impregnating with 7 parts by weight of CFC (HFC-134a) and heating and stretching.
m) is cut to a width of 100 mm. Subsequently, Echirenka as an electrolytic solution - Bonnet - DOO, .gamma.-butyrolactone volume ratio of 1: 1 1.5 mol / l solution of LiBF 4 were mixed in a heated impregnated at a temperature of 60 ° C. The by first sea- Gel electrolyte sheet (electrolyte content 75% by weight, average thickness 65
μm).

【0030】前記のポリ(フッ化ビニリデン−ヘキサフ
ルオロプロピレン)共重合体ペレットに前記組成の電解
液を加え(ポリマー20重量%、電解液80重量%)、
100℃に加熱して均一溶液に調製した後、ガラス板上
にキャストし、冷却して厚み24μmの第二の海島構造
のゲル電解質シートを作製した。この第一の海島構造の
ゲル電解質シートと第二の海島構造のゲル電解質シート
を1枚ずつ計2枚を重ね合わせ80℃の温度で1分間加
熱プレスして積層体を作製した。該積層体の両面をステ
ンレスシート(厚さ10μm、1cm×10cm短冊)
で挟み込んで交流インピーダンス法によりイオン伝導度
を測定した結果、3.2×10-3S/cmであった。
An electrolyte of the above composition was added to the poly (vinylidene fluoride-hexafluoropropylene) copolymer pellets (polymer 20% by weight, electrolyte 80% by weight),
After heating to 100 ° C. to prepare a uniform solution, the solution was cast on a glass plate and cooled to produce a 24 μm-thick gel electrolyte sheet having a second sea-island structure. The gel electrolyte sheet having the first sea-island structure and the gel electrolyte sheet having the second sea-island structure were laminated one by one, and were heated and pressed at a temperature of 80 ° C. for 1 minute to produce a laminate. Stainless steel sheets (10 μm thick, 1 cm × 10 cm strip) on both sides of the laminate
As a result of measuring the ionic conductivity by the alternating current impedance method, the value was 3.2 × 10 −3 S / cm.

【0031】該積層体を液体窒素で冷却した後凍結割断
して断面を形成し、電子顕微鏡(日立製作所製、SEM
S570型)を用い観察ステージ冷却状態で観察して断
面の構造を観察した。第二の海島構造のゲル電解質シー
トの断面には平均粒径2〜3μmの粒子状のイオン伝導
性ポリマー相が分散した島構造とそれを取り囲む電解液
の海構造が観察された。この第二の海島構造の島構造を
形成するポリマー相の面積比は全体の64%であった。
一方、第一の海島構造の領域には平均粒径5〜8μmの
電解液が島構造となり、イオン伝導性ポリマー相が海構
造を形成していることがわかった。この領域の海の部分
を形成するポリマー相の面積比は全体の91%であっ
た。従って、第一、第二の複合ゲル電解質シートの全断
面にしめるイオン伝導性ポリマー相の面積比は85%で
あることがわかった。
The laminate was cooled with liquid nitrogen, frozen and cut to form a cross section, and an electron microscope (SEM, manufactured by Hitachi, Ltd.)
(S570 type), and observed in a cooling state of the observation stage to observe the cross-sectional structure. In the cross section of the gel electrolyte sheet having the second sea-island structure, an island structure in which a particulate ion-conductive polymer phase having an average particle size of 2 to 3 μm was dispersed, and a sea structure of the electrolyte surrounding the island structure were observed. The area ratio of the polymer phase forming the island structure of the second sea-island structure was 64% of the whole.
On the other hand, in the region of the first sea-island structure, the electrolyte having an average particle size of 5 to 8 μm became an island structure, and it was found that the ion-conductive polymer phase formed a sea structure. The area ratio of the polymer phase forming the sea portion of this region was 91% of the whole. Therefore, it was found that the area ratio of the ion conductive polymer phase in the entire cross section of the first and second composite gel electrolyte sheets was 85%.

【0032】[0032]

【実施例2】実施例1で作製した第一の海島構造のゲル
電解質シートを幅53mmに切断した。次に、このゲル
電解質シートをポリ(フッ化ビニリデン−ヘキサフルオ
ロプロピレン)共重合体(ヘキサフルオロプロピレン含
量3重量%、エルフアトケム社製カイナ−ル2850)
をポリマーが5重量%、電解液95重量%(エチレンカ
ーボネート/γブチルラクトン=1、LiBF4 を1.
0モル/リットルに溶解した均一溶液)の組成で60℃
の均一溶液とした溶液中に浸積して引き上げた後冷却し
て第一の海島構造のゲル電解質シートの表面に平均厚さ
6μmの第二の海島構造のゲル電解質シートが形成され
た複合構造ゲル電解質シート積層体を得た。
Example 2 The gel electrolyte sheet having the first sea-island structure produced in Example 1 was cut to a width of 53 mm. Next, this gel electrolyte sheet was treated with a poly (vinylidene fluoride-hexafluoropropylene) copolymer (hexafluoropropylene content 3% by weight, Kynal 2850 manufactured by Elphatochem Co.).
The polymer is 5% by weight, the electrolyte solution 95 wt% (ethylene carbonate / gamma -butyrolactone = 1, LiBF 4 to 1.
0 ° C / homogeneous solution)
A composite structure in which a gel electrolyte sheet having an average thickness of 6 μm is formed on the surface of a gel electrolyte sheet having a first sea-island structure, which is immersed in a solution prepared as a uniform solution, and then cooled. A gel electrolyte sheet laminate was obtained.

【0033】次に、平均粒径5μmのLiCoO2を1
00重量部、バインダーにポリフッ化ビニリデン3重量
部およびアセチレンブラック3重量部をN−メチルピロ
リドンに分散し、厚み15μm幅100mmのアルミ箔
集電体上に塗工後乾燥し、さらに加熱プレスして厚み1
10μm片面塗工の正極電極シ−トを得た。また、平均
粒径10μmのグラファイトMCMB(大阪ガス製)1
00重量部にスチレン−ブタジエンラテックスの水分散
スラリ−を固形分換算で2重量部およびカルボキシメチ
ルセルロ−スの水溶液を固形分換算で0.8重量部の割
合で水に均一分散したスラリ−を厚み12μm幅100
mmの銅集電体箔上に塗工後乾燥し、さらに加熱プレス
して厚み85μm片面塗工の負極電極シ−トを得た。こ
れらの電極表面に実施例1で用いた電解液(エチレンカ
ーボネート/γブチルラクトン=1の混合溶媒に、Li
BF4 の1.5モル/リットル溶液)を正極に31g/
2、負極に41g/m2になるように塗工した。
Next, LiCoO having an average particle size of 5 μm is used.Two1
00 parts by weight, 3 parts by weight of polyvinylidene fluoride as binder
Parts and 3 parts by weight of acetylene black are
Aluminum foil with a thickness of 15 μm and a width of 100 mm dispersed in lidon
After coating on the current collector, it is dried and then hot pressed to a thickness of 1
A 10 μm single-sided coated positive electrode sheet was obtained. Also the average
Graphite MCMB with a particle size of 10 μm (Osaka Gas) 1
Water dispersion of styrene-butadiene latex in 00 parts by weight
2 parts by weight of slurry and carboxymethyl
The aqueous solution of rucellulose is divided into 0.8 parts by weight in terms of solid content.
The slurry, which is uniformly dispersed in water, is 12 μm thick and 100 mm wide.
mm on a copper current collector foil, dried and heated
As a result, a negative electrode sheet having a thickness of 85 μm and coated on one side was obtained. This
The electrolytic solution (ethylene glycol) used in Example 1 was applied to these electrode surfaces.
Libonate / γ-butyllactone = 1 in a mixed solvent
BFFourOf a 1.5 mol / liter solution of
m Two, 41g / m for negative electrodeTwoIt was coated so that it becomes.

【0034】次に、この正極および負極の電極シートを
幅60mmに切断し、さらに各電極シートの長手方向に
片側に幅10mmで活物質層を剥離して集電体が露出し
た構造を形成した。そして、この電極シートの塗工面が
前記複合ゲル電解質シートを挟んで対向するように加熱
ロールラミネーション(加熱ロール温度125℃、速度
1m/min、圧1kg/cm)して積層一体化した。
次いで、ロールカッターで長手方向に垂直方向に幅30
mmで切断して電池要素を作製した。この電池要素は片
側から銅集電体、反対側からアルミ集電体がはみだした
構造であり、これを12枚正極と正極、負極と負極が対
向するように重ねて片側から銅集電体がはみだし、反対
側からアルミ集電体がはみ出した構成の電池要素集合体
とした。次いで、集電体の端部を重ね、超音波溶接して
束ね、さらに、ニッケルシート(幅10mm、長さ50
mm、厚さ30μm)を電極端子として端部に超音波溶
接した。
Next, the positive and negative electrode sheets were cut to a width of 60 mm, and the active material layer was peeled off at a width of 10 mm on one side in the longitudinal direction of each electrode sheet to form a structure in which the current collector was exposed. . Then, heating roll lamination (heating roll temperature: 125 ° C., speed: 1 m / min, pressure: 1 kg / cm) was performed so that the coated surfaces of the electrode sheets faced each other with the composite gel electrolyte sheet interposed therebetween.
Then, the width 30 in the vertical direction in the longitudinal direction with a roll cutter.
mm to produce a battery element. The battery element has a structure in which a copper current collector protrudes from one side and an aluminum current collector protrudes from the opposite side. The battery element assembly was configured to protrude and the aluminum current collector protruded from the opposite side. Next, the ends of the current collector were overlapped, bundled by ultrasonic welding, and furthermore, a nickel sheet (width 10 mm, length 50
(mm, thickness 30 μm) was used as an electrode terminal and ultrasonically welded to the end.

【0035】ポリマーシート積層体(ポリイミド(25
μmカプトンシート)/ポリエチレン(20μm)/ア
ルミ(20μm、但しアルミが一部ストライプ状に欠損
している)/ポリフェニレンスルフィド(12μm)/
ポリプロピレン(60μm))を70mm×80mmに
切断、70mmの辺の中央で折り曲げポリプロピレン面
が対向する構造で端部を重ね加熱融着(融着幅2mm)
して筒状(35mm×80mm)とした。この筒に先の
電池要素集合体を入れ、電極端子が筒からはみ出る構造
で開口部を加熱融着(融着幅5mm)して電池を作製し
た。
Polymer sheet laminate (polyimide (25
μm Kapton sheet) / Polyethylene (20 μm) / Aluminum (20 μm, but aluminum is partially stripped) / Polyphenylene sulfide (12 μm) /
Polypropylene (60 μm)) is cut into 70 mm x 80 mm, bent at the center of the 70 mm side, and the ends are overlapped with a structure in which the polypropylene surfaces face each other and heated and fused (fused width 2 mm)
To form a cylinder (35 mm x 80 mm). The battery element assembly was placed in this tube, and the opening was heated and fused (fused width: 5 mm) in a structure in which the electrode terminals protruded from the tube to produce a battery.

【0036】電池を充放電機に接続して、定電流(25
0mA)・定電位(4.2V)充電および定電流(25
0mA、カット電圧3V)放電して充放電させた。初回
放電量は580mAhであり平均電圧3.7Vであっ
た。また、充放電を繰り返し100回サイクル後の放電
量は545mAhであり繰り返し性に優れていることが
わかった。
When the battery is connected to a charger / discharger, a constant current (25
0 mA), constant potential (4.2 V) charging and constant current (25
(0 mA, cut voltage 3 V) to discharge and charge. The initial discharge amount was 580 mAh, and the average voltage was 3.7 V. In addition, the discharge amount after 100 cycles of repeated charge / discharge was 545 mAh, indicating that the repetition was excellent.

【0037】一方、前記の電池要素から集電体を剥離
後、凍結割断して断面を形成し、実施例1と同様にステ
ージ温度を−20℃に維持しながら電子顕微鏡観察を行
った。電極に接合している界面側に厚さ約8μmでポリ
マー粒子(平均粒径約2μm)が島状に配置した第二の
海島構造領域(島部分の面積比43%)が形成され、ゲ
ル電解質シート層の内部領域に海構造のイオン伝導性ポ
リマー相、平均粒径5μmの島構造の電解液からなる第
一の海島構造(海部分の面積比82%)が厚さ約45μ
mで形成されていることがわかった。このことからゲル
電解質シート積層体全体の断面に対するイオン伝導性ポ
リマー部分の面積比は72%であることがわかった。
On the other hand, after the current collector was peeled off from the above-mentioned battery element, it was frozen and cut to form a cross section, and observed with an electron microscope while maintaining the stage temperature at -20 ° C. as in Example 1. A second sea-island structure region (43% area ratio of island portions) in which polymer particles (average particle size of about 2 μm) are arranged in an island shape at a thickness of about 8 μm on the interface side joined to the electrode is formed, and the gel electrolyte is formed. In the inner region of the sheet layer, a first sea-island structure (area ratio of sea portion: 82%) composed of an ion-conductive polymer phase having a sea structure and an electrolyte having an island structure having an average particle size of 5 μm is about 45 μm thick.
m was formed. From this, it was found that the area ratio of the ion-conductive polymer portion to the entire cross section of the gel electrolyte sheet laminate was 72%.

【0038】[0038]

【実施例3】実施例1で作製した第一の海島構造のゲル
電解質シートを幅53mmに切断した後に第二の海島構
造を形成しない以外は実施例2と同様の方法で作製した
電池を充放電機に接続して、定電流(250mA)・定
電位(4.2V)充電および定電流(250mA、カッ
ト電圧3V)放電して充放電させた。初回放電量は57
8mAhであり平均電圧3.7Vであった。また、充放
電を繰り返し100回サイクル後の放電量は543mA
hであり繰り返し性に優れていることがわかった。
Example 3 A battery prepared in the same manner as in Example 2 except that the second sea-island structure was not formed after the gel electrolyte sheet having the first sea-island structure prepared in Example 1 was cut to a width of 53 mm. The battery was connected to a discharger and charged and discharged by charging at a constant current (250 mA) / constant potential (4.2 V) and discharging at a constant current (250 mA, cut voltage 3 V). Initial discharge amount is 57
It was 8 mAh and the average voltage was 3.7 V. Further, the discharge amount after 100 cycles of repeated charge / discharge was 543 mA.
h was found to be excellent in repeatability.

【0039】一方、電池要素から集電体を剥離後、凍結
割断して断面を形成し、実施例1と同様にステージ温度
を−20℃に維持しながら電子顕微鏡観察を行った。電
極に接合している界面側に厚さ約5μmでポリマー粒子
(平均粒径約0.8μm)が島状に配置した第二の海島
構造領域(島部分の面積比約50%)が形成され、ゲル
電解質シート層の内部領域に海構造のイオン伝導性ポリ
マー相、平均粒径7μmの島構造の電解液からなる第一
の海島構造(海部分の面積比約80%)が厚さ約40μ
mで形成されていることがわかった。
On the other hand, after the current collector was peeled off from the battery element, it was frozen and cut to form a cross section, and observed with an electron microscope while maintaining the stage temperature at -20 ° C. as in Example 1. A second sea-island structure region (approximately 50% of the area ratio of the island portion) in which polymer particles (average particle size of approximately 0.8 μm) are arranged in an island shape at a thickness of approximately 5 μm is formed on the interface side bonded to the electrode. A first sea-island structure (about 80% area ratio of sea portion) comprising an ion-conductive polymer phase having a sea structure and an electrolyte having an island structure having an average particle diameter of 7 μm is formed in an inner region of the gel electrolyte sheet layer with a thickness of about 40 μm.
m was formed.

【0040】[0040]

【発明の効果】本発明の複合構造ゲル電解質シート積層
体は、高いイオン伝導度、機械的強度を有し、電極積層
後の切断加工で短絡を起こさず、これを用いて構成した
電池は電池特性および安全性に優れた性能を提供する。
The composite gel electrolyte sheet laminate of the present invention has high ionic conductivity and mechanical strength, does not cause a short circuit in the cutting process after lamination of the electrodes, and the battery constituted by using this is a battery. Offers excellent performance in properties and safety.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明、第一の海島構造のゲル電解質シートの
断面の電子顕微鏡写真。
FIG. 1 is an electron micrograph of a cross section of a gel electrolyte sheet having a first sea-island structure according to the present invention.

【図2】本発明、第二の海島構造のゲル電解質シートの
断面の電子顕微鏡写真。
FIG. 2 is an electron micrograph of a cross section of a gel electrolyte sheet having a second sea-island structure according to the present invention.

【図3】本発明、第一の海島構造と第二の海島構造のゲ
ル電解質シートの積層体の断面の電子顕微鏡写真。
FIG. 3 is an electron micrograph of a cross section of a laminate of a gel electrolyte sheet having a first sea-island structure and a second sea-island structure according to the present invention.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年8月7日(1998.8.7)[Submission date] August 7, 1998 (1998.8.7)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 FIG. 2

【手続補正3】[Procedure amendment 3]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】 FIG. 3

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 悟 静岡県富士市鮫島2番地の1 旭化成工業 株式会社内 Fターム(参考) 5H021 AA06 BB12 CC04 CC05 EE10 EE23 HH06 5H024 AA01 AA02 BB00 BB10 CC08 CC19 DD09 EE09 HH11 5H029 AJ02 AJ05 AJ12 AK03 AL07 AM03 AM05 AM06 BJ12 CJ13 DJ04 DJ09 DJ12 EJ12 HJ14 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Satoru Yamazaki 1 of 2 Samejima, Fuji City, Shizuoka Prefecture Asahi Kasei Kogyo Co., Ltd. F-term (reference) 5H021 AA06 BB12 CC04 CC05 EE10 EE23 HH06 5H024 AA01 AA02 BB00 BB10 CC08 CC19 DD09 EE09 HH11 5H029 AJ02 AJ05 AJ12 AK03 AL07 AM03 AM05 AM06 BJ12 CJ13 DJ04 DJ09 DJ12 EJ12 HJ14

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 液体窒素による凍結状態で下記(I)お
よび(II)の海島構造を有するゲル電解質シートが積
層されていることを特徴とする複合構造ゲル電解質シー
ト積層体。 (I) 海が電解質を溶解した電解質溶媒からなる電解
液を含浸したポリマー相、および島が該電解液からなる
海島構造。 (II)島が電解質を溶解した電解質溶媒からなる電解
液を含浸したポリマー相、および海が該電解液からなる
海島構造。
1. A gel electrolyte sheet laminate having a composite structure, wherein gel electrolyte sheets having the following sea-island structure (I) and (II) are laminated in a state of being frozen by liquid nitrogen. (I) A polymer phase in which the sea is impregnated with an electrolyte solution containing an electrolyte solvent in which an electrolyte is dissolved, and a sea-island structure in which islands are made of the electrolyte solution. (II) A polymer phase in which islands are impregnated with an electrolytic solution composed of an electrolyte solvent in which an electrolyte is dissolved, and a sea-island structure in which the sea is composed of the electrolytic solution.
【請求項2】 少なくとも一方の面が(II)の構造で
あることを特徴とする請求項1記載の複合構造ゲル電解
質シート積層体。
2. The composite gel electrolyte sheet laminate according to claim 1, wherein at least one surface has a structure of (II).
【請求項3】 ポリマーがポリフッ化ビニリデン系ポリ
マーであることを特徴とする請求項1または2の複合構
造ゲル電解質シート積層体。
3. The composite gel electrolyte sheet laminate according to claim 1, wherein the polymer is a polyvinylidene fluoride-based polymer.
【請求項4】 請求項1〜3いずれかの複合構造ゲル電
解質シート積層体が電極に接合した電気化学素子。
4. An electrochemical device wherein the composite structure gel electrolyte sheet laminate according to claim 1 is joined to an electrode.
JP10214275A 1998-07-29 1998-07-29 Composite structure gel electrolyte sheet laminated body Withdrawn JP2000048639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10214275A JP2000048639A (en) 1998-07-29 1998-07-29 Composite structure gel electrolyte sheet laminated body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10214275A JP2000048639A (en) 1998-07-29 1998-07-29 Composite structure gel electrolyte sheet laminated body

Publications (1)

Publication Number Publication Date
JP2000048639A true JP2000048639A (en) 2000-02-18

Family

ID=16653046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10214275A Withdrawn JP2000048639A (en) 1998-07-29 1998-07-29 Composite structure gel electrolyte sheet laminated body

Country Status (1)

Country Link
JP (1) JP2000048639A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086252A (en) * 2001-09-10 2003-03-20 Ngk Insulators Ltd Lithium secondary battery
JP2005525674A (en) * 2001-07-27 2005-08-25 マサチューセッツ インスティテュート オブ テクノロジー Battery structure, self-organizing structure, and related method
WO2007066768A1 (en) * 2005-12-08 2007-06-14 Hitachi Maxell, Ltd. Separator for electrochemical device and method for producing same, and electrochemical device and method for manufacturing same
JP2008123996A (en) * 2006-10-16 2008-05-29 Hitachi Maxell Ltd Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2008123988A (en) * 2006-10-16 2008-05-29 Hitachi Maxell Ltd Separator for electrochemical device, electrochemical device and method for manufacturing the same
US7763382B2 (en) 2002-07-26 2010-07-27 A123 Systems, Inc. Bipolar articles and related methods
US7875392B2 (en) * 2003-06-27 2011-01-25 Asahi Kasei Chemicals Corporation Polymer electrolyte membrane having high durability and method for producing the same
US8088512B2 (en) 2001-07-27 2012-01-03 A123 Systems, Inc. Self organizing battery structure method
US8148009B2 (en) 2000-10-20 2012-04-03 Massachusetts Institute Of Technology Reticulated and controlled porosity battery structures
JP2014523068A (en) * 2011-06-30 2014-09-08 エルジー ケム. エルティーディ. Novel polymer electrolyte and lithium secondary battery containing the same
US8999571B2 (en) 2007-05-25 2015-04-07 Massachusetts Institute Of Technology Batteries and electrodes for use thereof
US9166250B2 (en) 2006-09-07 2015-10-20 Hitachi Maxell, Ltd. Separator for battery, method for manufacturing the same, and lithium secondary battery
US11050095B2 (en) 2004-12-08 2021-06-29 Maxell Holdings, Ltd. Separator for electrochemical device, and electrochemical device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8148009B2 (en) 2000-10-20 2012-04-03 Massachusetts Institute Of Technology Reticulated and controlled porosity battery structures
US8206469B2 (en) 2000-10-20 2012-06-26 A123 Systems, Inc. Battery structures, self-organizing structures and related methods
US8709647B2 (en) 2000-10-20 2014-04-29 A123 Systems Llc Battery structures and related methods
US8586238B2 (en) 2000-10-20 2013-11-19 Massachusetts Institute Of Technology Battery structures, self-organizing structures, and related methods
US8580430B2 (en) 2000-10-20 2013-11-12 Massachusetts Institute Of Technology Battery structures, self-organizing structures, and related methods
US8277975B2 (en) 2000-10-20 2012-10-02 Massachusetts Intitute Of Technology Reticulated and controlled porosity battery structures
US8206468B2 (en) 2000-10-20 2012-06-26 Massachusetts Institute Of Technology Battery structures, self-organizing structures and related methods
US8168326B2 (en) 2000-10-20 2012-05-01 A123 Systems, Inc. Battery structures, self-organizing structures and related methods
US7988746B2 (en) 2000-10-20 2011-08-02 A123 Systems, Inc. Battery structures, self-organizing structures and related methods
US8241789B2 (en) 2000-10-20 2012-08-14 Massachusetts Institute Of Technology Battery structures, self-organizing structures and related methods
US8088512B2 (en) 2001-07-27 2012-01-03 A123 Systems, Inc. Self organizing battery structure method
KR101178643B1 (en) * 2001-07-27 2012-09-07 에이일이삼 시스템즈 인코포레이티드 Battery structures, self-organizing structures and related methods
JP2005525674A (en) * 2001-07-27 2005-08-25 マサチューセッツ インスティテュート オブ テクノロジー Battery structure, self-organizing structure, and related method
JP2003086252A (en) * 2001-09-10 2003-03-20 Ngk Insulators Ltd Lithium secondary battery
US7763382B2 (en) 2002-07-26 2010-07-27 A123 Systems, Inc. Bipolar articles and related methods
US8481208B2 (en) 2002-07-26 2013-07-09 A123 Systems, LLC Bipolar articles and related methods
US7875392B2 (en) * 2003-06-27 2011-01-25 Asahi Kasei Chemicals Corporation Polymer electrolyte membrane having high durability and method for producing the same
US11050095B2 (en) 2004-12-08 2021-06-29 Maxell Holdings, Ltd. Separator for electrochemical device, and electrochemical device
JP2008305783A (en) * 2005-12-08 2008-12-18 Hitachi Maxell Ltd Separator for electrochemical element and its manufacturing method as well as electrochemical element and its manufacturing method
US8405957B2 (en) 2005-12-08 2013-03-26 Hitachi Maxell, Ltd. Separator for electrochemical device and method for producing the same, and electrochemical device and method for producing the same
WO2007066768A1 (en) * 2005-12-08 2007-06-14 Hitachi Maxell, Ltd. Separator for electrochemical device and method for producing same, and electrochemical device and method for manufacturing same
US9166250B2 (en) 2006-09-07 2015-10-20 Hitachi Maxell, Ltd. Separator for battery, method for manufacturing the same, and lithium secondary battery
JP2008123988A (en) * 2006-10-16 2008-05-29 Hitachi Maxell Ltd Separator for electrochemical device, electrochemical device and method for manufacturing the same
JP2008123996A (en) * 2006-10-16 2008-05-29 Hitachi Maxell Ltd Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
US8999571B2 (en) 2007-05-25 2015-04-07 Massachusetts Institute Of Technology Batteries and electrodes for use thereof
JP2014523068A (en) * 2011-06-30 2014-09-08 エルジー ケム. エルティーディ. Novel polymer electrolyte and lithium secondary battery containing the same
US9391344B2 (en) 2011-06-30 2016-07-12 Lg Chem, Ltd. Polymer electrolyte and lithium secondary battery including the same

Similar Documents

Publication Publication Date Title
JP4431304B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery provided with the same
EP1041658B1 (en) Method for producing nonaqueous gel electrolyte battery
JP5768359B2 (en) Heat-resistant microporous membrane, battery separator, and lithium ion secondary battery
US7651820B2 (en) Gel electrolyte and gel electrolyte battery
EP1401037B1 (en) Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith
JP4038699B2 (en) Lithium ion battery
JP5174376B2 (en) Non-aqueous lithium ion secondary battery
US6051343A (en) Polymeric solid electrolyte and lithium secondary cell using the same
JP4109522B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery using the same
JP5163439B2 (en) FIBER-CONTAINING POLYMER FILM AND METHOD FOR PRODUCING SAME, ELECTROCHEMICAL DEVICE AND METHOD FOR PRODUCING SAME
US6299653B1 (en) Hybrid electrolyte, method for manufacturing the same, and method for manufacturing electrochemical element using the same
WO1998020566A1 (en) Film forming method for lithium ion rechargeable batteries
JP3831939B2 (en) battery
JP4414165B2 (en) Electronic component separator and electronic component
JP2000030742A (en) Lithium-ion secondary battery element
JP2015181110A (en) Heat resistance microporous film, separator for lithium ion secondary batteries, and lithium ion secondary battery
KR20200096130A (en) Electrode with Insulation Film, Manufacturing Method thereof, and Lithium Secondary Battery Comprising the Same
JP2000048639A (en) Composite structure gel electrolyte sheet laminated body
JP2007257848A (en) Nonaqueous secondary battery
JP4017741B2 (en) Cross-linked polymer composite electrolyte and battery
KR102367371B1 (en) Anode and Lithium Secondary Battery Comprising the Same
JP4490055B2 (en) Separator for lithium ion secondary battery or polymer lithium battery
JPH11154534A (en) Lithium ion secondary battery element
JP2000149905A (en) Solid electrolyte battery
JPH1021963A (en) Battery and manufacture thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004